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Abstract: The global threat of antimicrobial resistance (AMR) is exacerbated by the mobilization of
antimicrobial resistance genes (ARGs) occurring in different environmental niches, including seawater.
Marine environments serve as reservoirs for resistant bacteria and ARGs, further complicated by the
ubiquity of microplastics (MPs). MPs can adsorb pollutants and promote bacterial biofilm formation,
creating conditions favorable to the dissemination of ARGs. This study explores the dynamics
of ARG transfer in the marine bivalve Mytilus galloprovincialis within a seawater model, focusing
on the influence of polyethylene MPs on the mobilization of the Tn916-carrying tetM gene and
plasmid-encoded ermB. Experiments revealed that biofilm formation on MPs by Enterococcus faecium
and Listeria monocytogenes facilitated the transfer of the tetM resistance gene, but not the ermB gene.
Furthermore, the presence of MPs significantly increased the conjugation frequency of tetM within
mussels, indicating that MPs enhance the potential for ARG mobilization in marine environments.
These findings highlight the role of MPs and marine organisms in ARG spread, underscoring the
ecological and public health implications.
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1. Introduction

The emergence of antimicrobial resistance (AMR) is a global threat to human and
animal health, occurring in all environments where microbial communities are exposed
to anthropogenic use of antimicrobials, such as clinical and farm animal settings [1,2].
Indeed, the excessive and inappropriate use of antimicrobial compounds has led to the
escalation of AMR, amplifying its propagation across diverse microbial ecosystems includ-
ing open environments and food systems [3]. The primary cause for the dissemination
of antimicrobial resistance genes (ARGs) is horizontal gene transfer (HGT) via mobile
genetic elements (MGEs), such as plasmids and transposons [4]. In particular, conjugative
transposons are mobile genetic elements that often carry ARGs and/or virulence genes.
These elements play a role in bacterial evolution by imparting particular phenotypes to
host cells [5]. HGT may occur in complex matrices like environments, animal guts, and
food, where high-density bacterial populations contribute to its occurrence [6,7]. Moreover,
in these environments, non-pathogenic and commensal AMR bacteria act as reservoirs
of ARGs, which may be transferred to pathogenic bacteria, limiting the effectiveness of
commonly used antimicrobial drugs and making infections more difficult to treat [3].

Among the various environmental niches, seawater was shown to act as a reservoir
of resistant bacteria originating from human and animal sources, potentially contributing
to the dissemination of ARGs. Marine environments were found to enclose about 28% of
ARGs [8]. In recent years, the AMR issue has been connected to another major problem for
human health, represented by the contamination by microplastics (MPs). MP pollution is

Antibiotics 2024, 13, 727. https://doi.org/10.3390/antibiotics13080727 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics13080727
https://doi.org/10.3390/antibiotics13080727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0002-5812-9531
https://orcid.org/0000-0001-6884-091X
https://orcid.org/0009-0009-0677-4617
https://orcid.org/0000-0001-9020-3853
https://doi.org/10.3390/antibiotics13080727
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics13080727?type=check_update&version=1


Antibiotics 2024, 13, 727 2 of 10

increasingly an interdisciplinary field of research, which should be faced with a holistic
approach [9]. Defined as plastic fragments with a dimension between 1 µm and 5 mm, MPs
have been reported as ubiquitous contaminants of abiotic environments, namely, terrestrial
and aquatic environments, and biotic habitats, namely, plants, animals, and humans [9].
This pollution issue constitutes a significant environmental challenge that is difficult to
reverse, due to the increasing production, limited recycling, and low degradability of
this material. Due to their interactions with chemicals, including antibiotics [10] and
microorganisms [11] in the environment, as well as their inherent physicochemical qualities,
MPs can impact the overall health and quality of the ecosystem. Indeed, the surface of
MP particles is an ideal platform to promote the adhesion of bacteria and the formation
of biofilm, creating the so-called ‘plastisphere’. In this condition, microorganisms are
protected by a barrier that lets them grow and spread in new and inhospitable settings.

