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Abstract: Matching algorithms are commonly used to build comparable subsets (matchings) in

observational studies. When a complete matching is not possible, some units must necessarily be

excluded from the final matching. This may bias the final estimates comparing the two populations,

and thus it is important to reduce the number of drops to avoid unsatisfactory results. Greedy

matching algorithms may not reach the maximum matching size, thus dropping more units than

necessary. Optimal matching algorithms do ensure a maximum matching size, but they implicitly

assume that all units have the same matching priority. In this paper, we propose a matching strategy

which is order optimal in the sense that it finds a maximum matching size which is consistent with a

given matching priority. The strategy is based on an order-optimal matching algorithm originally

proposed in connection with assignment problems by D. Gale. When a matching priority is given,

the algorithm ensures that the discarded units have the lowest possible matching priority. We discuss

the algorithm’s complexity and its relation with classic optimal matching. We illustrate its use with a

problem in a case study concerning a comparison of female and male executives and a simulation.

Keywords: comparative studies; optimal matching; causal inference

1. Introduction

Matching algorithms are an established method for balancing covariates across two
samples of units, usually treated and control units. A matching algorithm is designed to
find a matched subset of the original data where the covariate balance across the treated
and control units is similar to that arising from a randomized experiment. Under a set
of hypothesis known as Rubin’s causal framework [1], a balanced matched subset makes
possible drawing causal inferences from observational data. Given the cost and difficulties
of randomized experiments, in contrast with the increasingly large availability of observa-
tional data, matching has become a standard tool for research in comparative studies [2].
The researcher first chooses a suitable cost function for measuring the dissimilarity between
the covariates of treated and control units (possibly specifying a maximum matching cost
(i.e., the caliper) and then selects a matching algorithm in order to obtain comparable
subsets of treated and control units (the final matching).

Classic matching algorithms are designed to build matched pairs of treated and
control units. In their simplest form of nearest neighbor 1:1 matching, each treated unit
is sequentially matched with the control at minimum dissimilarity. These algorithms
are sometimes referred to as “greedy” because they match units sequentially, so that the
dissimilarity is minimized only “locally”, without considering the whole matching cost. A
different approach to the problem of matching leads to the idea of optimal matching.

Optimal matching has been an established technique since the paper by Rosenbaum [3].
Instead of minimizing the dissimilarity pair by pair in a sequential fashion, optimal match-
ing finds the maximum subset size of the original data, minimizing the global dissimilarity.
To accomplish this, optimal matching applies classic network flow theory. Recently, a
functional reinterpretation of optimal matching as a weighting method minimizing the
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worst-case conditional mean squared error was proposed [4]. While efficient imple-
mentations are available [5], optimal matching—and also order-optimal matching—is
computationally more expensive than greedy matching, making its use more suitable for
small data sets. More recent research on optimal matching focuses on extensions covering
the use of constraints on maximum pair differences [6] or penalization of the dissimilarity
function [7].

This paper focuses on matching optimality when complete matching is not possible
(i.e., when some treated units must be excluded from the matched subset). The exclusion
may stem from the use of a caliper, particularly when the covariate distribution of treated
and control units is different. In this case, it is likely that some treated units are discarded
because only a few control units are within the caliper. Yu et al. [8] proposed a method
for carefully calculating the caliper in order to avoid prior exclusion of some treated units.
However, exclusion can also be unavoidable, such as when the number of controls is less
than the number of treated units.

Incomplete matching is intuitively undesirable. The concept of “bias due to incomplete
matching” was first introduced by Rosenbaum and Rubin [9] to denote the bias induced by
an incomplete matching (i.e., one not including all treated units). The authors pointed to
the undesirability of drops, as they implied a change in the target parameter. In the context
of optimal matching, the problem of discarded units was considered by Rosenbaum [3].
The author briefly touched upon the problem of incomplete matching, observing the
following ([3], p. 1027):

the method described [...] will always find a complete pair matching if it exists
and otherwise we’ll find an optimal matching of maximum size

The final remark recalls that cost-optimal matching is also optimal with respect to
the size of the matched subset ([10], Ch. 4). However, there may exist several incomplete
optimal matchings of the same size. In this case, optimal matching is agnostic in the sense
that it does not differentiate between matchings dropping different units (provided they
have the same cost). This lack of univocality is not relevant as long as the treated units have
the same importance, but this need not always be the case. For example, it may be known a
priori that the difference between the treated and control units is stronger for a particular
subgroup of the treated units. If a complete matching is not possible, then it seems desirable
to select a matching comprising this particular subgroup as much as possible.

