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Abstract
Accurate commodity price forecasts are crucial for stakeholders in agricultural
supply chains. They support informed marketing decisions, risk management,
and investment strategies. Machine learning methods have significant potential
to provide accurate forecasts by maximizing out-of-sample accuracy. However,
their inherent complexity makes it challenging to understand the appropriate
data pre-processing steps to ensure proper functionality. This study compares
the forecasting performance of Long Short-TermMemory Recurrent Neural Net-
works (LSTM-RNNs) with classical econometric time series models for corn
futures prices. The study considers various combinations of data pre-processing
techniques, variable clusters, and forecast horizons. Our results indicate that
LSTM-RNNs consistently outperform classical methods, particularly for longer
forecast horizons. In particular, our findings demonstrate that LSTM-RNNs are
capable of automatically handling structural breaks, resulting in more accurate
forecasts when trained on datasets that include such shocks. However, in our
setting, LSTM-RNNs struggle to deal with seasonality and trend components,
necessitating specific data pre-processing procedures for their removal.
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1 INTRODUCTION

Agricultural commodity price forecasting provides cru-
cial information for stakeholders along the food supply
chain, who are often faced with large price fluctuations
and need tomake decisions under risky conditions (Brandt
& Bessler, 1981; Colino & Irwin, 2010; Colino et al., 2011).
Access to reliable price forecasts assists farmers in making
marketing decisions, facilitates the formulation of con-
tracts between different operators and serves as a risk
management strategy (Carter & Mohapatra, 2008; Hoff-
man et al., 2015; OECD, 2000). In particular, futures prices

play an important role in providing price information
ahead of time to acquaint financial investment decisions
(Colino & Irwin, 2010; Zhao, 2021), and reduce market
uncertainty (Wang et al., 2017; Xu, 2020). With regard to
the latter, these instruments play a key role in crop insur-
ance programs, where futures prices are typically used to
define first stage and harvest prices (Ouyang et al., 2019).
In this context, the increasing availability of data, com-

bined with remarkable advancements in computational
power, has opened numerous possibilities for the applica-
tion of Machine Learning (ML) techniques in agricultural
economics, including futures price forecasting (Storm
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et al., 2020). The ML domain encompasses a broad spec-
trum of predictive algorithms and modeling techniques,
ranging from decision trees to neural networks, ensemble
methods, and various other approaches. These methods
are better suited than classical statistical tools for manag-
ing (very) large datasets and representing complex non-
linear relationships among variables. Moreover, they are
designed and fine-tunedwith the sole aim of attaining high
predictive accuracy. It is therefore unsurprising to find
several promising applications where out-of-sample ML
forecasts outperform those frommore traditional methods
(Bojer & Meldgaard, 2021; Hyndman, 2020).
In recent years, the literature on time series forecast-

ing using ML methods has provided valuable insights
into their potential contribution. Focusing on the primary
sector, recent contributions show ML producing encour-
aging results in forecasting agricultural (futures) prices
(Mahto et al., 2021; Ouyang et al., 2019; Xu & Zhang, 2021a,
2022; Zhao, 2021). Specifically, NNs have proven useful in
forecasting agricultural commodity prices over long-term
periods, often outperforming linear models by effectively
capturing complex nonlinear relationships inherent in the
data (Bayona-Oré et al., 2021; Xu & Zhang, 2022). Fur-
thermore, the application of deep learning models for
time-dependent data has shown promising results in accu-
rately capturing the directional movements of agricultural
spot prices (RL & Mishra, 2021).
Although these results would suggest switching over to

ML techniques in forecasting practice, it is often unclear
how these methods can yield such accurate results, espe-
cially in presence of time-dependent features. This char-
acteristic is sometimes called the “black box” nature of
ML algorithms and it refers to their complex architec-
ture, designed to better approximate non-linear functional
forms (Mullainathan & Spiess, 2017; Sheikh & Jahirabad-
kar, 2018; Storm et al., 2020). Since in forecasting tasks
the focus is mainly on prediction accuracy, with limited
interest in understanding the underlyingmodel, this seems
less of a problem (Chernozukov et al., 2017). Nevertheless,
producing accurate forecasts typically hinges on the mod-
eler’s capacity to effectively address various time series
features such as non-stationarity, structural breaks, sea-
sonality, and trends, as well as theoretical constraints such
as cointegration. Such determinants of time series persis-
tence, or the lack thereof, play a pivotal role not only in the
measurable quality of the final methods but also in their
ability to extrapolate. To this extent, data pre-processing
represents one of the most important stages along the
input-to-prediction modeling chain.
In this paper, we investigate how ML methods perform

in agricultural futures price forecasting, compared to clas-
sic econometric approaches. Since these series are known
to entail several problematic dependence structures such

as seasonality patterns, trends, unit-roots structural breaks
and potentially non-linear dynamics (Brooks et al., 2013;
Chen et al., 2022; Wei & Leuthold, 2000), our goal is to
understand to what extent different combinations of data
pre-processing procedures and modern ML algorithms
yield better forecasts than univariate and multivariate
econometric time series models. Since we have a reason-
able understanding of how the latter generate forecasts
depending on data persistence, we believe that compar-
ing these transparent and interpretable techniques to
the less transparent ML models will help us understand
under what circumstances the latter are preferable and
why. Although futures price forecasting is equally impor-
tant for many potential applications, our work focuses
on mid and short-term predictions, thereby appealing
more to financial operators seeking to address market
uncertainty when planning commodity purchases, eval-
uating investment opportunities, or stipulating insurance
contracts.
In practice, the comparison between ML and classical

time series econometrics considers the degree to which
they diverge and align in generating out-of-sample predic-
tions for time-dependent data.Wemeasure such proximity
using time series derived froma parent dataset of commod-
ity futures prices employed to produce predictions across
multiple forecast horizons, different variable clusters,
and data pre-processing techniques. Our model toolbox
includes, on the one hand, classical econometric fore-
casting techniques likeAuto-Regressive IntegratedMoving
Average (ARIMA)models, Vector Auto-Regression (VAR),
and Vector Error Correction Models (Xu & Zhang, 2021a;
Xu, 2020). On the ML side, we explore Recurrent Neu-
ral Networks (RNNs) and, in particular, we focus on their
Long-Short Term Memory RNNs (LSTM-RNNs) exten-
sion (Bandara et al., 2019; Gilland, 2020). Both RNNs and
LSTMs are designed to improve on classical Neural Net-
works (NNs)when the task involves generating predictions
based on (time-) dependent data structures.
Our analysis highlights that the LSTM-RNN consis-

