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Abstract: The nutritional quality of animal products is strongly related to their fatty acid content
and composition. Nowadays, attention is paid to the possibility of producing healthier foods of
animal origin by intervening in animal feed. In this field, the use of condensed tannins as dietary
supplements in animal nutrition is becoming popular due to their wide range of biological effects
related, among others, to their ability to modulate the rumen biohydrogenation and biofortify,
through the improvement of the fatty acids profile, the derivate food products. Unfortunately,
tannins are characterized by strong astringency and low bioavailability. These disadvantages could
be overcome through the microencapsulation in protective matrices. With this in mind, the optimal
conditions for microencapsulation of a polyphenolic extract rich in condensed tannins by spray
drying using a blend of maltodextrin (MD) and gum Arabic (GA) as shell material were investigated.
For this purpose, after the extract characterization, through spectrophotometer assays and ultra-high-
performance liquid chromatography-quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry,
a central composite design (CCD) was employed to investigate the combined effects of core:shell
and MD:GA ratio on the microencapsulation process. The results obtained were used to develop
second-order polynomial regression models on different responses, namely encapsulation yield,
encapsulation efficiency, loading capacity, and tannin content. The formulation characterized by a
core:shell ratio of 1.5:5 and MD:GA ratio of 4:6 was selected as the optimized one with a loading
capacity of 17.67%, encapsulation efficiency of 76.58%, encapsulation yield of 35.69%, and tannin
concentration of 14.46 g/100 g. Moreover, in vitro release under varying pH of the optimized
formulation was carried out with results that could improve the use of microencapsulated condensed
tannins in animal nutrition for the biofortification of derivates.

Keywords: biofortification; central composite design; condensed tannins; dairy products; fatty acids
profile; gum Arabic; maltodextrin; microencapsulation; milk; phenolic compounds

1. Introduction

The growth of consumers’ concerns about animal origin product, combined with the
demand for healthier foods, has increased researchers’ effort to develop safe and poten-
tially health-promoting products. Besides the possibility to produce healthier animal origin
product by adding specific nutrients in food through fortification, the increase of the concen-
tration of active compounds supplementing animal feed with specific nutrients is getting
attention [1]. In ruminants, the possibility to increase the unsaturated fatty acids, and
particularly conjugated linoleic acid (CLA) via feeding strategies, is of particular interest.

Condensed tannins are a class of phenolic compounds with antioxidant, antibacterial,
and rumen modulating properties that can inhibit the fatty acids biohydrogenation [2].
Some in vitro and in vivo studies have suggested that the supplementation of ruminant
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feed with these compounds may be an efficient tool to enhance the accumulation of vaccenic
acid due to an inhibition of the last step of biohydrogenation on linoleic and linolenic
acid [1,3]. Subsequently, the D—desaturase enzyme, acting on vaccenic acid, produces
CLA, active in the prevention of cancer and atherosclerosis in mammals, so increasing its
concentration in animal derivative food products [4]. Moreover, the supplementation of
animal feed with condensed tannin potential increases the digestive utilization of dietary
protein due to their ability to bind proteins under rumen pH conditions (preventing
their excessive microbial degradation) and release them in the acid pH of the abomasum
and in the alkaline conditions of the distal small intestine promoting, in this way, the
protein digestion and absorption [3]. In addition, a significant increase in total phenolic
compounds, and even an increase in antioxidant activity, has been reported in animal fed
with polyphenolic compounds [5]. However, the bitter taste and the adverse effects of
tannins on feed represent the major limitation to the practical application of this nutritional
strategy to biofortify animal food derivates, as it leads to a reduction in voluntary dry
matter intake by animals [6]. For this reason, it has been reported that the administration of
encapsulated tannins instead of parent compound, could be a useful tool to overcome this
drawback improving, at the same time, the bioavailability of the compound through a site-
specific release in the rumen. Tannin microencapsulation would ensure a gradual release
in the rumen that could improve tannin utilization in ruminant diets [6,7]. Specifically,
the microencapsulation process consists of enclosing the active agent (namely core) in
one or more polymeric matrix (namely shell) to protect it from light, oxygen, or other
environmental factors, promoting its controlled release and masking its taste [8].

Spray-dryer technology, which converts a liquid solution containing the core and the
shell material into a dry powder, is preferred due to its easy scalability and relatively low-
cost process [9]. Different shell materials can be used for the encapsulation of plant extracts,
although the limitation in term of suitability and cost must be considered, concerning
the commercial use of microcapsules in livestock applications. Maltodextrin (MD) a
hydrolyzed starch product that is odorless, colorless, and tasteless, is commonly used as an
encapsulant in spray drying and has recently been used for the successful encapsulation
of olive pomace polyphenols [10], chokeberry polyphenols [11], and citrus by-product
extract [12]. In this field, MD has the advantage of being cheap, having low viscosity at high
solid concentration and being able to protect the core material from oxidation. Similarly,
gum Arabic (GA), a natural colorless plant heteropolysaccharide, has been commonly
used as shell material in spray-drying, due to its interesting emulsifying and rheological
properties, and besides its high protection against oxidation [13].

In the light of this, the objective of the present study was the microencapsulation of
a polyphenolic extract rich in condensed tannins by spray-drying, using MD and GA as
shell materials. A design of experiment based on a central composite design (CCD) model
was performed. Furthermore, the release of phenolic compounds from the optimized
formulation was evaluated at pH 5.6, 2.2, and 7.2, simulating the rumen, abomasum and
intestinal conditions. The kinetic release was then studied with various computational
models. Choosing the one that better fitted our results, it was possible to identify the
phenomenon responsible of phenolic compounds released from microcapsules.