In this paper, we describe a matching algorithm for finding a matching which is
optimal for a given matching priority. This order-optimal matching has the same size of
the cost-optimal matching, but it may have a higher cost. It is also possible to combine
the cost and order criteria with a matching strategy, yielding a compromise between order
and cost optimality. We exploit the results from combinatorial optimization, where the
order-optimal matching problem can be casted as a particular assignment problem. For
clarity, these results are reviewed and translated in the context of causal inference.

The motivation for this work arose from a gender gap study where female executives
had to be matched with similar male counterparts in a number of firms, with high-ranking
women having greater priority. In some companies, cost-optimal matching resulted in high-
ranking women being sacrificed for a tiny decrease in overall cost. However, a compromise
could be found between the cost and order criteria: the order-optimal matching had the
same size of the cost-optimal matching but covered treated units with higher priority, with
a small increase in matching cost.

In Section 2, we recall combinatorial theory, showing the existence of order-optimal
matching, and describe an algorithm for finding it. In the same section, we propose
a matching strategy which combines the cost and order criteria and we illustrate this
matching strategy with artificial data sets. The gender gap study is described in detail in
Section 3. Section 4 closes the paper, discussing order-optimal matching in the broader
context of matching algorithms.
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2. Methods

In the following, we assume that we have a sample of treated and control units,
denoted by T and C, respectively, and a matrix M, where

0 ≤ mi,j ≤ ∞

is the cost of assigning a control j to a treated unit i, with equality on the LHS denoting an
exact match and equality on the RHS denoting an infeasible match. We also assume that
the units in T are sorted, with units having high matching priority coming first. We keep
this convention for any subset S = {s1, . . . , sn} of T such that, for example, si should be
matched before sj if i < j. We aim to find a matching which is optimal for a given matching
priority. To this end, we devote the next section to recalling the combinatorial results
granting the existence of order-optimal matching, and then we move to our proposed
matching strategy.

2.1. Basic Theory

This section and the next one are dedicated to presenting a classic result in a similar
nature to D. Gale, which is central for our matching strategy. A concise presentation of this
material can be found in [11]. In this presentation, we adapted the nomenclature to our
context. For example, we talk about matchable subsets instead of assignable subsets, as is
typical in combinatorial optimization. Let us first define a matchable subset:

Definition 1. A subset S of T is matchable if different controls can be matched to each s in S.

It turns out that the family of matchable subsets of T has a special structure, being a
matroid. Informally, this means that (1) any subset of a matchable subset is itself matchable,
and (2) matchable subsets enjoy an extension property: it is always possible to extend
a matchable subset using an element from a larger matchable subset. A proof of this
can be found in the work of Cook et al. (1998) [10]. Below is an adapted proof using
our nomenclature.

Theorem 1. The family of matchable subsets of T is a matroid.

Proof. Let A be the family of matchable subsets of T. We need to prove that the following
properties hold:

1. Any subset of an element of A is also in A;
2. If {t1, . . . , tn} and {v1, . . . , vn+1} are both in A, then so is {t1, . . . , tn, vi} for some

i in {1, . . . , n + 1}.

Property 1 is clearly satisfied since any subset of a matchable subset is itself matchable.
For property 2, we proceed by induction. If n = 1, then either t1 belongs to {v1, v2} or it
does not. In the first case, {v1, v2} is the extended matchable subset. Otherwise, one of vi,
say v1, is matched with a free control, and then {t1, v1} is an extended matchable subset
such that property 2 is true for n = 1. Now, assume the property is true for n = k − 1,
and consider the matchable subsets {t1, . . . , tk} and {v1, . . . , vk+1}. Since the set of v′

values is larger, it must contain at least one treated unit vh which can be matched with a
free control. If this vh is not in {t1, . . . , tn}, then just add it to this set to obtain an extended
matchable subset. On the other hand, if vh = ts for some s ≤ n, then ts can be matched
with the control matched with vh, and removing vh and ts leaves matchable subsets with
k− 1 and k elements, respectively. Through an induction hypothesis, one of the v values
can be added to the t values, followed by finally adding back ts to obtain a k + 1 matchable
subset.
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2.2. Order-Optimal Matching

Clearly, if T is matchable, then we can find a complete matching of a minimum cost
which is also an order-optimal matching such that no further analysis is required. As we
indicated in the introduction, T is not always matchable, and thus we would like to find
the largest possible matching comprising the most “important” units. This requirement is
made precise in the next definition.

