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A B S T R A C T

The monitoring of grapes for ripeness estimation is a practice that enables fruit harvesting at the optimal
time. Hyperspectral Imaging (HSI) represents a non-destructive and high-throughput alternative to traditional
laboratory analyses. Current literature approaches perform hyperspectral measurements using line scan sensors
or low-resolution static snapshot cameras, which hinder a fast per-bunch ripeness characterization. We propose
a framework for on-the-go collection and processing of proximal snapshot hyperspectral images to estimate
single bunch ripeness parameters. Focusing on table grapes (Vitis vinifera L. cv. Red Globe), we collected
images under natural illumination with a hyperspectral camera (500–900 nm) mounted on a moving vehicle
in an experimental block sited in Piacenza, Italy. We investigated images collected in August and September
2021 representing two ripening stages. The composition of the imaged grape bunches was determined through
laboratory chemical analyses to predict Total Soluble Solids (TSS) and anthocyanin concentration. The images
were pre-processed via multimodal image registration to correct the unalignment of bands due to the vehicle
motion, and the single bunches were automatically identified on false RGB images through a Mask Region-
Convolutional Neural Network (Mask R-CNN) instance segmentation network. The mean spectra of the bunches
were used as input features of a Partial Least Squares Regression (PLSR) model to predict the chemical
parameters at single bunch and whole vine scales. The regression model of TSS had an 𝑅2 (10-fold nested
cross-validation) of 0.75 and 0.85 on a per-bunch and per-vine basis, respectively. The regression model
of anthocyanin had an 𝑅2 of 0.68 and 0.49 on a per-bunch and per-vine basis, respectively. The results
suggest the potential of using snapshot hyperspectral images for high-throughput analysis of a per-bunch
grape ripeness estimation. The method described in this study could give valuable information to improve
grape ripening monitoring and management of harvest operations and even allow for precise and automated
robotic harvesting.
1. Introduction

Monitoring grape quality is of high importance to determine the
ripening stage and the optimal harvest time for both wine and table
grapes (Poni et al., 2018). Grapes are non-climacteric fruits, so they
do not ripe any further after harvest (Prasanna et al., 2007). More-
over, ripening is influenced by many factors, including environmental
conditions, grape variety, soil type, and growing techniques (Meléndez
et al., 2013; Dai et al., 2011; CooMbe and McCarthy, 2000; Gouot
et al., 2019; Poni et al., 2023). Grape ripening is usually described
as the accumulation of sugars and is measured in terms of TSS; how-
ever, other chemical parameters are taken into account to determine
optimal ripeness (Meléndez et al., 2013), such as phenolics, volatile

∗ Corresponding author.
E-mail address: riccardo.bertoglio@polimi.it (R. Bertoglio).

compounds, titratable acidity, and organic acids. Phenolic compounds,
like anthocyanins, are mostly accumulated in berry skin and seeds,
having a critical impact on the sensory attributes of grapes, influencing
color and astringency (Cheynier et al., 2006). Conventional approaches
to determining the grape quality and ripeness rely upon destructive
measurements of key chemical components concentration determined
on representative berry samples collected in vineyards.

