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Abstract
Let us consider two sequences of closed convex sets {An} and {Bn} converging with respect
to the Attouch-Wets convergence to A and B, respectively. Given a starting point a0, we
consider the sequences of points obtained by projecting onto the “perturbed” sets, i.e., the
sequences {an} and {bn} defined inductively by bn = PBn(an−1) and an = PAn(bn). Sup-
pose thatA∩B is bounded, we prove that if the couple (A,B) is (boundedly) regular then the
couple (A,B) is d-stable, i.e., for each {an} and {bn} as above we have dist(an, A∩B) → 0
and dist(bn, A∩B) → 0. Similar results are obtained also in the caseA∩B = ∅, considering
the set of best approximation pairs instead of A ∩ B.

Keywords Convex feasibility problem · Stability · Regularity · Set-convergence ·
Alternating projections method
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1 Introduction

Let A and B be two closed convex nonempty sets in a Hilbert space X. The (2-set) convex
feasibility problem asks to find a point in the intersection of A and B (or, when A ∩ B = ∅,
a pair of points, one in A and the other in B, that realizes the distance between A and
B). The relevance of this problem is due to the fact that many mathematical and concrete
problems in applications can be formulated as a convex feasibility problem. As typical
examples, we mention solution of convex inequalities, partial differential equations, mini-
mization of convex nonsmooth functions, medical imaging, computerized tomography and
image reconstruction.
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The method of alternating projections is the simplest iterative procedure for finding a
solution of the convex feasibility problem and it goes back to von Neumann [15]: let us
denote by PA and PB the projections onto the sets A and B, respectively, and, given a
starting point c0 ∈ X, consider the alternating projections sequences {cn} and {dn} given by

dn = PB(cn−1) and cn = PA(dn) (n ∈ N).

If the sequences {cn} and {dn} converge in norm, we say that the method of alternating
projections converges. Originally, von Neumann proved that the method of alternating pro-
jection converges when A and B are closed subspaces. Then, for two generic convex sets,
the weak convergence of the alternating projection sequences was proved by Bregman in
1965 [5]. Nevertheless, the problem of whether the alternating projections algorithm con-
verges in norm for each couple of convex sets remained open till the example given by
Hundal in 2004 [12]. This example shows that the alternating projections do not converge
in norm when A is a suitable convex cone and B is a hyperplane touching the vertex of A.
Moreover, this example emphasizes the importance of finding sufficient conditions ensuring
the norm convergence of the alternating projections algorithm. In the literature, conditions
of this type were studied (see, e.g., [1, 3]), even before the example by Hundal. Here, we
focus on those conditions based on the notions of regularity, introduced in [1]. Indeed, in
the present paper, we investigate the relationships between regularity of the couple (A,B)

(see Definition 3.1 below) and “stability” properties of the alternating projections method
in the following sense. Let us suppose that {An} and {Bn} are two sequences of closed con-
vex sets such that An → A and Bn → B for the Attouch-Wets variational convergence
(see Definition 2.2) and let us introduce the definition of perturbed alternating projections
sequences.

Definition 1.1 Given a0 ∈ X, the perturbed alternating projections sequences {an} and
{bn}, w.r.t. {An} and {Bn} and with starting point a0, are defined inductively by

bn = PBn(an−1) and an = PAn(bn) (n ∈ N).

Our aim is to find some conditions on the limit sets A and B such that, for each choice
of the sequences {An} and {Bn} and for each choice of the starting point a0, the correspond-
ing perturbed alternating projections sequences {an} and {bn} satisfy dist(an, A ∩ B) → 0
and dist(bn, A ∩ B) → 0. If this is the case, we say that the couple (A,B) is d-stable. In
particular, we show that the regularity of the couple (A,B) implies not only the norm con-
vergence of the alternating projections sequences for the couple (A,B) (as already known
from [1]), but also that the couple (A,B) is d-stable. This result might be interesting also in
applications since real data are often affected by some uncertainties. Hence stability of the
convex feasibility problem with respect to data perturbations is a desirable property, also in
view of computational developments.

Let us conclude the introduction by a brief description of the structure of the paper. In
Section 2, we list some notations and definitions, and we recall some well-known facts about
the alternating projections method. Section 3 is devoted to various notions of regularity
and their relationships. It is worth pointing out that in this section we provide a new and
alternative proof of the convergence of the alternating projections algorithm under regularity
assumptions. This proof well illustrates the main geometrical idea behind the proof of our
main result Theorem 4.9, stated and proved in Section 4. This result shows that a regular
couple (A,B) is d-stable wheneverA∩B (or a suitable substitute if A∩B = ∅) is bounded.
Corollaries 4.16, 4.18, and 4.19 simplify and generalize some of the results obtained in [9],
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since there we considered only the case where A∩B �= ∅ whereas, in the present paper, we
encompass also the situation where the intersection of A and B is empty. We conclude the
paper with Section 5, where we discuss the necessity of the assumptions of our main result
and we state a natural open problem: suppose that A∩B is bounded, is regularity equivalent
to d-stability?

2 Notation and Preliminaries

Throughout all this paper, X denotes a nontrivial real normed space with the topological
dualX∗. We denote by BX and SX the closed unit ball and the unit sphere of X, respectively.
If α > 0, x ∈ X, and A,B ⊂ X, we denote as usual

x + A := {x + a; a ∈ A}, αA := {αa; a ∈ A}, A + B := {a + b; a ∈ A, b ∈ B}.
For x, y ∈ X, [x, y] denotes the closed segment in X with endpoints x and y, and (x, y) =
[x, y] \ {x, y} is the corresponding “open” segment. For a subset A of X, we denote by
int (A), conv (A) and conv (A) the interior, the convex hull and the closed convex hull of A,
respectively. Let us recall that a body is a closed convex set in X with nonempty interior.

We denote by

diam(A) := supx,y∈A ‖x − y‖,
the (possibly infinite) diameter of A. For x ∈ X, let

dist(x,A) := inf
a∈A

‖a − x‖.
Moreover, given A, B nonempty subsets of X, we denote by dist(A,B) the usual “distance”
between A and B, that is,

dist(A,B) := inf
a∈A

dist(a, B).

Now, we recall two notions of convergence for sequences of sets (for a wide overview
about this topic see, e.g., [2]). By c(X) we denote the family of all nonempty closed subsets
of X. Let us introduce the (extended) Hausdorff metric h on c(X). For A, B ∈ c(X), we
define the excess of A over B as

e(A,B) := sup
a∈A

dist(a, B).

Moreover, if A �= ∅ and B = ∅ we put e(A,B) = ∞, if A = ∅ we put e(A,B) = 0. Then,
we define

h(A,B) := max
{
e(A,B), e(B,A)

}
.

Definition 2.1 A sequence {Aj } in c(X) is said to Hausdorff converge to A ∈ c(X) if

limj h(Aj ,A) = 0.

As the second notion of convergence, we consider the so called Attouch-Wets con-
vergence (see, e.g., [14, Definition 8.2.13]), which can be seen as a localization of the
Hausdorff convergence. If N ∈ N and A,B ∈ c(X), define

eN(A,B) := e(A ∩ NBX,B) ∈ [0, ∞),

hN(A,B) := max{eN(A,B), eN(B,A)}.
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Definition 2.2 A sequence {Aj } in c(X) is said to Attouch-Wets converge to A ∈ c(X) if,
for each N ∈ N,

limj hN(Aj ,A) = 0.

In the last section of our paper we shall need the following elementary fact, related to
localized Hausdorff distance between two sets.

Fact 2.3 Let D : X → X be a bounded linear operator. Let ε, δ ∈ (0, 1) and suppose that
‖D − I‖ ≤ ε and b ∈ δBX . If A ⊂ X and N ∈ N then

hN

(
A, b + D(A)

) ≤ δ + N + δ

1 − ε
ε.