Definition 2. A matchable subset t1, . . . , tn is said to be order optimal if, given any other
matchable subset u1, . . . , um, we have m ≤ n and ti ≤ ui for all i ≤ m. A matching built on the
order-optimal subset is an order-optimal matching.

The previous definition excludes the occurrence of incomparable subsets which cannot
be compared in a straightforward manner ( e.g., subsets like t1, t2 and t2, t3, t4, with the
former matching more important units but the latter matching more units). It is not obvious
that the order-optimal matching defined above exists for any possible order of T. The latter
is a classic combinatorial result as indicated by D. Gale [12].

Theorem 2. Let A be a family of subsets of T. If A is a matroid, then A admits an order-optimal
element for any possible order.

The result requires that the family of matchable subsets of T is a matroid, which
is true under Theorem 1. In the next section, we describe an algorithm for finding the
order-optimal matching.

2.3. An Algorithm for Finding the Order-Optimal Matching

Gale’s proof of the existence of an order-optimal matching is not constructive,and thus
it leaves open the problem of concretely finding the optimal element. The author himself
suggested a procedure for finding the optimum in a point-wise fashion ([12], p. 179), which
is computationally heavy. Instead, we resort to an algorithm described by Anderson [11],
which we implemented in an R package. The algorithm’s pseudocode is given below
(Algorithm 1).

Basically, the algorithm matches the units sequentially, like in nearest neighbor match-
ing. However, before leaving a unit unmatched, the algorithm attempts a backward
correction. If the attempt is successful, then one of the previous matches is modified in
order to include the unmatched unit. Otherwise, the unit is definitely dropped.

Algorithm 1: Algorithm for order-optimal matching.

1 Function: ORDOPT ;
Input : M, an ordered list of admissible controls for each treated unit in T
Output : O, the order-optimal subset of T

2 for i = 1 to length(M) do

3 if M[i] contains a control not already picked then

4 match this control with ti

5 else

6 try backward correction (function BACK)
7 end

8 end

The backward correction in Algorithm 2 is further illustrated herein. Suppose that
we have already matched the first s treated units, and no free control is available to match
the next treated unit T0. Pick any feasible control in this list, such as C1. This control has
already been matched with a treated unit, such as T1 (see Figure 1). The joint list of feasible
controls for T0 and T1 may or may not contain a free control. If it does, then this free control
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is matched with T1. This frees C1, which can be matched with T0, increasing the number
of matched units by one. If not, then pick any feasible control in the list of T1, such as C2,
and look for a free control in the joint list of T0, T1, and T2. This procedure can be repeated
for a maximum of s steps. If a free control is found during the process, then the number of
matches increases from s to s + 1. If not, then the treated unit is left unmatched.

Algorithm 2: Algorithm for backward correction.

1 Function: BACK ;
Input : the first i elements of M and O
Output : the first i elements of O

2 for j = 1 to i do

3 if ∪
j
1M[·] contains a control not already picked then

4 match Ci with Ti−1, i = j, . . . , 1; break
5 else

6 match[i]← ∅; break
7 end

8 end

T0 T1

C1

T2

C2

· · · Ts−1

Cs−1 Cs

Figure 1. Illustration for backward correction algorithm.

The algorithm does not specify how to pick the controls when more than one is
available. Different selection rules can lead to different order-optimal matchings, but all
matchings share the same subset of treated units, which is the order-optimal element of
Gale’s theorem. If the controls are sampled uniformly at random, then the algorithm
complexity is O(n2), as shown in Appendix A. For our matching strategy, the selection rule
leads to an order-optimal matching of a minimum cost (see the next section).

An Example with a Few Units

We close this section with a simple example illustrating both Algorithm 1 and its
implementation in the R environment [13]. Consider the cost matrix in Figure 2. The
matching problem requires five treated units to be matched with four control units, and
thus a complete matching is not possible. The order-optimal element is {t1, t2, t3, t5}, and it
is found after using the backward correction algorithm twice. Two order-optimal matchings
can be built on the order-optimal element, as shown in Figure 3.

