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1 Introduction and main result

Among the candidates for a theory of quantum gravity, one that has actively been studied in
the last 15 years is nonlocal quantum gravity (NLQG), in particular, asymptotically local
quantum gravity (ALQG) initiated in [1–5] (see [6–8] for reviews). NLQG is a Lorentz-
invariant, diffeomorphism invariant, perturbative quantum field theory of graviton and matter
fields whose dynamics is characterized by operators, called form factors, with infinitely many
derivatives. The gravitational action is quadratic in curvature operators just like Stelle
gravity [9–14] and, for this reason, it is renormalizable. The presence of nonlocal form factors
of a certain type, inserted between each pair of curvature tensors Rµνστ , Rµν and R, further
improves the ultraviolet (UV) behaviour of the theory and also makes it ghost free, thus
overcoming the unitarity problem of Stelle gravity.

Despite much progress in the formulation of the theory, there are still some elementary
points of confusion that deserve an in-depth treatment. One such point is about the structure
of the propagator in relation with unitarity. Ignoring tensorial indices, consider the typical
massive scalar propagator (or, more precisely, the Green’s function, which is −i times the
propagator) appearing in ALQG. In momentum space and at the tree level, it is

G̃(−k2) = e−H(−k2−m2)

k2 + m2 , (1.1)
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where we work in (−,+,+,+) signature, −k2 = k2
0 − |k|2 is the square of the momentum,

the Feynman prescription k2 → k2 − iϵ is understood in the denominator and expH(z) is
an entire function such that

H(0) = 0 (1.2)

on-shell or in the infrared (IR) in the massless case and that does not introduce any extra
pole with respect to the standard case G̃(−k2) = 1/k2. For the graviton and other massless
fields, m = 0. The form factors employed in ALQG are asymptotically polynomial, meaning
that in the UV limit they scale as expH(z) ∼ zn, i.e.,

G̃(−k2) ∼ 1
k2n+2 , n ∈ N+ . (1.3)

If the theory is unitary, as shown in [1–5, 16], then standard arguments of quantum field theory
would suggest that the propagator admits a standard Källén-Lehmann representation and
that the theory admits a Hamiltonian description. Let us recall that, for a Lorentz-invariant
Green’s function G̃(−k2), the standard Källén-Lehmann representation is [17–22]

G̃(−k2) =
∫ +∞

0
ds

ρ(s)
s + k2 − iϵ

, (1.4)

where s is a real positive parameter and ρ(s) is called spectral function or spectral density.
In particular, Weinberg [23, section 10.7] argued that the left-hand side of (1.4) cannot scale
faster than k−2 in the UV if ρ(s) ⩾ 0 for all s, the condition for unitarity. Two different
proofs of that are given in [21] and [24, appendix E.3]. This theorem has a strong implication
for alternative quantum field theories, including of gravity: higher-derivative theories cannot
be unitary because their propagator typically scales as (1.3) with n > 2. But then, precisely
for the same reason, should not also ALQG be ruled out? Then what to make of unitarity
claims? The casual reader might find this query into NLQG non-trivial.

In this paper, we will answer to the above question in the case of a scalar field; the
case of gravity only differs in the tensorial structure and does not add anything to the main
point made here, which is the following. As is already known, micro-causality is violated
in interacting nonlocal theories and the time ordering in scattering amplitudes produces
an extremely complicated result, which we will recall in section 4.2. This non-causality at
microscopic scales of order of the Planck length around the light cone does not forbid the
theory to have a well-defined complete basis of on-shell Fock states. It is on these states
that time ordering of nonlocal fields makes sense. This situation results in a mismatch
between the diagrammatic propagator G̃(−k2), or simply the propagator, appearing in the
calculation of Feynman amplitudes, and its time-ordered part G̃to(−k2). In the former case,
the contour prescription in k0 cannot be interpreted as a time ordering due to the presence
of the form factor that forbids to close such contour at infinity as in the local case. In other
words, while in the standard local case the left-hand side of (1.4) is the Fourier transform
of the time-ordered two-point correlation function, in nonlocal theories it is not. Hence,
the Källén-Lehmann representation, which is the integral representation of the time-ordered
propagator, is inequivalent to the integral representation of the diagrammatic propagator.
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It turns out that the diagrammatic propagator of ALQG admits a generalized integral rep-
resentation different from (1.4) but with a similar structure where the momentum-dependent
part is dressed, at tree level in perturbation theory, by a form factor:

G̃(−k2) =
∫ +∞

0
ds

e−H(−k2−s)

s + k2 − iϵ
ρtree(s) , ρtree(s) = δ(s − m2) , (1.5)

which obviously gives the correct result (1.1). The extra form-factor term is not included
in the definition of the spectral density because it is entire, hence it does not affect the
physical spectrum. In the presence of interactions,

G̃(−k2) =
∫ +∞

0
ds

e−H(−k2−m2)

s + k2 − iϵ
ρ(s) , ρ(s) =

∑
λ

δ(s − m2
λ) |⟨Ω|ϕ̃(0)|λ0⟩|2, (1.6)

where ϕ̃(0) = eH(□)/2ϕ(x)|x=0, |Ω⟩ is the vacuum state and the sum is on a complete set of
on-shell states |λ0⟩ of zero spatial momentum and mass mλ. Note that (1.6) implies (1.5).
Other representations are possible but they obscure information on the physical spectrum
of the theory. We also calculate the Källén-Lehmann representation for the contribution in
the propagator corresponding to the time-ordered two-point function, which in momentum
space for the free case (i.e., without interactions) is

G̃to(−k2) =
∫ +∞

0
ds

ρfree(s)
s + k2 − iϵ

, ρfree(s) = δ(s − m2) , (1.7)

where “to” stands for time-ordered, while in the presence of interactions it is

G̃to(−k2) =
∫ +∞

0
ds

ρ(s)
s + k2 − iϵ

, ρ(s) = e−H(s−m2) ∑
λ

δ(s − m2
λ) |⟨Ω|ϕ̃(0)|λ0⟩|2, (1.8)

which implies (1.7). The spectral function is positive-definite, thus confirming what we
already know from a field redefinition (section 2.1): nonlocal theories with entire form factors
are free-level unitary. We will come to understand how ALQG can be unitary and evade
Weinberg’s theorem without contradiction. The key, in action also in another NLQG called
fractional quantum gravity [24], is that the standard representation (1.4) is not valid, thus
violating one of the hypotheses of the theorem.

All these results are tightly related to the mathematical and physical properties of entire
form factors, on which we will gain insight. We will find that the Cauchy representation of
the form factors and of the propagator are valid only in a certain conical region C where
the contribution of arcs at infinity vanishes. This is perhaps the clearest way to understand
the origin of such a region, not only for asymptotically polynomial form factors [2, 3] but
also for exponential form factors.

The rest of the paper contains the derivation of (1.5)–(1.8) and discusses in detail, for the
first time, the domain of convergence of the form factors as well as the physical interpretation
of the above and of a different integral representation of the propagator as the superposition
of complex conjugate modes.
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In section 2, we derive the integral representation of the Green’s function when the latter
is expressed as a Cauchy integral on a specific type of contour. The example of the standard
local case is discussed in section 2.1. In section 3, we turn to nonlocal form factors. After
showing that in NLQG eq. (1.4) cannot hold and that Weinberg’s theorem on unitarity is
violated, in section 3.2, we recall that a well-known nonlocal field redefinition would indicate
the contrary at the tree level. This conundrum is solved in section 4 but, before that, in
section 3.3 we study in detail the exponential and asymptotically polynomial form factors
appearing in fundamentally nonlocal field theories, with particular emphasis on their Cauchy
representations and domain of convergence. In particular, we give a comprehensive, step-by-
step description of the conical region where these form factors are defined. The derivation of
the generalized representations (1.5) and (1.6) in nonlocal theories with such form factors
and their physical interpretation are presented in section 4. In section 4.2, we study the
relation between time ordering and the two-point correlation function in NLQG and find the
generalized Källén-Lehmann representation with and without interactions (eqs. (1.8) and (1.7),
respectively). Conclusions are in section 5. Appendix A is not necessary at a first reading
but it illustrates that a choice of contour not corresponding to the spectral representation
leads to an expression of the form factor or of the propagator where information on the
physical spectrum is not apparent.

2 Cauchy integral

The standard representation (1.4) is the integral over the real half-line of a propagator-like
term 1/(s + k2) weighted by a spectral function ρ(s). The integration parameter s plays the
role of a squared mass, so that one is summing over mass modes weighted by the spectral
density of the physical states. An extremely convenient way to derive it, which does not
assume anything about the underlying theory except for Lorentz invariance, is via the Cauchy
representation of the Green’s function.

Consider the Fourier transform G̃(−k2) of the Green’s function G in a Lorentz-invariant
theory and regard it as a function G̃(z) on the complex plane. Assume that G̃(z∗) = G̃∗(z),
i.e., that it is real on the real axis. Given a counter-clockwise contour Γ encircling the point
z = −k2 and such that G̃(z) is holomorphic (i.e., analytic) inside and on Γ, Cauchy’s integral
representation of the Green’s function is

G̃(−k2) = 1
2πi

∮
Γ

dz
G̃(z)

z + k2 , (2.1)

where from now on we ignore the Feyman prescription k2 → k2 − iϵ. If G̃(z) has poles and
branch cuts on the complex plane, then the contour Γ is chosen so that to keep all such
singularities outside; deformations of this contour not crossing the singularities are homotopic,
hence all mathematically and physically equivalent.