tently performs equally or better than classical econo-
metric methods, especially in longer forecast horizons.
Although the ML model cannot independently address
seasonality or trends, both of which have a significant neg-
ative impact on its performance, it does exhibit the ability
to handle structural breaks. In fact, training ourMLmodel
on a dataset that includes structural breaks yields bet-
ter predictions than classical methods, even when these
are explicitly laid out to control for such abrupt changes
in the data distribution. In particular, our findings sug-
gest that LSTM-RNN models are particularly well-suited
for situations where addressing a structural break entails
splitting the dataset, thereby avoiding the resulting loss of
information.
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Complementing the existing literature, we contribute by
addressing explicitly the impact of data pre-processing, the
role of structural breaks, and the multivariate nature of
these predictive tools. The importance of jointly exploring
all these aspects is explicitly mentioned in the commen-
tary of the M5 competition, where the best performing
algorithms both included further explanatory variables
and pre-processed the data to at least remove systematic
dependence components (Makridakis et al., 2022). In this
respect, the contribution of this paper is threefold: first,
it provides specific insights into the importance of data
pre-processing, especially when time series are charac-
terized by structural breaks, a rather frequent feature of
agricultural commodity futures prices. Second, we explore
the multivariate nature of ML and traditional forecasting
tools by organizing our dataset into three variable clus-
ters that include both agricultural and financial time series
(see section 2). These groupings are defined according to
the corresponding cointegrating relationships. Third, we
analyze explicitly the performance of LSTM-RNNs under
different time horizons (short and medium-term), against
a larger basket of traditional econometric models, both
univariate and multivariate.
The paper is structured as follows: section 2 outlines

the fundamentals of the methods employed in this paper,
detailing their structure and operation. Section 3 presents
the data, the various sets of variables used in our mod-
els, and the pre-processing procedures. Section 4 examines
the estimation procedures for both classical and ML mod-
els, evaluating their forecasting capabilities and comparing
accuracy measures. Section 5 presents the results of our
analysis, with a focus on the forecasting performance of
both classical and MLmethods. Finally, section 6 provides
conclusions, critical reflections, and a discussion of key
insights.

2 ECONOMETRIC ANDMACHINE
LEARNING APPROACHES FOR TIME
SERIES FORECASTING

2.1 Econometrics approaches and how
ML differs from them

The most widely adopted econometric model for time
series is the Autoregressive Integrated Moving Average
(ARIMA) (Greene, 2020). ARIMA describes the relation-
ship between future and past observations of a certain
variable through a single linear-in-parameters autoregres-
sive equation. This structure can be extended to the
multivariate case by including other variables in a reduced
form model where each series is regressed on its lags and,
possibly, other series’ lags. The resulting class of models

is known as Vector Autoregressions (VAR) (Greene, 2020).
A further extension to the VAR allows to tackling non-
stationary series by explicitly modeling one or more coin-
tegrating relationships among the series (Greene, 2020).
The resulting model is known as Vector Error Correction
Model (VECM) and it is widely adopted in the economic
literature. The functional form, the lags, and all the other
elements composing ARIMA, VARs and VECMs are cho-
sen by the researcher depending on her representation
of reality, knowledge of the underlying theory and a vast
array of econometric specification tests. The act of delib-
erately choosing the models’ structures through domain
knowledge and formal testing creates the first and fore-
most gap between classical econometric tools andMachine
Learning (ML) techniques.
What characterizesML is the development of algorithms

able to learn by practice, choosing its functional form and
the number of parameters to include, meaning that the
model is almost completely data-driven (Bishop, 2005).
This means that the ability to perform a certain task (e.g.,
prediction), as measured by a certain performance (e.g.,
accuracy), improves the more experience (e.g., data) the
algorithm is exposed to. Ideally, the larger the dataset,
the better the performance, provided that both the data
structure and the data quality are adequate for the task.1
Without the need to explicitly represent or interpret the
core of these tools, great flexibility is allowed, therebymak-
ing predictions potentially very accurate. In this context,
one of the key differences between classical methods and
ML algorithms is the role of overfitting and regularization.
To produce accurate forecasts, models of any kind

should avoid interpolating the data, thereby picking up
unnecessary noise that would hinder their ability to gener-
alize to unobserved data with different distributions. Since
the risk of overfitting typically grows with the number
of parameters (i.e., overparameterization), highly complex
models are inherently more sensitive to these concerns.
For this reason, and unlike most econometric techniques,
bias is not the focus of ML methods. Instead, such tools
are crafted to minimize composite metrics like the Mean
Squared Error (MSE), thus striving to strike a balance
between variance and bias. The appropriate bias-variance
trade-off is achieved through regularization, the strength
of which is typically controlled through one ormore hyper-
parameters. When forecasting non-stationary time series,
overfitting is particularly problematic: since we expect
that future observations exhibit rather different distribu-
tions, ML models need a smart way to penalize excessive

1 One striking example is causal inference, where the application of
off-the-shelf ML techniques does not guarantee the identification of
treatment effects unless more assumptions and restrictions are imposed
(Chernozukov et al., 2017).
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complexities that would impose rigid constraints over the
range of possible future outcomes.Moreover, the persistent
nature of the data can itself lead to overfitting, even in the
most parsimonious models.2
In the remainder of this section, we briefly describe the

architecture and the intuition behind the class of NNs that
we contrast toARIMA,VARandVECMmodels. Since clas-
sical NNs (referred to as “vanilla” NNs) are designed to
best work with independently and identically distributed
data, we rely on RNNs to account for time dependencies
in the data. RNNs have also been extended to incorporate
long-term dependencies through the inclusion of “mem-
ory cells.” Such extension goes under the generic name of
LSTM-RNNs.

2.2 NNs, RNNs, and LSTM RNNs

NNs take their name from the functioning of biologi-
cal neurons, but despite some similarities, the “artificial
brain” and the natural one bear little resemblance to each
other. The basic building block of a NN is the neuron,
which can be regarded as an element holding a value
between 0 and 1. This value is computed starting from
the weighted summation of the inputs, where the weights
assigned represent the parameters of the resulting model.
The result from the sum is then fed into the activation
function which forces the value of the summation in the
0–1 range. There are several possible choices for the acti-
vation function, but if we consider a sigmoid function,
then a neuron is perfectly analogous to a logistic regres-
sion (Rosenblatt, 1958). One can extend this basic model
by combining multiple neurons into layers, which can
be themselves connected to build an intricate network.
Consequently, an incredibly complex system through the
addition of layers is created– the more the layers, the
higher the complexity. This convoluted mapping can vir-
tually approximate any given function (Staudemeyer &
Morris, 2019). The model obtained by this combination is
sometimes called the graph, and it is conditional on all the
parameters of each neuron (weights and biases), as well as
on the different activation functions (Hastie et al., 2009:
403–458). The estimation of these parameters takes place
during the learning phase, which refers to an optimiza-
tion problem, where the objective loss function represents
the error (or distance) between predictions and observed
values. Due to the high complexity of the graph, and the
large number of parameters, it is often infeasible to obtain
an analytical solution by computing derivatives. There-
fore, the above procedure is tackled through numerical

2 A well-known example is a random walk process, where the best one-
step ahead forecasts are provided by the previous observation.