2. Materials and Methods
2.1. Materials

Quebracho (Schinopsis spp.) phenolic compound extract rich in condensed tannins
(BYPRO Q) was kindly provided by Silvateam (S. Michele Mondovì, CN, Italy). Mal-
todextrin 16 DE and gum Arabic supplied by Tecnoblend (Matera, Italy) and Ingredion
(Hamburg, Germany), respectively were employed as coating materials. Ultra-pure water
(Merck- Millipore, Billerica, MA, USA) was used for analysis whereas distilled water was
used for the preparation of microcapsules. All the other chemicals were of analytical grade
and purchased from Sigma-Aldrich (Milan, Italy).
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2.2. Characterization of the Tannin Rich Phenolic Extract by Spectrophotometric Assays

The Quebracho powder (QP), that is the phenolic compound extract rich in tannin,
was characterized in terms of total phenolic compounds (TPC), total flavonoid content
(TFC), and condensed tannin content (CTC). After weighing 0.2 g of QP in a 50 mL conical
centrifuge tube covered with aluminum foil, 20 mL of a solution EtOH:H2O 60:40 (v/v) was
added and the extraction was carried out using at 170 rpm an orbital shaker (Thermolyne
AROS 160, Barnstead International, Boston, MA, USA) overnight at room temperature.
After the extraction, the solution was centrifuged for 10 min at 3000× g, the recovered
supernatant was filtered at 0.45 µm and analyzed to quantify through spectrophotometric
assays the TPC, TFC, and CTC. TPC in QP extract were determined as described by
Singleton and Rossi [14]. Briefly, 100 µL of the extract were incubated with 500 µL of
ten times diluted Folin–Ciocalteau reagent for 10 min at room temperature. Successfully,
500 µL of a saturated solution of Na2CO3 were added. After 30 min in the dark at room
temperature, the absorbance was measured at 765 nm (Cary 1E UV–VIS spectrophotometer,
Varian, Agilent, Milano, Italy). Gallic acid was employed as calibration standard and
results were expressed as mg gallic acid equivalents (GAE)/g dw. The total flavonoid
content (TFC) of the extract was evaluated according to Dewanto et al. [15]. To 100 µL of
the extract, 440 µL of 0.066 M NaNO2 solution and, after 5 min at room temperature, 60 µL
of AlCl3 0.75 M were added. Finally, after 6 min, 400 µL of NaOH 0.5M were added and
the absorbance at 500 nm was measured. Catechin was employed as calibration standard
and results were expressed as mg of catechin equivalents (CAE)/g dw. The condensed
tannin content (CTC) of the extract was determined by the vanillin assay as reported by
Caruso et al. [16]. In detail, 200 µL of the extract was mixed with 800 µL of vanillin reagent
(containing 3% of vanillin and 14% of HCl in MeOH) and allowed to react for 20 min at
room temperature. The absorbance was recorded at 500 nm and the results were expressed
as mg catechin equivalents (CAE)/g dw.

2.3. Characterization of the Tannin Rich Phenolic Extracts by UHPLC-ESI/QTOF
Mass Spectrometry

Aqueous and EtOH:H2O 60:40 (v/v) extracts were produced dissolving 0.5 g of QP in
the specific solvent. After the centrifugation for 10 min at 3000× g, aqueous and EtOH:H2O
extracts were filtered through a 0.22 µm cellulose syringe filter into HPLC amber glass
vials. Phenolic compounds were then profiled according to an untargeted approach using
liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-
ESI/QTOF-MS) as previously reported [17]. In brief, chromatographic separation was
carried out using a binary linear gradient of aqueous acetonitrile (5 to 95% in 34 min) and a
Zorbax Eclipse Plus column (50 mm × 2.1 mm, 1.8 µm—Agilent technologies, Santa Clara,
CA, USA). The injection volume was 4 µL and QTOF-MS acquired high-resolution spectra
in positive polarity and full scan mode (100–1200 m/z, 1 Hz,). Four replicate extracts were
analyzed per extraction condition.

The annotation of mass features from raw data was done using the software Profinder
revision B.07 (Agilent Technologies), by combining monoisotopic accurate mass isotopic
spacing and isotopic ratio. Mass accuracy was <5 ppm and both mass and retention time
alignment (0.1 min) were adopted [18]. The database Phenol-Explorer 3.6 (http://phenol-
explorer.eu/: accessed on: 2 March 2021) was used to annotate phenolic compounds, and
the compounds were retained only when annotated within 100% of replications within at
least one extraction condition.

Values are calculated using calibration curves built from sesamin (lignans), ferulic
acid (hydroxycinnamic acids and other phenolic acids), cyanidin (anthocyanins), catechin
(flavanols), luteolin (flavones and other remaining flavonoids), resveratrol (stilbenes), and
tyrosol (tyrosols and other remaining low molecular weight phenolics).

Phenolics were finally grouped in sub-classes (according to phenol-explorer classifica-
tion), and the cumulative abundances from each class used for quantification purposes. To

http://phenol-explorer.eu/
http://phenol-explorer.eu/
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this aim, calibration curves prepared from solutions made from pure standard solutions
(Extrasynthese, Lyon, France), were used [18].