At infinity in the complex plane, the contour Γ is made of one or more arcs of radius R,
whose contribution must be zero in the limit R → +∞. Around poles and branch points, one
can deform Γ as a small circle of radius ε and then send ε → 0+; in this limit, the contribution
of poles and branch points must be finite. Along branch cuts, Γ can be deformed as a pair of
opposite semi-lines originating or ending at the branch point and running along the cut on
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either side [24]. The net result of this computation, that is, the contributions of each pole and
branch cut can be written as an integral over the real variable s ⩾ 0 on a semi-finite interval:

G̃(−k2) =
∫ +∞

0
ds I(s, k) . (2.2)

We call this expression generalized spectral representation if the contour Γ is kept squeezed
along the real line and straight when passing near the poles, either because it runs through the
real line and poles thereon are displaced infinitesimally or because the path runs parallel to
the real line by an infinitesimal imaginary displacement. If, instead, the contour is deformed
to pass around such points, (2.2) is not, in general, a spectral representation, as we will see
below. Finally, if we replace the left-hand side of (2.2) with the time-ordered Green’s function
G̃to(−k2) we call this generalized Källén-Lehmann representation. In the most general nonlocal
case, “spectral” and “Källén-Lehmann” are not synonyms, since G̃(−k2) ̸= G̃to(−k2).1

2.1 Standard spectral representation

The most important thing to remind about the contour Γ defining the spectral (and, in the local
case, also the Källén-Lehmann) representation is to keep it straight near poles. The local case

G̃(−k2) = 1
k2 + m2 , (2.3)

can teach us a lot about the choice of contour Γ as well as about the spectral representation
in NLQG. Physically and mathematically, when we have a pole on the real line it is equivalent
to deform the contour around the pole, to shift the pole to imaginary coordinates or to
shift the contour instead:

m2
Re z =

m2-ε

Re z

=
m2

Re z . (2.4)

However, in the first case (left-hand side) one integrates over an arc around the pole of radius
ε which corresponds to a fraction of the residue; it is identically equal to the left-hand side
of (2.1). In the second case (right-hand side), one is forcing the integration on the real line.
It is the latter that corresponds to the spectral representation. In particular, the Cauchy
representation (2.1) corresponds to the second line in (2.4).

1In [24, 25], the spectral representation was improperly called Källén-Lehmann.
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In the local case (2.3), the contour Γ′ corresponding to (2.3) (i.e., the left-hand side
of (1.4)) and the contour Γ corresponding to the right-hand side of (1.4) are

Γ
′

Γε

-k2+ ϵ

m2
Re z

Im z

=

Γ

Γ-

I2 ε
Γ+

m2

-k2+ ϵ

Re z

Im z

. (2.5)

To see this, if we compute the Cauchy integral on Γ′, we can throw away both the arc at
infinity (whose contribution scales as 1/R and the radius R is sent to infinity; more on this
below) and the integration along the positive semi-axis, where the function

G̃(z) = 1
m2 − z

(2.6)

is holomorphic and there is no discontinuity. The only surviving contribution is around the
arc Γε parametrized by z = m2 + ε exp(iθ):

1
2πi

∮
Γ′

dz
G̃(z)

z + k2 = 1
2πi

∫
Γε

dz
G̃(z)

z + k2

= lim
ε→0+

iε

2πi

∫ 0

2π
dθ eiθ 1

m2 + εeiθ + k2
1

(−ε)eiθ

= lim
ε→0+

− 1
2π

1
k2 + m2

∫ 0

2π
dθ + O(ε)

= 1
k2 + m2 . (2.7)

On the other hand, the contour Γ = I2ε ∪ Γ+ ∪ Γ− is made of an arc at infinity (which gives
a zero contribution as before), a small vertical segment I2ε of length 2ε parametrized by
z = it and corresponding to a vanishing integral,

1
2πi

∫
I2ε

dz
G̃(z)

z + k2 = lim
ε→0+

i

2πi

∫ ε

−ε
dt

1
it + k2

1
m2 − it

≃ lim
ε→0+

ε

πk2m2 = 0 , (2.8)

plus the contribution of the integration on Γ+ ∪ Γ− parallel to the real line,

1
2πi

∫
Γ

dz
G̃(z)

z + k2 = 1
2πi

∫
Γ+∪Γ−

dz
G̃(z)

z + k2

= lim
ε→0+

∫ +∞

0
ds

[
G̃(s + iε)

s + iε + k2 − G̃(s − iε)
s − iε + k2

]

= lim
ε→0+

1
2πi

∫ +∞

0
ds

[ 1
m2 − s − iε

1
s + iε + k2 − 1

m2 − s + iε

1
s − iε + k2

]

– 6 –
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= lim
ε→0+

1
2πi

∫ +∞

0
ds

1
s + k2

[ 1
m2 − s − iε

− 1
m2 − s + iε

]
+ O(ε)

= lim
ε→0+

1
2πi

∫ +∞

0
ds

1
s + k2

[
1

m2 − s − iε

m2 − s + iε

m2 − s + iε

− 1
m2 − s + iε

m2 − s − iε

m2 − s − iε

]

= lim
ε→0+

1
2πi

∫ +∞

0
ds

1
s + k2

[
m2 − s

(m2 − s)2 + ε2
+ iε

(m2 − s)2 + ε2

− m2 − s

(m2 − s)2 + ε2
+ iε

(m2 − s)2 + ε2

]

=
∫ +∞

0
ds

δ(s − m2)
s + k2 , (2.9)

where in the last step we used the Sokhotski-Plemelj formula

1
x − iϵ

= 1
x − iϵ

x + iϵ

x + iϵ
= x

x2 + ϵ2
+ i

ϵ

x2 + ϵ2
ϵ→0+
= PV

(1
x

)
+ iπδ(x) , (2.10)

and PV is the principal value.
Since the two contours Γ′ and Γ are homotopic, (2.7) and (2.9) are equal to each other

and the standard Källén-Lehmann representation (1.4) with spectral density

ρ(s) = δ(s − m2) (2.11)

is proven. The representation (1.4) with a different ρ(s) actually holds not only in the presence
of interactions, but also for any interactive theory admitting a time-ordered product [21,
section 24.2.1]. Not even locality is assumed. Thanks to its generality, this result is very
powerful and, as said above, it severely constrains the propagator of unitary theories. Thus,
if the standard spectral (or Källén-Lehmann, since G̃ = G̃to in this case) representation (1.4)
holds, then Weinberg’s theorem holds.

A final observation on the local propagator will turn out to be very useful in the nonlocal
case. The propagator can be represented not only with the Cauchy representation (2.1)
evaluated on different contours, but also with an altogether different Cauchy representation
where the contour Γ̃ now is clockwise and circumscribes only the z = m2 pole:

G̃(−k2) = 1
2πi

∮
Γ̃

dz
G̃(z, k2)
z − m2 , (2.12)

where in the local case

G̃(z, k2) = 1
z + k2 . (2.13)

Clearly, this is a naive rewriting of (2.1) with propagator (2.6) but with a contour Γ̃ where
the poles z = m2 and z = −k2 exchange roles and the latter (now pole of G̃) is left outside

– 7 –
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the contour. Then, the equivalence between (2.1) and (2.12) can be graphically expressed as

Γ

Γ-

I2 ε
Γ+

m2

-k2+ ϵ

Re z

Im z

=
Γ


Γ-

Γ+

m2

-k2+ ϵ

Re z

Im z

. (2.14)

The contribution I2ε of the left short side of the contour is zero according to (2.8) and so
is the one on the right side Iε,R:

1
2πi

∫
Iε,R

dz
G̃(z)

z + k2
z = R + it=

∫ ε

−ε
dt

1
R + it + k2

1
m2 − R − it

≃ ε

π(R + k2)(m2 − R) → 0 , (2.15)

where the ordering of the limits ε → 0+ and R → +∞ does not matter. Therefore, the only
non-zero contribution to the contour is identical step by step to the one in (2.9).

3 Nonlocal form factors

The propagator (1.1) is a tree-level expression that, according to the results on renormalizabil-
ity in ALQG [26–28] (reviewed in [6]), receives quantum corrections that modify the structure
of the form factor exp(−H). However, loop corrections to the propagator do not imply a
spoiling of the unitarity property, as has been checked at all perturbative orders [16, 29–31];
instrumental to this result is the fact that the function appearing in the numerator of (1.1) is
entire. This form factor is the fundamental building block with which to construct Feynman
diagrams at higher loop orders and it is thus indispensable to study its basic properties.