Classic cost-optimal matching can be implemented in R with the optmatch package [5].
For order-optimal matching, we built the package OSDR [14]. The main function of OSDR is
running Algorithm 1. To find the order-optimal matching in R, we gave as input the ordered
list of controls. The function output contains (1) OSDR (a random order-optimal matching),
(2) matched (the index of matched units), and (3) unmatched (the index of unmatched units).
The example above can be run in R as follows:

# M is a list of within-caliper control units

M1<-c(‘‘c1’’,‘‘c2’’,‘‘c3’’)

M2<-c(‘‘c1’’,‘‘c3’’)

M3<-c(‘‘c2’’)

M4<-c(‘‘c1’’,‘‘c3’’)

M5<-c(‘‘c1’’,‘‘c4’’)
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M <-list(M1,M2,M3,M4,M5)

OSDR(M)

$OSDR

[1] ‘‘c1’’ ‘‘c3’’ ‘‘c2’’ ‘‘0’’ ‘‘c4’’

$matched

[1] 1 2 3 5

$unmatched

[1] 4

Finally, we can save the restricted list of matchable treated units, M[[OSDR$matched],
and find the cost-optimal matching for this list, such as with the calling function pairmatch

from package optmatch. This matching strategy finds a minimum cost matching on the
order-optimal element, and it is discussed in the next section.

c1 c2 c3 c4
t1 0 0 0 ∞

t2 ∞ 0 0 ∞

t3 ∞ 0 ∞ ∞

t4 0 ∞ 0 ∞

t5 0 ∞ ∞ 0

t3 t2

c2 c3

t4 t1

c1

t3

c2

t2

c3

Figure 2. An illustration of Algorithm 1 for the matrix on top. We start by matching t1 with c1 and

t2 with c2. Then, t3 cannot be matched, and thus we enter backward correction. The only control

matchable with t3 is c2, which is matched with t2. The combined list of t2 and t3 contains a free

control c3. Thus, we can match t2 with c3, freeing c2, which can be matched with t3 (lower left). Now,

consider t4, which cannot be matched, and therefore we try backward correction again. Backward

correction is carried out for the maximum number of attempts, but no correction is possible (lower

right), and thus t4 remains unmatched. Finally, t5 can be matched with c4, and thus the optimal

matchable subset is {t1, t2, t3, t5}.

t5

t4

D

t3

C

t2

B

t1

A

t5

t4

D

t3

C

t2

B

t1

A

Figure 3. Order-optimal matchings for the matrix in Figure 2. Both were built on the unique

order-optimal subset.

2.4. An Optimal Matching Strategy

In this section, we propose a matching strategy which compromises between order-
and cost-optimal optimality. Before proceeding, we analyze the relation between these
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two types of optimal matchings. In the example from the previous section, the cost- and
order-optimal matchings were the same size. This is true in general, as we prove in the next
proposition.

Theorem 3. Order- and cost-optimal matchings are maximum size matchings.

Proof. Let MC and MO be cost- and order-optimal matchings, respectively. Since MC is
a maximum size matching, we have | MO | ≤ | MC |. Suppose that MO matches fewer
treated units than MC. Then, since MC is built on a matchable subset of treated units, it
follows from the definition of a matroid that one more treated unit can be added to MO to
obtain a larger matching. The previous property can be used until | MO |= | MC |.

Thus, in the set of maximum size matchings, the subsets of order- and cost-optimal
matchings do not necessarily intersect. If they do, then any matching in the intersection is
both a cost- and order-optimal matching. Thus, these matchings are, in a sense, “doubly”
optimal. Instead, any matching outside the intersection sacrifices either the cost or order
optimality. The following matching strategy leads to a doubly optimal matching when it
exists. Otherwise, it returns an order-optimal matching of a minimum cost.

The strategy consists of two steps:

1. Find the matchable subset which is order optimal under Definition 2;
2. Find the minimum-cost matching for this subset.