Proof If x ∈ A ∩ NBX then

d(x, b + D(A)) = inf
y∈D(A)

‖b + y − x‖
≤ ‖b + D(x) − x‖
≤ ‖b‖ + ‖D − I‖‖x‖ ≤ δ + Nε.

Therefore, we conclude that

eN(A, b + D(A)) = supx∈A∩NBX
d(x, b + D(A)) ≤ δ + Nε ≤ δ + N+δ

1−ε
ε.

Now, suppose that x ∈ A and y = b + D(x) ∈ [b + D(A)] ∩ NBX, then

‖x‖ ≤ ‖x − D(x)‖ + ‖y‖ + ‖b‖ ≤ ε‖x‖ + N + δ,

and hence ‖x‖ ≤ N+δ
1−ε

. Proceeding as above, we have

eN(b + D(A),A) ≤ δ + N + δ

1 − ε
ε.

The notions of distance between two convex sets and of projection of a point onto a
convex set of a Hilbert space play a fundamental role in our paper. Unless otherwise stated,
from now on, X will denote an Hilbert space endowed with the inner product 〈·, ·〉. The
projection onto a closed convex nonempty subset C sends any point x0 ∈ X to its nearest
point in C, denoted by PC(x0). We shall frequently use in the paper the following result,
usually called variational characterization of the projection onto C. Let c0 ∈ C and x0 ∈ X,
then c0 = PC(x0) if and only if

〈x0 − c0, c − c0〉 ≤ 0, whenever c ∈ C. (1)

We recall that the angle ang(u, v) between two nonnull vectors u, v ∈ X is defined by
means of the equality

ang(u, v) := arccos
( 〈u,v〉

‖u‖‖v‖
)
.

In the sequel of the paper, we denote the cosine of the angle between two nonnull vectors
u, v ∈ X as

cos(u, v) := cos(ang(u, v)) = 〈u,v〉
‖u‖‖v‖ .

It is clear that, if x0 /∈ C, (1) is equivalent to the following condition:
π

2
≤ ang(x0 − c0, c − c0) ≤ π, whenever c ∈ C \ {c0}.
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Finally, we recall that the projection PC is a nonexpansive map from X to C, i.e., it holds
‖PC(x) − PC(y)‖ ≤ ‖x − y‖ (see, e.g., [14, Proposition 10.4.8]). Now, let us consider two
closed convex nonempty subsets A and B of X, we denote by

E := {a ∈ A; d(a, B) = d(A,B)},
F := {b ∈ B; d(b, B) = d(A,B)}.

We say that v := PB−A(0) is the displacement vector for the couple (A,B). It is clear
that if A ∩ B �= ∅ then E = F = A ∩ B and the displacement vector for the couple (A,B)

is null. We recall the following fact, where, given a map T : X → X, Fix(T ) denotes the
set of all fixed points of T .

Fact 2.4 ([1, Fact 1.1]) Suppose that X is a Hilbert space and that A,B are closed convex
nonempty subsets of X. Then we have:

(i) ‖v‖ = dist(A,B) and E + v = F ;
(ii) E = Fix(PAPB) = A ∩ (B − v) and F = Fix(PBPA) = B ∩ (A + v);
(iii) PBe = PF e = e + v (e ∈ E) and PAf = PEf = f − v (f ∈ F ).

We conclude this section by proving a relationship between the Attouch-Wets conver-
gence of a sequence {An} of closed convex sets and the convergence of the sequence {PAn}
of projections onto An (see Lemma 2.6). This results is probably known but we were not
able to find any reference in the literature, hence we provide a detailed proof for the sake
of completeness. In order to prove this result we need to prove a preliminary lemma based
on a geometrical property of the unit ball that holds in every Hilbert space. This property,
called uniform rotundity, can be seen as a strengthening of the convexity of the unit ball
and it is widely studied in the framework of the geometry of Banach space (see, e.g., [11])
Let us recall that, given a normed space Z, the modulus of convexity of Z is the function
δZ : [0, 2] → [0, 1] defined by

δZ(η) = inf

{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ BX, ‖x − y‖ ≥ η

}
.

It is clear that δZ(η1) ≤ δZ(η2), whenever 0 ≤ η1 ≤ η2 ≤ 2. Moreover, if r > 0 and
η ∈ [0, 2], by recalling the positive homogeneity of the norm, we have

rδZ

( η
r

) = inf

{
r −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ rBX, ‖x − y‖ ≥ η

}
.

In particular, if r,M > 0 and x, y ∈ rBX are such that ‖x − y‖ ≥ M then we have
∥∥∥
∥
x + y

2

∥∥∥∥ ≤ r
[
1 − δZ

(
M
r

)]
. (2)

We say that Z is uniformly rotund if δZ(η) > 0, whenever η ∈ (0, 2]. It is well known (see,
e.g., [11]) that Hilbert spaces are uniformly rotund, but there are uniformly rotund spaces
that are not Hilbert spaces. Therefore, it is worth to state and prove the following lemma in
this general framework. Moreover, this result, roughly speaking, says that if a convex set in
a uniformly rotund space is contained in a sufficiently tight annulus between two spheres,
then its diameter is as small as we want.

Lemma 2.5 Let Z be a uniformly rotund normed space. Let H,K,M > 0, then there exists
ε′ ∈ (0, H) such that, if ρ ∈ [0, K] and if C is a convex set such that ρ −ε′ ≤ ‖c‖ ≤ ρ +ε′,
whenever c ∈ C, then diam(C) ≤ M .
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Proof Suppose without any loss of generality that M ≤ 2 and H ≤ 1. We claim that any

ε′ ∈ (0,H) such that ε′
[
2 − δZ

(
M

K+1

)]
< M

4 δZ

(
M

K+1

)
works. Let ρ ∈ [0, K] and let C

be a convex set such that ρ − ε′ ≤ ‖c‖ ≤ ρ + ε′, whenever c ∈ C. First, observe that, since
δZ assumes values in [0, 1], we have ε′ < M

4 . Hence, if ρ < M
4 , we have

diam(C) ≤ 2(ρ + ε′) ≤ M .

Now, suppose that ρ ≥ M
4 and let us prove that diam(C) ≤ M . Suppose on the contrary

that there exist c1, c2 ∈ C satisfying ‖c1 − c2‖ > M . Put r := ρ + ε′. By (2) and since
c1+c2

2 ∈ C, we have

ρ − ε′ ≤
∥∥∥∥
c1 + c2

2

∥∥∥∥ ≤ r
[
1 − δZ

(
M
r

)] ≤ r
[
1 − δZ

(
M

K+1

)]
.

Therefore, we have ε′
[
2 − δZ

(
M

K+1

)]
≥ ρδZ

(
M

K+1

)
≥ M

4 δZ

(
M

K+1

)
, against the

definition of ε′.

We are now in position to state and prove the result that links convergence of sets An

with that of projections onto An.

Lemma 2.6 Let X be a Hilbert space. Suppose that a sequence {An} in c(X) Attouch-Wets
converges to A ∈ c(X). Then the corresponding sequence of projections {PAn} uniformly
converges on bounded set to PA.

Proof Without any loss of generality we can suppose that 0 ∈ A. Let us prove that, for each
K,M > 0, there exists n0 ∈ N such that

sup
x∈KBX

‖PAnx − PAx‖ ≤ M,

whenever n ≥ n0. By Lemma 2.5 (where we take H = K), there exists ε′ ∈ (0,K) such
that, if ρ ∈ [0, K] and if C is a convex set such that ρ − ε′ ≤ ‖c‖ ≤ ρ + ε′, whenever
c ∈ C, then diam(C) ≤ M . Since {An} Attouch-Wets converges to A, there exists n0 ∈ N

such that, for n ≥ n0, we have

(i) An ∩ 3KBX ⊂ A + ε′BX;
(ii) A ∩ 3KBX ⊂ An + ε′BX;

Let x ∈ KBX , y = PAx, n ≥ n0 and yn = PAnx. Put ρ = ‖x − y‖ and observe that ρ ≤ K

since 0 ∈ A . By (ii),

‖x − yn‖ ≤ ‖x − y‖ + ‖y − yn‖ ≤ ρ + ε′

and hence ‖yn‖ ≤ ‖x‖ + ‖x − yn‖ ≤ 3K . Therefore, by (i), yn belongs to the convex set

C := (A + ε′BX) ∩ [x + (ρ + ε′)BX].
Moreover, since dist(x,A) = ρ, we have dist(x, C) ≥ ρ − ε′. It follows that every c ∈ C

satisfies
ρ − ε′ ≤ ‖c − x‖ ≤ ρ + ε′.