methods, the most commonly adopted being (Stochastic)
Gradient Descent (Ruder, 2016).
Depending on how the layers are connected, NNs can

manifest various architectures. Each architecture modi-
fies the NN to impart distinct characteristics, rendering it
more or less suitable for specific tasks. For instance, the
RNN architecture was initially developed to address cer-
tain limitations of the so-called “vanilla” NNs, particularly
the inability to explicitly incorporate dynamic structures,
which hindered their capacity to effectively model data
with stochastic dependencies. Therefore, the basic NN
model was extended with two additional functionalities.
The first innovation consisted of the introduction of spe-
cial hidden layers, commonly referred to as memory cells,
containing recurrently connected neurons able to accumu-
late sequential information and maintain the knowledge
acquired over time (Bandara et al., 2019). Second, the abil-
ity to iterate over the time series was introduced, thereby
enabling NNs to feed the current step as part of the
input for the next stage of the graph (Gers et al., 2002).
Unfortunately, these two features brought up yet another
problem that greatly frustrates the performance of RNNs in
time series forecasting: the impossibility of retaining long-
term dependency. In short, the information from the most
recent observations overrides the oldest ones, since the
model has no control over how to store and eventually use
specific past information (Bengio et al., 1994; Hochreiter&
Schmidhuber, 1997).
The LSTM-RNN, by re-designing the NN to include two

additional features regulating the information flow along
the network, is able to effectively handle the vanishing
gradient problem as well as learn effectively the long-
term dependencies (Gers et al., 2002; Hewamalage et al.,
2021; Hochreiter & Schmidhuber, 1997; Sherstinsky, 2020;
Staudemeyer & Morris, 2019). Figure 1 provides a graph-
ical visualization of an LSTM-RNN, which is designed as
a set of recurrently connected networks called memory
cells (the block indicated by the letter A). The network
is represented as linked sequentially over time with itself,
to reflect its recurrent nature. The novelty of this model
is that each of its cells is equipped with a Constant
Error Carousel (CEC) and three gates (input, forget, and
output gate), working together to govern the push for-
ward of past information (ℎ𝑡), to be combined with the
inputs (𝑋𝑡), thereby safeguarding long-term dependencies
(Staudemeyer & Morris, 2019). This is achieved by a series
of computations involving first the decision of the values to
be updated via sigmoid (𝜎) or arctangent (𝑡𝑎𝑛ℎ) functions,
and then their modification via pointwise addition (⊕) or
multiplication (⊗). See Annex A in the Supplementary
material for a brief explanation of LSTM-RNN functioning.
As previously introduced, all ML techniques require

regularization to avoid overfitting the data, for instance
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F IGURE 1 Graphical representation of a LSTM Network, unfolded. Source: Gers et al., 2002.

limiting the number of epochs or including penalty terms
in the loss function (Bishop, 2005; Hastie et al., 2009).
However, there exist other approaches that are specific to
the data structure at hand. In time series problems, for
example, the use of rolling-windows can be thought of
as a surrogate regularization strategy, where parameters’
learning is smoothed over different time intervals thereby
lowering the influence of problematic observations and
reducing the risk of overfitting (see section 4.2 for details).
In other words, this technique should limit, in a simi-
lar fashion to the aforementioned practices, the influence
that a particular variable may exert over a given period
of time. We introduce these strategies in sections 3 and 4,
where we describe pre-modeling data transformations and
the LSTM-RNN forecasting algorithm that is used in this
paper.

3 DATA

3.1 Data description

Our dataset consists of 13 time series measured at daily fre-
quency between January 2000 and June 2020, for a total of
5174 time-steps for each series. We opted to analyze data
at a daily frequency for two reasons: on the one hand, we
strived to strike a balance3 between the number of obser-
vations and computational constraints; on the other, this

3 The use of weekly or monthly data would have resulted in series
too short for the application of neural networks, while employing a
higher frequency would have required significantly more computational
power, especially when considering the optimization of multiple neural
networks.

level of granularity is necessary to produce short-term fore-
casts, as detailed in section 4. Indeed, many situations
including the stipulation of crop insurance programs and
when informing financial investment strategies require
forecasts over relatively narrow time windows, thus the
need for highly disaggregated data (i.e., daily, or weekly
observations) (Andreasson et al., 2016; Sanders & Irwin,
2016; Zhao, 2021). Therefore, our interest in daily data is not
new in agricultural price forecasting problems. As an early
example, Leuthold et al. (1970) employ daily hog prices and
quantities to compare the functioning of several economet-
ric forecasting models. More recently, Ouyang et al. (2019)
considered daily futures prices of 12 agricultural commodi-
ties, while RL & Mishra (2021) used daily spot prices to
predict 5 different agricultural products.
Our data represents six futures contracts traded on dif-

ferent markets: grains, energies, animal products, gold,
currencies, and financial indexes. Table 1 presents sum-
mary statistics. Additionally, Annex B includes the corre-
sponding plots for all series.
We choose corn futures prices4 as our primary outcome

of interest—that is, the variable that we will use to test the
predictive performances of the various methods—while
the 12 remaining times series serve as covariates in either
the LSTM-RNNs or the VAR/VECMmodels. Our decision
to focus on corn is twofold. Besides being a major ani-
mal fodder crop worldwide and, for this, having major
economic relevance (Xu & Zhang, 2021a), corn is also

4 An alternative target for exercises like ours could be spot prices, as
futures prices tend to converge to spot prices uponmaturation. Spot prices
can serve as a good proxy for uncertainty in the market. However, in our
specific case, we chose to focus on futures prices primarily due to data
availability reasons.
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TABLE 1 Summary statistics.

Variable N Mean Std. Dev. Min Max Kurtosis Skewness
Corn 5174 378 149 175 838 3.365002 .9688616
Soybean 5174 912 308 418 1772 2.274633 .2832183
HardW 5174 525 187 270 1322 3.206699 .8704956
SoftW 5174 568 203 286 1943 4.910356 1.0099422
SP 5174 1614 624 675 3392 2.858940 .9705892
Nasdaq 5174 3205 2135 810 10952 3.637341 1.2284344
Gold 5174 957 474 255 1900 1.656952 .1021518
WTI 5174 61 26 13 145 2.311986 .4000311
Dollar 5174 91 12 72 121 2.694651 .6468928
Milk 5174 15 3.4 8.6 25 2.662383 .2368158
Fcattle 5174 125 36 73 244 3.644849 .9408071
Lcattle 5174 102 24 60 173 2.501645 .4646261
Gasoline 5174 1.8 .72 .49 3.6 2.161262 .3077619

Note: We run normality tests for all the series in the table (Xu & Zhang, 2022). Specifically, we perform Jarque-Bera, Kolmogorov-Smirnov, Cramer von-Mises and
Anderson-Darling tests. None of the tests suggest that the series follow a normal distribution.

largely used in biofuel production, for example in the US
(US Department of Energy, 2023). Moreover, by concen-
trating on corn prices, we can conveniently evaluate the
models’ capacity to handle complex time features such as
unit roots, seasonality, trends, and, importantly, structural
breaks (Egelkraut et al., 2007). Concerning the latter, it is
widely recognized that corn prices experienced a signifi-
cant upsurge in themid to late 2000s, primarily influenced
by legislative measures aimed at boosting corn ethanol
production (Tyner, 2010). We can therefore use this knowl-
edge to analyze how abrupt changes in the data-generating
process impact our predictions (see section 5.1).
All the data were retrieved from Barchart (2020). Since

futures contracts have a finite expiration date, unlike
stocks that trade perpetually, the nearest series were used
to construct continuous series rolling5 from one contract
to the next for the whole period considered.
To evaluate the methods’ performances as the num-

ber of available variables varies, we consider different
model specifications utilizing different groups of variables.
Since training an LSTM-RNN on a set of heterogeneous
time series could potentially produce low quality predic-
tions, Bandara et al. (2019) propose to initially cluster
the available time series and take advantage of any sim-
ilarities between subsets of data. Although clustering
should in principle be based on the properties of the
time series, such as frequency, seasonality and persistence,
the authors suggest that clustering can also be based on
domain knowledge and researchers’ familiarity with the