In nonlocal theories with propagator (1.1), Weinberg’s theorem does not apply because
the Källén-Lehmann representation (1.4) does not hold and the latter does not hold because,
for the full propagator, the time-ordered product is deformed by the form factors, a situation
not contemplated in the derivation of [21]. A very simple way to see this is based upon
the fact that the perturbative spectrum of the theory is the same as in a local theory. If
there were a standard spectral representation, then there would exist a spectral density ρ(s)
such that (take m = 0 for simplicity)

e−H(−k2)

k2 − iϵ
?=

∫ +∞

0
ds

ρ(s)
s + k2 − iϵ

. (3.1)

Using the Sokhotski-Plemelj formula (2.10) and taking the imaginary part of both sides
of eq. (3.1), one gets

iπδ(k2) e−H(−k2) = iπ

∫ +∞

0
ds ρ(s) δ(s + k2) = iπρ(−k2) =⇒ ρ(k2) = δ(k2), (3.2)

– 8 –
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where we used (1.2). Thus, the spectral density is the same as in the local theory and the
spectrum only has a spin-0 point particle with dispersion relation k2 = 0. This conclusion
is physically correct but it leads to a contradiction in eq. (3.1), since the form factor expH
is non-trivial. Therefore, (3.1) cannot be valid.

3.1 Definitions of nonlocal operators

In this sub-section, for the reader’s convenience we review two common definitions of operators
with infinitely many derivatives. The expert can skip this material since it is not needed
for the rest of the paper.

The natural class of functions on which to define the nonlocal operators appearing in
NLQG is the space S of rapidly decreasing C∞ functions along all spacetime directions. In
the topology of the space L2 of square-integrable functions, S is dense in L2. As an example,
the action of an exponential operator on a Gaussian function is calculated in [6, section 2.4.1].
Clearly, the operator eH(□) is invertible in such a functional space, as can be easily seen in
Fourier transform. In general, however, nonlocal form factors can be defined on a larger
functional space depending on the type of representation we employ for them. As recalled
in [6, section 2.2], there are two ways to represent nonlocal operators. One is as a series

eH(□) =
∞∑

n=1
an □n (3.3)

with certain coefficients an.2 The other is via an integral kernel K

eH(□)ϕ(x) =
∫

dDy K(y − x)ϕ(y) , (3.4)

which is valid on Minkowski spacetime but can be generalized to any curved background [32]
(this procedure is reviewed in [6, section 2.3.2]). It turns out that the integral representation
is more general than the series one because it can be well-defined even on functions which
are not in L2. An example is given in [32] for a cosmological background with power-law
scale factor. The function f(t) = tp is not square-integrable on the real line and the operator
e□ = ∑

n □n/n! represented as a series (3.3) does not converge if p is non-integer, since the
terms □ntp become progressively large as n increases, where □ = −∂2

t − 3H∂t and H ∝ 1/t.
Remarkably, however, in the integral representation the object e□tp is a well-defined function
not in L2. This observation culminated in the formulation of the diffusion method as a way
to find solutions of nonlocal systems [32–36], including NLQG [37, 38]. It implied a radical
advance with respect to early attempts to find solutions of nonlocal systems using the series
representation, which failed in their majority because they led to an apparently paradoxical
Cauchy problem of initial conditions [39]. The main issue with the series representation is
that, if truncated, it leads to a higher-derivative model which is not an analytic approximation
of the original nonlocal one and has a different physical spectrum.

The equations of motion for the matter and gravitational sector of nonlocal field theories
have been computed several times, both with the series and the integral definitions [5, 36,
37, 40–43].

2In general, but not in the case of NLQG, this expression can be only formal (for instance, operators such
as

√
□ are first regularized and then represented as a series with some divergent coefficients an) or extended

to a Laurent series.
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3.2 Field redefinition in nonlocal theories

A very well-known trick can quickly show that nonlocal theories with an entire form factor
can be recast in a form that respects the representation (1.4) and, therefore, also Weinberg’s
theorem. Consider the nonlocal massless scalar Lagrangian

L = 1
2ϕ□ eH(□)ϕ − V (ϕ) , (3.5)

where □ is the Laplace-Beltrami operator (□ → −k2 after Fourier transforming on Minkowski
spacetime) and V is a local potential. If expH is entire, then the field redefinition

ϕ̃ := e
1
2H(□)ϕ (3.6)

does not change the spectrum of the theory, so that one can recast (3.5) as

L = 1
2 ϕ̃□ ϕ̃ − V

[
e−

1
2H(□)ϕ̃

]
+ . . . , (3.7)

up to total derivatives. Therefore, for a free field (V = 0), the nonlocal dynamics 0 = δL/δϕ =
□ eHϕ is equivalent to the local dynamics 0 = δL/δϕ̃ = □ϕ̃, ϕ̃ has a standard kinetic term
and the spectral representation of its Green’s function is the standard one, eq. (1.4).

If this were the end of the story, there would have been no need of this article. However,
as soon as one switches on interactions, the field redefinition (3.6) only displaces nonlocality
from the kinetic term to the potential, so that the ϕ̃ system is still nonlocal. Then, we expect
nonlocality to pop in again at the first and higher orders in the loop expansion and to modify
the spectral representation (1.4) accordingly. This, again, should be consistent with known
results on perturbative unitarity [16]. Thus, we conclude that the field redefinition clarifies
the issue posed in the introduction only at the free level (tree level and in the absence of
interactions), while leaving it unanswered at one- and higher-loop orders.

3.3 Cauchy representations of nonlocal form factors

Just like the propagator, nonlocal form factors admit a class of Cauchy representations
labelled by the choice of contour Γ:

e−H(−k2−m2) = 1
2πi

∮
Γ

dz
e−H(z−m2)

z + k2 , z ∈ C . (3.8)

We discuss these representations here for the first time because, on one hand, they provide a
transparent derivation of the conical region in the complex plane on which such operators
are well-defined and, on the other hand, they elucidate how different choices of contour Γ
can shed light on different physical aspects associated to these form factors. In (3.8), we
have chosen to represent exp(−H) instead of exp(+H) because the former is the quantity
appearing in Feynman diagrams; the convergence properties of exp(+H) can be immediately
inferred from the former and will be discussed later.

We consider two types of form factors expH:

1. Exponential expH (monomial H):

H(z) = (−z)n , n = 1, 2, 3, . . . . (3.9)
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This type includes the form factors expH = exp(−□), expH = exp(□2), which were
proposed by Wataghin [44] and Krasnikov [1], respectively.

2. Asymptotically polynomial expH (special function H):

H(z) = Ein[(−z)n] :=
∫ (−z)n

0
dω

1− e−ω

ω
= ln(−z)n + Γ[0, (−z)n] + γE , (3.10)

where Ein is the complementary exponential integral [45, formula 6.2.3], Γ is the upper
incomplete gamma function [45, formula 8.2.2] and γE is Euler-Mascheroni’s constant.3
This type of form factor is the one considered by Kuz’min and Tomboulis [2, 3],
expH = (−□)n exp{Γ[0, (−□)n] + γE}, and has the asymptotic limit corresponding
to (1.3),

eH(z) ≃ eγE(−z)n , z ∈ C . (3.11)

For both classes of form factors, we employ dimensionless units where the argument of H hides
a fundamental length scale ℓ∗ which is part of the definition of the theory and is expected to
be of order of the Planck scale ℓPl. Therefore, in what follows, the argument of H should
be understood as H(□) = H(ℓ2∗□) in position space and H(−k2) = H(−ℓ2∗k

2) in momentum
space. Expressions with a mass m are generalized accordingly as H(□−m2) = H[ℓ2∗(□−m2)]
and H(−k2 − m2) = H[−ℓ2∗(k2 + m2)], respectively. Expressions in the complex plane have a
dimensionless variable z or s and a rescaled momentum or mass, so that z + k2 → z + ℓ2∗k

2

and z − m2 → z − ℓ2∗m
2 in all formulæ below.

3.3.1 Arcs at infinity

Any contour Γ in the (Re z, Im z) complex plane chosen in (3.8) will be closed at infinity by
one or more arcs Γm

R , where R → +∞ is the radius of the arcs and m = 0, 1, . . . , n− 1. While
in the standard case there is only one such arc (n = 1) with opening angle 2π, for exponential
and asymptotically polynomial form factors there may be many, all with a non-trivial opening.

Let ΓR be any of the arcs Γm
R of radius R and opening angle θ− < θ < θ+ centered at

the origin in the (Re z, Im z) plane, parametrized by z = R exp(iθ). We want to find the
most general limiting angles θ− and θ+ such that the contribution of ΓR to (3.8) vanishes
in the limit R → +∞. Therefore, we calculate

IR := − 1
2πi

∫
ΓR

dz
e−H(z−m2)

z + k2 = − R

2π

∫ θ+

θ−
dθ eiθ e−H(R eiθ−m2)

R eiθ + k2

= − 1
2π

∫ θ+

θ−
dθ e−H(R eiθ) + O(R−1) , (3.12)

where we expanded for large R and kept the mass finite. To proceed further, we have to
choose form factor.