The global dimension of the MP challenge is also due to their movement from urban
areas to freshwater and saltwater watersheds. A few years ago, a study estimated the “global
annual input of plastic from rivers into the oceans ranging from 1.15 to 2.41 million tonnes
with a dominant contribution from rivers of the Asian continent” [12]. Moreover, many studies
acknowledged the presence of MPs in wild populations of marine animals [13,14], highlighting
possible adverse effects for the animals themselves but also for humans as a source of exposure.
Mussels represent a prime example of the bioaccumulation of plastics. Feeding on phytoplank-
ton from surrounding water, they act as a filter, readily also accumulating plastic particles.
Therefore, they are used to investigate the fate and the toxic effects of MPs, also recognizing their
role in carrying MPs into the food chain [15]. Moreover, the filter-feeding nature of bivalves,
combined with human fecal pollution in coastal waters, is suggested to contribute to the
bioaccumulation of antibiotic-resistant pathogens in these organisms [16].

Several non-pathogenic foodborne bacteria, such as Enterococcus faecium, have raised
public health concerns for representing a reservoir of AMR determinants, contribut-
ing to their spread to humans through the food chain, animals, and the environment.
E. faecium is remarkably prone to develop AMR compared to other bacteria, with particular
attention to tetracycline, one of the most widely used antimicrobials for treating bacterial
infections in humans and animals [17,18]. Moreover, it has been reported that tetracycline
resistance in E. faecium can be acquired and transferred through transposons, especially
the conjugative transposon Tn916 [19]. In a previous study, we reported described the
multi-drug-resistant (MDR) E. faecium UC7251, a strain isolated from fermented meat
products, highlighting the phenotypic resistance and the genomic organization of genes
responsible for these traits. Specifically, this strain carried a mobilizable megaplasmid
harboring determinants for resistance to heavy metals and to numerous antimicrobials
including aminoglycosides (ant(6)-Ia, aph(3′)-III, aad(6)-Ia, ant1), macrolides (ermB, mrsC,
satA), lincosamides (IsaE, LnuB), and tetracyclines (tetL), embedded in an integrative and
conjugative element (ICE). In addition, Tn916 carrying the tetracycline resistance gene tetM
was detected on the chromosome. A conjugation experiment between E. faecium UC7251
and other strains showed the successful in vitro transfer of only the chromosomal tetM
gene of this determinant from this strain, isolated from fermented meat to Listeria monocy-
togenes [20]. The latter, an important foodborne pathogen frequently detected in cheese,
meat, and seafood products, has been shown to be able to acquire or transfer AMR genes.
The ability to acquire genetic material from other microorganisms has been observed in L.
monocytogenes, which is recognized as an important food pathogen, frequently detected in
cheese, meat, and fish products [21,22].

Several studies have investigated the bacterial community and the antimicrobial
resistome on MPs, providing useful insights on the prevalence of ARGs and the variety of
microbial species accumulating in the plastisphere. Although recent research suggested
links between the presence of MPs and ARGs in seawater and fresh water, research into
the demonstration of these links is still lacking. Since currently there are no studies that
experimentally demonstrate the horizontal gene exchange in seafood in the presence of
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MPs, we studied the transfer dynamics using the bivalve Mytilus galloprovincialis in a
seawater model, examining the influence of polyethylene MPs on HGT.

2. Results
2.1. Involvement of MPs in ARG Exchange inside Mussels

The aim of this study is to evaluate the role played by MPs and mussels in transferring
AMR in the marine environment, and then to assess how the combination of both elements
affects the passage of mobile elements. In particular, the exchange of the determinants
responsible for tetracycline carried by the conjugative transposon Tn916 located on the
chromosome and erythromycin, carried by mobilizable plasmid pUC7251_1, between
E. faecium and L. monocytogenes, two species found in the marine environment, was assessed.
Firstly, we tested the ability of donor and recipient to form biofilms on plastic material.
According to the crystal violet test, the ability of E. faecium UC7251 and the two strains of L.
monocytogenes to produce biofilm was confirmed, finding OD595 of 0.488, 0.448, and 0.420
for E. faecium and L. monocytogenes DSM 15675 and Scott A, respectively. Both enterococci
and L. monocytogenes are known to produce biofilm, as observed by others [23–25]. Then,
we proceeded to set up the experimental conditions, adding biofilm-covered MPs and
mussels alone or in combination, and also checking whether HGT could occur between
planktonic cells. When E. faecium and L. monocytogenes planktonic cells were added in
seawater, in the presence or absence of mussels, we did not observe any conjugation events
concerning the tetM and ermB genes, even if both strains persisted in the environment.