2.4. Microparticles Production

In order to obtain the microencapsulated tannins, maltodextrin (MD) and gum Arabic
(GA), the selected coating materials, were separately weighed and rehydrated in distilled
water under magnetic stirring overnight at room temperature and finally homogenized.
After mixing the MD and GA solution, with a total solid concentration of 10% (w/v), QP
was added under continuous stirring and homogenized for 3 min at 9500 rpm with an
Ultra Turrax T25 homogenizer (IKA Instruments, Staufen, Germany). Detailed information
about the MD:GA and core:shell ratio is shown in Table 1 according to CCD. Afterwards,
the obtained solutions were atomized using a spray dryer (FT 80 Tall Form spray dryer,
Armfiled Inc., Jackson, NJ, USA). The spry-dryer operative conditions, selected based on
the available literature and our previous experiments, were as follows: inlet temperature
of 170 ◦C, outlet temperature ranged from 60 to 65.5 ◦C, pump setting of 0.5 L/h, air flow
of 600 L/h, and nozzle cup diameter of 0.7 mm.

Table 1. Real and codified values used in the CCD.

Experiment No.

Actual Values Coded Values

X1 Core:Shell X2 MD:GA
(w/w) X1 X2

1 0.5:5 2:3 −1 −1
2 1.5:5 2:3 +1 −1
3 0.5:5 3:2 −1 +1
4 1.5:5 3:2 +1 +1
5 0.29:5 2.5:2.5 −1.414 0
6 1.7:5 2.5:2.5 +1.414 0
7 1:5 1.5:3.5 0 −1.414
8 1:5 3.5:1.5 0 +1.414
9 1:5 2.5:2.5 0 0

10 1:5 2.5:2.5 0 0
11 1:5 2.5:2.5 0 0
12 1:5 2.5:2.5 0 0
13 1:5 2.5:2.5 0 0

2.5. Microparticles Characterization
2.5.1. Encapsulation Yield

The encapsulation yield (EY) was calculated as the ratio between the powder collected
at the bottom of the spray-dryer’s cyclone separator and the amount of the initial solids
contained in the feed suspensions Equation (1).

EY =
Mass of powder collected (g)

Mass of solid fed (g)
× 100 (1)

2.5.2. Encapsulation Efficiency and Loading Capacity

Two different extractions protocols were employed to quantify total phenolic content
and the surface phenolic content of microcapsules required for the evaluation of the
encapsulation efficiency (EE) and the loading capacity (LC) as reported by Zanoni et al. [19].
Detailed, to obtain the total phenolic content, the rupture of the capsules and their release
was granted suspending in 1 mL of water 100 mg of the powder and placing the tube in
a sonication bath at room temperature for 30 min. Successfully, 10 mL of ethanol were
added and the mixture was left under magnetic stirrer for 30 min. As regards the surface
phenolic content, 100 mg of microcapsules were incubated in 10 mL of ethanol for 1 min.
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The obtained extracts were centrifuged at 4500× g for 10 min and finally, the TPC and CTC
were assessed. The LC and EE were calculated as reported by Xu et al. [20]:

LC =
Total phenolic content − Surface phenolic content

Mass of microparticles
× 100 (2)

EE =
Total phenolic content − Surface phenolic content

Theoretical phenolic content
× 100 (3)

In addition, TC (g/100 g) namely tannin content was evaluated.

2.5.3. Moisture Content and Water Activity

The moisture content was evaluated based on AOAC method [21]. Instead, the water
activity (aw) of the spray dried microcapsules was measured by using a HygroPalm with
an HC2-AW sensor (Rotronic Italia Srl, Milano, Italy) at 25 ◦C.

2.5.4. Color Analysis

The color was measured by a reflectance colorimeter (illuminant D65) (Minolta
Chroma meter CR-300, Osaka, Japan) based on the color system CIE—L *, a *, b *. Specif-
ically, lightness (L *) and color (+a: red; −a: green; +b: yellow; −b: blue) of QP and of
microcapsules were assessed.

2.5.5. Optical Microscopy

After the suspension in mineral oil, the shape and the size of the microparticles was
observed by a digital light microscope (Nikon Eclipse 80i) at 100× magnification and with
the ImageJ software (version 1.53a) was used to set the scale-bar.

2.6. Design of Experiment (DOE) Using Central Composite Design (CCD) and Response Surface
Methodology (RSM)

A central composite design (CCD) approach was applied to optimize the formulation
parameters of QP microencapsulation, requiring a minimum of experiments. Specifically,
a 2 factor 3 level CCD approach-based on response surface methodology (RSM) analysis
was used. The core:shell ratio (X1) and the MD:GA ratio (X2) were selected as independent
variables and studied at three different levels coded as −1, 0, and 1. Moreover, five central
repetitions were realized, resulting 13 experiments with the α value of orthogonality
equal to ±1.14, as presented in Table 1. Encapsulation yield (Y1), encapsulation efficiency
(Y2), loading capacity (Y3), and tannin content (Y4) were selected as dependent response
variables to be optimized. The regression coefficients (β) were obtained by adapting the
experimental results to a second-order polynomial model Equation (4):

Yk = β0 + β1 X1 + β2 X2 + β12 X1 X2 + β11 X1
2 + β22 X2

2 (4)

where, Yk is the response variable, X1 and X2 are the levels of the independent variables
core:shell and MD:GA, respectively. β0 is a constant, β1, β2 are the linear coefficients, β11
and β12 are the quadratic coefficients of the model.