3Taking the branch cut of the incomplete gamma on the negative real axis, the last equality in (3.10) holds
for −π < arg(−z)n < π (hence π(−n−1 − 1) < arg z < π(n−1 − 1), where we used −1 = exp(iπ)). However, it
can be extended by analytic continuation elsewhere on the complex plane.
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For the exponential form factors (3.9) (monomial H), one gets H(z) = (−R eiθ)n =
Rnein(θ+π) and

IR = − 1
2π

∫ θ+

θ−
dθ e−Rnein(θ+π) + O(R−1)

= − 1
2π

1
in

∫ t(θ+)

t(θ−)
dt

e−t

t
+ O(R−1)

= − 1
2π

1
in

Γ(0, t)
∣∣t=t(θ+)
t=t(θ−) + O(R−1)

= − 1
2π

1
in

Γ
[
0, Rnein(θ+π)

]∣∣∣∣θ=θ+

θ=θ−
+ O(R−1)

≃ − 1
2π

1
in

e−Rnein(θ+π)

Rnein(θ+π)

∣∣∣∣θ=θ+

θ=θ−
, (3.13)

where we used −1 = exp(iπ), t := Rnein(θ+π) and in the last step we expanded for large R

([45], formula 8.11.2 with a = 0 and u0 = 0 or formulæ 6.11.1 and 6.12.1).
In the case of the asymptotically polynomial form factors (3.10),

IR = − 1
2π

∫ θ+

θ−
dθ

e−Γ[0,(−R eiθ)n]−γE

(−R eiθ)n
+ O(R−1)

= − 1
2πRn

∫ θ+

θ−
dθ e−in(θ+π)e−Γ[0,Rnein(θ+π)]−γE + O(R−1)

≃ − 1
2πRn

∫ θ+

θ−
dθ e−in(θ+π) exp

[
−e−Rnein(θ+π)

Rnein(θ+π) − γE

]

= 1
2πR2n

∫ θ+

θ−
dθ e−2in(θ+π)e−Rnein(θ+π)−γE + O(R−n)

≃ 1
2πR2n

e−γE

∫ θ+

θ−
dθ e−Rnein(θ+π)

,

where in the third line we expanded the incomplete gamma function inside the integral for
large R (see [45, formula 6.12.1] and [46, chapter 4, section 2]), while in the fourth line we
further expanded for large R assuming |θ + π| ⩽ 3π/(2n). The condition |θ + π| ⩽ 3π/(2n) is
abandoned from now on by analytic continuation. The last line yields the same integral as
in (3.13) up to some prefactors. Note, in one of the intermediate steps, the typical explosive
exp(exp) behaviour of these form factors outside the conical region.

Therefore, for both classes of form factors we have

IR
R→+∞−→ 0 ⇐⇒ e−Rnein(θ±+π)

Rn
−→ 0 . (3.14)

Since n > 0, the denominator always favours convergence, while the numerator goes to zero
or to a constant if, and only if,

e−Rn cos[n(θ±+π)] −→ const ⇐⇒ cos[n(θ± + π)] ⩾ 0 .
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This condition holds when4

−π

2 + 2mπ ⩽ n(θ± + π) ⩽ π

2 + 2mπ , m ∈ Z ,

that is, (
2m − n − 1

2

)
π

n
⩽ θ± ⩽

(
2m − n + 1

2

)
π

n
, m ∈ Z .

Since we are looking for the maximal opening angle of each arc and the latter are counter-
clockwise, we identify n wedges Cm delimited by

θ±m := (2m − n)π

n
±Θ , Θ := π

2n
, m = 0, 1, . . . , n − 1 , (3.15)

which enter the definition of the domain of validity of the form factor exp[−H(z)] in the
complex plane:

e−H(z) : C ∪ ∂C , C =
n−1⋃
m=0

Cm , Cm =
{

θ−m < arg z < θ+m

}
. (3.16)

The cone boundary

∂C =
{
z

∣∣ arg z = θ±m
}

(3.17)

marks a transition in the behaviour of the numerator in (3.14). Inside the cone, the numerator
is exponentially suppressed, e−aRn

/Rn, where 0 < a < 1. On the boundary ∂C = ∪m∂Cm,
the numerator is oscillating and bounded and the expression in (3.14) is suppressed at large
R as |ei(∓R)n

/Rn| = 1/Rn. Outside the cone, the numerator explodes exponentially and
one cannot close the contour at infinity.

3.3.2 Conical region

From eq. (3.15), we find the opening angle of each conical region Cm,

θ+m − θ−m = 2Θ = π

n
. (3.18)

Note that the demi-cone from π−Θ to π+Θ symmetric with respect to the negative real axis,

C− = C0 =
{

π − π

2n
< arg z < π + π

2n

}
, (3.19)

is always present for any n, while the demi-cone from −Θ to Θ symmetric with respect
to the positive real axis,

C+ = Cn
2
=

{
− π

2n
< arg z <

π

2n

}
, (3.20)

4If, instead of [−π/2, π/2] (mod 2π), one takes the disjointed intervals [0, π/2] ∪ [3π/2, 2π] (mod 2π), then
one is unable to solve for θ∓ with n ∈ N, m ∈ Z.
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is present only when n is even. In particular,

n = 1 : C = C− =
{

π

2 < arg z <
3π

2

}
, (3.21)

n = 2 : C = C+ ∪ C− =
{
−π

4 < arg z <
π

4

}
∪

{3π

4 < arg z <
5π

4

}
, (3.22)

n = 3 : C =
{5π

6 < arg z <
7π

6

}
∪

{
−π

2 < arg z < −π

6

}
∪

{
π

6 < arg z <
π

2

}
, (3.23)

and so on.
For the string-field-theory-like Wataghin form factor ((3.9) with n = 1) and for Kuz’min

form factor ((3.10) with n = 1), we get Θ = π/2 and a conical region corresponding to the
whole Re z < 0 half-plane. In particular, the wedge (3.21) is the same found in [2] (eq. (8)
and below (10) therein). For Krasnikov form factor ((3.9) with n = 2) and Tomboulis form
factor ((3.10) with n = 2), we get instead Θ = π/4 and the cone C+∪C−. In particular, (3.22)
agrees with the conical region selected in [3] (eq. (4.2) and below (4.11) therein with the
parameter n set to 1). The above derivation is perhaps more transparent than the one in
those seminal papers, not only because it makes explicit the direct origin of the conical region
with a pedagogical calculation, but also because, in the case of asymptotically polynomial
form factors, it unifies into a single expression the somewhat specialized parametrizations
used by Kuz’min and Tomboulis for their form factors.

For general n, we can establish a clear pattern of wedges on the complex plane, made of
C± plus pairs of wedges symmetric with respect to the real axis. These pairs are characterized
by complex conjugate phases. While there is no natural m′ such that θ±m = −θ±m′ (mod
2π), the condition

θ±m = −θ∓m′ + 2ℓπ , ℓ = 0, 1 , m′ = 0, 1, . . . , n − 1 , (3.24)

admits the solution m′ = (1 + ℓ)n − m, i.e., m = 0 = m′ for ℓ = −1 and m′ = n − m for
ℓ = 0. Therefore, we have two cases depending on n.

• n odd:

θ+0 = −θ−0 + 2π = π +Θ ,

θ±m = −θ∓n−m , m = 1, . . . , n − 1 , (3.25)

so that m = 0 corresponds to the wedge C− and we can rewrite (3.16) as the union of
one self-conjugate wedge and (n − 1)/2 conjugate pairs,

C = C− ∪
n−1

2⋃
m=1

(Cm ∪ C∗
m) , C∗

m = Cn−m. (3.26)

• n even:
θ+n

2
= −θ−n

2
= Θ , θ+0 = −θ−0 + 2π = π +Θ ,

θ±m = −θ∓n−m ,
n

2 ̸= m = 1, . . . , n − 1 ,
(3.27)
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n=1

-

Re z

Im z

n=2

- +

Re z

Im z

n=3

-

1
*

1

Re z

Im z

n=4

- +

1
*

1

Re z

Im z

Figure 1. Conical region (3.29) for n = 1, 2, 3, 4 (shaded area).

so that m = 0 and m = n/2 correspond, respectively, to the wedges C− and C+ and
we can rewrite (3.16) as the union of two self-conjugate wedges and n/2− 1 conjugate
pairs,

C = C− ∪ C+ ∪
n
2 −1⋃
m=1

(Cm ∪ C∗
m) . (3.28)

We can summarize the decompositions (3.26) and (3.28) into the general expression

C = C− ∪ C̃+ ∪
⌊n−1

2 ⌋⋃
m=1

(Cm ∪ C∗
m) , (3.29)

where ⌊·⌋ is the floor function and we put a tilde on C+ to remind ourselves that this wedge
is present only when n is even. Figure 1 shows the n = 1, 2, 3, 4 cases.

Notice that this decomposition has a neat correspondence with the oft-used representation
of nonlocal operators f(□) = ∏∞

i=0(□ − ω2
i ) in terms of quanta of rest mass ωi, some (or

most, or all) of which can be purely imaginary [47]. A Cauchy representation reproducing
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this structure is presented in appendix A. A tentative physical interpretation of the master
expression (A.10) is that it represents the sum of complex conjugate pairs corresponding
to virtual particles that never go on-shell.