5 Rolling was done 15 days before the expiration month, based on total
volume and open interest (Barchart, 2020).

data. In particular, the latter approach might be more
appropriate when the problem involves few variables with
clear conceptual linkages, whereas algorithmic clustering
could provide a reasonable compromise in large sets of
unstructured time series. For this reason, and to leverage
cointegrating relationships involving corn, we do not per-
form algorithmic clustering but rather seek to compromise
between economic knowledge and formal testing. First,
we run each model on the full variable set. Second, we
select the series belonging to the same domain (commod-
ity and financial prices) and we estimate a cointegrating
relationship, retaining only the variables that appear in the
long-term structural component. The cointegration analy-
sis identifies three distinct subgroups that align with our
prior domain knowledge (Serra et al., 2011; Suh & Moss,
2017). The first cluster consists of eight variables encom-
passing futures prices of grains, livestock futures prices
associated with grains used as feed, and energy prices.
The second cluster focuses solely on grains and livestock
futures prices. Last, the third cluster comprises only grains’
futures prices (Table 2). Through this procedure, we can
evaluate the extent to which the various methods benefit
from incorporating a larger number of variables.

3.2 Data pre-processing

In order to ensure the correct functioning of LSTM-RNNs,
data need to be pre-processed. Different time series with
different scales might prevent the model from learning
effectively, by making the parameters diverge during com-
putations. As stated in the introduction, pre-processing
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TABLE 2 Variables clusters.

Models Variables
LSTM_tot All variables are considered
VAR_tot
LSTM_8 Considering only:
VAR_8 Corn—Soybean—Hard Wheat—Spring Wheat—Feeder Cattle—Live Cattle—WTI

Oil—GasolineVEC_8
LSTM_6 Considering only:
VAR_6 Corn—Soybean—Hard Wheat—Spring Wheat—Feeder Cattle—Live Cattle
VEC_6
LSTM_4 Considering only:
VAR_4 Corn—Soybean—Hard Wheat—Spring Wheat
VEC_4
ARIMA Only Corn is considered

Source: own elaboration.

is also fundamental in dealing with some time series
properties, such as seasonality, trends, unit roots and,
more in general, non-stationarity.
For the comparison between classical models and

LSTM-RNNs, we utilized two pre-processing procedures:
First Differencing (FD) and the Full Adjustment (FA)
approach. Whereas FD is very common in most conven-
tional forecasting tasks, FA is widely used in theML litera-
ture, and it is particularly suited to forecasting with RNNs
and LSTM-RNNs (Bandara et al., 2019; Hewamalage et al.,
2021; Smyl, 2020). Within this method, there are three ele-
ments to take care of: the stabilization of the variance,
seasonality, and trend. The stabilization of the variance
is performed first, through a logarithmic transformation
of the raw data. In practice, this transformation reduces
the scale of the data. The de-seasonalization is carried out
by dividing the series into time windows of 1 year each
and removing the seasonal component via a Locally Esti-
mated Scatterplot Smoothing (LOESS) (Cleveland et al.,
1990). Last, the trend is eliminated from the series follow-
ing the same approach as in the de-seasonalization. The
advantage of this technique, besides providing more accu-
rate estimates of local trends and seasonal components, is
that it does not introduce information from the training set
to the test set, affecting the actual performances of the NN.
However, most of the common prediction tasks involving
the use of ML techniques, such as the ones we present in
this paper, deal with data entailing little or no persistence.
Specifically, when strong dependencies are present, these
are typically the result of seasonal or (possibly nonlin-
ear) trend components for which the FA approach works
particularly well (e.g., Bandara et al., 2020; Mtibaa et al.,
2020). On the other hand, economic variables often exhibit
complex dynamics even when periodic components have
been removed, thereby leading researchers to resort to FD.

Although some authors have successfully applied the FA
technique to times series of the second type (Bandara et al.,
2019), we train our LSTM-RNN on both FD and FA trans-
formed data and keep record of the model’s performance
across the two representations.
In order to evaluate the models’ capability to handle

structural breaks, we compare their performances when
trained on either the full dataset (henceforth FULL) or on a
post-structural break dataset (henceforth post-SB) defined
as the collection of all the observations beyond a certain
breakpoint. To identify such a threshold, we conducted
a battery of Chow tests using a VECM with eight vari-
ables (i.e., all the grain, livestock, and energy prices) as the
reference model in all the time steps via the strucchange
R Package (Zeileis et al., 2002, 2003). The resulting post-
SB dataset includes 3084 daily observations from April 28,
2008 to June 2020 (see Annex C for more details).
For the assessment of the LSTM-RNN ability to

pick up time elements, we compare the performances
of our NNs on the datasets obtained from the Full
Adjustment (FA) dataset, first-difference (FD) dataset,
and three other datasets where we applied either de-
seasonalization (Season adj., SA) or de-trending (Trend
adj., TA), or no transformation at all (Untransformed, UN)
(see Table 3).

4 ESTIMATION AND FORECASTING

4.1 Estimation and forecasting with the
classical models

To construct the VAR and ARIMA models, both on the
FA and the FD transformed datasets, the following proce-
dure was followed (see Table 4). We started by checking
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486 BRIGNOLI et al.

TABLE 3 Pre-processing procedures and resulting datasets.

Dataset Details Identifier
Pre-processing procedure

Full adjustments Logarithmic transformation FA
Seasonality removed
Trend removed

First difference Unit root removed FD
Trend adj. Trend removed TA

Standardization
Season adj. Seasonality removed SA

Standardization
Untransformed Standardization only for LSTM UN

Dimension
Full dataset From January 2000 to June 2020

5174 time-steps
FULL

Post-structural break From the May 2008 to June 2020
3084 time-steps

post-SB

Source: own elaboration.

TABLE 4 Classical models specifications.

Specifications
Full adjustment dataset First differenced dataset

VAR_tot 1 lag, constant 1 lag, no constant
VAR_8 1 lag, constant 1 lag, no constant
VAR_6 2 lags, constant 2 lags, no constant
VAR_4 3 lags, constant 3 lags, no constant
ARIMA AR(1), I(0), constant AR(1,3), I(0), MA(7,9), no constant
Unprocessed dataset
VEC_8 1 lags, 3 cointegrating vectors, constant
VEC_6 2 lags, 2 cointegrating vectors, constant
VEC_4 2 lags, 1 cointegrating vector, constant

Source: own elaboration.

the stationarity of each series, using the Augmented
Dickey-Fuller (Dickey & Fuller, 1979) test as well as the
KPSS test (Kwiatkowski et al., 1992). The univariate model
was determined by using the Autocorrelogram and Partial
Autocorrelation graph. The choice for autoregressive pro-
cesses or moving averages was guided by the obtainment
of white noise errors, as well as parsimony (Verbeek,
2017). For the multivariate cases, we proceeded with a
VAR model, choosing the number of lags using Wald tests
(Lütkepohl, 2005). To construct the VEC models on the
untransformed dataset, cointegration was tested through
the Johansen test (Johansen, 1995). The optimal number
of lags was based on AIC, BIC, and Likelihood Ratio tests.
Once the models were fit, predictions for 30 and 7

days ahead were produced. As discussed in sections 1
and 3, planning may require different forecasting horizons

depending on the market, the period of interest, the actors
involved and the purpose of the prediction. In many cases,
the focus is not solely on single or few-step-ahead pre-
dictions, but rather on obtaining forecasts for an entire
time window. Taking this factor into consideration, we
have chosen to use both a 7-day and a 30-day forecast win-
dow, during which wemake predictions for both the entire
sequence of time steps and the averages. The selection of
these two forecast windows is based on their frequent uti-
lization in practical applications within financial contexts
(Xu, 2020).
Predictions for the classical models are calculated

dynamically in the sense that the predictions for each time
step are used recursively to predict the next step. The rea-
son we chose this option is that it is the most common
predictionmethodwhenusingARIMAmodels, despite the
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BRIGNOLI et al. 487

risk of carrying over errors in consecutive predictions given
an error in the beginning.