Hence, the assumptions of Lemma 2.5 hold for the set C − x and we obtain that diam(C −
x) = diamC ≤ M . It follows that ‖yn − y‖ = ‖PAnx − PAx‖ ≤ M . By the arbitrariness of
x ∈ KBX , the proof is concluded.
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3 Notions of Regularity for a Couple of Convex Sets

In this section we introduce some notions of regularity for a couple of nonempty closed
convex setsA andB. This class of notions was originally introduced in [1], in order to obtain
some conditions ensuring the norm convergence of the alternating projections algorithm
(see, also, [4]). Here we list three different type of regularity: (i) and (ii) are exactly as
they appeared in [1], whereas (iii) is new. See [1] for concrete examples of couple of sets
satisfying or not properties (i) and (ii). In particular, observe that, by [1, Theorem 3.9],
bounded regularity always holds when X is finite-dimensional.

Definition 3.1 Let X be a Hilbert space and A, B closed convex nonempty subsets of X.
Suppose that E,F are nonempty. We say that the couple (A,B) is:

(i) regular if for each ε > 0 there exists δ > 0 such that dist(x, E) ≤ ε, whenever x ∈ X

satisfies
max{dist(x,A), dist(x, B − v)} ≤ δ;

(ii) boundedly regular if for each bounded set S ⊂ X and for each ε > 0 there exists
δ > 0 such that dist(x, E) ≤ ε, whenever x ∈ S satisfies

max{dist(x,A), dist(x, B − v)} ≤ δ;
(iii) linearly regular for points bounded away from E if for each ε > 0 there exists K > 0

such that
dist(x, E) ≤ K max{dist(x,A), dist(x, B − v)},

whenever dist(x, E) ≥ ε.

The following proposition shows that (i) and (iii) in the definition above are equivalent.
The latter part of the proposition is a generalization of [1, Theorem 3.15].

Proposition 3.2 Let X be a Hilbert space and A,B closed convex nonempty subsets of X.
Suppose that E,F are nonempty. Let us consider the following conditions.

(i) The couple (A, B) is regular.
(ii) The couple (A, B) is boundedly regular.
(iii) The couple (A, B) is linearly regular for points bounded away from E.

Then (iii) ⇔ (i) ⇒ (ii). Moreover, if E is bounded, then (ii) ⇒ (i).

Proof The implication (i) ⇒ (ii) is trivial. The implication (iii) ⇒ (i) follows directly
from the definition. Indeed, by contradiction let us suppose that (i) does not hold, i.e., there
exist ε̄ > 0 and a sequence {xn} ⊂ X such that dist(xn, E) > ε̄ and

max{dist(x,A), dist(x, B − v)} → 0.

By (iii) we have that dist(xn, E) → 0, a contradiction.
Now, let us prove that (i) ⇒ (iii). Suppose on the contrary that there exist ε > 0 and a

sequence {xn} ⊂ X such that dist(xn, E) > ε (n ∈ N) and
max{dist(xn,A), dist(xn,B−v)}

dist(xn,E)
→ 0.

For each n ∈ N, let en ∈ E, an ∈ A, and bn ∈ B be such that ‖en − xn‖ = dist(xn, E),
‖an − xn‖ = dist(xn, A), and ‖bn − v − xn‖ = dist(xn, B − v). Put λn = ε

‖en−xn‖ ∈ (0, 1)
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and define zn = λnxn + (1 − λn)en, a′
n = λnan + (1 − λn)en ∈ A, and b′

n = λnbn + (1 −
λn)(en + v) ∈ B. By our construction, it is clear that

dist(zn,A)
ε

≤ ‖zn−a′
n‖

ε
= ‖xn−an‖

‖en−xn‖ and dist(zn,B−v)
ε

≤ ‖b′
n−v−zn‖

ε
= ‖bn−v−xn‖

‖en−xn‖ .

Hence, dist(zn, E) = ε and max{dist(zn, A), dist(zn, B − v)} → 0. This contradicts (i).
Now, suppose that E is bounded, and let us prove that (ii) ⇒ (i). Suppose on the

contrary that there exist ε > 0 and a sequence {xn} ⊂ X such that dist(xn, E) > ε (n ∈ N)
and

max{dist(xn, A), dist(xn, B − v)} → 0.

For each n ∈ N, let en ∈ E, an ∈ A, and bn ∈ B be such that ‖en − xn‖ = dist(xn, E),
‖an − xn‖ = dist(xn, A), and ‖bn − v − xn‖ = dist(xn, B − v). Put λn = ε

‖en−xn‖ ∈ (0, 1)
and define zn = λnxn + (1 − λn)en, a′

n = λnan + (1 − λn)en ∈ A, and b′
n = λnbn + (1 −

λn)(en + v) ∈ B. By our construction, it holds that

dist(zn, A) ≤ ‖zn − a′
n‖ ≤ ‖xn − an‖

and
dist(zn, B − v) ≤ ‖b′

n − v − zn‖ ≤ ‖bn − v − xn‖.
Hence, dist(zn, E) = ε and max{dist(zn, A), dist(zn, B − v)} → 0. Moreover, since E is
bounded {zn} is a bounded sequence. This contradicts (ii) and the proof is concluded.

The following theorem follows by [1, Theorem 3.7].

Theorem 3.3 Let X be a Hilbert space and A,B closed convex nonempty subsets of
X. Suppose that the couple (A,B) is regular. Then the alternating projections method
converges.

We present here below a proof of this theorem, slightly different from that contained in
[1]. This proof is based on a simplified version of the argument that we will use in our main
result Theorem 4.9. Let us point out that this proof is not essential for sequel of the paper,
but it can be useful to visualize the geometrical idea behind the proof of Theorem 4.9. We
consider only the case where A ∩ B is nonempty since the general case is similar but some
unavoidable details would have made it more difficult to follow the outline of the proof.

Proof Let us consider the sequences {cn = PA(dn)} and {dn+1 = PB(cn)}. By the
nonexpansivity of the projections onto convex sets, for every h ∈ A ∩ B, we have:

‖cn − h‖ = ‖PA(dn) − PA(h)‖ ≤ ‖dn − h‖
‖dn+1 − h‖ = ‖PB(cn) − PB(h)‖ ≤ ‖cn − h‖

It follows immediately that:

(α) dist(cn, A ∩ B) ≤ dist(dn, A ∩ B) and dist(dn+1, A ∩ B) ≤ dist(cn, A ∩ B),

whenever n ∈ N. This condition implies that [1, Theorem 3.3, (iv)] holds, therefore the
following fact holds: “The sequence {cn} converges to a point in A∩B iff dist(cn, A∩B) →
0.” Hence, it is sufficient to prove that dist(cn, A ∩ B) → 0.

For ε > 0, by the equivalence (i) ⇔ (iii) in Proposition 3.2, there exists K > 0 such
that

dist(x,A ∩ B) ≤ K max{dist(x,A), dist(x, B)}, (3)
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whenever dist(x,A∩B) ≥ ε. Observe that K ≥ 1 and define η =
√
1 − 1

K2 . We claim that,

for each n ∈ N, the following condition holds:

(β) if dist(cn, A ∩ B) ≥ ε then dist(cn, A ∩ B) ≤ η dist(dn, A ∩ B).