Two remarks are in order before moving on. First, from (3.14) it is easy to see that the
domain of convergence of exp(+H) requires cos[n(θ± + π)] ⩽ 0, which results in a conical
region complementary to C, i.e., the white areas in figure 1:

eH(z) : B = C \ C , τ±
m := (2m − n + 1)π

n
±Θ , (3.30)

where τ±
m = θ±m + 2Θ are the opening angles replacing θ±m. In particular, for n = 1 one has

τ±
0 = ±Θ and B is the Re z > 0 half plane; for n = 2, τ±

0 = −π/4,−3π/4, τ±
1 = 3π/4, π/4

and B is made of the cones of opening π/2 along the imaginary axis; and so on.
Second, the domain of convergence of the tree-level propagator and of any Feynman

diagram at any perturbative order is the same of the form factor exp(−H), or of the form
factor exp(+H), depending on which operator is regarded as more fundamental. For example,
and using a very colloquial terminology, if we take the action as our reference, then exp(+H)
could be thought of as the main building block, so that the tree-level propagator would scale
as 1/ exp(H) (instead of exp(−H)) and Feynman amplitudes would feature ratios such as
exp(H)/ exp(H) instead of exp(−H)/ exp(−H). In any case, the calculation of momentum
integrals would be defined on the domain of the main building block, in this example B. This
is only a matter of convention and does not change the physics whatsoever.

4 Generalized spectral and Källén-Lehmann representations

We are now ready to find the spectral and Källén-Lehmann representations in nonlocal
theories with entire form factors and to compare them.

4.1 Generalized spectral representation

If we tried to apply the Cauchy integral (2.1) on an adaptation of the contour Γ in the
right-hand side of the graphical equation (2.5), we would immediately face problems. The
outer circle of radius R → +∞ would be replaced by the domain C of the form factor exp(−H),
which is made of n wedges of opening 2Θ = π/n as in figure 1. Then, one would have to include
the contribution of the boundary of this conical region, which is described in appendix A.
This is not the spectral or the Källén-Lehmann representation of the propagator precisely
because the contour cannot be squeezed along the real axis. In fact, this representation does
not give transparent information on the physical spectrum.

The alternative is to use the representation (2.12) with

G̃(z, k2) = e−H(−z−k2)

z + k2 . (4.1)

The contour is the one depicted in the right-hand side of (2.14),

G̃(−k2) =
m2

, (4.2)
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and the calculation is the same as in (2.9) up to a factor exp[−H(s + k2)] in the integrand.
The final result is eq. (1.5),

G̃(−k2) =
∫ +∞

0
ds

e−H(−s−k2)

s + k2 − iϵ
ρtree(s) , ρtree(s) = δ(s − m2) . (4.3)

The only subtle point is an extra prescription on the ordering of the limits ε → 0+ and
R → +∞ in the analogue of (2.15), the contribution of the rightmost short side Iε,R of
the rectangular contour in the right-hand side of (2.14). If n is odd, then the contour falls
outside the conical region and the length 2ε of Iε,R must be sent to zero before sending
its position z = R to infinity:

1
2πi

∫
Iε,R

dz
G̃(z)

z + k2 = lim
R→+∞

lim
ε→0+

∫ ε

−ε
dt

e−H(−R−it−k2)

−R − it − k2
1

m2 − R − it

≃ lim
R→+∞

[
lim

ε→0+

ε e−H(−R−k2)

π(R + k2)(m2 − R)

]
= 0 . (4.4)

Therefore, strictly speaking, the integral
∫ ∞
0 ds in (4.3) is calculated as limR→∞

∫ R
0 ds.

4.2 Generalized Källén-Lehmann representation

The generalized integral representation (4.3) in the free-field case is not the Källén-Lehmann
representation of the nonlocal theory, since, as we will now show, the left-hand side is not the
time-ordered (Fourier transform of the) two-point correlation function describing a process
from an initial to a final asymptotic state. This correlation function of two fields is defined as

∆to(x − y) ≡ ⟨Ω|Tϕ(x)ϕ(y)|Ω⟩
:= θ(x0 − y0)⟨Ω|ϕ(x)ϕ(y)|Ω⟩+ θ(y0 − x0)⟨Ω|ϕ(y)ϕ(x)|Ω⟩ , (4.5)

where “to” stands for time ordering, |Ω⟩ is the vacuum state of the nonlocal theory, T is the
time ordering operator, θ is Heaviside step function and ϕ(x) is the nonlocal field operator.
Time ordering depends only on the sign of the difference x0 − y0 of the time components of
two D-dimensional points x and y, which is mathematically well-defined even in nonlocal
theories experiencing causality violations (see a discussion on the latter in [49–54]). The
problem, however, is to understand how the object (4.5) is related to the propagator of the
theory appearing in Feynman integrals and scattering amplitudes.

In the standard local free theory, the quantity in (4.5) is equal to the Feynman propagator

∆loc
F

(
x − y, m2

)
:= iGloc(x − y) , Gloc(x) =

∫
d4k

(2π)4
1

k2 + m2 − iϵ
e−ik·x. (4.6)

Since the local and nonlocal theories are equivalent if interactions are switched off, as discussed
in section 3.2, we expect that the two-point function (4.5) in the free nonlocal theory will be
equal to (4.6), modulo a field redefinition. As we will see, this intuition is right.

Let us proceed to calculate the two-point correlation function (4.5) in D = 4 dimensions
following the same steps of [55, section 7.1]. We use the completeness relation to express
the identity on the states-space of the theory as

1 = |Ω⟩⟨Ω|+
∑

λ

∫
d3p

(2π)3
1

2Ep(λ)
|λp⟩⟨λp| , (4.7)
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where |λp⟩ is a state of three-momentum p and energy Ep(λ) =
√
|p|2 + m2

λ, which is also
obtained by a boost of momentum p of a zero-momentum state |λ0⟩. Here we used the
symbol p for the momenta instead of k to emphasize that we are working on-shell. Just like
in standard quantum field theory, the states |λp⟩ are single-particle, multi-particle and also
bound and, in particular, (4.7) encodes all possible ways to compose Feynman diagrams at
all orders in the perturbative expansion. Thus, at tree level one only has one-particle states
|1p⟩ = |p⟩ corresponding to single particles of momentum p, plus the states corresponding
to interactions. For example, in a ϕ3 theory these extra states are |λp⟩ = |p⟩ ⊗ |p1, p − p1⟩,
where |p1, p − p1⟩ is a two-particle state with momenta p1 and p − p1. For the two-point
function at the tree level, the only states contributing to the completeness relation are |1p⟩;
at one-loop level, also |p⟩ ⊗ |k1, p − k1⟩ appears in the completeness relation, where k1 and
p − k1 are off-shell; and so on.

Inserting the identity 1 between the two fields in the correlation function ⟨Ω|ϕ(x)ϕ(y)|Ω⟩
(no time ordering yet), one has

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∑

λ

∫
d3p

(2π)3
1

2Ep(λ)
⟨Ω|ϕ(x)|λp⟩⟨λp|ϕ(y)|Ω⟩ , (4.8)

where we have dropped a term ⟨Ω|ϕ(x)|Ω⟩⟨Ω|ϕ(y)|Ω⟩ by symmetry. We can express the
operator ϕ(x) in (4.8) in terms of the operator ϕ̃(x) using the field redefinition (3.6),

ϕ(x) = e−
1
2H(□−m2) ϕ̃(x) , (4.9)

obtaining
⟨Ω|ϕ(x)|λp⟩ = ⟨Ω|e−

1
2H(□−m2) e−ip̂·xϕ̃(0) eip̂·x|λp⟩ , (4.10)

where p̂ is the momentum operator in the states space, which allows one to write ϕ̃(x) =
e−ip̂·xϕ̃(0) eip̂·x. Since [□, p̂] = 0, and using the fact that |λp⟩ is an eigenstate of momentum
p, one has

⟨Ω|ϕ(x)|λp⟩ = ⟨Ω|e−
1
2H(□−m2) e−i(p̂−p)·xϕ̃(0)|λp⟩

∣∣
p0=Ep(λ) (4.11)

(note the replacement of the momentum operator p̂ with the value p of the momentum of
the state |λp⟩). Finally, using the Lorentz invariance of |Ω⟩ and ϕ(0), and acting with the
nonlocal operator e−

1
2H(□−m2) on the exponential in (4.11), keeping in mind that for this

state p0 = Ep(λ), we have

⟨Ω|ϕ(x)|λp⟩ = ⟨Ω|e−
1
2H[(p̂−p)2−m2]e−i(p̂−p)·xϕ̃(0)|λp⟩

∣∣
p0=Ep(λ)

= ⟨Ω|ϕ̃(0)|λp⟩e−
1
2H(m2

λ−m2)eip·x∣∣
p0=Ep(λ) . (4.12)

Using again the Lorentz invariance of |Ω⟩ and ϕ(0), we have

⟨Ω|ϕ(x)|λp⟩ = ⟨Ω|ϕ̃(0)|λ0⟩e−
1
2H(m2

λ−m2)eip·x∣∣
p0=Ep(λ) . (4.13)

Replacing (4.13) into (4.8), we get

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∑

λ

|⟨Ω|ϕ̃(0)|λ0⟩|2e−H(m2
λ−m2)

∫
d3p

(2π)3
eip·(x−y)

2Ep(λ)

∣∣∣∣∣
p0=Ep(λ)

. (4.14)
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At this point, one would like to recast this expression as a four-dimensional Lorentzian
integral. Since the exponential function in (4.14) does not depend on p, we can indeed do
this in the same way done in the standard local theory, obtaining

∆to(x − y) =
∑

λ

|⟨Ω|ϕ̃(0)|λ0⟩|2e−H(m2
λ−m2)

∫
d4k

(2π)4
i

k2 + m2
λ − iϵ

eik·(x−y) . (4.15)

This can be recast in the usual Källén-Lehmann form as

∆to(x − y) =
∫ +∞

0
ds∆loc

F (x − y, s) ρ(s) , (4.16)

where we used (4.6) and ρ(s) is the spectral density of the nonlocal theory:

ρ(s) = e−H(s−m2) ∑
λ

δ(s − m2
λ) |⟨Ω|ϕ̃(0)|λ0⟩|2 , (4.17)

which is positive as required by the unitarity of the theory. In momentum space, we
obtain (1.8),

G̃to(−k2) =
∫ +∞

0
ds

ρ(s)
s + k2 − iϵ

, ρ(s) = (4.17) , (4.18)

where G̃to is the Fourier transform of Gto(x − y) = −i∆to(x − y). Note that this expression
holds also in the presence of interactions.