The HGT of tetM gene, but not of the ermB gene, was detected when MPs individually
covered by donor and recipient were added to the aquarium (experimental condition ii)
(Table S1). Indeed, the transfer of the tetM gene from E. faecium to L. monocytogenes DSM
15675 occurred with a rate of −7.91 ± 0.12 Log T/D (Transconjugants/Donor) after four
days, increasing significantly at −6.41 ± 0.18 Log T/D after seven days (Figure 1A). The
tetM transfer frequency observed for L. monocytogenes Scott A was not statistically different
from that observed for L. monocytogenes DSM 15675 (Table S3).
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Figure 1. Conjugation rates (T/D) found in two experimental conditions: (A) seawater with MPs
covered by L. monocytogenes and E. faecium biofilms (without mussels); (B) mussels in seawater with
MPs individually coated with L. monocytogenes and E. faecium biofilms. The x axis reports the name of
samples (M: mussels; W = water) and time of sampling (4d: fourth day; 7d: seventh day).

Furthermore, we investigated the ability of M. galloprovincialis, a filter-feeding aquatic
organism, to act as a host of HGT between bacterial communities. When MPs covered
by a biofilm of E. faecium and L. monocytogenes DSM 15675 were added to the marine
environment, the analysis of mussels resulted in a tetM conjugation rate of −5.48 ± 0.07
Log T/D after 4 days (Tables S2 and S3). Statistically not different transconjugation values
were detected when the recipient strain was L. monocytogenes Scott A (Figure 2B). On the
seventh day, a statistical increase in conjugation rate was achieved for both recipient strains,
without difference between them. In this experimental condition, water samples were also
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analyzed, finding a T/D ratio of −6.91 ± 0.05 Log T/D and −6.83 ± 0.06 Log T/D after
96 h, and a T/D ratio of –6.60 ± 0.04 Log T/D and −6.68 ± 0.10 Log T/D after 168 h for
L. monocytogenes DSM and Scott A, respectively (Figure 1B, Tables S2 and S3). Also in this
experimental condition, we did not observe any L. monocytogenes colonies on ALOA with
erythromycin, and therefore no ermB gene transfer events occurred.
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Figure 2. Experimental design, comprising four conditions: (A) experimental condition (i) with
planktonic cells of E. faecium UC7251 and L. monocytogenes strains; (B) experimental condition
(ii) including MPs covered by a biofilm of donor and recipients, prepared separately and simul-
taneously inoculated; (C) experimental condition (iii) including an artificial marine environment with
mussels and water inoculated with planktonic cells of donor and recipients; and (D) experimental
condition (iv) containing mussels and MPs covered by donor and recipient biofilm.

No colonies referable to Listeria genus were detected on ALOA supplemented with
tetracycline or erythromycin in negative control.

2.2. The Role of MGE of L. monocytogenes in HGT

The absence of any statistically significant differences between conjugation rates
obtained with L. monocytogenes DSM and Scott A strains led us to check the possible
involvement of MGE transfer.

The genome investigation for MGEs in L. monocytogenes DSM 15675 strain resulted in
the absence of any type of MGE, whereas L. monocytogenes Scott A presented an integrative
conjugative element of 58 kb (2375271-2433301bp) containing the conjugative transposon
Tn5422 which does not carry AMR genes. These results were consistent with previous
works which demonstrated that this is primarily attributed to the existence of a Type IV
secretion system (T4SS) and a relaxase in donor cells that promotes the transfer of genes
to the recipient cell without requiring these proteins to be present in the recipient cell
itself [26].