2.7. In Vitro Kinetics Release of Encapsulated Tannin from Microcapsules

The in vitro kinetic release in the digestive system of ruminant animals of not encapsulated-
QP and QP encapsulated under the optimal conditions was simulated following the
procedure of Adejoro et al. [6]. To simulate the rumen, abomasal, and intestinal conditions
the acetate buffer (pH 5.6), HCl buffer (pH 2.2), and phosphate buffer (pH 7.4) were used,
respectively. Two hundred microgram of the encapsulated and the not encapsulated QP
were suspended in 50 mL of elution media and agitated at 50 rpm. An aliquot (1 mL) of
sample was taken at 0.5, 1, 2, 4, 8, and 24 h, and replaced with an equivalent volume of the
corresponded elution media. The release of TPC was monitored by UV spectrophotometry
as described above. The cumulative amount of TPC at each time interval was corrected



Foods 2021, 10, 881 6 of 17

with the volume of the elution media. To find the best model for the TPC released in rumen,
abomasum, and intestinal environment, the release kinetics of TPC were calculated using
different models reported by Navarro-Flores et al. [22]:

zero order release Qt = Q0 + k0t (5)

first order release logQt = logQ0 − k1t (6)

Higuchi model Qt = Q0 + kHt1/2 (7)

where k0 is the zero-order rate constant, t is the time, Qt is the released concentration of
phenolic compounds at time t, Q0 is the initial concentration of phenolic compound within
solutions (usually Q0 = 0), k1 is the first-order rate constant, and kH is the Higuchi disso-
lution constant. Furthermore, to better characterize the mechanism of TPC release from
microparticles, data were analyzed with the equation proposed by Korsmeyer and Peppas:

Qt = kKPtn (8)

where kKP is the proportionality constant and n is the release exponent that could be used
to indicate the mechanism of release [23].

2.8. Statistical Analysis

All data reported (i.e., mean values ± standard deviation) represent the means of
at least three measurements. To optimize the microencapsulation process, dependent
variables were analyzed using the central composite design and the lack of fit, coefficient
of determination (R2), adjusted coefficient of determination (R2

adj), model p-value, and the
construction of response surface (3D) graphs were obtained using the software XLSTAT
Premium (Version 2019.4.2, Addinsoft SARL, Paris, France). The optimized formulation
was obtained using the software’s desirably function. The independent variables were kept
within range while the responses were maximized according to the process requirement.
The general approach of the desirability function is to transform the response (Y) into
a dimensionless individual desirability function. The scale of the desirability function
ranges between 0 (completely undesirable response) and 1 (fully desirable response). The
overall desirability for maximum response value and variables was fixed to obtain the
desired criteria.

3. Results and Discussion
3.1. Characterization of the Quebracho Tannin Rich Phenolic Extracts

Quebracho powder (QP) was characterized through spectrophotometer assays in
terms of TPC, TFC, and CTC before being microencapsulated. The powder was made
up for more than 84% of TPC (84.37 ± 0.72 g GAE/100 g of powder) with CTC that
represent the largest part of these (68 ± 2.16 g CAE/100 g of powder) and TFC the smallest
(15.76 ± 1.60 g CAE/100 g of powder), results broadly in line with Marsal et al. [24] who
characterized the same tannin extract.

3.2. UHPLC-ESI/QTOF Phenolic Profiling

The metabolomics approach allowed highlighting a broad diversity of phenolics in
our extracts, that included more than 400 compounds ascribable to flavonoids, hydroxycin-
namic acids, and other phenolic acids, tyrosols, and other low molecular weight phenolics,
as well as lignans and stilbenes. The whole list of phenolic compounds annotated in either
aqueous or ethanolic extracts is provided as Supplementary Materials, according to the
phenolic sub-class and together with individual abundance values and composite mass
spectra (monoisotopic mass and abundance combinations).

As expected, the ethanolic solution was generally more effective in extracting pheno-
lics, even though phenolic acids did not change (fold-change 0.98) and stilbenes decreased
in ethanolic solution (fold-change = 0.85). In more detail, flavones were the most repre-



Foods 2021, 10, 881 7 of 17

sented, ranging from 950 to 1334 mg/100 g in aqueous and ethanolic extract, respectively,
together with tyrosol equivalents (alkylphenols, tyrosols, phenolic terpenes, and other low
molecular weight phenolics—1053 to 1360 mg/100 g in aqueous and ethanolic extract, re-
spectively). Among flavone equivalents, flavanones (naringenin and naringin derivatives),
apigenin and luteolin conjugates, and isoflavonoids (daidzein and genistein derivatives,
among others) were the most represented. Notwithstanding, the extracts were rich in
anthocyanins such as cyanidin, malvidin and petunidin glycosides, flavanols, proantho-
cyanidins dimers and trimers, lignans and stilbenes were present in appreciable amounts.
The whole phenolic profile is summarized in Figure 1, where cumulate abundances per
each phenolic sub class are provided as a function of the extraction solvent.
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3.3. Experimental Data for Process Optimization

According to the possible microcapsule’s application, the effect of the core:shell and
the MD:GA ratio on the encapsulation yield, total and surface phenolic compounds, encap-
sulation efficiency, loading capacity, tannin content, aw, moisture, and color of microencap-
sulated QP was evaluated and the results are reported in Table 2.

3.3.1. Encapsulation Yield

Encapsulation yield (EY) ranged from 29.75% to 48.92%. Given the sparse literature
dealing with microencapsulation of this extract, these data cannot be readily compared to
the semi-technical pilot plant spray dryer used here.

In particular, the larger size of the spray-dryer may have resulted in greater adherence
of the powder particles to the walls of the drying chamber, and thus a lower EY. The highest
EY (experiment No. 3, 4, and 8) was obtained with the increase of the amount of MD as
shell material at the expense of GA concentration. At the same time, it was found that the
lowest EY was observed in the samples with higher GA concentration (experiment No. 1,
2, and 7) up to a value of 29.75% in the sample with MD:GA ratio of 1.5:3.5. Therefore, it
can be concluded that the increasing ratios of MD:GA have a negative effect on the yield.
The same conclusion was reached by Tolun et al. [25], who investigated the influence of
different MD:GA ratio (10:0, 8:2, and 6:4) on the microencapsulation of grape polyphenols
using spray dryer. This could be due to the short-chain branched structure of GA and to its
high hydrophilicity which probably increased the adhesion of the particles to the chamber
of the spray and to other dried particles [26].
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Table 2. Experimental results of quebracho extract microencapsulation by spray drying carried out according to the central composite design.