4.2.1 Free theory

Now we verify that the two-point function (4.5) is equal to the standard Feynman propagator
if the theory is free. This comes from the fact that the contribution to the mass spectrum of
the free nonlocal theory is just that corresponding to one-particle states |1p⟩. Indeed,

ρfree(s) = e−H(s−m2) ∑
1p

δ(s − m2) |⟨Ω|ϕ̃(0)|1p⟩|2

= e−H(s−m2)δ(s − m2) = δ(s − m2) , (4.19)

which agrees with (4.3) when on-shell. Of course, in ALQG this expression is also equivalent
to the local spectral density ρ = δ(s − m2), since H(0) = 0. We have thus recovered (1.7) as
announced in the introduction. In other NLQGs such as fractional gravity [24], H(0) ̸= 0
and the last step in (4.19) does not hold.

In the free-field case, the result (4.16) can be obtained in a shorter way as follows. In
the absence of interactions, the nonlocal field ϕ is always on-shell (i.e., p2 = m2) and is equal
to the local field ϕ̃, which can be expanded as usual as

ϕ̃(x) =
∫

d3p

(2π)3 2Ep

(
ãpe−ip·x + ã†

peip·x
)

, (4.20)

where the four-momentum p is on-shell. This implies that, for free nonlocal fields,

⟨Ω|Tϕ(x)ϕ(y)|Ω⟩free = ⟨Ω|T ϕ̃(x)ϕ̃(y)|Ω⟩free = ∆loc
F (x − y, m2) . (4.21)

This relation is less general than (4.16)–(4.17).
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4.2.2 Time ordering in nonlocal theories

The free-level expression (4.6) is related to the nonlocal diagrammatic propagator by some
simple steps:

∆free(x − y) := i

∫
d4k

(2π)4
e−H(−k2−m2)

k2 + m2 − iϵ
eik·(x−y)

= e−
1
2H(□x−m2)e−

1
2H(□y−m2)

∫
d4k

(2π)4
i

k2 + m2 − iϵ
eik·(x−y)

= e−
1
2H(□x−m2)e−

1
2H(□y−m2)∆loc

F

(
x − y, m2

)
. (4.22)

The legitimacy of the step between the first and the second line is based on the convergence
of such integral, which is assumed by hypothesis in nonlocal theories. In fact, the nonlocal
form factor is introduced to improve the convergence of the integrals in scattering amplitudes,
which are of a form similar to (4.22). Notice that this expression immediately yields (1.5)
from (1.7). As we will see below, (4.22) can be extended to the general case with interactions:

∆(x − y) := e−
1
2H(□x−m2)e−

1
2H(□y−m2)⟨Ω|T ϕ̃(x)ϕ̃(y)|Ω⟩ , (4.23)

where we used the field redefinition (4.9). Derivatives of correlation functions are still
correlation functions and appear also in standard quantum field theory, as, for instance, in
the fermionic sector [56, section 8.5].

The technical reason of the difference between the diagrammatic propagator ∆ and its
time-ordered part ∆to is that the form factors exp(−H) do not commute with the time ordering
T , since they do not commute with the step functions in (4.5), as already noted in [57]:

∆to(x − y) = ⟨Ω|Tϕ(x)ϕ(y)|Ω⟩
= ⟨Ω|Te−

1
2H(□x−m2)ϕ̃(x)e−

1
2H(□y−m2)ϕ̃(y)|Ω⟩

̸= e−
1
2H(□x−m2)e−

1
2H(□y−m2)⟨Ω|T ϕ̃(x)ϕ̃(y)|Ω⟩

= ∆(x − y) . (4.24)

The left-hand side of inequality (4.24) is nothing but the time-ordered expression (4.15) and
can be evaluated with the above formalism of state decomposition. Taking the local version
of (4.14) (H = 0) as the starting point, this yields exactly (4.14) when x0 > y0:

e−
1
2H(□x−m2)e−

1
2H(□y−m2)⟨Ω|ϕ̃(x)ϕ̃(y)|Ω⟩

= e−
1
2H(□x−m2)e−

1
2H(□y−m2) ∑

λ

∫
d3p

(2π)3
|⟨Ω|ϕ̃(0)|λ0⟩|2

2Ep(λ)
eip·(x−y)∣∣

p0=Ep(λ)

=
∑

λ

∫
d3p

(2π)3
|⟨Ω|ϕ̃(0)|λ0⟩|2

2Ep(λ)
e−H(−p2−m2)eip·(x−y)∣∣

p0=Ep(λ)

=
∑

λ

∫
d3p

(2π)3
|⟨Ω|ϕ̃(0)|λ0⟩|2

2Ep(λ)
e−H(m2

λ−m2)eip·(x−y)∣∣
p0=Ep(λ), (4.25)

from which one obtains (4.15) after reconstructing the Lorentzian integral via the introduction
of the time ordering. On the other hand, the right-hand side of inequality (4.24) can be
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calculated taking the local version of (4.15) as the starting point, and assuming a discrete
spectrum (sum over λ instead of an integral):

∆(x − y) = e−
1
2H(□x−m2)e−

1
2H(□y−m2)⟨Ω|T ϕ̃(x)ϕ̃(y)|Ω⟩

= e−
1
2H(□x−m2)e−

1
2H(□y−m2) ∑

λ

|⟨Ω|ϕ̃(0)|λ0⟩|2
∫

d4k

(2π)4
i

k2 + m2
λ − iϵ

eik·(x−y)

=
∑

λ

|⟨Ω|ϕ̃(0)|λ0⟩|2
∫

d4k

(2π)4
i e−H(−k2−m2)

k2 + m2
λ − iϵ

eik·(x−y), (4.26)

which is the diagrammatic nonlocal propagator (1.6) in the presence of interactions. In
their absence, it reduces to (1.5).

When the action of the form factors on x and y is calculated explicitly on the standard
Feynman propagator ∆loc

F (x − y, m2), (4.26) is very complicated [57] and the meaning of
time ordering is lost, since infinitely many contact terms are generated in the non-causal
part G̃nc of the Green’s function:5

G̃(−k2) = G̃to(−k2) + G̃nc(k) , (4.27)

corresponding to ∆ = ∆to + ∆nc in position space. At the core of this is the property of
nonlocal form factors of smearing distributions, in particular, the step functions. In the
last line of (4.24), such smearing appears in the term e−

1
2H(□x−m2)[θ(x0 − y0) e−ik·(x−y)]

and its counterpart x ↔ y.
A physical interpretation of the difference between ∆ and ∆to could be the following.

On one hand, ∆(x − y) relates two fields at arbitrary points x and y, which can even have
separation as small as, or smaller than, the length ℓ∗ at which violations of micro-causality
happen, where ℓ∗ is the fundamental scale implicit in the dimensionless argument ℓ2∗□ of
the form factors.6 On the other hand, the time-ordered part ∆to(x − y) is the correlation
function of nonlocal fields calculated on a complete basis of on-shell states, a notion that
implies a measurement at scales ≫ ℓ∗ for particles such that ℓ∗m ≪ 1. In fact, re-establishing
dimensionful units, we have that H(z) is a function of z := −ℓ2∗(k2 + m2). Then, the IR

5Comparing our expressions as superpositions of Fock states with those of [57], the standard Feynman
propagator ∆loc

F = iGloc (4.6) is denoted by ∆ in [57, eqs. (5.1) and (5.5)]; our nonlocal diagrammatic
propagator ∆, given by the Fourier anti-transform of iG̃ (1.1), (1.5), (4.26) and the right-hand side of
inequality (4.24) (“e−HT ” expressions) is ∆̃ in [57, eqs. (5.3) and (5.7)–(5.9)]; our time-ordered object ∆to,
given by the Fourier anti-transform of iG̃to (1.8), (4.15), (4.16), (4.25) and the first line of (4.24) (“T e−H”
expressions) is the nonlocal causal propagator ∆̃c in [57, eqs. (5.9) and (5.10)]; and the Fourier anti-transform
of the contact terms G̃nc in (4.27) are the infinite sum of terms denoted as ∆̃nc in [57, eqs. (5.9) and (5.12)].
Note that G̃to = G̃loc in the free theory only, eqs. (1.7) and (4.21).