To prove this, let hn := PA∩B(dn) and observe that

[dist(cn, A ∩ B)]2 + [dist(dn, A)]2 ≤ ‖cn − hn‖2 + [dist(dn, A)]2 . (4)

By the variational characterization of the projection and since cn = PA(dn), we obtain that
the angle θn := ang(dn − cn, hn − cn) is such that

π

2
≤ θn ≤ π .

Hence, (4) implies

[dist(cn, A ∩ B)]2 + [dist(dn, A)]2 ≤ ‖cn − hn‖2 + [dist(dn, A)]2

−2 ‖cn − hn‖ dist(dn, A) cos θn

= [dist(dn, A ∩ B)]2

where the last equality is obtained by applying the law of cosines to the triangle with vertices
dn, cn and and hn. This gives

[dist(cn, A ∩ B)]2 ≤ [dist(dn, A ∩ B)]2 − [dist(dn, A)]2

Finally, since, by (α), dist(dn, A ∩ B) ≥ dist(cn, A) ≥ ε, (3) and the last inequality gives

[dist(cn, A ∩ B)]2 ≤ [dist(dn, A ∩ B)]2 − 1

K2 [dist(dn, A ∩ B)]2 ,

and the claim is proved.
Now, if there exists n0 ∈ N such that dist(cn0 , A∩B) ≤ ε, then, (α) implies dist(cn, A∩

B) ≤ ε for every n ≥ n0. On the other hand, if dist(cn, A ∩ B) ≥ ε for all n ∈ N, then, by
combining subsequently (β) and (α) we obtain

dist(cn, A ∩ B) ≤ ηdist(dn, A ∩ B) ≤ ηdist(cn−1, A ∩ B) (n ∈ N),

a contradiction since η < 1. Therefore we conclude that eventually dist(cn, A ∩ B) ≤ ε. By
the arbitrariness of ε > 0 the proof is concluded.

4 Regularity and Perturbed Alternating Projections

This section is devoted to prove our main result. Indeed, here we show that if a couple
(A,B) of convex closed sets is regular then not only the alternating projections method
converges but also the couple (A, B) satisfies certain “stability” properties with respect to
perturbed projections sequences.

Let us start by making precise the word “stability” by introducing the following two
notions of stability for a couple (A,B) of convex closed subsets of X.

Definition 4.1 LetA andB be closed convex subsets ofX such thatE,F are nonempty. We
say that the couple (A,B) is stable [d-stable, respectively] if for each choice of sequences
{An}, {Bn} ⊂ c(X) converging with respect to the Attouch-Wets convergence to A and
B, respectively, and for each choice of the starting point a0, the corresponding perturbed
alternating projections sequences {an} and {bn} converge in norm [satisfy dist(an, E) → 0
and dist(bn, F ) → 0, respectively].
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Remark 4.2 We remark that the couple (A,B) is stable if and only if for each choice of
sequences {An}, {Bn} ⊂ c(X) converging with respect to the Attouch-Wets convergence
to A and B, respectively, and for each choice of the starting point a0, there exists e ∈ E

such that the perturbed alternating projections sequences {an} and {bn} satisfy an → e and
bn → e + v in norm.

Proof Without any loss of generality, we can suppose that 0 ∈ B. Let us start by proving
that if an → e then e ∈ E.

We claim that the sequence
{
PAnPBn

}
uniformly converges on the bounded sets to PAPB .

To see this observe that:

• since 0 ∈ B, we have ‖PBx‖ ≤ ‖x‖, whenever x ∈ X;
• since projections are nonexpansive, we have

‖PAnPBnx − PAnPBx‖ ≤ ‖PBnx − PBx‖,
whenever x ∈ X and n ∈ N;

• for each x ∈ X and n ∈ N, we have

‖PAnPBnx − PAPBx‖ ≤ ‖PAnPBnx − PAnPBx‖ + ‖PAnPBx − PAPBx‖.
The previous observation implies that, for N > 0, , we have

sup
‖x‖≤N

‖PAnPBnx − PAPBx‖ ≤ sup
‖x‖≤N

‖PBnx − PBx‖
+ sup

‖x‖≤N

‖PAnPBx − PAPBx‖
≤ sup

‖x‖≤N

‖PBnx − PBx‖ + sup
‖y‖≤N

‖PAny − PAy‖.

Since An → A,Bn → B for the Attouch-Wets convergence, by Lemma 2.6, {PAn} uni-
formly converges on bounded set to PA and {PBn} uniformly converges on bounded set to
PB . The claim follows by the previous inequality.

Now, since {an} is bounded and
an+1 = PAnPBnan = PAPBan + (PAnPBn − PAPB)an,

passing to the limit as n → ∞, we obtain e = PAPBe. By Fact 2.4, (ii), we have that e ∈ E.
Similarly, it is easy to see that

bn+1 = PBnan = PBan + (PBn − PB)an → PBe = e + v,

and the proof is concluded.

It is clear that if the couple (A,B) is stable, then it is d-stable. Moreover, if E,F are
singletons then also the converse implication holds true. The following basic assumptions
will be considered in the sequel of the paper.

Basic assumptions 4.3 Let A,B be closed convex nonempty subsets of X. Suppose that:

(i) E,F are nonempty and bounded;
(ii) {An} and {Bn} are sequences of closed convex sets such that An → A and Bn → B

for the Attouch-Wets convergence.

Now, let us prove a chain of lemmas and propositions that we shall use in the proof of
our main result, Theorem 4.9 below.

C.A. De Bernardi, E. Miglierina530



Lemma 4.4 Let G be a closed convex subset of X. Suppose that there exist ε, K > 0 such
that εBX ⊂ G ⊂ KBX . Then, if u,w ∈ ∂G and θ := cos(u,w) > 0, we have

‖u − w‖2 ≤ K2(K2

ε2
+ 1) 1−θ2

θ2
.

Proof The proof involves only the plane containing the origin and the vectors u and v.
Henceforth, without any loss of generality we can suppose that X = R

2 and u = (‖u‖, 0).
Let us denote w = (x, y), with x, y ∈ R, and suppose that u,w ∈ ∂G. Observe that, since
θ > 0, x is positive.

We claim that it holds

|y| ≥
∣∣∣∣

ε

‖u‖ (x − ‖u‖)
∣∣∣∣ . (5)

To prove our claim, suppose on the contrary that

|y| <

∣∣∣∣
ε

‖u‖ (x − ‖u‖)
∣∣∣∣ . (6)

and let us consider two cases. First, let x be such that 0 < x ≤ ‖u‖. Since εBX ⊂ G and
u = (‖u‖, 0) ∈ G, the set

L := {(z, v) ∈ R
2; 0 < z < ‖u‖, |v| < | ε

‖u‖ (z − ‖u‖)|}
is contained in the interior of G and w ∈ L, a contradiction. We now turn to the case
x > ‖u‖. Let h := (0, − ‖u‖

x−‖u‖y) ∈ X, then it holds

u = ‖u‖
x

w +
(
1 − ‖u‖

x

)
h.

By (6), we have ‖h‖ < ε. Then u belongs to the interior of the set conv ({w} ∪ εBX), and
hence to the interior of G. This contradiction proves the claim.

Since θ = cos(u,w) = x
‖w‖ , we have y2 = 1−θ2

θ2
x2. Hence, by (5), we have

(x − ‖u‖)2 ≤ 1−θ2

θ2
‖u‖2
ε2

x2.

Finally,

‖u − w‖2 = (x − ‖u‖)2 + y2 ≤ x2
( ‖u‖2

ε2
+ 1

)
1−θ2

θ2
≤ K2

(
K2

ε2
+ 1

)
1−θ2

θ2
.

Proposition 4.5 Let Basic assumptions 4.3 be satisfied and, for each n ∈ N, let an ∈ An

and bn ∈ Bn. Suppose that the couple (A,B) is regular. Let ε > 0, then there exist η ∈ (0, 1)
and n1 ∈ N such that for each n ≥ n1 we have:

(i) if dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε then cos
(
an −e, bn −(e+v)

) ≤ η, whenever
e ∈ E + εBX .