However, destructive approaches are laborious and can only be
applied to a limited number of samples. A typical sampling protocol
consists of at least 4–5 grape samples, each made of at least 100
berries taken from different bunches and positions within the same
bunch. Berries should be intact to avoid juice loss, hence biasing the
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subsequently measured berry fresh weight. Along with the inherent
time-consuming approach, seasonal repeated sampling from a given
vine can also affect and modify the natural ripening pattern as a
progressively decreasing pending crop will presumably mature faster.
Thus, there is a need for a shift towards high-throughput automated
solutions (Ye et al., 2022; Vrochidou et al., 2021). The application
of modern technologies, including robotics and non-destructive tech-
niques like HSI, enables fast monitoring. HSI gathers information on
how electromagnetic radiations of various wavelengths interact with
the matter (ElMasry and Sun, 2010). The capability of this technology
for extracting information from the target is notable since the relative
contribution of each light wavelength interaction depends on the sam-
ple’s chemical composition and physical parameters. Initially limited
to controlled environments such as laboratories (Gabrielli et al., 2021;
Gomes et al., 2021; Gao and hua Xu, 2022; Xu et al., 2023), it has
gradually begun to be used directly in the field thanks to miniaturiza-
tion and improved computing and storage capabilities of the measuring
devices (Power et al., 2019; Vrochidou et al., 2021; Lu et al., 2020).
Grape quality attributes can be monitored directly in the vineyard,
with the acquisition process handled remotely by airborne (Sousa
et al., 2022; Matese et al., 2022) or ground vehicles (Gutiérrez et al.,
2019; Benelli et al., 2021), producing proximal hyperspectral images
with high spatial resolution. HSI sensors can be broadly based on
their acquisition modes, whether pushbroom or snapshot (Adão et al.,
2017). Pushbroom cameras acquire a single column of pixels for all
spectral bands, while snapshot cameras capture the entire pixel frame
either in a single shot or multiple shots for each band sequentially.
It is worth noting that multiple-shot cameras typically offer higher
resolution compared to single-shot cameras.

Although some in-field studies have shown positive results in pre-
dicting chemical quality parameters through HSI, most studies perform
measurements using line scan pushbroom technology which hinders
the identification of single grape bunches. Gutiérrez et al. (2019) per-
formed in-field and on-the-go acquisitions using a pushbroom Resonon
Pika L VNIR HSI camera installed on an all-terrain vehicle. They
scanned 180 plants of a Tempranillo cultivar, measuring 300 bands
from 400 nm to 1000 nm with 300 pixels of spatial resolution. Epsilon-
Support Vector Machines with Gaussian kernel were used for predicting
TSS and anthocyanins concentration, respectively obtaining an 𝑅2 of
.92, 0.83 on the test set. Finally, TSS and anthocyanin concentra-
ion spatial–temporal prediction maps were generated using multilevel
-spline interpolation. Fernández-Novales et al. (2019), in a very sim-
lar setting, performed on-the-go acquisitions by using a contactless
isible-Short Wave Near Infrared PSS spectrometer, measuring 215
atapoints per spectrum in the 570–990 nm range. The grape clusters’
bsorbance spectra were used in PLSR for predicting TSS (test set
2 = 0.95), anthocyanins (𝑅2 = 0.79), and total polyphenols (𝑅2 =
.43). Kalopesa et al. (2023) observed TSS values in Chardonnay,
alagouzia, Sauvignon-Blanc, and Syrah varieties over harvest and

re-harvest stages. Hyperspectral measurements were performed using
SR+3500 spectrometer, a highly accurate contact probe spectrometer
overing the entire Visible Near Infrared and Short-Wave Infrared
pectrum (350–2500 nm), directly applied to the berry. PLSR, Random
orest, SVR, and 1D CNN as predictive methods for each distinct variety
ere compared, with 1D CNN prevailing over the alternatives for three
arieties out of four. Benelli et al. (2021) monitored Soluble Solids
ontent in a Sangiovese vineyard over thirteen days during pre-harvest
nd harvest time. The hyperspectral acquisitions were performed via
NanoHyperspec VNIR pushbroom camera with a spectral resolution

f 272 bands between 400 nm and 1000 nm. The exposure time was
djusted by calibrating with a white high-reflectance matter panel at
he same distance as the vineyard row. The reflectance spectra of the
ections were used as input for a PLSR, yielding a cross-validation (CV)
2 of 0.768 and an RMSECV of 0.79 ◦Brix.