6Scattering amplitudes in nonlocal quantum field theories satisfy the Bogoliubov causality condition [49].
That means that the quantum theory is safe from causality violations. However, some authors [50, 52, 53]
argued about the occurrence of causality violations in the classical theory at the nonlocality scale ℓ∗. If so,
such violations would occur at a scale where the classical theory should break down, while they do not really
happen in the quantum nonlocal theory, as discussed in [49]. Moreover, one may wonder whether, in the
classical theory, micro-instances of causality violation could add up to break causality also at macroscopic
scales. This cumulative effect, however, does not happen, for instance, in the form of a Shapiro time delay [58].
Thus, at a classical level a macroscopic observer would not experience violations of macro-causality even if
there were violations of micro-causality; see also the discussion in [54].
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limit ℓ2∗k
2 → 0 coincides with the on-shell limit −k2 − m2 → 0 when ℓ∗m ≪ 1, since in

both cases one has z ≃ −ℓ2∗k
2 → 0. At scales ≫ ℓ∗, macro-causality is respected and time

ordering acquires the usual interpretation.

4.3 Local limit

The local limit of the theory is reached in the IR and corresponds to distances much larger
than ℓ∗ or energies much smaller than Λ∗ := ℓ−1

∗ . Formally, it would correspond to an
infinitely small length scale ℓ∗ or an infinitely large energy scale Λ∗ := ℓ−1

∗ . In this limit,
the argument of H tends to zero and, thanks to (1.2) and (3.3), expH → 1. Then, since
the nonlocal terms in the action are proportional to (expH− 1) /□, the dynamics reduces
to the one of Stelle gravity [6–8].

In the limit ℓ∗ → 0, the factors exp{−H[−ℓ2∗(k2 + m2)]} and exp{−H[ℓ2∗(s − m2)]} in,
respectively, the final expressions (1.6) and (1.8) tend to 1, so that the generalized spectral
and Källén-Lehmann representations reduce to the standard Källén-Lehmann representation
of the local theory. This limit can be consistently taken at any of the intermediate steps
leading to (1.6) and (1.8), since we are always integrating in that portion of the convergence
domain of the nonlocal propagator that overlaps with the convergence domain of the local one.

This simple but important property is due to the fact, explained at the beginning of
section 4.1, that what we did was not to modify the prescription on the contour (2.5) (right-
hand side) in the local theory but, rather, to choose the contour (4.2), equivalent to (2.5)
only in the local case but valid also in the nonlocal one. The integration contour in (4.2)
is exactly the same for both the local and the nonlocal theory, regardless of the value of
the length ℓ∗. The parallel lines are squeezed along the real axis, the mini-segment Iε,R at
infinity always lies in the convergence domain of the form factor and this contour does not
undergo any deformation when taking the local limit.

5 Discussion

To summarize, we studied different representations of the propagator of nonlocal field theories.
In particular, we have established most general criteria to calculate the spectral and the
Källén-Lehmann representations, which are the ones giving information on the physical
spectrum in any theory, local or nonlocal. In our terminology, the spectral representation is
for the propagator entering Feynman diagrams, while the Källén-Lehmann representation
is for the time-ordered part of the propagator.

We found the generalized spectral representation (1.5) and the generalized Källén-
Lehmann representation (1.7) of nonlocal theories with entire form factors, valid at the free
level, as well as the spectral representation (1.6) and the Källén-Lehmann representation (1.8)
in the presence of interactions. Since (1.5) is not in the form (1.4), Weinberg’s theorem [23]
does not apply and we reconcile the facts that these theories are free-level unitary and that
the UV diagrammatic propagator scales faster than ∼ k−2. Surprisingly, we have obtained an
example of a theory where Weinberg’s theorem holds for the Källén-Lehmann representation
(since ∆loc

F ∼ k−2 in momentum space) and, yet, momentum integrals do show a better
convergence in the UV than standard two-derivative field theory. The magic is operated
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by the inequivalence (4.27) between the propagator appearing in Feynman diagrams and
the time-ordered two-point correlation function.

From these results, we can understand at two levels of reasoning why the standard
representation (1.4) does not hold in nonlocal theories.

At a mathematical level, when the spectral representation is derived directly from
Cauchy’s integral representation for the propagator, one must take into account that nonlocal
form factors produce a number of terms which mix the s and k dependence in (1.5) in such
a way that cannot be factorized simply as in (1.4). This technical explanation was already
pointed out in [24] for fractional quantum gravity and, as we have seen, holds also for entire
form factors in nonlocal field theories and, in particular, ALQG.

A physical understanding comes when noting that the standard Källén-Lehmann represen-
tation is a very general consequence of having a time-ordered two-point function [21, section
24.2.1]. This is the one and only point of the proof of [21] where NLQG, and nonlocal theories
in general, differ with respect to local quantum field theory, as we showed in section 4.2. It
is also responsible of the inequivalence (4.24). The step from the on-shell non-time-ordered
expression (4.14) and the off-shell time-ordered Lorentz-invariant expression (4.15) cannot
recover the structure of the nonlocal diagrammatic propagator (1.1) because the contour in
the complex k0-plane making this step possible does not respect the conical domain region
C where the Cauchy representation of the form factor is well-defined.

All of this is in pleasant agreement with the field-redefinition argument of section 3.2 but
also goes one step beyond in showing that the generalization to higher loops is just a matter
of calculations. The integrand in the spectral and the Källén-Lehmann representations will
be more and more complicated at higher orders in perturbation theory but no deviations
from the conceptual and mathematical frames set in the present work are expected. Although
a painstaking check of perturbative unitarity could be done with this method order by order,
it would only confirm what we already know from the general and more elegant proof via
the Cutkosky rules [16, 31].

Note added. After the completion of this paper, we became aware of [59], where the
generalized spectral representation (1.5) for an exponential form factor exp□ was guessed
from asymptotic considerations related to IR LHC phenomenology. Our proof for any entire
form factor expH(□) corroborates those findings and also puts on a firmer ground the study
of scattering amplitudes in nonlocal field theories, which so far have assumed the profile of
the spectral density (for an exponential form factor exp□n) without derivation [60–62].
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A Cauchy representation of the form factors

In this appendix, we compute Cauchy’s integral representation (3.8) for exponential and
asymptotically polynomial form factors with zero mass, m2 = 0, as well as for the tree-level
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propagator. We consider the contour enclosing the maximal area in the complex plane,

Γ′ =
n−1⋃
m=0

(Γm
R ∪ ∂Cm) , m = 0, 1 . . . , n − 1 , (A.1)

where ∂Cm is the boundary of the conical region Cm in which the contribution of the arc Γm
R

at infinity vanishes as explained in section 3.3.1. All the wedges can be connected at finite |z|
to make a single contour on the complex plane but these contributions are identically zero.

Since we do not have any discontinuity at the boundary ∂C for z < ∞ and we integrate
radially from zero to infinity, we can integrate exactly on top of such boundary. The integral
I∂C we are seeking to compute is the sum of the contribution of each wedge, whose boundary
is parametrized by

∂Cm = C−
m ∪ C+

m , C±
m ∋ z±m = s eiθ±m , s ∈ [ε,+∞) , (A.2)

where, according to eqs. (3.27) and (3.25),

z+0 = z−∗
0 , z±n−m = z∓∗

m , m = 1, . . . , n − 1 . (A.3)

Although the contribution of each wedge is not real-valued except for C+ and C−
(eqs. (3.20) and (3.19)), their total sum is real, since all boundary angles corresponding
to wedges where the integral is not real-valued are paired into complex conjugate phases
according to (3.24). Given the structure of the form factor, this is a sufficient condition to
ensure reality of I∂C [24]. Therefore, using the general decomposition (3.29), we have

I∂C = I∂C− + 1 + (−1)n

2 I∂C+ +
⌊n−1

2 ⌋∑
m=1

I∂Cm∪∂C∗
m

, (A.4)

A.1 Form factor

The first term is always present and reads

I∂C− = 1
2πi

[∫
dz−0

e−H(z−0 )

z−0 + k2 +
∫

dz+0
e−H(z+

0 )

z+0 + k2

]
(3.25)= lim

ε→0+

1
2πi

∫ +∞

ε
ds

{
e−H[s ei(π−Θ)]

s + e−i(π−Θ)k2 − e−H[s ei(π+Θ)]

s + e−i(π+Θ)k2

}

= lim
ε→0+

1
2πi

∫ +∞

ε
ds

{
e−H[s ei(π−Θ)]

s + e−i(π−Θ)k2 − e−H[s e−i(π−Θ)]

s + ei(π−Θ)k2

}

=
∫ +∞

0
ds

ρ(s, π −Θ) eiΨ(s,π−Θ)
[
s + ei(π−Θ)k2

]
[
s + e−i(π−Θ)k2] [

s + ei(π−Θ)k2]
+

∫ +∞

0
ds

ρ(s, π −Θ) e−iΨ(s,π−Θ)
[
s + e−i(π−Θ)k2

]
[
s + e−i(π−Θ)k2] [

s + ei(π−Θ)k2]
= 2

∫ +∞

0
ds ρ(s, π −Θ) s cosΨ(s, π −Θ) + k2 cos[Ψ(s, π −Θ) + π −Θ]

s2 + 2sk2 cos(π −Θ) + k4

= I(π −Θ) , (A.5)
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where we set the lower extremum to ε = 0 because the integrand vanishes in the limit s → 0 and