(ii) if dist(an, E) ≥ 2ε and dist(bn+1, F ) ≥ 2ε then cos
(
bn+1 − f, an + v − f

) ≤ η,

whenever f ∈ F + εBX.

Proof Let us prove that there exist η ∈ (0, 1) such that eventually (i) holds, the proof that
there exist η ∈ (0, 1) such that eventually (ii) holds is similar. Suppose that this is not the
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case, then there exist sequences {ek} ⊂ E + εBX, {θk} ⊂ (0, 1) and an increasing sequence
of the integers {nk} such that dist(ank

, E) ≥ 2ε, dist(bnk
, F ) ≥ 2ε, and

cos
(
ank

− ek, bnk
− (ek + v)

) = θk → 1.

Let G = E + 2εBX and observe that G is a bounded body in X. Since ek ∈ intG and
ank

�∈ intG, there exists a unique point a′
k ∈ [ek, ank

] ∩ ∂G. Similarly, there exists a unique
point b′

k ∈ [ek, bnk
− v] ∩ ∂G. Moreover, by construction, we have that

cos
(
a′
k − ek, b

′
k − ek

) = θk .

Lemma 4.4 implies that ‖(a′
k − v) − (b′

k − v)‖ = ‖a′
k − b′

k‖ → 0. Since G is bounded and
Ank

→ A, Bnk
→ B for the Attouch-Wets convergence, there exist sequences {a′′

k } ⊂ A

and {b′′
k } ⊂ B − v such that ‖a′′

k − a′
k‖ → 0 and ‖b′′

k − b′
k‖ → 0. Hence, by the triangle

inequality, ‖a′′
k − b′′

k‖ → 0 and eventually dist(a′′
k , E) ≥ ε, a contradiction since the couple

(A,B) is regular.

Proposition 4.6 Let Basic assumptions 4.3 be satisfied, suppose that the couple (A,B) is
regular, and let δ, ε > 0. For each n ∈ N, let an, xn ∈ An and bn, yn ∈ Bn be such that
dist(xn, E) → 0 and dist(yn, F ) → 0. Then there exists n2 ∈ N such that for each n ≥ n2
we have:

(i) if dist(an, E) ≥ 2ε, dist(bn, F ) ≥ 2ε, and an = PAnbn then

cos
(
xn − an, bn − (an + v)

) ≤ δ;
(ii) if dist(an, E) ≥ 2ε, dist(bn+1, F ) ≥ 2ε, and bn+1 = PBn+1an then

cos
(
yn+1 − bn+1, an + v − bn+1

) ≤ δ.

Proof Let us prove that eventually (i) holds, the proof that eventually (ii) holds is similar.
Since dist(an, E) ≥ 2ε and dist(xn, E) → 0 we have that eventually xn − an �= 0. By
Proposition 4.5, there exists η ∈ (0, 1) and n1 ∈ N such that

cos
(
an − e, bn − (e + v)

) ≤ η, (7)

whenever n ≥ n1 and e ∈ E+εBX. Observe that, if dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε,
we have that ‖an − e‖ ≥ ε and ‖bn − (e + v)‖ ≥ ε (n ∈ N). By the law of cosines we have

‖u−w‖2 = ‖u‖2 +‖w‖2 − 2 cos(u,w)‖u‖‖w‖ ≥ 2‖u‖‖w‖(1− cos(u,w)
)
, u,w ∈ X.

By (7) and the previous inequality, applied to w = bn − (e + v) and u = an − e, there
exists a constant η′ > 0 such that ‖bn − (an + v)‖ ≥ η′, whenever n ≥ n1. By the above,
xn−an �= 0 and bn−(an+v) �= 0 for all n ≥ n1, then eventually cos

(
xn−an, bn−(an+v)

)

is well-defined. If v = 0, the thesis is trivial since, by the variational characterization of
an = PAnbn, it holds

〈xn − an, bn − an〉 ≤ 0,

whenever n ∈ N.
Suppose that v �= 0. We claim that, if v denotes the displacement vector for the couple

(A,B), eventually we have

〈v, an − xn〉 ≤ δη′‖an − xn‖. (8)

To prove our claim observe that, since dist(xn, E) → 0, we can suppose without any loss of
generality that dist(xn, E) ≤ ε (n ∈ N). Moreover, we can consider a sequence {x′

n} ⊂ E

such that ‖x′
n − xn‖ → 0. Let G = E + 2εBX and observe that G is a bounded body in X.
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Since xn ∈ intG and an �∈ intG, there exists a unique point a′
n ∈ [xn, an] ∩ ∂G. Since G is

bounded and An → A for the Attouch-Wets convergence, there exists a sequence {a′′
n} ⊂ A

such that ‖a′′
n − a′

n‖ → 0. Since {x′
n} ⊂ E, it follows that ‖a′′

n − x′
n‖ ≥ 2ε and, by taking

into account the variational characterization of the projection, that 〈v, a′′
n − x′

n〉 ≤ 0. Hence,
eventually we have

〈v, a′′
n − x′

n〉 − δη′‖a′′
n − x′

n‖ ≤ −δη′ε.
Since ‖x′

n − xn‖ → 0 and ‖a′′
n − a′

n‖ → 0, eventually we have

〈v, a′
n − xn〉 − δη′‖a′

n − xn‖ ≤ 0.

By homogeneity of 〈v, ·〉 and of the norm, and by our construction, the claim is proved.
Now, by our claim, since an = PAnbn and xn ∈ An (n ∈ N), we have

〈xn − an, bn − (an + v)〉 = 〈xn − an, bn − an〉 + 〈an − xn, v〉 ≤ δη′‖an − xn‖.
Eventually, since ‖bn − (an + v)‖ ≥ η′, we have

cos
(
xn − an, bn − (an + v)

) ≤ δη′

‖bn − (an + v)‖ ≤ δ.

Now, we need a simple geometrical result whose proof is a simple application of the
definition of cosine combined with the triangle inequality.

Fact 4.7 Let η, η′ ∈ (0, 1) be such that η < η′. If δ ∈ (0, 1) satisfies δ+η
1−δ

≤ η′ and if
x, y ∈ X are linearly independent vectors such that cos(x, y) ≤ η and cos(y − x,−x) ≤ δ

then ‖x‖ ≤ η′‖y‖.

Proof By our hypotheses and the definition of cosine, we have

• −〈y, x〉 ≥ −η‖x‖‖y‖;
• −〈y, x〉 + ‖x‖2 ≤ δ‖y − x‖‖x‖.
Combining the two inequalities, we obtain

‖x‖(‖x‖ − η‖y‖) ≤ δ‖y − x‖‖x‖,
and hence, by the triangular inequality,

‖x‖ − η‖y‖ ≤ δ‖y − x‖ ≤ δ‖y‖ + δ‖x‖.
Finally,

‖x‖ ≤ δ + η

1 − δ
‖y‖ ≤ η′‖y‖.

Proposition 4.8 Let Basic assumptions 4.3 be satisfied. For each M > 0 there exist θ ∈
(0,M) and n0 ∈ N such that if n ≥ n0 we have:

(i) if bn ∈ Bn, an = PAnbn, and dist(bn, F ) ≤ θ then

dist(an, E) ≤ 2M;
(ii) if an ∈ An, bn+1 = PBn+1an, and dist(an, E) ≤ θ then

dist(bn+1, F ) ≤ 2M .
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Proof Let M > 0 and ρ = ‖v‖, where v is the displacement vector. By Lemma 2.5 (where
we take H = 3M), there exists ε′ ∈ (0, 3M) such that, if C is a convex set such that
ρ − ε′ ≤ ‖c‖ ≤ ρ + ε′, whenever c ∈ C, then diam(C) ≤ M . Put θ = ε′/3, since Basic
assumption 4.3 are satisfied, there exists n0 ∈ N such that if n ≥ n0 we have:

(a) if w ∈ An then dist(w, F ) ≥ ρ − 3θ ;
(b) if e ∈ E, there exists x ∈ An such that ‖e − x‖ ≤ θ .