In comparative studies, the matched subsets are finally used to compare the outcome
variables across the two groups. A common measure of the difference between the outcomes
is the average treatment effect on the treated units (ATT). Suppose that we have a sample
of nT + nC units, and let n be the common size (according to Proposition 3) of the cost- and
order-optimal matching. Also, let

(a1, . . . , an) and (a′1, . . . , a′n)

be the matched treated and control index sets from the cost-optimal matching, respec-
tively, and

(b1, . . . , bn) and (b′1, . . . , b′n)

be the corresponding sets obtained from the order-optimal matching. Then, we have

ÂTTcost =
1

n

n

∑
1

(yai
− ya′i

) and ÂTTord =
1

n

n

∑
1

(ybi
− yb′i

). (1)

In the case of a complete matching, all nT treated units in the sample are matched
in both the order- and cost-optimal matching. However, the matched controls cai

and cbi

may be different. When a complete matching is not possible (n < nT), both the treated
and control units in the two matchings may differ. The matching strategy described above
finds the controls of a minimum cost for the order-optimal subset. Thus, if the matching is
complete, then the ATT estimate found with this strategy is clearly the same as that for the
cost-optimal matching; otherwise, the ATT estimate is generally different.

2.5. Simulation Study

We performed a small simulation to investigate the performance of the proposed
matching strategy in the case of incomplete matching. The population (N = 1000) was
generated as follows. We simulated a single covariate X ∼ U(0, 1). The covariate was a
confounder: it was associated with both the binary treatment T and the outcome variable
Y. As for T, we assumed that P(T = 1), the probability of being treated, increased with X.
The outcome Y was assumed to be normally distributed, with the mean depending on the
treatment status. We assumed that Y(0), the potential outcome under no treatment, was
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roughly constant, while Y(1), the potential outcome under treatment, was an increasing
function of X.

A random sample was available from the population. From the sample units, we knew
the values of X, T, and the observed outcome Y = Y(0)(1− T) + Y(1)T. Notice that since
P(T = 1) is increasing in X, we generally observed samples with higher numbers of treated
units, and thus a complete matching was not possible. For each sample, we calculated
the matching imbalance (measured by the average pair distance for the matching), the
ATT estimates using Equation (1), and their simulation standard error. The latter was
implemented, giving higher matching priority to units with higher X values. The results
are shown in Tables 1–3. Cost-optimal matching was less imbalanced (by design for each
sample and thus also on average) and had less variability across the samples on average
compared with order-optimal matching, which showed a lower bias.

Table 1. Performance measure for cost- and order-optimal matching (n = 10).

Statistic 1 Cost Optimal Order Optimal

Imbalance 1.18 1.34

ÂTT 1.94 2.17

sd(ÂTT) 0.62 0.70

1 Average over 100 replications. (true) ATT ≈ 2.1.

Table 2. Performance measure for cost and order optimal matching (n = 20).

Statistic 1 Cost Optimal Order Optimal

Imbalance 2.70 3.37

ÂTT 1.98 2.19

sd(ÂTT) 0.49 0.51

1 Average over 100 replications. (true) ATT ≈ 2.1.

Table 3. Performance measure for cost and order optimal matching (n = 30).

Statistic 1 Cost Optimal Order Optimal

Imbalance 4.00 5.60

ÂTT 1.95 2.29

sd(ÂTT) 0.40 0.42

1 Average over 100 replications. (true) ATT ≈ 2.1.

The average lower bias from order-optimal matching was due to the choice of the
“right” matching priority, as choosing a random priority would give the same average bias
for both cost- and order-optimal matching. In other words, the technique can be advanta-
geous when we have additional information about the correlation structure of the covariate,
treatment assignment, and outcome that can be turned into a sensible matching priority.

In the next section, we present a case study about the salary gap across male and
female executives where the matching priority is suggested by the literature on the salary
gap. The resulting order-optimal matching for the gender gap study (shown in Figure 4)
had an average matching cost of 2.21, which was higher than the average matching cost
of the cost-optimal matching (1.77). The difference can be considered the price paid for
matching units with higher priority.
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Women: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Men:

Men:

A B C D E F G H I J K

A B C D E F G H I J K

Figure 4. Cost-optimal matching (bottom) and order-optimal matching (top) for the gender gap

study. Both matchings had the same maximum size of 11 pairs.

3. Case Study

In this section, we expose a case study arising from a consultancy given to a firm
offering services for health resource management. The research project focused on the
gender gap and required a comparison of several work outcomes across male and female
workers. Since the classic work of [15], statistical analysis based on matched pairs has
increasingly been used in diversity management studies. Matching women and men having
the same job characteristics has a strong intuitive appeal, and it also guarantees separation
of the design stage (where matched pairs are obtained) from the analysis stage (where the
outcomes are compared).