3. Discussion

Investigating the sharing of ARGs within a microbial niche is a priority, especially
if it involves ecological environments that directly impact on human health [1]. Aquatic
environments have been shown to be vehicles of pathogenic microorganisms and ARGs,
along with other pollutants such as MPs. Given the complexity of the ecological system
in which we currently live, it is particularly important to investigate what events drive
gene transfer.
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Here, we investigated the ability of an MDR E. faecium to share the tetM and ermB
determinants with two L. monocytogenes strains in an artificial seawater environment,
including MPs and mussels. First of all, we observed that even though the planktonic
cells were not able to exchange tetM and ermB, both of them persisted in this situation,
accordingly with some studies which detected the presence of these microorganisms in the
marine ecosystem [27–30].

Moreover, our study demonstrated that the HGT of tetM, but not ermB, occurred only
when the MPs were covered by donor and recipient biofilm, and that the conjugation
rate was increased when the filter feeding mussel M. galloprovincialis was present in the
same artificial environment. As supposed by others, probably the high cellular density
and the protective action of biofilm allowed the Tn916-mediated conjugation to occur,
albeit with low frequency and despite the absence of any selective pressure, such as the
presence of antibiotics [31,32]. Indeed, the biofilm is believed to serve as a focal point to
promote the mobilization of ARGs, also in aquatic environments, where it was detected on
different types of surfaces, namely, rocks and plastics [33]. The aggregation in biofilms lead
bacteria to be protected from different types of stresses such as temperature, UV, salinity,
and pH changes [34], thus representing a strategy for bacteria to remain in this challenging
ecosystem. Despite favorable conditions in the biofilm that increase contact between donor
and recipient, the absence of ermB gene transfer could be due to the absence of supporting
structures (e.g., helper plasmids) in the donor strain or to the absence of selective pressure
from subinhibitory concentrations of the antibiotic during experiments [35].

Although some studies observed that ARGs persisted in different types of aquatic
environments such as ocean and marine sediments, leading to the hypothesis that they
are capable of being spread in bacterial communities, few studies directly demonstrated
the HGT mediated by MPs in marine ecosystems. Arias-Andres and coauthors evidenced
conjugation events in an experimental microcosm study, in the presence or absence of MPs.
They observed the colonization of MPs by donor and recipient strains and an increase
of 4 LOG in the conjugation rate when MPs were included [36]. In another study, the
MP biofilm was demonstrated to increase the natural transformation rate of extracellular
DNA in single cells and the same-niche biota, unlike when only planktonic cells were
present [31].

Since the mussel M. galloprovincialis is a valuable edible marine bivalve with signifi-
cant ecological and economic importance, the evaluation of its role in the mobilization of
ARGs has become of interest. Previous studies have assessed the presence of pathogenic
and AMR bacteria in bivalve mussels and seafood, revealing a problem that needs to
be monitored. Surprisingly, no HGT events were found without MPs, highlighting that
both donor and recipient strains were able to persist in seawater without finding proper
conditions inside mussels to exchange tetM or ermB genes. The mobilization of ARGs could
probably be fostered in the presence of antibiotics, since they are frequently detected in
different aquaculture facilities and in marine ecosystems [37–39]. However, considering
the experimental conditions with MPs, the analysis of tetM transfer in water and within
mussels showed that the frequency of conjugation occurring in mussels is statistically
higher (p < 0.05) than that found in water. This evidence could be due to the fact that
M. galloprovincialis, as a filter feeder, is able to accumulate plastics inside the gut, accord-
ing to the literature. Indeed, mussels have long been recognized as indicators of plastic
pollution because of many different characteristics, such as their global distribution, easy
accessibility, and high tolerance to environmental conditions. Monitoring activities over the
years have shown the presence of MPs in the gut of different species of mussels, observing
a positive correlation between the abundance of MPs in water and in the mussels, inde-
pendently from the types of MPs (i.e., beads, fragments, and fibers) [15,40,41]. Moreover,
higher levels of MP ingestions were demonstrated in mussels compared to other fishes,
such as pandoras (Pagellus erythrinus) and red mullets (Mullus barbatus) [41].