Now, let n ≥ n0, bn ∈ Bn, an = PAnbn, and dist(bn, F ) ≤ θ . Let fn ∈ F be such
that ‖fn − bn‖ ≤ θ and put en = fn − v ∈ E. By (b), there exists xn ∈ An such that
‖xn − en‖ ≤ θ . Hence, since an = PAnbn and ‖en − fn‖ = ρ, we have

‖an − fn‖ ≤ ‖an − bn‖ + ‖fn − bn‖
≤ ‖xn − bn‖ + ‖fn − bn‖
= ‖xn − en + en − fn + fn − bn‖ + ‖fn − bn‖
≤ ‖xn − en‖ + ρ + 2‖fn − bn‖ ≤ ρ + 3θ .

Let us consider the convex set C = [xn − fn, an − fn]. Observe that, since
‖xn − fn‖ ≤ ‖en − xn‖ + ‖en − fn‖ ≤ ρ + θ,

we have that ‖c‖ ≤ ρ + 3θ , whenever c ∈ C. Moreover, since [xn, an] ⊂ An and fn ∈ F ,
by (a) we have ‖c‖ ≥ ρ − 3θ , whenever c ∈ C. Hence, we can apply Lemma 2.5 to the set
C and we have ‖an − xn‖ = diam(C) ≤ M . Then

dist(an, E) ≤ ‖an − en‖ ≤ ‖an − xn‖ + ‖en − xn‖ ≤ M + θ ≤ 2M .

The proof that eventually (ii) holds is similar.

We are now ready to state and prove the main result of this paper.

Theorem 4.9 Let A, B be closed convex nonempty subsets of X such that E and F are
bounded. Suppose that the couple (A,B) is regular, then the couple (A,B) is d-stable.

Proof Let a0 ∈ X and let {an} and {bn} be the corresponding perturbed alternating
projections sequences, i.e,

an = PAn(bn) and bn = PBn(an−1).

First of all, we remark that it is enough to prove that dist(an, E) → 0 since the proof that
dist(bn, F ) → 0 follows by the symmetry of the problem. Therefore our aim is to prove
that for each M > 0, eventually we have

dist(an, E) ≤ M .

Let us consider M > 0, then, by (ii) in Proposition 4.8, there exist 0 < θ < M
2 and

n′ ∈ N such that, for each n > n′, if dist(an, E) ≤ θ then dist(bn+1, F ) ≤ M . Now, by
(i) in Proposition 4.8, there exist 0 < ε < θ

4 and n′′ ∈ N such that, for each n > n′′, if
dist(bn, F ) ≤ 2ε then dist(an, E) ≤ θ . Therefore, we conclude that there exist 0 < ε < M

8
and n0 = max{n′, n′′} ∈ N such that, for each n > n0 we have:

(α1) if dist(bn, F ) ≤ 2ε then dist(an, E) ≤ M and dist(bn+1, F ) ≤ M .

Again, by applying Proposition 4.8 twice and a similar reasoning as above, we can suppose
that, for each n ≥ n0:
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(α2) if dist(an, E) ≤ 2ε then dist(bn+1, F ) ≤ M and dist(an+1, E) ≤ M .

Now, by Proposition 4.5 there exist η ∈ (0, 1) and n1 ≥ n0 such that:

(i) if dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε then

cos
(
an − e, bn − (e + v)

) ≤ η,

whenever n ≥ n1 and e ∈ E + εBX;
(ii) if dist(an, E) ≥ 2ε and dist(bn+1, F ) ≥ 2ε then

cos
(
bn+1 − f, an − (f − v)

) ≤ η,

whenever n ≥ n1 and f ∈ F + εBX.

For each n ∈ N, let en ∈ E and fn ∈ F be such that ‖an − en‖ = dist(an, E) and
‖bn − fn‖ = dist(bn, F ). By the Attouch-Wets convergence of {An} and {Bn} to A and B,
respectively, there exist two sequences {xn} and {yn} such that xn ∈ An, yn ∈ Bn (n ∈ N)
and such that ‖xn + v − fn‖ → 0 and ‖yn+1 − v − en‖ → 0. Moreover, without any loss
of generality we can suppose that xn ∈ E + εBX and yn ∈ F + εBX , whenever n ≥ n1.
Now, take η′ ∈ (η, 1) and δ ∈ (0, 1) satisfying δ+η

1−δ
≤ η′. By applying Proposition 4.6 there

exists n2 ≥ n1 such that, for each n ≥ n2, we have:

(iii) if dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε then

cos
(
xn − an, bn − (an + v)

) ≤ δ;
(iv) if dist(an, E) ≥ 2ε and dist(bn+1, F ) ≥ 2ε then

cos
(
yn+1 − bn+1, an − (bn+1 − v)

) ≤ δ.

Taking into account (i)-(iv) and Fact 4.7, if n ≥ n2 then the following conditions hold:

• if dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε then

‖an − xn‖ ≤ η′‖bn − (xn + v)‖;
• if dist(an, E) ≥ 2ε and dist(bn+1, F ) ≥ 2ε then

‖bn+1 − yn+1‖ ≤ η′‖an − (yn+1 − v)‖.
Now, by the triangle inequality, we have that, for each n ≥ n2, the following conditions

hold (we provide all steps only in the first condition, since the second one follows similarly):

• if dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε then

dist(an, E) ≤ ‖an − (fn − v)‖
≤ ‖an − xn‖ + ‖xn + v − fn‖
≤ η′‖bn − xn − v‖ + ‖xn + v − fn‖
≤ η′‖bn − xn − v + fn − fn‖ + ‖xn + v − fn‖
≤ η′(‖bn − fn‖ + ‖xn + v − fn‖) + ‖xn + v − fn‖;

• if dist(an, E) ≥ 2ε and dist(bn+1, F ) ≥ 2ε then

dist(bn+1, F ) ≤ ‖bn+1 − (en + v)‖
≤ η′(‖an − en‖ + ‖yn+1 − v − en‖) + ‖yn+1 − v − en‖.

If we consider η′′ ∈ (η′, 1), since ‖xn + v − fn‖ → 0 and ‖yn+1 − v − en‖ → 0, there
exists n3 ≥ n2 such that if n ≥ n3 then the following conditions hold:
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(β1) if dist(bn, F ) ≥ 2ε and dist(an, E) ≥ 2ε then

dist(an, E) ≤ η′′dist(bn, F );
(β2) if dist(an, E) ≥ 2ε and dist(bn+1, F ) ≥ 2ε then

dist(bn+1, F ) ≤ η′′dist(an, E).

Now, there exists n4 ≥ n3 such that dist(an4 , E) ≤ 2ε or dist(bn4 , F ) ≤ 2ε. Indeed,
since η′′ < 1, the fact that

dist(an, E) ≥ 2ε and dist(bn, F ) ≥ 2ε, whenever n ≥ n3,

contradicts the fact that (β1) and (β2) are satisfied whenever n ≥ n3. We conclude our proof
by showing that dist(an) ≤ M for every n > n4. By contradiction, let us suppose that the set

� = {n ∈ N : n > n4 and dist(an, E) > M}
is nonempty. Let n5 = min�. Then by (α1), we have dist(bn5 , F ) > 2ε. Moreover, by (α2),
it holds dist(an5−1, E) > 2ε. Now, from (β2), it follows that

dist(bn5 , F ) ≤ η′′dist(an5−1, E) < M .

Finally, since dist(an5 , E) > M > 2ε and dist(bn5 , F ) > 2ε, we conclude from (β1) that it
holds

dist(an5 , E) ≤ η′′dist(bn5 , F ) < M,

a contradiction.

If the intersection of A and B is nonempty, we obtain, as an immediate consequence of
Theorem 4.9, the following result.