3.1. Data Description

The research project required a comparison of several work outcomes across male
and female workers. The project involved several firms in different sectors, and a sam-
ple was extracted from each of them. Sample sizes were based on the sustained cost of
research and varied from 100 observations (for the firms commissioning the research) to
20 observations for smaller firms. The average non-response rate was about 30%, and the
company sample sizes ranged from 16 to 80 observations. The procedure for collecting
sample information involved the use of archival data via randomized stratified sampling.
The sampling strata were given by the following variables: age (years), position (top
manager = 4, middle manager or executive = 3, and first-line manager or supervisor = 2),
education (post-graduate = 5, graduate = 4, and high school = 3), contract type (fixed
term = 4 and permanent = 3), and seniority (years in the position). For the outcome
analysis, a questionnaire was distributed to retrieve information about wages and detailed
compensation components. Moreover, interviews were also carried out, targeting infor-
mation on the organizational climate and working attitudes which could not be obtained
otherwise. The sampling mechanism reflected the true sex proportion in the population,
resulting in several samples having more women than men (see Table 4).

3.2. Methodology

There is evidence from the gender studies literature that the gender gap increases
with one’s position in the organizational hierarchy, with the greatest differences being at
the highest executive levels, where the pay levels and the variable part of remuneration
vary more (see [16] for a review), and thus it is desirable to include women in the analysis.
However, for most of the firms analyzed, classic cost-optimal matching resulted in dropping
some of the women in apical positions due to either caliper restriction, the structural
prevalence of women over men, or both. Instead, we used an order-optimal matching
algorithm to give matching priority according to the executive rank.
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Table 4. Sample size for gender gap study.

Firm ID Sector Number of Men Number of Women Sample Size

1 16 10 26
2 6 10 16
3 7 16 23
4 9 3 12
5 12 15 27
6 13 13 26
7 7 4 11
8 10 12 22
9 1 0 1

10 1 0 1
11 34 27 61
12 1 3 4
13 1 6 7
14 9 11 20
15 11 16 27
16 18 44 62

3.3. Data Analysis

We describe the analysis for firm number 15, a company with a strong prevalence of
female executives (see Table 4). A complete matching was not possible, but it was desired
to lose as few women in apical positions as possible. The female executives were first
ordered by (decreasing) position in the organizational hierarchy. In case of ties, seniority
was used to break the tie. Then, we applied the two-step strategy illustrated in Section 2.4.
We restricted the data set to the order-optimal subset, and we sought out the cost-optimal
matching for that subset.

The matched subsets from order- and cost-optimal matching are compared in Table 5.
Both had the same (maximum) size, but they differed in two units. Specifically, the order-
optimal matching comprised female executives from t1 to t11, while the cost-optimal
matchings excluded t1 and t5 and included t12 and t15. Executives t1 and t5 were higher in
the hierarchy, which is desirable under the study’s hypothesis. However, their inclusion
caused an increase in the covariate distance between the two groups. To evaluate this
cost, we calculated the sum of the matched distances for the two matchings. The average
matching distance increased from 1.73 to 2.21 (3.68 in standard deviation units), and thus
this was the imbalance resulting from including executives t1 and t5 in the matched subset.

Table 5. Order- and cost-optimal matched subsets for the gender gap study. Women IDs are ordered

by matching priority (1 = highest).

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cost Optimal 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0
Order Optimal 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

The matchings are represented in Figure 4. The final matching was the input for the
outcome analysis, where several comparisons between the male and female executives were
carried out. Even if the imbalance difference were relatively small, it was not clear whether
the inclusion of higher-ranked women was worth the greater imbalance. As noticed earlier,
the literature suggests that the inclusion of highly ranked female executives is important,
and the matching priority was carried out accordingly. Obviously, we do not know the
true correlation structure between the executive rank, sex, and work characteristics, which
suggests that the final estimates should be taken cautiously. We return to this issue in the
Discussion section.
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4. Discussion

In this work, we proposed an optimal matching strategy for matching units according
to a given priority. The strategy is based on a combinatorial result from D. Gale, proving
the existence of an order-optimal matching and algorithmic proof thereof. The matching
is optimal in the sense that no other matching of the same size can contain a unit with a
higher matching priority. The matching priority essentially gives zero weight to some pair
matchings, favoring matched pairs with higher-priority units. We illustrated order-optimal
matching in a case study comparing female and male executives. In this case, it was
presumed that the inclusion of specific pairs in the final matching was important, and thus
we used this information to set the matching priority.