Studies performing in-field acquisitions with snapshot cameras are

ust a few and they mostly perform static measurements, hindering a

2 
igh-throughput analysis. Rodríguez-Pulido et al. (2022) studied the
ugar concentration in single Tempranillo and Syrah berries. They
cquired hyperspectral images using a Specim IQ hyperspectral camera
range 400–1000 nm). It is a handheld pushbroom camera that outputs
12 lines of 512 pixels, thus simulating a snapshot camera (Behmann
t al., 2018). However, its line acquisition modality limits its use
o static image collection. They acquired bunch images under direct
unlight twice a week from July to harvest (mid-August) in 2020.
ultiple white calibration measurements were made throughout each

ession, employing a certified reflectance device to correct for daylight
hanges. Using the laboratory data as the calibration set and in-field
ata as the test set, a PLSR model achieved an 𝑅2 of 0.88 when

used on the reflectance spectra and an 𝑅2 of 0.91 on the absorbance
spectra. The varying illumination conditions during in-field experi-
ments are a significant obstacle that restricts the generalization of
hyperspectral-based prediction models. Tsakiridis et al. (2023) pro-
posed denoising autoencoders for passing from the raw hyperspectral
signals to the corresponding reflectance signals to account for the
changing light conditions. Considering different pretreatment options,
the authors trained deep fully connected (DAE) and deep convolutional
autoencoders (DCAE) using the raw hyperspectral signals as input and
reference reflectance signals as target. The resulting spectra were used
to compare the predictive capabilities for TSS of Extreme Gradient
Boosting (XGBoost) Random Forest, Cubist, and SVR over the single
varieties, with the best model’s test RMSE ranging between 1.66 ◦Brix
and 2.29 ◦Brix.

In summary, the majority of research has concentrated on acquiring
data in controlled environments, which often lack the transferability
needed for real-world outdoor applications. While pushbroom tech-
nology has been prevalent in experiments conducted in uncontrolled
outdoor settings, it struggles with identifying individual grape bunches,
presenting limitations. Only a few studies have investigated the use of
snapshot cameras for in-field applications, albeit primarily with static
imaging approaches. Consequently, there exists a significant gap in re-
search addressing on-the-go acquisitions with snapshot cameras, which
enables high-throughput analysis with precise per-bunch accuracy. In-
deed, in-field studies mainly focus on predicting grape parameters in
bunch clusters (comprising bunches from multiple vines) or selected
single grape berries. The direct investigation of single bunches would
allow a characterization of the chemical variability in the vineyard
with higher spatial resolution, enlarging and refining the amount of
information that can be leveraged for targeted cultivation and harvest
procedures, e.g., location-specific irrigation and nurturing and auto-
mated picking of single bunches. Finally, there is a lack of studies
that investigate hyperspectral sensing for table grapes (Gabrielli et al.,
2021).

The objective of this study is to propose a pipeline for acquiring and
analyzing on-the-go proximal snapshot hyperspectral images aimed at
predicting Total Soluble Solids (TSS) and anthocyanin concentration.
Hyperspectral images were obtained using a camera mounted on a mov-
ing vehicle, enabling high-throughput data collection. However, the
movement of the camera caused spectral band misalignment, prompt-
ing an investigation into multimodal techniques to effectively align the
band images. To the best of our knowledge, this is the first study to
explore on-the-go proximal snapshot hyperspectral sensing. Leveraging
snapshot images allowed us to utilize an instance segmentation model
to identify individual grape bunches, a crucial step for automating
table grape harvesting, which is currently a manual and labor-intensive
process.

2. Materials and methods

The elaboration pipeline comprises three main stages, as illustrated
in Fig. 1. The first stage involves on-the-go acquisition of hyperspec-
tral images of bunches held by table grape vines. At each collection

moment, samples are taken from the plants and subsequently analyzed
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Fig. 1. Study elaboration pipeline consisting of three stages: data acquisition, hyperspectral image processing, and the development of prediction models.
r
w
S
c
a
m
v
w
e
w
T
b
i
a
v
q
c

d
c
T
F
n
S
t
o
b
w
m
a
I
w

2

t
h
S
w
w
o

i
w
k
u
c

n the laboratory to measure the chemical composition of bunches.
he second stage involves processing these images to prepare them for
he prediction phase. Initial steps include calibration and registration.
ollowing this, bunches are segmented and cleaned, with mean spectra
omputed for each bunch, forming the dataset. The final stage entails
pectra preprocessing, serving as input to a PLSR model for predict-
ng chemical parameters. The code used in our analysis is available
t the following link: https://github.com/AIRLab-POLIMI/hs-ripeness-
stimation.