Corollary 4.10 Let A,B be closed convex nonempty subsets of X such that A ∩ B is
bounded and nonempty. If the couple (A,B) is regular then the perturbed alternating
projections sequences {an} and {bn} satisfy dist(an, A ∩ B) → 0 and dist(bn, A ∩ B) → 0

We conclude this section by showing some relationships between the results of [9]
and Theorem 4.9. First of all, we briefly recall the notions of strongly exposed point and
strongly exposing functional. This notions, and the corresponding dual versions (see, e.g.,
[6, Definition 6.2]), play an important role in the theory of Banach spaces.

Definition 4.11 (see, e.g., [11, Definition 7.10]) Let A be a nonempty subset of a normed
space Z. A point a ∈ A is called a strongly exposed point of A if there exists a support
functional f ∈ Z∗ \ {0} for A at a

(
i.e., f (a) = sup f (A)

)
, such that xn → a for all

sequences {xn} in A such that limn f (xn) = sup f (A). In this case, we say that f strongly
exposes A at a.

Remark 4.12 If f strongly exposes A at a then a is the unique point at which f assumes its
maximum value on A. Indeed, let us suppose on the contrary that there exists b ∈ A \ {a}
such that f (b) = sup f (A), then we get a contradiction taking xn = b, whenever n ∈ N.

Definition 4.13 (see, e.g., [13, Definition 1.3] or [8]) Let A be a body in a normed space
Z. We say that x ∈ ∂A is an LUR (locally uniformly rotund) point of A if for each ε > 0
there exists δ > 0 such that if y ∈ A and dist(∂A, (x + y)/2) < δ then ‖x − y‖ < ε. We
say that A is an LUR body if each point in ∂A is an LUR point of A.
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The notion of LUR norm is a natural generalization of uniform rotundity and plays an
important role in the theory of Banach spaces (see, e.g., [11] for the definition of and the
main results on LUR norms; see also [7, 8] for some recent results involving this notion).
Moreover, it is easy to see that, in the case X is finite-dimensional, a body is LUR iff it is
strictly convex.

The following lemma shows that each LUR point is a strongly exposed point.

Lemma 4.14 (see e.g. [10, Lemma 4.3] ) Let A be a body in a normed space Z and suppose
that a ∈ ∂A is an LUR point of A. Then, if f ∈ SZ∗ is a support functional for A in a, f
strongly exposes A at a.

First, we show that a more general variant of the assumptions of one of the main results
in [9], namely [9, Theorem 3.3], implies that the couple (A,B) is regular. It is interesting to
remark that here we consider also the case in which A and B do not intersect.

Proposition 4.15 Let A,B be nonempty closed convex subsets of X. Let us suppose that
there exist e ∈ A ∩ (B − v) and a linear continuous functional x∗ ∈ SX∗ such that

inf x∗(B − v) = x∗(e) = sup x∗(A)

and such that x∗ strongly exposes A at e. Then the couple (A,B) is regular.

Proof There is no loss of generality in assuming e = 0. We claim that E = {0}. Indeed,
if we suppose on the contrary that there exists e′ ∈ E \ {e}, then we would have x∗(e) =
sup x∗(A); a contradiction against Remark 4.12. Now, suppose on the contrary that (A,B)

is not regular. Therefore there exist sequences {xn} ⊂ X, {an} ⊂ A, {bn} ⊂ B, and a real
number ε̄ > 0 such that

dist(xn, E) = ‖xn‖ > ε̄, (9)

and such that

dist(xn, A) = ‖xn − an‖ → 0, dist(xn, B − v) = ‖xn − bn + v‖ → 0. (10)

Since inf x∗(B − v) = 0 = sup x∗(A), we have

x∗(xn) = x∗(xn − an) + x∗(an) ≤ ‖xn − an‖
and

x∗(xn) = x∗(xn − bn + v) + x∗(bn − v) ≥ −‖xn − bn + v‖.
By the previous two inequalities and (10), it holds limn x∗(xn) = 0. Since ‖xn − an‖ → 0,
we have limn x∗(an) = 0. Moreover, since x∗ strongly exposes A at e, the last equality
implies that ‖an‖ → 0. Indeed, to see this it, is sufficient to apply the definition of strongly
exposing functional and take into account that limn x∗(an) = sup x∗(A). We conclude that
‖xn‖ → 0, contrary to (9).

By combining the previous proposition and Theorem 4.9, we obtain the following
corollary generalizing [9, Theorem 3.3].

Corollary 4.16 Let A, B be nonempty closed convex subsets of X. Let us suppose that there
exist e ∈ A ∩ (B − v) and a linear continuous functional x∗ ∈ SX∗ such that

inf x∗(B − v) = x∗(e) = sup x∗(A)

and such that x∗ strongly exposes A at e. Then, the couple (A,B) is stable.
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Moreover, in [9], the authors proved the following sufficient condition for the stability
of a couple (A,B).

Theorem 4.17 [9, Theorem 4.2] LetX be a Hilbert space andA,B nonempty closed convex
subsets of X. Suppose that int (A ∩ B) �= ∅, then the couple (A,B) is stable.

By combining Corollary 4.16 and Theorem 4.17, we obtain the following sufficient
condition for the stability of the couple (A, B) generalizing [9, Corollary 4.3, (ii)].

Corollary 4.18 Let X be a Hilbert space, suppose that A, B are bodies in X and that A is
LUR. Then the couple (A,B) is stable.

Proof If int (A ∩ B) �= ∅, the thesis follows by applying Theorem 4.17. If int (A ∩ B) = ∅,
since A and B are bodies, we have int(A) ∩ B = ∅. Since A is LUR the intersection
A ∩ (B − v) reduces to a singleton {e}. By the Hahn-Banach theorem, there exists a linear
functional x∗ ∈ X∗ such that

inf x∗(B − v) = x∗(e) = sup x∗(A).

Since A is an LUR body, by Lemma 4.14, we have that x∗ strongly exposes A at e. We are
now in position to apply Corollary 4.16 and conclude the proof.

Finally, we show that [9, Theorem 5.2], follows by Theorem 4.9.

Corollary 4.19 Let U, V be closed subspaces of X such that U ∩ V = {0} and U + V is
closed. Then the couple (U, V ) is stable.

Proof Since U + V is closed, by [1, Corollary 4.5], the couple (U, V ) is regular. By The-
orem 4.9, the couple (U, V ) is d-stable. Since U ∩ V is a singleton, the couple (U, V ) is
stable.

5 Final Remarks, Examples, and an Open Problem

Known examples show that the hypothesis about regularity of the couple (A,B), in Theo-
rem 4.9, is necessary. To see this, it is indeed sufficient to consider any couple (A,B) of
sets such that A ∩ B is a singleton and such that, for a suitable starting point, the method of
alternating projections does not converge (see [12] for such a couple of sets).

A natural question is whether, in the same theorem, the hypothesis about regularity of
the couple (A,B) can be replaced by the weaker hypothesis that “for any starting point the
method of alternating projections converges”. The answer to previous question is negative;
indeed, in [9, Theorem 5.7], the authors provided an example of a couple (A,B) of closed
subspaces of a Hilbert space such that A ∩ B = {0} and such that the couple (A,B) is not
stable (and hence not d-stable since A ∩ B is a singleton). It is interesting to observe that,
by the classical von Neumann result [15], the method of alternating projections converges
for this couple of sets.

The next example shows that, if we consider closed convex sets A,B ⊂ X such that
A ∩ B is nonempty and bounded, the regularity of the couple (A,B) does not imply in
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general that (A,B) is stable. In particular, we cannot replace d-stability with stability in the
statement of Theorem 4.9.