The filtering action of MPs exerted by mussels is combined with the presence of
biofilms on them, creating even more favorable conditions for gene exchange. Indeed, sev-
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eral studies have found the presence of biofilms on MPs [42,43], and that biofilms increase
gene exchange frequencies [36,44]. Therefore, we overall hypothesized that mussels are
biological amplifiers of HGT, as they exert filtering action and concentrate MPs covered
by biofilm.

4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

E. faecium UC7251 was used as the donor strain and cultured in Brain Heart Infusion
(BHI) (Oxoid, Cheshire, UK) supplemented with 10 µg/mL of tetracycline (Sigma Aldrich,
Saint Louis, MO, USA) and 50 µg/mL of erythromycin (Sigma Aldrich) and incubated at
37 ◦C overnight. Two L. monocytogenes strains, DSM 15675 and Scott A, cultivated in BHI
and incubated at 37 ◦C overnight, were used as recipient strains.

E. faecium (GCA_000411655.2) and L. monocytogenes genomes (Scott A: GCA_009866905.1;
DSM 15675: GCA_002156185.1) were downloaded from NCBI and screened with ICEfinder [45]
to find integrative and conjugative elements (ICEs), including chromosome-borne integrative
and mobilizable elements (IMEs) and cis-mobilizable elements (CIMEs).

4.2. L. monocytogenes and E. faecium Biofilm Formation: Microtiter Assay and
Microplastic Colonization

The biofilm formation ability of E. faecium UC7251 and L. monocytogenes DSM 15675
and Scott A was quantified on 96-well polystyrene micro-titer plates (Sarstedt, Nümbrecht,
Germany) in triplicate, as previously described [46]. Biofilm formation was evaluated by
measuring the absorbance at OD595 nm using a Multiskan EX (Thermo Electron Corpora-
tion, Waltham, MA, USA).

The formation of biofilm on Polyethylene (PE) microplastic by L. monocytogenes and
E. faecium was carried out as described by others with some modifications [46]. Five grams
of PE, with a molecular weight of 35,000 g/mol (PE 35000) (Sigma Aldrich) and a particle
size ranging from 10 to 2000 µm (mean 271 µm), were pre-sterilized with ethanol 95% for
24 h and placed into glass flasks with 100 mL of BHI. Three glass flasks were inoculated
with 100 µL of overnight cultures of E. faecium UC7251, L. monocytogenes DSM 15675, and
L. monocytogenes Scott A, respectively, and incubated at 37 ◦C without agitation for 6 days.
After this time, the MPs were recovered aseptically and washed three times with distilled
water. Biofilm formation was determined as previously described [46]. After that, MPs
individually coated with the donor and recipient biofilm were used in the conjugation
experiment explained in the following section.

4.3. Experimental Design

The assessment of AMR gene transfer was studied in vivo in mussels with or with-
out MPs in a controlled aquatic environment using artificial seawater ASTM D1141-98
(Thermo Fisher Scientific, Waltham, MA, USA) in a 60 L fish tank with water recycling and
oxygenation. The tetM and ermB genes, harbored by chromosomes and plasmids, respec-
tively, were considered to monitor the gene exchange between donor and recipients. The
experimental design (Figure 2) included four conditions: (i) artificial seawater inoculated
with L. monocytogenes and E. faecium as planktonic cells; (ii) seawater with MPs covered by
L. monocytogenes and E. faecium biofilms (without mussels); (iii) mussels (M. galloprovincialis)
in artificial seawater inoculated with donor and recipient as planktonic cells; and (iv) mus-
sels in seawater with MPs individually coated with L. monocytogenes and E. faecium biofilms.