4.2 Training and forecasting with
LSTM-RNNs

Standard NN algorithms are generally trained by k-fold
cross-validation,6 which cannot be applied in a time
series context since it does not preserve the order of the
observations.
To overcome this issue, we use the Rolling-Window

(RW) approach described in Bandara et al. (2019) and Smyl
(2020). A simple way to visualize this method is by consid-
ering a zipper mechanism, where each tooth on the string
can be considered as a time step. The first part of this pro-
cedure is designing a window covering a certain number
of steps. The window is trained over a fixed proportion of
those steps and validated over the remaining part. Start-
ing from the beginning of the sequence, the window is
applied, and the first set of parameters is computed. Then,
this window is rolled over the sequence, each time updat-
ing the parameters so to optimize for forecasting accuracy.
The parameters computed in the last window of data are
the final parameters for the algorithm. In this way, it is pos-
sible to cross-validate the parameters while preserving the
temporal state of the data.
Therefore, the first step for training LSTM-RNNmodels

is to define the span of the rolling-window. As discussed
in the previous section, we provide both 7-day and 30-day
ahead forecasts. Considering the 30 days forecast hori-
zon, we start from a window consisting of a total of 395
time steps, 365 of which are input steps and 30 output
steps. Based on the 1-year input window, the NN produces
the forecasts for the 30 days ahead. These forecasts are
compared with the actual observations and, based on the
prediction error, the parameters are updated backwardly
optimizing for forecasting accuracy. This procedure is then
repeated for the whole length of the series, each time
rolling thewindow input of 180 time steps, to obtain partial
overlapping between two consecutive windows. The same
reasoning goes for the 7-day forecast horizon, where the
rolling-window has 7 output steps.
A key feature of producing forecasts through LSTM-

RNN consists of how predictions are calculated over the
time horizon of interest. Specifically, the RW window
approach to LSTM-RNN generates static forecasts, mean-
ing that the algorithm directly outputs predictions over
the whole stretch of the forecasting range (Taieb et al.,

6 K-fold cross-validation consists in randomly splitting the training data
into k non-overlapping folds, fitting the model to each subset, and then
averaging the resulting predictions.

2010). Conversely, classical models produce forecasts in a
dynamic way, meaning that they generate single one-step
ahead forecasts, and then repeat the process for the whole
forecasting horizon, iteratively. The advantage of this last
method is that it allows to consider an increasing number
of observations while generating the forecasts. However,
it also implies that the errors made in previous steps are
carried over to the following forecasts (Taieb et al., 2010).
The last step for assessing the performance of the

LSTM-RNN is a Bayesian Optimization (BO) of the hyper-
parameters (Bandara et al., 2019; Snoek et al., 2012). This
procedure allows to efficiently find the combination of
hyperparameters that maximizes the accuracy of the NN’s
predictions using fewer iterations than with a standard
grid search algorithm. Shahriari et al. (2015) provide an
accurate introduction of BO, explaining the importance
of probabilistic optimization in the presence of a highly
complex function with millions of possible hyperparam-
eter combinations. Tables 5 and 6 report respectively
the chosen hyperparameters value for each LSTM-RNN
model in our analysis trained on the FA or the FD
datasets.

4.3 Accuracy measures

We measure the performances of classical models and
LSTM-RNNs, via three distinct accuracy measures: the
Mean Absolute Error (Equation 1), the Root Mean Square
Error (Equation 2), and the Mean Absolute Percentage
Error (Equation 3).

𝑀𝐴𝐸 =

∑|𝑦 − �̂�|
𝑁

(1)

𝑅𝑀𝑆𝐸 =

√∑
(𝑦 − �̂�)

𝑁
(2)

𝑀𝐴𝑃𝐸 =

∑(||𝑦 − 𝑦 ||)|𝑦| ∗ 100 (3)

This choice is mainly dictated by the large popularity
they have in the forecasting literature (Goodwin, 2020).
The first two measures are usually employed in evaluat-
ing different models on the same dataset, while the third
is more versatile (and scale-independent). Since the RMSE
is more sensitive to outliers (Hyndman & Koehler, 2006),
the discussion focuses on the MAE, while the remaining
measures are reported in Annex D in the Supplementary
Material.
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488 BRIGNOLI et al.

TABLE 5 Chosen hyperparameters value for each LSTM-RNN model trained on the FA dataset.

FA 30-day forecast horizon 7-day forecast horizon
Hyperparameters LSTM_tot LSTM_8 LSTM_6 LSTM_4 LSTM_tot LSTM_8 LSTM_6 LSTM_4
Learning rate 5.6e-04 .0002 1e-01 1e-01 2.3e-06 .002 2.6e-03 1e-02
Number of LSTM
layers

5 5 2 2 2 5 2 2

Number of nodes per
layers

333 512 9 9 344 230 344 324

Lambda regularizer 1e-01 .001 1e-03 1e-03 1.2e-02 .1 1e-03 5.4e-03

TABLE 6 Chosen hyperparameters value for each LSTM-RNN model trained on the FD dataset.

FD 30-day forecast horizon 7-day forecast horizon
Hyperparameters LSTM_tot LSTM_8 LSTM_6 LSTM_4 LSTM_tot LSTM_8 LSTM_6 LSTM_4
Learning rate 1e-06 1e-06 1e-06 1e-06 1e-06 7.68e-05 1e-06 1e-06
Number of LSTM
layers

4 2 4 4 2 1 5 5

Number of nodes per
layers

5 5 5 5 5 512 5 5

Lambda regularizer .001 .001 .1 .1 .001 .1 .001 .001

F IGURE 2 Performance comparison of LSTM versus classical models, on the FA dataset for 30 and 7 day forecast horizon. Source: own
elaboration.

5 RESULTS

5.1 Performance and structural break
comparison

Figures 2 and 3 report both the 30-day and 7-day fore-
casts obtained through the LSTM-RNN trained on the FA
and FD data, respectively, as well as the forecasts gener-
ated by classical models using the whole set of variables.
Figure 4 reports the comparison between LSTM-RNN and
VAR models trained on the FD dataset versus the VECMs
fit on the untransformed data for both the 30- and 7-day
forecast horizon. This visual inspection provides a first

rough assessment of all themethods presented throughout
the paper, showingmixed results depending on the dataset
and forecast horizon considered. However, since graphic
representations are prone to subjectivity and possible mis-
interpretations, the next section investigates the different
performances through the MAE accuracy measure.
Table 7 provides the performancemeasures for themod-

els based on the FA dataset, considering both the FULL
and post-SB datasets, for both 30-day and 7-day forecast
horizons. When examining the longer forecast horizon,
the MAEs indicate that LSTM-RNNs trained using the
FA approach consistently outperform the classical mod-
els, with values 10% lower on average. However, switching
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BRIGNOLI et al. 489

F IGURE 3 Performance comparison of LSTM versus classical models on the FD dataset for 30 and 7 day forecast horizon. Source: own
elaboration.