ρ(s, φ) e±iΨ(s,φ) := ± 1
2πi

e−H(s e±iφ) , (A.6)

I(φ) := 2
∫ +∞

0
ds ρ(s, φ) s cosΨ(s, φ) + k2 cos[Ψ(s, φ) + φ]

s2 + 2sk2 cosφ + k4 . (A.7)

The second term, present only when n is even, is

I∂C+ = 1
2πi

∫
∂C+

dz
e−H(z)

z + k2

= 1
2πi

∫
dz−n/2

e
−H(z−

n/2)

z−n/2 + k2 +
∫

dz+n/2
e
−H(z+

n/2)

z+n/2 + k2


(3.27)= 1

2πi

∫ +∞

0
ds

[
e−H(s e−iΘ)

s + eiΘk2 − e−H(s eiΘ)

s + e−iΘk2

]

= −
∫ +∞

0
ds

ρ(s,Θ) e−iΨ(s,Θ)
(
s + e−iΘk2

)
+ ρ(s,Θ) eiΨ(s,Θ)

(
s + eiΘk2

)
(s + eiΘk2) (s + e−iΘk2)

= −2
∫ +∞

0
ds ρ(s,Θ) s cosΨ(s,Θ) + k2 cos[Ψ(s,Θ) + Θ]

s2 + 2sk2 cosΘ + k4

= −I(Θ) . (A.8)

One can check this also noting that z±0 = −z±n/2 = −z∓∗
n/2.

The last contribution of (A.4), present only for n ⩾ 3, is the sum of conjugate wedges.
For the m-th pair,

I∂Cm∪∂C∗
m

= 1
2πi

∫
∂Cm

dz
e−H(z)

z + k2 + 1
2πi

∫
∂C∗

m

dz
e−H(z)

z + k2

= 1
2πi

[∫
dz−m

e−H(z−m)

z−m + k2 +
∫

dz+m
e−H(z+

m)

z+m + k2

]

+ 1
2πi

∫
dz−n−m

e−H(z−n−m)

z−n−m + k2 +
∫

dz+n−m

e−H(z+
n−m)

z+n−m + k2


= 1

2πi

[∫
dz−m

e−H(z−m)

z−m + k2 +
∫

dz+m
e−H(z+

m)

z+m + k2

]

+ 1
2πi

[∫
dz+∗

m

e−H(z+∗
m )

z+∗
m + k2 +

∫
dz−∗

m

e−H(z−∗
m )

z−∗
m + k2

]

= 1
2πi

∫ +∞

0
ds

 e−H(s eiθ−m )

s + e−iθ−mk2
− e−H(s eiθ+

m )

s + e−iθ+
mk2


+ 1
2πi

∫ +∞

0
ds

e−H(s e−iθ+
m )

s + eiθ+
mk2

− e−H(s e−iθ−m )

s + eiθ−mk2


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= 1
2πi

∫ +∞

0
ds

 e−H(s eiθ−m )

s + e−iθ−mk2
− e−H(s e−iθ−m )

s + eiθ−mk2


+ 1
2πi

∫ +∞

0
ds

e−H(s e−iθ+
m )

s + eiθ+
mk2

− e−H(s eiθ+
m )

s + e−iθ+
mk2


=

∫ +∞

0
ds

ρ(s, θ−m) eiΨ(s,θ−m)
(
s + eiθ−mk2

)
+ ρ(s, θ−m) e−iΨ(s,θ−m)

(
s + e−iθ−mk2

)
(
s + e−iθ−mk2

) (
s + eiθ−mk2

)
−

∫ +∞

0
ds

ρ(s, θ+m) eiΨ+
m(s)

(
s + e−iθ+

mk2
)
+ ρ(s, θ+m) e−iΨ+

m(s)
(
s + eiθ+

mk2
)

(
s + eiθ+

mk2
) (

s + e−iθ+
mk2

)
= 2

∫ +∞

0
ds ρ(s, θ−m) s cosΨ(s, θ−m) + k2 cos[Ψ(s, θ−m) + θ−m]

s2 + 2sk2 cos θ−m + k4

−2
∫ +∞

0
ds ρ(s, θ+m) s cosΨ(s, θ+m) + k2 cos[Ψ(s, θ+m) + θ+m]

s2 + 2sk2 cos θ+m + k4

= I(θ−m)− I(θ+m)

= I

[
(2m − n)π

n
−Θ

]
− I

[
(2m − n)π

n
+Θ

]
, (A.9)

where we used the definition (3.15) of θ±m.
Combining (A.4), (A.5) and (A.8), the Cauchy representation of the form factor taking

as contour Γ the maximal one in the complex plane reads

e−H(k2) = I(π −Θ)− 1 + (−1)n

2 I(Θ)

+
⌊n−1

2 ⌋∑
m=1

{
I

[
(2m − n)π

n
−Θ

]
− I

[
(2m − n)π

n
+Θ

]}
. (A.10)

From this, we have that

φ = π −Θ, Θ, (2m − n)π

n
±Θ =⇒ nφ = nπ − π

2 ,
π

2 , (2m − n)π±̃π

2
=⇒ e±in(π+φ) = ∓i, ±i, ±±̃i , (A.11)

where for φ = Θ we used the fact that n is even. Therefore, for the exponential form
factors (3.9), it is not difficult to see that

ρ(s, φ) e±iΨ(s,φ) = ± 1
2πi

e−(−se±inφ)n = 1
2π

e∓i π
2 −sne±in(π+φ)

,

and from (A.11)

ρ(s, φ) = 1
2π

, (A.12)

Ψ(s, π −Θ) = −π

2 + sn , Ψ(s,Θ) = −π

2 − sn , Ψ(s, θ±m) = −π

2 ∓ sn . (A.13)

For the asymptotically polynomial form factors (3.10), we get

ρ(s, φ) e±iΨ(s,φ) = ±e−γE

2πi

e−Γ[0,(−s e±iφ)n]

(−s e±iφ)n
= ±e−γE

2πi
e∓in(π+φ) e−Γ[0,sne±i(π+φ)]

sn
,

– 26 –



J
H
E
P
0
8
(
2
0
2
4
)
2
0
4

hence

ρ(s, π −Θ) = e−γE

2π

e−ReΓ(0,isn)

sn
, Ψ(s, π −Θ) = ImΓ(0, isn) , (A.14)

ρ(s,Θ) = −ρ(s, π −Θ) , Ψ(s,Θ) = −Ψ(s, π −Θ) , (A.15)
ρ(s, θ±m) = ∓ρ(s, π −Θ) , Ψ(s, θ±m) = ∓Ψ(s, π −Θ) , (A.16)

where we used the properties ReΓ(0,−ix) = ReΓ(0, ix) and ImΓ(0,−ix) = −ImΓ(0, ix).
Note that the phases Ψ are bounded by the largest of the solutions of ∂xImΓ(0, ix) =
sin x/x = 0, hence x = sn = π, 2π:

− π

21 ≈ −0.1526 ≈ ImΓ(0, 2iπ) ⩽ Ψ(s, π −Θ) ⩽ ImΓ(0, iπ) ≈ 0.2811 ≈ π

11 . (A.17)

A.2 Propagator

Expression (A.10) also serves as the Cauchy representation for the propagator upon adding
the contribution from the pole in z = 0,

Ip(Θ) = 1
2
1
k2 = 1

π

∫ +∞

0

ds

s2 + k4 = n sinΘ
π

∫ +∞

0

ds

s2 + 2sk2 cosΘ + k4 , (A.18)

which is half the value of the residue, and modifying the definitions of ρ and Ψ:

ρ(s, φ) e±iΨ(s,φ) = ± 1
2πi

e−H(s e±iφ)

−s e±iφ
. (A.19)

For example, for exponential form factors,

ρ(s, φ) e±iΨ(s,φ) = 1
2π

1
s

e±i π
2 ∓iφ−(−s)ne±inφ

,

so that from (A.11)

ρ(s, φ) = ρ(s) = 1
2πs

, (A.20)

Ψ(s, π −Θ) = Θ− π

2 + sn , Ψ(s,Θ) = −Ψ(s, π −Θ) , Ψ(s, θ±m) = π

2 − θ±m ∓ sn .

(A.21)

However, it is important to stress that, since we did not use the contour wrapped around
the real axis as in section 5, this would not be the spectral representation of the propagator
and one would be unable to study unitarity from the sign of the integrand in (A.7), which
is clearly not positive semi-definite since it oscillates between positive and negative values
along s, due to the range Ψ ∈ [0, 2π] taken by the phases in the case (A.21).
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