Example 5.1 ([9, Example 4.4]) Let X = R
2 and let us consider, for each h ∈ N, the

following subsets of H :

A = conv {(1, 1), (−1, 1), (1, 0), (−1, 0)};
C2h = conv {(1, 1), (−1, 1), (1, 1

h
), (−1, 0)};

C2h−1 = conv {(1, 1), (−1, 1), (1, 0), (−1, 1
h
)};

B = conv {(1, −1), (−1,−1), (1, 0), (−1, 0)};
D2h = conv {(1, −1), (−1,−1), (1,− 1

h
), (−1, 0)};

D2h−1 = conv {(1, −1), (−1,−1), (1, 0), (−1,− 1
h
)}.

Then the couple (A,B) is regular but not stable.

Fore the sake of completeness we include a proof of the previous example.

Proof By [1, Theorem 3.9], the couple (A,B) is regular. Let us prove that (A,B) is not
stable. It is easy to see that Ch → A and Dh → B for the Attouch-Wets convergence. We
claim that the couple (A,B) is not stable. To prove this, let us consider the starting point
z0 = (0, 0) and observe that, if we consider the points a1k = (PC1PD1)

kz0, then a1k → (1, 0)
and hence there exists N1 ∈ N such that

‖a1N1
− (1, 0)‖ < 1

4 .

Define An = C1 and Bn = D1 whenever 1 ≤ n ≤ N1. Similarly, if we consider the points
a2k = (PC2PD2)

ka1N1
, then a2k → (−1, 0) and hence there exists N2 ∈ N such that

‖a2N2
− (−1, 0)‖ < 1

4 .

Define An = C2 and Bn = D2 whenever N1 + 1 ≤ n ≤ N1 + N2. Then, proceeding
inductively, it is easy to construct sequences {An} and {Bn} converging respectively to A

and B for the Attouch-Wets convergence and such that the perturbed alternating projections
sequences {an} and {bn}, w.r.t. {An} and {Bn} and with starting point z0, do not converge.

Now, the following example shows that, even in finite dimension, the hypothesis
concerning the boundedness of the sets E,F cannot be dropped in the statement of
Theorem 4.9.

Example 5.2 Let A,B be the subsets of R3 defined by

A = {(x, y, z) ∈ R
3; z = 0, y ≥ 0}, B = {(x, y, z) ∈ R

3; z = 0},
then the following conditions hold:

(a) A ∩ B coincides with A (and hence (A,B) is regular);
(b) A ∩ B is not bounded;
(c) the couple (A,B) is not d-stable.

The proof of (a) and (b) is trivial. To prove (c), we need the following lemma.
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Lemma 5.3 Let A, B be defined as in Example 5.2. For each n ∈ N and x0 ≥ 1, let
P 1

n,x0
, P 2

n,x0
, P 3

n,x0
∈ R

3 be defined by

P 1
n,x0

= (x0 + nx0,−1, 0), P 2
n,x0

= (x0 + nx0 + 1
nx0

, 0, 0), P 3
n,x0

= (0, 1
n
, 1

n
).

Let tn,x0 be the line in R
3 containing the point P 1

n,x0
and P 3

n,x0
, and let rn,x0 be the ray in

R
3 with initial point P 1

n,x0
and containing the points P 2

n,x0
. Let An,x0 , Bn,x0 be the closed

convex subsets of R3 defined by

An,x0 = conv (tn,x0 ∪ rn,x0), Bn,x0 = {(x, y, z) ∈ R
3; z = 0}.

Then the following conditions hold.

(i) for each N ∈ N, limn hN(An,x0 , A) = 0, uniformly with respect to x0 ≥ 1;
(ii) For each n ∈ N and x0 ≥ 1, the alternating projections sequences, relative to the sets

An,x0 , Bn,x0 and starting point (x0, 0, 0), converge to P 1
n,x0

.

Proof (i) Let n ∈ N, x0 ≥ 1, and let us denote by {e1, e2, e3} the canonical basis of R3. Let
Dn,x0 : R3 → R

3 be the rotation such that

Dn,x0(e1) = P 1
n,x0

− P 3
n,x0

‖P 1
n,x0

− P 3
n,x0

‖ := vn,x0 ,

Dn,x0(e2) = P 2
n,x0

− P 1
n,x0

‖P 2
n,x0

− P 1
n,x0

‖ := wn,x0 ,

Dn,x0(e3) = vn,x0 ∧ wn,x0 ,

where vn,x0 ∧ wn,x0 denotes the standard vector product between vn,x0 and wn,x0 in R
3. An

elementary computation shows that ‖vn,x0 − e1‖, ‖wn,x0 − e2‖ (and hence ‖vn,x0 ∧ wn,x0 −
e3‖) go to 0 as n → ∞, uniformly w.r.t. x0 ≥ 1. This implies that ‖Dn,x0 − I‖ goes to 0 as
n → ∞, uniformly w.r.t. x0 ≥ 1. By definitions of An,x0 and A, we have

An,x0 = P 3
n,x0

+ Dn,x0(A).

FixN ∈ N. Fact 2.3 implies that hN(An,x0 , A) goes to 0 as n → ∞, uniformly w.r.t. x0 ≥ 1;
the proof is concluded.
(ii) Observe that:

• the projection of the line tn,x0 onto the plane B is the line sn,x0 containing P 1
n,x0

and the
point (x0, 0, 0);

• the projection of the line sn,x0 onto the unique plane containing An,x0 is the line tn,x0 .

Hence, the alternating projections sequences, relative to the sets An,x0 , Bn,x0 and starting
point (x0, 0, 0), converge to intersection point of the lines tn,x0 and sn,x0 , i.e., P

1
n,x0

.

Proof of Example 5.2, (c) Fix the starting point a0 = (1, 0, 0) and let A1,1, B1,1, P
1
1,1, be

defined by Lemma 5.3. Observe that, if we consider the points

a1k = (PA1,1PB1,1)
ka0 (k ∈ N),

by Lemma 5.3, (ii), there exists N1 ∈ N such that dist(a1N1
, A ∩ B) ≥ 1

2 , indeed, {a1k }k
converges to the point P 1

1,1 = (2,−1, 0) and dist(P 1
1,1, A ∩ B) = 1. Define An = A1,1 and

Bn = B1,1 = B, whenever 1 ≤ n ≤ N1. Then define AN1+1 = A and BN1+1 = B, and
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observe that a20 := PAPBa1N1
= (x1, 0, 0) for some x1 ≥ 1. Proceeding as above, if we

consider the points
a2k = (PA2,x1

PB2,x1
)ka20 (k ∈ N),

then there exists N2 ∈ N such that dist(a2N2
, A∩B) ≥ 1

2 . Define An = A2,x1 , Bn = B2,x1 =
B, whenever N1 + 1 < n ≤ N2. Then define AN2+1 = A,BN2+1 = B, and observe
that a30 := PAPBa2N2

= (x2, 0, 0) for some x2 ≥ 1. Then, proceeding inductively, we can
construct sequences {An} and {Bn} such that, by Lemma 5.3, (i), An → A and Bn → B

for the Attouch-Wets convergence. Moreover, by our construction, it is easy to see that the
corresponding perturbed alternating projections sequences {an} and {bn}, with starting point
a0, are such that

lim supn dist(an, A ∩ B) ≥ 1
2 .

This proves that the couple (A,B) is not d-stable.

Finally, we conclude with an open problem asking whether the inverse of Theorem 4.9
holds true.

Problem 5.4 Let A, B be closed convex nonempty subsets of X such that E and F are
nonempty and bounded. Suppose that the couple (A,B) is d-stable. Does the couple (A,B)

is regular?
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Mathématiques de la SMC. Springer, New York (2006)

15. von Neumann, J.: On rings of operators. Reduction theory. Ann. of Math. 50, 401–485 (1949)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

C.A. De Bernardi, E. Miglierina542

https://doi.org/10.1007/s10898-021-01025-y

	Regularity and Stability for a Convex Feasibility Problem
	Abstract
	Introduction
	Notation and Preliminaries 
	Notions of Regularity for a Couple of Convex Sets
	Regularity and Perturbed Alternating Projections
	Final Remarks, Examples, and an Open Problem
	References