F IGURE 4 Performance comparison of LSTM versus VECMs for 30 and 7 day forecast horizon. Source: own elaboration.

TABLE 7 Mean absolute error for all models and forecast horizons on both FULL and post-SB FA dataset.

7-day forecast horizon 30-day forecast horizon
Model—FA post-SB FULL post-SB FULL
LSMT_tot 29.63 4.22 12.44 8.30
LSTM_8 23.93 17.98 13.75 10.59
LSMT_6 22.19 3.92 12.35 8.41
LSTM_4 19.72 5.66 11.53 8.25
VAR_tot 5.14 7.50 16.22 12.50
VAR_8 5.18 5.77 15.08 12.92
VAR_6 5.61 6.42 14.80 13.45
VAR_4 5.72 6.47 14.02 14.34
UNI 11.52 7.17 13.46 15.66

Source: own elaboration.
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490 BRIGNOLI et al.

TABLE 8 Mean absolute error for all models and forecast horizon on both FULL and post-SB FD datasets.

7-day forecast horizon 30-day forecast horizon
Model—FD post-SB FULL post-SB FULL
LSMT_tot 3.37 2.75 10.46 6.29
LSTM_8 2.29 2.75 10.46 10.46
LSMT_6 2.37 2.75 10.46 6.42
LSTM_4 2.23 2.75 10.88 7.13
VAR_tot 2.46 3.83 10.68 14.76
VAR_8 2.67 2.78 10.47 10.39
VAR_6 2.68 3.83 10.47 14.19
VAR_4 2.70 3.95 10.68 14.25
UNI 3.03 7.35 10.43 7.46

Source: own elaboration.

to the 7-day forecast horizon yields mixed results. On the
one hand, restricting the dataset to post-SB does impact the
performance of the LSTM-RNNs rather severely, whereas
theMAE of the VARmodels improves slightly when focus-
ing on the observations beyond the estimated cut-off point.
In this setting, we find that classical econometric models
largely outperform LSTM-RNNs. On the other hand, when
LSTMs are trained on the FULL dataset, they consistently
yield better predictive performances than VARs and the
univariate model. Overall, Table 7 seems to suggest that
the longer the time series, the better the results NN can
produce, regardless of the presence of potential structural
breaks. Conversely, if the distribution of the data abruptly
changes at some point in time, fitting VAR models to a
restricted observation range can be beneficial, especially
when the forecast horizon is short.
Next, Table 8 displays the performance measures for the

models based on the FULL and post-SB FD datasets, con-
sidering both 30-day and 7-day forecast horizons. When
utilizing FD data, both LSTM-RNNs and classical models
exhibit far superior forecasting performances, as evidenced
by lower MAE values. Focusing on the 30-day prediction
exercise, the performance of the ML methods is compara-
ble to that of classical models when trained on the post-SB
restricted dataset. In this setting, the best performance is
achieved by the univariate models, although the results
from the other methods are almost just as good. However,
LSTM-RNNs prove once again better when one utilizes
the entire time series, with MAE values largely lower than
those obtained through either VAR or univariate models.
Shifting the focus to the 7-day forecasts, ML models

once again yield the best predictive metrics, regardless of
whether the training was performed on the post-SB or the
FULL dataset. This time, however, the MAE is on aver-
age lower in the restricted sample, although the difference
with respect to the models estimated on the whole series
is minimal. When it comes to the VAR and the univariate

specifications, however, the improvement of fitting classi-
cal models on the post-SB dataset appears more evident.
Once again, however, LSTM-RNNs achieve the best over-
all forecast accuracy, whether we consider the presence of
a structural break during the learning step or we do not.
When using FD data, however, the differences are not as
striking.
Finally, Table 9 presents the comparison between the

LSTM-RNNs and the VAR models trained on the FD
dataset versus the VECMs estimated on the raw dataset.
On the longer forecast horizon, the LSTM-RNN and VAR
models perform better than the VECM. Despite the addi-
tional structure that these models incorporate (i.e., the
cointegrating relationship), compared to reduced-form
specifications such as VARs, there is no improvement
in terms of predictive performance. However, since VEC
models primarily focus on estimation rather than fore-
casting, one might think of these tools as reasonable
compromises between interpretability and accuracy. This
line of reasoning has already emerged in the literature,
where some authors argue that theory-driven methods
might not be the best choice when prediction is the main
objective (Breiman, 2001).
When it comes to 7-day forecast, we witness a conver-

gence between LSTM-RNNs and VEC models, with the
latter exhibiting slightly better performances than the cor-
responding VARs. Moving from the post-SB to the FULL
dataset, the performances of theVECMson the longer fore-
cast horizon are on average comparable, while they slightly
worsen on the shorter forecast horizon.

5.2 Composite forecasts

In addition to analyzing each model individually, we also
explore the combination of forecasts from both classical
and ML models, as outlined in Xu and Zhang (2021b),
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BRIGNOLI et al. 491

TABLE 9 Mean absolute error comparison for best performing LSTMs and VECMs on both FULL and post-SB FD datasets.

7-day forecast horizon 30-day forecast horizon
Model post-SB FULL post-SB FULL
LSTM_8 2.29 2.75 10.46 10.46
LSMT_6 2.37 2.75 10.46 6.42
LSTM_4 2.23 2.75 10.88 7.13
VAR_8 2.67 2.78 10.47 10.39
VAR_6 2.68 3.83 10.47 14.19
VAR_4 2.70 3.95 10.68 14.25
VECM_8 2.46 6.63 11.14 12.45
VECM_6 2.46 6.38 12.81 11.26
VECM_4 2.55 2.70 12.26 10.55

Source: own elaboration.

TABLE 10 Mean absolute error for equal-weight composite
forecasts across FA and FD datasets for the 30 and 7 day forecast
horizon.

Model FA FD
30-day forecast horizon

LSTM_tot 10.46 12.44
VAR_tot 10.68 16.22
ARIMA 13.46 10.43
Combination 10.6 14.1

12.05
7-day forecast horizon

LSTM_tot 3.37 29.63
VAR_tot 2.46 5.14
ARIMA 11.52 3.03
Combination 3.53 2.98

2.96

Trujillo-Barrera et al. (2016), and Timmerman (2006). We
consider two types of combinations: an equal weight com-
position (Table 10) and an inverse-Mean-Squared-Error
(inverse-MSE) combination (Table 11), where we treat the
latter as a robustness check for the former. The equal-
weighting scheme, which does not require the estimation
of weights to average the forecasts, has been shown
to outperform more sophisticated aggregation methods
(Timmermann, 2006). This technique is also particularly
interesting for our work because it allows to combine
models trained on the same dataset but pre-processed in
different ways. The inverse-MSE combination scheme, on
the other hand, does not allow for such flexibility, because
MSE is a scale-dependent measure. Since we only have
a limited number of models to combine, no models were
excluded when compositing the forecasts, and no trim-
mingwas carried out. For simplicity, we focus on the subset
of models trained on the full variable set, while we leave

TABLE 11 Mean absolute error for inverse-MSE composite
forecasts across FA and FD datasets for the 30 and 7 day forecast
horizon.