.1. Image acquisitions

The experimental site was a vineyard facility of the Università Cat-
olica del Sacro Cuore, located in Piacenza, Italy. Vitis vinifera L. cultivar
ed Globe grapevines were grown outdoors in 25 l pots arranged in

wo NE-SW oriented rows and grafted on Selection Oppenheim 4 (SO4)
ootstock. Each vine was vertically shoot-positioned and hedgerow-
rained with a 10–11 nodes fruiting cane rising about 80 cm from the
round. A set of three surmounting catch wires was used to facilitate
edgerow training, resulting in a 1.3m tall canopy wall. On the East-
acing side of each row, three bunches per vine were designated to
orrelate the measured chemical parameters with the corresponding
yperspectral data. To promote a fully defoliated fruit zone and re-
uce the occurrence of berry sunburn (Gatti et al., 2015), the leaves
urrounding grape bunches were gradually removed between fruit set
BBCH 71) and berry touch (BBCH 79) (Lorenz et al., 1995). To address
xcessive fruit density, eight vines were subjected to crop thinning
efore veraison; accordingly only one bunch per shoot was maintained
o mitigate fruit occlusion as well as to enhance fruit ripening (Tang
t al., 2023; Gatti et al., 2012). At the same time, three bunches per
ine were tagged from shoots located on the basal, median and distal
odes of the fruiting cane, to be analyzed at harvest. The remaining
ntagged fruits were then used for pre-harvest acquisitions and berry
ollection as described below.

Hyperspectral acquisitions were conducted in 2021 at two ripening
tages on August 23 (pre-harvest), and September 6 (harvest). The
yperspectral cubes were acquired in situ using a Senop HSC-2 hy-
erspectral camera. The camera was mounted on a SCOUT 2.0 AgileX
obotic platform (see Fig. 2). This four-wheeled differential driving
obot was teleoperated to navigate the vineyard while maintaining a
entered trajectory between the vineyard rows. Each hypercube com-
rised 49 bands uniformly distributed within the 500–900 nm range,
upplemented by 3 bands with specific wavelengths to generate false
GB images (R: 600 nm, G: 556.5 nm, B: 510 nm), resulting in a total of
2 bands. The resolution of each band image was 1024 × 1024 pixels.
he camera was oriented with its principal axis perpendicular to the
lant rows.

.2. Chemical analyses

On each date, once the hyperspectral measurements were acquired,
rape samples per each vine were randomly collected and brought to
he laboratory to determine the TSS and total anthocyanin concen-
ration. In August 2021, two exposed berries were randomly chosen
rom the two sides (external and internal) of three unlabeled bunches,
3 
esulting in a twelve-berry sample per each of the vines considered
ithin the study (14 vines in August and 16 vines in September).
ix of these were immediately processed to determine the TSS must
oncentration, while the remaining six berries were stored in a freezer
t −18 °C for subsequent quantification of total anthocyanins. Thus,
easurements were expressed on a per-vine basis on this date. At har-

est in September 2021, all the labeled fruits for a total of 58 bunches
ere individually analyzed. Accordingly, fourteen berries (seven on
ach side of the bunch) were reserved for total anthocyanin analysis,
hile the remaining grapes were immediately crushed to determine
SS concentration. At each sampling time, the fresh weight of the
erries reserved for the anthocyanin assessment was measured. Fig. 3
llustrates boxplots depicting the chemical parameters for both dates
nd both sets of analyses (per-bunch and per-vine). From the per-vine
alues, it is evident that both TSS and anthocyanin levels have higher
uartiles in September 2021 compared to August 2021, indicating a
lear sign of riper grapes.