Experiment
No.

Encapsulation
Yield (%)

Total Phenolic
Compounds

(g/100 g)

Surface Phenolic
Compounds (g/100 g)

Tannin
Content
(g/100 g)

Encapsulation
Efficiency (%)

Loading
Capacity (%) Moisture aw

Color

L * a * b *

1 32.48 ± 1.36 6.93 ± 0.16 0.32 ± 0.02 5.50 ± 0.09 72.64 ± 1.88 6.60 ± 0.17 3.35 ± 0.23 0.44 ± 0.00 76.78 ± 0.96 2.72 ± 0.23 22.89 ± 0.31
2 35.69 ± 0.53 18.24 ± 0.03 0.56 ± 0.00 14.46 ± 0.25 76.58 ± 0.16 17.67 ± 0.04 3.67 ±0.03 0.37 ± 0.00 71.08 ± 1.40 4.11 ± 0.27 27.13 ± 0.33
3 42.62 ± 0.49 6.62 ± 0.09 0.32 ± 0.04 5.26 ± 0.07 69.33 ± 1.10 6.30 ± 0.10 4.22 ± 0.02 0.41 ± 0.00 75.01 ± 1.26 3.02 ± 0.15 24.38 ± 0.14
4 48.92 ± 0.94 17.67 ± 0.06 0.58 ± 0.03 14.02 ± 0.37 74.09 ± 0.17 17.10 ± 0.04 4.30 ± 0.09 0.40 ± 0.00 70.35 ± 0.70 4.22 ± 0.08 27.20 ± 0.22
5 34.29 ± 0.85 4.10 ± 0.11 0.26 ± 0.00 3.200 ± 0.1.2 70.05 ± 1.93 3.84 ± 0.11 4.11 ± 0.06 0.36 ± 0.00 78.98 ± 0.46 2.27 ± 0.04 21.48 ± 0.13
6 33.96 ± 0.81 19.33 ± 0.04 1.58 ± 0.02 15.34 ± 0.29 68.03 ± 0.22 17.76 ± 0.06 4.19 ± 0.12 0.38 ± 0.00 69.18 ± 0.17 4.71 ± 0.03 28.38 ± 0.05
7 39.75 ± 0.87 13.14 ± 0.03 0.35 ± 0.02 10.29 ± 0.06 76.74 ± 0.03 12.79 ± 0.00 4.070 ± 0.24 0.34 ± 0.00 71.03 ± 0.08 4.24 ± 0.06 b 27.37 ± 0.04
8 43.57 ± 1.18 12.72 ± 0.13 0.38 ± 0.01 9.71 ± 0.1.5 74.06 ± 0.82 12.34 ± 0.14 3.96 ± 0.14 0.37 ± 0.00 70.97 ± 1.09 4.13 ± 0.20 27.55 ± 0.41
9 38.42 ± 0.45 12.55 ±0.13 0.36 ± 0.05 9.95 ± 0.27 73.17 ± 0.46 12.20 ± 0.08 4.34 ± 0.07 0.38 ± 0.00 70.56 ± 0.49 4.28 ± 0.05 27.65 ± 0.11
10 37.80 ± 0.63 12.63 ± 0.04 0.35 ± 0.01 9.85 ± 0.16 73.67 ± 0.22 12.28 ± 0.05 3.97 ± 0.13 0.35 ± 0.00 70.01 ± 0.61 4.45 ± 0.16 28.02 ± 0.37
11 38.81 ± 0.82 12.69 ±0.07 0.37 ± 0.03 9.86 ± 0.14 73.92 ± 0.35 12.32 ± 0.06 3.83 ± 0.66 0.36 ± 0.00 70.57 ± 0.16 4.35 ± 0.03 27.96 ± 0.10
12 38.63 ± 1.25 12.68 ± 0.72 0.36 ± 0.00 9.88 ± 0.15 73.94 ± 0.42 12.32 ± 0.72 3.32 ± 0.12 0.35 ± 0.00 70.03 ± 0.80 4.29 ± 0.09 27.56 ± 0.04
13 39.42 ± 1.85 12.72 ± 0.11 0.37 ± 0.00 9.79 ± 0.14 74.05 ± 0.63 12.34 ± 0.11 3.49 ± 0.01 0.34 ± 0.00 69.99 ± 0.24 4.40 ± 0.05 28.06 ± 0.18
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3.3.2. Encapsulation Efficiency and Loading Capacity

Total phenolic compound and the surface phenolic compounds are parameters used
to determine the encapsulation efficiency (EE) and the loading capacity (LC). These values
reflect the percentage of the phenolic compounds successfully entrapped in the microcap-
sules (EE) and the amount of loaded phenolic compounds per unit weight (LC). In contrast
to the total phenolic compounds, which yielded a higher correlation with the core:shell
ratio (R2 = 0.99), the correlation with the surface phenolic compounds was low (R2 = 0.69),
indicating that the surface phenolic compounds did not increase linearly with the increase
of QP in the formulation. This was probably due to the ability of the different MD:GA
ratio to entrap the phenolic compounds, which varied the amount of phenolic compounds
on the surface of the microcapsules. The values of TPC and surface phenolic compound
values allowed the calculation of the EE. According to Mahdavi et al. [13] a successful
encapsulation method dealing with the high retention of the core materials and minimum
amounts of the core on the surface. The EE, which ranged from 68.03 to 76.74%, was
strongly influenced by both core:shell and MD:GA ratio. In particular, the results showed
that the 2:3 MD:GA and 1.5:5 core:shell ratio (experiment No. 2) increased the EE to a value
of 76.58% which was close to the highest value obtained with the 1.5:3.5 MD:GA and 1:5
core:shell ratio (experiment No. 7). Therefore, it can be concluded that with the increase in
the proportion of GA in the shell material an increase in the EE occurred. This effect could
be caused by the emulsifying properties of GA and its ability to form a dried matrix that
prevents the core material from contacting the environment, as reported by Cilek et al. [27]
who observed a significant increase in EE of phenolic compounds extracted from cherry
pomace with increasing MD:GA ratio.