We observed that the idea of giving different weights to sample units in estimation
problems is quite ubiquitous, and alternative techniques exist to avoid drop-offs. Whenever
possible, the problem can be avoided with a careful design phase. Unequal probability
sampling [17] can be used when it is known in advance that a subset of the population
is not going to be adequately represented in the sample. This is common practice when
a population subset is believed to be more important for the estimation. After the data
collection phase, post-correction can be performed using importance sampling [18]. In
comparative studies involving matching, the most common approach for avoiding drop-
offs is probably matching with replacement [19], and it has many variations, including
the recent development of the synthetic control method [20]. This technique stems from a
different philosophy as it allows resampling units. Analytical results are available for its
asymptotic behavior. In large samples, the estimates obtained with replacement showed a
bias and variance trade-off compared with matching without replacement [19].

In causal inference, the term optimal matching usually refers to minimum-cost match-
ing. P. Rosenbaum [3] pioneered minimum cost flow algorithms as the key tool for finding
an optimal matching between treated variables and their controls. We showed that order-
and cost-optimal matching had the same (maximum) size, but they did not necessarily
coincide. Despite the covariate balance of an order-optimal matching not being able to
be lower than the covariate balance achieved by a cost-optimal matching, it is possible to
obtain better estimates from order-optimal matching in particular situations. This happens
when we have a sensible matching priority. A simulation study showed that less biased
estimates were obtained when the treatment effect increased with the matching covariate.

A limitation of order-optimal matching is that it is not always possible to know the
correlation structure for deciding the matching priority. This information is generally
unavailable in empirical studies. In similar cases, estimates must be performed carefully
as they depend on a belief about the covariance structure. The simulation provided is
illustrative of a special case, but it is limited in scope. A full assessment of the pros
and cons of order-optimal matching versus cost-optimal matching would require a larger
simulation effort exploring several scenarios for the covariance structure of the outcome
and the covariates.
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Appendix A

A complexity estimate can be figured out from the pseudocode of Algorithm 1. We
used the number of random calls as our complexity measure. These calls are necessary to
select random elements from feasible controls. In the best scenario, the first if statement
(line 3) is always true, and the algorithm picks a random control at each step (line 4). Thus,
the algorithm runs through the outer cycle only, and it runs linearly on the number of
treated units n.

WORST CASE: For the worst-case scenario, we assumed that selection was never possi-
ble, and then the algorithm entered the inner cycle, trying to correct previous assignments
(line 6). The order of complexity for two nested cycles was about O(n2). More precisely, let
nj be the number of operations required to execute the jth step of the outer cycle. The inner
cycle is strictly shorter than the outer cycle, and we have at most nj = j− 1, j = 1, . . . , n.
Therefore, the worst-case total number of operations is

∑
j

nj =
n(n− 1)

2
=

n2 − n

2
. (A1)

Thus far, we assumed that the inner cycle always ran in full (worst case) or did not
run at all (best case). A more realistic estimate of the running time requires probabilistic
analysis of the average number of times that greedy selection fails on a random input.

AVERAGE CASE: Let Cj be a random subset of a size rj ≤ n, and define Bj = 1 when Cj

is contained in the set of a size j− 1 containing the already-matched elements. Then, the

stop probability at step j is E(Bj) =
(j−1

rj
)

(n
rj
)

, and the average number of stops is

∑
j

E(Bj) =
n

∑
j=2

(j−1
rj
)

(n
rj
)

=
n

∑
j=2

(j− 1)(j− 2) · · · (j− rj + 1)

n(n− 1) · · · (n− rj + 1)

In practice, the latter is quite small, and it decreases for larger values of rj. If n = 100,
then the average number of stops is 15 when rj = 10 and 1 when rj = 50. Using the stopping
probability, we can derive the average number of operations to execute the jth step:

E(nj) = 1 + Bj((j− 1) + (j− 2))E(Bj)

Therefore, the average number of operations is

∑
j

E(nj) = ∑
j

(1 + (2j− 3)E(Bj))

= n + 2 ∑
j

jE(Bj)− 3 ∑
j

E(Bj) = n + o(n)

where the last passage follows from j ≤ n.
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