Fresh grapes were crushed, and the resulting juice was processed to
etermine TSS (◦Brix) concentration by using a temperature-
ompensated digital refractometer (ATAGO DBX-55, Tokyo, Japan).
otal anthocyanins were assessed according to Iland et al. (2011).
rozen berries were initially halved with a scalpel and then homoge-
ized for 1 min at 20,000 rpm with an Ultra-Turrax homogenizer (Rose
cientific Ltd., Edmonton, Canada). A portion of the homogenate was
hen transferred to a pre-tared centrifuge tube, enriched with 10 mL
f aqueous ethanol (50%, pH 5.0), and periodically mixed for 1 h
efore centrifugation at 959 × g for 5 min. Then, 0.5 mL of the extract
as added to 10 mL of 1M HCl (1M solution of hydrochloric acid),
ixed, and left to stand for 3 h. Finally, absorbance was measured

t 520 nm using a JascoV-530 UV spectrophotometer (Jasco Analytical
nstruments, Easton, MD, USA). The total anthocyanin concentration
as expressed in mg per g of fresh berry mass.

.3. Dataset generation

The process of handling hyperspectral images, which resulted in
he creation of the final dataset, is depicted in Fig. 4. Initially, the
yperspectral images underwent geometric and radiometric calibration.
ubsequently, the images were registered, and instance segmentation
as applied to identify the bunches. Finally, potential inaccuracies
ere addressed through outlier removal, and the mean spectral signals
f the bunches were computed.

To rectify the images for geometrical distortions, we computed
ntrinsic parameters and distortion coefficients individually for each
avelength. Multiple perspectives of a checkerboard panel with a
nown square length and size were captured, and these images were
tilized to determine the calibration parameters. We implemented the
ode for the geometric calibration in Python, employing the OpenCV1

library. We also conducted a radiometric calibration to accommodate
varying light conditions on the two collection dates. At the beginning of
each data collection session, we imaged a calibration panel, specifically,

1 https://opencv.org.

https://github.com/AIRLab-POLIMI/hs-ripeness-estimation
https://github.com/AIRLab-POLIMI/hs-ripeness-estimation
https://github.com/AIRLab-POLIMI/hs-ripeness-estimation
https://opencv.org
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Fig. 2. The robot while acquiring images in the vineyard with the hyperspectral camera mounted on the side. The camera is highlighted with a red circle.
Fig. 3. Boxplots of the TSS and total anthocyanins concentration in juice and grapes, respectively depending on single bunch and whole plant measurements. The means and
standard deviations (std) of the chemical values are reported in the top-left boxes.
Fig. 4. Hyperspectral image processing and dataset generation pipeline.
a Sphere Optics Zenith Lite Diffuse Target SG3515 with a diffuse re-
flectance of 95%. For the radiometric calibration process, we employed
the Linear Regression Method, an empirical model, to directly convert
Digital Numbers (the image pixel values) to reflectance (Smith and
Milton, 1999). The reflectance for each band can be obtained with the
equation:

reflectance𝜆 = offset𝜆 + gain𝜆DN𝜆. (1)

Here, DN denotes the Digital Number, and offset and gain are the
model parameters to be determined. Such an equation is established
for every spectral band within the data cube. For each band, the gain
and offset are estimated using the mean DN value of the calibration
panel, with the reflectance set to the known calibration panel value of
95%. Subsequently, the derived gain and offset values are employed to
4 
calculate reflectance values for plant images by inserting the DN of the
grapevine images into the equation.

The movement of the robotic platform and the sequential acquisi-
tion of bands resulted in shifted bands in the spatial dimension within
the hypercubes. Fig. 5 showcases a pair of color images from a single
unregistered hypercube: a false RGB image and a false-color image
displaying three extreme bands (the first, middle, and last). It is possible
to observe band misalignment, particularly near the borders of objects.
Consequently, it became necessary to align the bands comprising the
hypercubes by applying image registration techniques. Image registra-
tion involves determining a transformation that aligns a moving image
with a fixed image. In our study, we performed band-to-reference image
registration, designating the band with a wavelength of 704.1 nm as the
reference image for each hyperspectral band image. All other images
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Fig. 5. Unregistered false RGB (left) and false-color (right) hyperspectral images (September 2021).
Fig. 6. Registered false RGB (left) and false-color (right) hyperspectral images (September 2021).
at different wavelengths served as moving images to be registered. The
choice of the reference band was based on its proximity to the midpoint
of the spectral range, located at 700.0 nm. To address our hyperspectral
setting, we utilized a multimodal image registration technique (Zitová
and Flusser, 2003). Multimodal (or intermodal) registration consists of
matching images of the same subject from different modalities; in our
case, it involves different acquisition wavelengths.