Furthermore, the higher EE obtained increasing the GA concentration could be related
to the different viscosity of the feed suspension.

As reported by Premi et al. [28], the feed suspension viscosity increased as a function
of GA concentration. This implies a lower volume of water to be evaporated and thus
a shorter time needed to form a crust, which reduces the circulation movements within
the droplets and leads to a higher retention of the active material [29]. However, the
combination of two different shell materials (MD:GA) is confirmed to be a suitable choice
for the microencapsulation of phenolic compounds. About it, Tolun et al. [25] have reported
that the use of a mixture of MD:GA as shell material for the encapsulation of phenolic
compounds extracted from grape residue was more appropriate than the use of MD alone
in terms of EE.

The LC value ranged from 3.84% to 17.76% and tended to improve with the increase
of MD:GA and core:shell ratio. In particular, the higher values were reported in the
experiment No. 2 and 6. A similar trend was observed for tannin content, although it must
be emphasized that the formulations obtained in experiment No. 2 and 6 differed for both
core:shell (1.5:5 vs. 1.7:5) and MD:GA (2:3 vs. 2.5:2.5) ratio. With respect to the core:shell
ratio, these results suggest that it may be not useful to further increase the amount of QP in
the formulation exceeding the 1.5:5 ratio. Moreover, as confirmed by the surface phenolic
compounds, no higher amount of QP was encapsulated in experiment No. 6 compared to
No. 2.

3.3.3. Moisture Content and Water Activity

Moisture content and aw are important indices of powders from spray drying pro-
cess as they affect its stability, agglomeration, and shelf-life. The moisture content of QP
microcapsules was less than 5% in all formulations, meeting the requirements for the
moisture content of a food powder (<6%) and suitable for long-term storage [30,31]. In
detail, the moisture content agreed with microcapsules obtained under similar operating
conditions [9] and ranged from 3.32 to 4.34%, tending to decrease with the increase of
GA concentration. These results are not entirely consistent with those obtained by other
authors [32,33]. For example, Kang et al. [32] reported that the moisture content of chloro-
phylls microcapsules decreased with an increase in MD concentration. However, it must
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be underlined that the differences between formulations could be related to the MD and
GA chemical structure, especially the hydrophilic groups and ramification that can bind
water molecules, but also depend on the MD degree of polymerization [26]. Rodríguez-
Hernández, et al. [34], verified higher moisture contents for the powders produced by
spray-drying with MD 10DE than for those produced with MD 20 DE. The authors at-
tributed this difference to the polymerization degree of each agent and concluded that
moisture retention was greater for MD 10 DE due to its better binding properties. Thus,
our results could be due to the MD degree of polymerization used here (16DE) which
is not specified elsewhere [32,33]. The aw content ranged from 0.34 to 0.44, such values
suggest that QP microcapsules could be considered stable materials concerning microbial
contamination [31,35].

3.3.4. Color Analysis

The color parameters of QP were characterized by values of 32.18 for L *, 27.15 for
a *, 13.67 for b *. When these values were compared with the microencapsulated QP, a
greater increase in L * and b * and a decrease in a * associated with lightness, yellowness,
and redness, respectively, were found.

This could be explained by the white color of MD and the white/yellowish color
of GA. These results were expected and are in agreement with the literature [27]. The
different formulations obtained were characterized by a significant difference with respect
to the parameters L *, a *, and b *. In particular, the color change was correlated with
the core:shell ratio with an R2 of −0.81, 0.82, and 0.77 for L *, a *, and b *, respectively.
Thus, increasing the core:shell ratio a decrease in lightness, and an increase in redness and
yellowness was observed.

3.4. Model Fitting and Statistical Verification

To the best of our knowledge, a blend of MD and GA has already been examined for
the microencapsulation of a phenolic extract rich in tannin using freeze-dryer technology
by Adejoro et al. [6]. The approach used by the researchers was the so-called “one variable
at time” method in which it was possible to consider just one variable while the others
remain constant. The disadvantages of this method are ignoring factors interactions, the
relatively high number of experiments, and time/reagent consuming approach [13].

To optimize the formulation of the microparticles, central composite design (CCD)
was achieved considering linear, quadratic, and interaction effects between core:shell (X1)
and MD:GA ratio (X2) selected as independent variables, on QP microencapsulation. By
varying the selected independent variables and replicating five times the central point,
13 spray-dried powders were obtained and Table 2 shows the results of the responses. A
second-order polynomial model, described by Equation (4), was fitted to the experimental
data values obtained for each response variable studied. The determination coefficients (R2

and RAdj
2), and the linear and quadratic effects of the factors, as well as their interaction,

the lack of fit, and the significance of the model for each response variable are presented in
Table 3.