Model FA FD
30-day forecast horizon

LSTM_tot 10.46 12.44
VAR_tot 10.68 16.22
ARIMA 13.46 10.43
Combination 10.5 14.7

7-day forecast horizon
LSTM_tot 3.37 29.63
VAR_tot 2.46 5.14
ARIMA 11.52 3.03
Combination 2.89 4.08

the discussion on the remaining model set for Annex E.
The performance metrics of the composite forecasts are
presented in Tables 10 and 11.
Our results show that combining forecasts in our model

set-up does not bring any substantial advantage in terms of
predictive accuracy.

5.3 Trend and seasonality

In this section, we wish to emphasize how important pre-
processing is to obtain satisfying predictive performances
when working with ML methods. Although the standard
scaling procedures discussed in the previous sections yield
very good forecast performances, training LSTM-RNNs
on unprocessed data with seasonal and trend persistence
components might result in poorer results. This issue is
discussed in Bandara et al. (2019) who suggest that time
series with a trend component might be challenging to
forecast for off-the-shelf LSTM-RNN algorithms.
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TABLE 1 2 Performance comparison of LSTM across dataset
containing different time elements.

Models MAE
FA FD Untransformed Trend

adjusted
Season
adjusted

LSTM_tot 8.93 6.29 442.72 348117.9 125.64

Source: own elaboration.

TABLE 13 Percentage bias in the weekly and monthly average
forecast on the FA dataset.

Model—FA
7-day forecast
horizon

30-day forecast
horizon

LSMT_tot −.088 −.026
LSTM_8 −.071 −.032
LSMT_6 −.066 −.025
LSTM_4 −.059 −.020
VAR_tot .015 −.046
VAR_8 .015 −.042
VAR_6 .017 −.040
VAR_4 .017 −.037
UNI .034 −.032

Table 12 shows that, when fed with data adjusted for
seasonality but not trend, the LSTM-RNN produces pre-
dictions that are completely out of scale. Similarly, training
the NN on trend-adjusted but seasonality-unadjusted time
series yields nonsensical forecasts, as the literature seems
to suggest. Finally, estimating the LSTM-RNN on the raw
data (i.e., data where neither the trend nor the seasonal
component was removed), leads to predicted prices that
are still completely out of bounds. Overall, this empirical
exercise seems to suggest that adjusting for at least sea-
sonality is critical to improving the forecasting accuracy of
LSTM-RNNs.However, partialing out both seasonality and
trend components remains a necessary stage in time series
forecasting using RNN.

5.4 Weekly and monthly forecasting
averages

In order to complete the picture, and given their relevance
to several economic operators (Hoffman et al., 2015), we
also analyze forecasting of monthly and weekly average
prices. In this case, the best performances are observed
when using the FD dataset, where there are no signifi-
cant differences between the classical models and the ML
models (Tables 13–15). On the FA dataset (Table 14), the
classical models demonstrate better performance in the
weekly forecasts, while the ML models outperform in the
monthly forecasts. Comparing VECMs to VARs trained

TABLE 14 Percentage bias in the weekly and monthly average
forecast on the FD dataset.

Model—FD
7-day forecast
horizon

30-day forecast
horizon

LSMT_tot −.005 −.028
LSTM_8 .007 −.028
LSMT_6 .007 −.028
LSTM_4 .004 −.029
VAR_tot .003 −.028
VAR_8 .004 −.028
VAR_6 .004 −.029
VAR_4 .004 −.028
UNI .006 −.027

TABLE 15 Percentage bias on the weekly and monthly average
forecast for VECMs.

Model
7-day forecast
horizon

30-day forecast
horizon

VECM_8 .003 −.034
VECM_6 .003 −.036
VECM_4 .003 −.030

on the FD dataset, VECMs perform similarly to VARs for
the weekly forecast but show inferior performance for the
monthly one.

5.5 Discussion

The results presented in the previous sections demon-
strate that LSTM-RNNs outperform classical econometric
models in forecasting lengthy and intricate time series,
though with certain caveats. Since the predictions gener-
ated through classical models often tend to plateau over
longer forecast horizons, the fact that ML techniques yield
better performances comes with little surprise. However,
the argument is different when it comes to short-term (i.e.,
1 week) forecasts. We expected that classical economet-
ric models, due to their greater rigidity and thus reduced
sensitivity to noise, could still deliver competitive results,
compared to ML models. Nevertheless, this was only
observed in the case of the VARs on the FA dataset.
In general, we observe a significant reduction in pre-

diction error when transitioning from a 30-day to a 7-day
forecast horizon across allmodels and pre-processing tech-
niques. This phenomenon is likely attributed to the issue
of error propagation in dynamic forecasts, which becomes
more pronounced due to the inflexibility of classical mod-
els, resulting in a more substantial decline in accuracy.
Classical models may indeed yield accurate predictions
over short timeframes, provided that the observations are
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BRIGNOLI et al. 493

not too distant in the future. However, as we extend the
forecasting horizon, disparities about future observations
may increase due to the limited flexibility (e.g., linearity in
lag parameters) of these models, leading to higher MAE
over a 30-day horizon. In this regard, the nonlinearities
inherent in LSTM-RNNs, combined with their capacity to
regulate complexity dynamically and locally through the
RW approach, may render these methods better tools for
precise future forecasting.
One obvious concernwith any forecasting exercise is the

presence of structural breaks. When the distribution of the
variables of interest changes abruptly at some 𝑡 ∈ {1, … , 𝑇},
the ability to forecast future events can potentially deteri-
orate if such discontinuity is not properly accounted for.
This problem is evident when VARs and VECMs are used
to perform the predictions: when these modes are trained
on a post-structural-break dataset, they typically yield
lower forecasting errors than the corresponding models
estimated using the full series.
On the other hand, our empirical analysis demon-

strates that LSTM-RNNs can automatically handle struc-
tural breaks, thus obviating the need for the researcher
to explicitly search for potential breakpoints. This is a
very important property since testing for structural breaks
typically presents several challenges, including the need
for critical assumptions, multiple testing, and modeling
choices. Currently, there is a lack of clear guidance on
whether it is more advantageous to just use raw data
or select a specific model (such as ARIMA, VECM, or
VAR) when looking for structural breaks. In case the lat-
ter option is preferred, further complications arise from
the need to accurately specify the model, which entails
navigating through a wide array of potential modeling
choices.
Additionally, attempting to deal with structural breaks

via dummy variables can be highly sensitive to even slight
inaccuracies in determining the time step at which the
break occurs. Such a misstep can significantly impact
estimation, leading to potential model misspecification
and false detections. Therefore, the automatic handling
of structural breaks by LSTM-RNNs offers a promising
alternative, allowing researchers to leverage the full extent
of the data without the complexity and potential pitfalls
associated with traditional approaches to structural break
detection. However, it is still unclear whether this ability
can be fully attributed to the network structure itself or the
rolling-window approach. To this extent, further research
remains necessary.
Conversely, we find that LSTM networks were not able