For setting up conditions (iii) and (iv), 60 undamaged and live adult mussels were
added to the fish tank, respectively. In conditions (i) and (iii), overnight cultures of the donor
and recipient strains were washed three times with saline solution (0.9% NaCl) and inocu-
lated into the seawater with a final concentration of planktonic cells of
1 × 106 CFU/mL, respectively. For conditions (ii) and (iv), 5 g of MPs coated with donor
biofilm (load of E. faecium: 6 Log CFU/mL) and 5 g of MPs coated with recipient biofilm
(load of L. monocytogenes DSM 15,675 and Scott A: 6 Log CFU/mL) were used. The temper-
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ature in the aquarium was maintained at 15 ◦C for seven days. An aquarium with mussels
in marine water, without inoculum or MPs, was used as negative control.

4.4. Microbiological and Molecular Analysis for Transconjugants Confirmation

After 4 and 7 days, mussels and water were sampled and analyzed to assess the
frequency of transconjugants.

Three replicates of 10 mL of seawater were mixed with 90 mL of saline solution and
homogenized with stomacher three times for five minutes. For mussels, three replicates
of 10 bivalves were separated from the shell, diluted, and homogenized as described
above. Samples were serially diluted and plated on ALOA (Oxoid) supplemented with
10 µg/mL of tetracycline or 50 µg/mL of erythromycin to select and count transconjugants,
and on Slanetz and Bartley agar (Oxoid) supplemented with tetracycline (10 µg/mL) and
erythromycin (50 µg/mL) to quantify the donor strains. The conjugation frequencies
were calculated as the ratio between the concentration of the transconjugants and the
concentration of the donor strain [47].

The transconjugants were confirmed using a PCR assay targeting the tetM and ermB
genes, as previously described [20], and species-specific PCR targeting actA gene for
L. monocytogenes [48].

4.5. Statistical Analysis

Statistical analysis was performed using the Past 4.06b software package [49]. Conjuga-
tion frequencies were analyzed using one-way analysis of variance (ANOVA) with Tukey’s
multiple comparison test (p ≤ 0.05). Experiments were conducted in a BL2 (Biosafety
Level 2) Bacteriology Laboratory, in accordance with the WHO guidelines [50].

5. Conclusions

In conclusion, this study highlights the significant role of MPs and marine organisms
in mediating the horizontal transfer of ARGs among strains of E. faecium and L. monocyto-
genes, frequently found in the marine environment. The findings underscore the potential
ecological and public health implications associated with the dissemination of AMR in
aquatic environments.

Our investigation demonstrated that the presence of MPs, particularly when coated
with bacterial biofilms, significantly enhanced the HGT of the tetM gene between E. faecium
and L. monocytogenes strains. This phenomenon suggests that MPs may serve as platforms
that concentrate bacterial cells and promote genetic exchange, potentially accelerating the
spread of AMR. Moreover, the study highlights the role of filter-feeding organisms like M.
galloprovincialis in facilitating HGT within aquatic environments. Mussels ingesting MPs
coated with bacterial biofilms demonstrated increased rates of gene transfer, emphasizing
the potential of marine organisms to act as vectors for AMR dissemination. The accumula-
tion of MPs in mussels has also an impact on food safety. Indeed, their ingestion represents
a potential risk for human health and a reservoir of AMR determinants.

In summary, this study provides crucial insights into the complex interactions between
MPs, marine organisms, and bacterial communities in driving the spread of AMR in aquatic
ecosystems. Further research is warranted to elucidate the broader ecological implications
of AMR dissemination facilitated by MPs and to develop strategies for mitigating this
emerging global health threat.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics13080727/s1. Table S1. Results of conjugation
events occurring in experimental condition (ii). This table shows the donor (D) and transconjugant
(T) concentrations (CFU/mL) and tetM transfer rate (Log T/D) obtained by sampling the aquarium
water for both recipient strains. All experiments were conducted in triplicate (A, B, and C). Table S2.
Results of conjugation occurring in experimental condition (iv). This table shows the donor and
transconjugant concentrations (CFU/mL) and tetM transfer rate (Log T/D) obtained by sampling the
aquarium water and M. galloprovincialis for both recipient strains. All experiments were conducted in
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standard deviation obtained under the different experimental conditions. The results are expressed
as the mean of three independent replicates.
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