The results showed that the mathematical model used allows to obtain good determi-
nation coefficients; in fact, according to Corrêa-Filho et al. [36], values above 0.7 indicate
that the fitted equations adequately describe the effects of core:shell and MD:GA ratio on
each dependent variable. In detail, the calculated models explained 99.5%, 79%, 77.8%,
and 99.7% of the results for LC, EE, EY, and TC, respectively. Additional confirmation of
model validity is given by the lack-of-fit p-values for the different equation model, which
are all insignificant (p > 0.05), indicating that the models can adequately fit the experimen-
tal data. LC, EE, EY, and TC were significantly influenced by the linear and quadratic
terms of the core:shell ratio (p < 0.05). All the independent variables, except EY, were
significantly influenced by the quadratic terms of MD:GA ratio and none of the dependent
variables evaluated was dependent by the interaction between the two variables (p > 0.05).
Moreover, a significant effect of the linear and quadratic terms of both the core:shell and
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the MD:GA ratio whereas a negligible effect of their interaction was observed for the TC.
In detail, a negative quadratic effect of X1 on the independent variables was observed,
indicating that the response variables peak was achieved at a certain core:shell and MD:GA
ratios and diminishing with further increases in the core:shell and MD:GA ratios. This
suggests that high core:shell and MD:GA ratio is not beneficial to further improve the
microencapsulation process.

Table 3. Coded second-order regression coefficients, determination coefficients (R2 and R2
adj), lack

of fit, and p values of the fitted models on loading capacity (LC), encapsulation efficiency (EE),
encapsulation yield (EY), and tannin content (TC) dependent variables.

LC EE EY TC

Constant β0 12.292 *** 73.484 *** 38.749 *** 98.665 ***

Linear
β1 5.193 *** 0.773 * 1.129 * 43.613 ***
β2 −0.188 ** −1.098 ** 5.366 *** −1.863 ***

Quadratic
β11 −0.688 *** −1.947 *** −1.181 * −2.552 ***
β22 0.197 ** 0.986 * 0.090 1.101 **

Interaction β12 −0.068 0.124 0.774 −0.050
R2 0.995 0.790 0.778 0.997

RAd
j2 0.994 0.728 0.745 0.997

Lack of Fit 0.224 0.103 0.06 0.088
p value <0.0001 <0.0001 <0.0001 <0.0001

*, **, *** significantly different at p > 0.05, p < 0.01, and p < 0.001, respectively. β0: constant; β1: coefficient of the
linear effect of core:shell; β2: coefficient of the linear effect of MD:GA; β11: coefficient of the quadratic effect of
core:shell; β22: coefficient of the quadratic effect of MD:GA; β12: interaction coefficient of core:shell and MD:GA.

The final equations of LC, EE, EY, and TC were coded as follows:

LC = 12.292 + 5.193 X1 − 0.188 X2 − 0.688 × X1
2 + 0.197 X2

2 (9)

EE = 73.484 + 0.773 X1 − 1.098 X2 − 1.947 × X1
2 + 0.986 X2

2 (10)

EY = 38.749 + 1.129 X1 + 5.366 X2 − 1.181 X1
2 (11)

TC = 98.665 + 43.613 X1 − 1.863 X2 − 2.552 X1
2 + 1.101 X2

2 (12)

To visualize the relationship between the response and experimental levels of the inde-
pendent variables, 3D surface response plots were constructed according to the quadratic
polynomial model Equations (9)–(12) (Figure 2a–d). The surface plots are a very useful
tool in examining the main effect and interaction effects of two or more factors. The plots
were created by plotting the response against two independent variables using the z-axis.
The 3D plot of the response surface of regression Equation (9) showed the effects of the
core:shell and MD:GA ratio and their interaction on the LC (Figure 2a). Accordingly, the LC
increased with the increase of core:shell ratio at any given MD:GA ratio similarly to TC as
shown by the plot of the regression Equation (10) in Figure 2b. Instead, the response plot in
Figure 2b,c, related to the Equations (11) and (12), respectively showed that was improved
with an increasing amount of MD:GA and a core:shell ratio close to 1:5 EE instead the EY
was higher with a core:shell ratio of 1.5:5 and MD:GA of 3:2.

The optimal zone in which every point represented a combination of the core:shell
and MD:GA ratio gave the maximum values of all the responses.

According to Derringer and Suich [37], the desirability approach was determined
using the responses LC, EE, EY, and TC, as well as the model parameters determined using
the CCD. The highest desirability was determined by assigning the maximum level of
the variables and choosing as factor settings the studied parameters. In this study, both
the core:shell and MD:GA ratio have a significant effect on the QP microencapsulation
process. Thus, optimization allows to obtain a formulation with the desired characteristics
concerning all the responses. Microencapsulation of QP was optimized considering the
maximization of the microencapsulation parameters namely loading capacity, encapsula-
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tion efficiency, encapsulation yield, and tannin content. Maximum desirability that can
be achieved is 1. Desirability above 0.8 is represented by light blue colored region of the
contour plot. The desirability increased with the increase of the core:shell ratio and with a
MD:GA ratio close to 2:3 as evident from Figure 3. Desirability surface plot combines the
individual surface plots of the responses based on the desirability criteria set for each.
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The optimized formulation developed in this study had a core:shell ratio of 1.5:5 and
a MD:GA ratio of 2:3, corresponding to the highest desirability of 0.9 as shown in Figure 3.