to pick up trends or seasonality when trained on a set
of similar time series. Differently from what is suggested
in Bandara et al. (2019), our NNs struggled to produce
sensible predictions when trained on trend-adjusted (but

not seasonality-adjusted) data. When, on the other hand,
the adjustment concerns seasonality and not trends, the
LSTM-RNNs yield lower prediction error, although their
performance remains unimpressive. Interestingly, using
trend-adjusted series performed worse than fitting the
model with the raw dataset where both the trend and sea-
sonal components are still present. While removing the
trend should help to achieve more accurate predictions,
our results seem to suggest that it instead prevents the
NN fromcorrectly learning the underlying data-generating
process, thereby leading to a great decrease in precision.
This poor performance could be explained by the train-
ing procedure via rolling-window, where the size of the
sliding training set could be insufficient for the algo-
rithm to provide a full representation of these deterministic
components.
Finally, we find that the best performances for both the

longer and the shorter forecast horizon are obtained on
the FD dataset. Full Adjustment might be more suited
for applications as seen in the M-competitions (Hyndman,
2020) rather than forecasting agricultural futures prices.
Indeed, these series are typically characterized by having
defined time series characteristics,7 and therefore do not
need such heavy pre-processing. Moreover, unlike FD, FA
will not make the series stationary in the presence of a unit
root.

5.6 Limitations

Our work has also some important limitations, both con-
cerning technical aspects but also issues that require
further exploration. First, when evaluating the perfor-
mances reported in this section, we have to emphasize that
choosing among the different ways by which the different
models produce their forecasts is not trivial. The LSTM-
RNN that we implemented is a sequence-to-sequence
model, meaning that it directly generates a sequence of
outputs from an input sequence. In contrast, the classical
models make forecasts in a dynamic (or autoregressive)
way, meaning that each forecast is used as additional
information for the following forecast. There are obvi-
ously consequences and trade-offs among these different
approaches: on the one hand, one may argue that the clas-
sical models perform worse on the longer forecast horizon
because they carry the errors from the previous forecasts
to the end, while they perform better on the shorter fore-
cast horizon where the potential forecasting error builds
up to a lesser extent. On the other hand, the sequence pro-
duced by the LSTM-RNN can be sensitive to the choice

7 For instance, the frequency is dictated by the futures market, while the
seasonality is dictated by nature.
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of the rolling-window, which is also a critical modeling
aspect. Alternative approaches might include splitting the
data into train and test datasets, but even in this case
defining which observations belong in either subset can be
challenging.
Another limitation concerns the amount of data avail-

able. What makes machine learning models interesting is
their ability to handle both a larger number of variables
and many more observations than traditional econometric
models (Efron, 2020; Storm et al., 2020). However, since
neural networks need sufficiently long time series to be
trained effectively (Bandara et al., 2019), what would hap-
pen if we trained them on a shorter series? This could be
done by either truncation, decreasing the frequency of the
data or focusing on problems where fewer data is avail-
able. Such exercise would also allow us to determine how
neural networks performwhen faced with data at different
frequencies or with different noise-to-signal ratios.
Finally, at the time of writing this paper, there are no

available methods to compute the Shapley values for the
specific model we have implemented. Technically, there is
currently no existing approach that supports a model pro-
ducing a 3D output (features-steps-batch, a technical detail
of the LSTM-RNN implementation in Python) while also
integrating the rolling-window approach, due to compati-
bility constraints. Consequently, we are unable to identify
which time series demonstrates the highest predictive
capability.
The possible ways forward move in multiple directions.

The first ismore practical and concerns extending the com-
parison to different datasets using different pre-processing
procedures, to (possibly) confirm the results of this anal-
ysis. The second is more theoretical, and it is directed
at answering more technical questions such as the rela-
tionship between regularization and non-stationarity. It is
our opinion that regularization could be considered as a
strategy implemented byneural networks to dealwith non-
stationarity, by allowing more flexibility in the forecasts
with respect to the past.

6 CONCLUSIONS AND IMPLICATIONS

This paper evaluates the degree to which machine learn-
ing techniques (particularly LSTM-RNNs) can improve
classical econometric time series models in futures prices
forecasting. Our investigation encompassed various data
pre-processing procedures and diverse forecast horizons.
In general, our findings indicate that LSTM-RNNs per-
form better than classical models, although the extent
of such improvements depends on the specific pre-
processing techniques applied and the chosen forecast
horizons.

Notably, when trained on the complete series, machine
learning models consistently outperform classical models
in all comparisons, particularly for longer forecast hori-
zons. This suggests that when the presence of structural
breaks may pose challenges in using longer datasets or
require complex and subjective modeling efforts, LSTM-
RNNs are the preferable choice for long forecast horizons.
On the other hand, we stress that this important advan-
tage can potentially be offset by the limited capacity of
these techniques to capture either trend or seasonality
components when applied to unprocessed data, contrary
to what the literature has suggested (Bandara et al.,
2019). This implies that the accuracy of forecasts gen-
erated by these neural networks is heavily dependent
on the pre-processing procedure used. Interestingly, the
more traditional First-Difference procedure resulted in
lower prediction errors than the modern Full Adjustment
procedure. Therefore, to effectively employ advanced fore-
casting techniques like LSTM-RNNs for non-seasonally,
non-trend stationary data, such as those employed in this
paper, it is crucial to accurately pre-process all the series
using tailored transformations. In our view, this trade-off
leans in favor of the machine learning approach as sim-
ple transformations such as de-trending, deseasonalization
and either first-differencing or full adjustment are typically
less demanding than controlling for structural breaks.
Moreover, without prior knowledge of the data-

generating process, methods like neural networks can
incorporate a larger and more finely tuned number of
autoregressive components, moving averages, and other
time elements into their structure, which would be
exceedingly challenging to achieve with simple linear
models. With (futures) price data becoming available at
higher frequency rates, allowing for such flexibility could
advance the frontier of forecasting methods (e.g., de Boer
et al., 2022).
Despite the rather technical nature of the paper, provid-

ing reliable forecasts for agricultural futures prices remains
an important area of research, given its relevant industry
and policy implications. Building a consensus on the most
appropriate forecasting methodologies can increase trust,
not only by agricultural, food, and financial industries,
but also by policymakers and other (non-)governmental
actors. This would contribute to a more proper use of fore-
casting results, especially when decisions must be taken
quickly.
Indeed, accurate forecasts can not only inform strate-

gic business decisions, such as the design of insurance
instruments and financial investments, but can also sup-
port policy analysis (Storm et al., 2023) and guide policy
planning by adjusting forecast windows to meet the needs
of relevant stakeholders (FAO, 2017). In this respect,
one of the main takeaways of our research suggests
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that LSTM-RNN can provide a crucial edge in forecast-
ing under turbulent commodity markets, especially in
times of increasingly recurrent geopolitical and climatic
disruptions. Specifically, the ability ofML forecasting tech-
niques to autonomously handle structural breaks provides
a built-in safeguard mechanism against severe model mis-
specification that would otherwise occur in traditional
econometric models. As the frequency of these shocks
and their interplay greatly complicate the underlying data-
generating process, forecasting through explicit modeling
may become a seriously complex exercise.
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