3.5. Optical Microscopy

A typical light micrograph showing the shape and the size of the microparticles of
the optimized microencapsulated QP powder was reported in Figure 4. As it is possible to
observe, the particles size was much lower than 100 µm.
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3.6. In Vitro Kinetics Release of Encapsulated Tannin from Microcapsules

Controlled release of bioactive compounds at the right place and time is one of the
more interesting functionalities that can be provided by microencapsulation. Timely and
targeted release improves the efficacy of a bioactive compound and often its bioavailabil-
ity [38]. The release profile of TPC from the not encapsulated QP and the encapsulated
under optimal core:shell and MG:GA ratio in acetate, phosphate, and HCl buffer elution
media was reported in Figure 5a–c. At pH 5.6 and 2.2, which simulated rumen and aboma-
sum conditions, respectively, a strong reduction in TPC release from microencapsulated
QP compared to the not encapsulated QP was observed. A different trend was recorded in
the intestinal environment at pH 7.4, where a burst release pattern of TPC similar to not
encapsulated extract was obtained. This result might be due to GA properties. In detail, it
has been reported that GA tends to swell and disrupt the structure of GA microparticles in
elution media with pH values higher than 6.5, resulting in more porous microparticles [39].
The intrinsic properties of the shell materials, the chemical interactions between the shell
materials and the encapsulated compound, and the environment affect the release behavior.
Since the modulation of the biohydrogenation by the condensed tannins contained in QP
occurs in rumen, the microencapsulated form could allow a slow release and increase the
bioavailability of compounds [6,7].

As widely reported, the quality of microparticles is closely related to their ability
to retain the core material until the target site [40,41]. This ability can be evaluated by
performing release tests in different elution media. Bearing this in mind, TPC release from
not encapsulated and encapsulated QP was kinetically studied using the zero-order, first-
order, Higuchi and Kors-Peppas models in the rumen, abomasum, and under simulated
intestinal conditions (Table 4). The zero-order kinetic model, which is usually applicable to
poorly soluble compounds, describes the phenomenon of slow-release, in a shell that does
not disintegrate. In first-order kinetics, the dissolution of the compound, which is generally
soluble in water and entrapped in porous shell material, is proportional to its concentration.
The Higuchi model refers to the release kinetics involving both diffusion and dissolution,
instead the Korsmeyer-Peppas model helps to understand the release mechanism of a
drug and categorize it into Fickian diffusion, non-Fickian, Case II transport, and Super
Case II transport [41]. Based on the correlation coefficients, for “not encapsulated QP”
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and “encapsulated QP,” in the rumen, abomasum, and intestinal environment the model
that better fitted our data was Higuchi with a correlation coefficient between 0.7464 and
0.849, which specifically means that the released phenolic compounds flow unidirectionally
from the encapsulating matrix to the release medium (Fick’s diffusion law), as reported
by Quintal Martínez et al. [42]. A similar trend was reported by Adejoro et al. [6] who,
when evaluating the tannin release from MD:GA microcapsules in rumen elution media,
concluded that the Higuchi model best fitted the obtained results with an R2 ranging from
0.836 to 0.924. So, as reported by Norkaew et al. [38], the release rate of an encapsulated
compound is influenced by the solubility of the different wall materials in the release
environment which may, consequently, contribute to a faster or slower destruction of the
microcapsules structure.
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Figure 5. In vitro release profile of not encapsulated and encapsulated tannin extract in simulated rumen (a) abomasum (b)
and intestinal (c) environment.
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Table 4. Kinetic release parameters of not encapsulated and encapsulated extract in various elution media.

Sample Model Name Rumen Abomasum Intestine

Not
encapsulated

QP

Zero order y = 1.5412x + 26.217 R2 = 0.4651 y = 1.0158x + 31.752 R2 = 0.7998 y = 1.382x + 28.792 R2 = 0.5487
First order y = 0.0109x + 1.8586 R2 = 0.5809 y = 0.0104x + 1.8798 R2 = 0.6501 y = 0.0109x + 1.8586 R2 = 0.582

Higuchi y = 10.375x + 15.239 R2 = 0.7464 y = 9.9651x + 12.897 R2 = 0.8086 y = 11.923x + 8.8506 R2 = 0.8054
Kors-Peppas y = 0.7485x + 0.9566 R2 = 0.3668 y = 0.7397x + 0.9284 R2 = 0.3766 y = 0.7485x + 0.9569 R2 = 0.3665

Encapsulated
QP

Zero order y = 0.9864x + 8.7403 R2 = 0.5947 y = 1.4774x + 15.742 R2 = 0.5948 y = 1.5528x + 27.204 R2 = 0.4845
First order y = 0.0052x + 1.9588 R2 = 0.6174 y = −0.009x + 1.9218 R2 = 0.6430 y = 0.0114x + 1.8545 R2 = 0.6327

Higuchi y = 6.1999x + 2.6061 R2 = 0.8318 y = 9.3799x + 6.364 R2 = 0.8490 y = 10.242x + 6.573 R2 = 0.7463
Kors-Peppas y = 0.8239x + 0.5534 R2 = 0.6539 y = 0.8083x + 0.7743 R2 = 0.5047 y = 0.7111x + 0.992 R2 = 0.3283

4. Conclusions

This study showed that the CCD and RSM could be useful as tools of optimization to
realize microcapsules containing a phenolic extract rich in condensed tannin.

The four regression models were significant, and the lack-of-fits were insignificant.
RSM predicted that the formulation obtained with a core:shell ratio of 1.5:5 and a MD:GA
ratio of 2:3 provides the highest value for the microencapsulation process evaluated in
terms of loading capacity, encapsulation efficiency, encapsulation yield, and tannin content.
QP microencapsulated under the optimized conditions exhibited a slow release in acetate
buffer, simulating the rumen environment. It is the indication that this formulation could
be used as a feed supplement in ruminants nutrition aimed at biofortifying animal food
products, hence increasing the concentration in unsaturated fatty acids.
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