For image registration, we employed the SimpleITK library (Beare
et al., 2018; Yaniv et al., 2018; Lowekamp et al., 2013) through its
Python interface. The optimal transformation was determined through
the minimization of a similarity metric. Given the multimodal context,
we opted for Mutual Information (MI) computed using the method
proposed by Mattes et al. (2001). The image registration algorithm
requires an initial estimate of the transformation. Consequently, we
conducted an initial grid search across a range of plausible translations
using the Exhaustive Optimizer. Subsequently, we selected the most
suitable translation based on MI and utilized it as the initialization for
the registration algorithm. The band-to-reference registration was then
executed employing a gradient descent optimizer, a linear interpolator,
and a 3-level pyramid multiresolution image representation. Fig. 6
displays a pair of registered images corresponding to the unregistered
images in Fig. 5.

After registering the images, we employed an instance segmentation
algorithm to discern the pixels corresponding to grape bunches from
5 
the canopy and background. Using an instance segmentation model
was made possible by the full-frame capability of the snapshot cameras
employed during data acquisitions, distinguishing our approach from
other literature methods. Specifically, we utilized a Mask R-CNN model
that had been previously trained on RGB images of the same vines.
The model’s training procedure has been extensively detailed in another
article (Chiatti et al., 2023). Initially, a Mask R-CNN model underwent
pre-training on a large-scale grape bunch dataset and was subsequently
fine-tuned using the VINEyard Piacenza Image Collections (VINEPICs)
grape image archive (Bertoglio et al., 2023). The fine-tuned model
was applied to false RGB images created by selecting three specific
bands (600.0 nm, 556.5 nm, 510.0 nm) from each hypercube. The
segmentation masks of instances with a confidence level exceeding
0.99 were retained and saved in COCO 1.0 annotation format2 for
subsequent processing. We underscore that the Mask R-CNN model
was applied on false RGB images just for inference. It is important
to note that the Mask R-CNN model was applied solely for inference
on false RGB images. Notably, without any adaptation, acceptable
segmentation of grapes was achieved. Fig. 7 displays two examples of
instance segmentation predictions on false RGB images. One example

2 https://cocodataset.org.

https://cocodataset.org
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Fig. 7. Visualization of the Mask R-CNN inferences on a false RGB images (September 2021).
Fig. 8. A single bunch segmentation mask applied to a false RGB image before (a) and after (b) IQR cleaning (September 2021). The red pixels are those flagged as outliers and
thus ignored.
showcases well-separated grapes where the segmentation performed
effectively, while the other presents a more challenging scenario with
overlapping grapes. It is worth noting that in some images the in-
stance segmentation model missed certain grape bunches or failed to
distinguish individual bunches in situations with overlapping bunches.
However, this difficulty is typical in grape bunch detection tasks and
is not exclusive to hyperspectral data. Indeed, even for a human la-
beler, distinguishing single bunches in cluttered clusters would pose
challenges. In terms of our analysis scope, all grape bunches under
investigation were correctly recognized by the instance segmentation
model.

The segmented polygons generated by the Mask R-CNN were manu-
ally matched with the corresponding chemical measures. Subsequently,
these masks were applied to each band of the 3D hypercubes, isolating
grape pixels at every wavelength. We employed an outlier detection
method to identify and exclude pixels associated with non-grape tar-
gets that were introduced during the registration and segmentation
processes. Given the non-Gaussian distribution of reflectance values,
we operated within a non-parametric framework, utilizing the In-
terQuantile Range (IQR) as the statistical dispersion measure. Tukey’s
6 
fences (Tukey et al., 1977) were then employed to flag outliers, con-
sidering data points lying outside the interval:

[𝑥̂ − 𝑐 ⋅ 𝐼𝑄𝑅, 𝑥̂ + 𝑐 ⋅ 𝐼𝑄𝑅] ,

where 𝑥̂ denotes the median, and the empirically determined constant
𝑐 = 2.2 was chosen based on visual inspection. For each 3D hypercube,
we applied the IQR detection method individually for each band. Re-
garding the spatial dimension, all pixels displaying anomalous behavior
in at least one spectral band were flagged as outliers and removed from
the segmented image (see Fig. 8). Subsequently, we recovered the mean
reflectance signals from the relevant pixels in the images. For the anal-
ysis focused on individual bunches, the spatial average of reflectance
values was computed for the cleaned segmentation mask of the specific
bunch. By spatial average, we refer to averaging the reflectance values
of grape bunch pixels for each band separately. Conversely, for the
analysis focused on vines, the average was computed across all masks
of tagged bunches for the plant. The per-bunch dataset comprised 58
data points, representing the 58 grape bunches analyzed during the
September 2021 harvest. Meanwhile, the per-vine dataset included 30
data points, consisting of 14 vines examined in August 2021 and 16
vines examined in September 2021.
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Fig. 9. Raw spectra (a) of single bunches for images collected in September 2021, and SNV (b), MSC (c), SG(derivative order, polynomial degree, window length) (d) preprocessed
spectra.
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2.4. Development of the prediction models

The variation in reflectance spectra stems from three primary
sources (Barnes et al., 1989): nonspecific scatter of radiation at the par-
ticle surface, variations in spectral path length through the sample, and
the sample’s chemical composition. The combination of these effects
masks the underlying chemical information and constitutes a significant
obstacle to interpreting reflectance spectra. These effects exhibit both
additive and multiplicative characteristics and vary from one sample to
another (Dhanoa et al., 1994). To correct for these effects, we evaluated
three commonly used preprocessing methods: Standard Normal Variate
(SNV), Multiplicative Scatter Correction (MSC), and Savitzky–Golay
(SG) smoothing and derivative treatments. Fig. 9 displays the raw
and preprocessed spectra of the bunches dataset related to the images
collected in September 2021.

SNV (Barnes et al., 1989) is a mathematical transformation inde-
pendent of the dataset, applied individually to each spectrum. SNV
normalizes the spectra by subtracting each spectrum’s mean and divid-
ing it by its standard deviation. On the other hand, MSC (Isaksson and
Næs, 1988) is a dataset-dependent normalization technique designed to
mitigate the dominant influence of scatter effects in spectral variation.
The fundamental concept is to equalize the scatter level in different
samples to the scatter of an ideal reference spectrum.

SG digital filtering (Savitzky and Golay, 1964) is effective for noise
reduction while preserving the essential features of the data, that is, the
shape and height of waveform peaks and higher moments in the signal.
It is commonly coupled with derivative preprocessing. Substituting the
original data with their derivatives can be seen as enforcing a high-pass
filter and frequency-dependent scaling, de-emphasizing low-frequency

trends (Brown et al., 2000). In our study, we performed SG smoothing d

7 
and derivative computation using the Python SciPy library.3 Prior to
pplying SG treatments, the data underwent initial preprocessing with
NV to enhance the comparability of values. Thus, in the following, we
ill refer to SG as the combined application of SNV and SG smoothing
nd derivative treatments. Regarding the SG derivative method, the re-
ulting values at the ends of the spectral range were highly unstable and
oorly informative due to the substantial approximation. Consequently,
e truncated the spectral signal, excluding the ⌊𝑤∕2⌋ most extreme
avelengths at each end, where 𝑤 indicates the window length of the
igital filter.

PLSR methods are a class of algorithms characterized by a common
tructure for modeling relationships between sets of observed values
hrough a latent representation. PLSR is specifically designed to handle
ata exhibiting a high degree of collinearity and potentially a larger
umber of independent variables than samples, a common scenario
n spectroscopic analyses. In our study, we employed preprocessed
pectra to predict the chemical parameters of interest and assessed the
rediction error using Mean Squared Error (MSE). This analysis was
onducted by implementing PLSR with the Python scikit-learn library,
hich serves as an implementation of the PLS1 algorithm.4

To robustly evaluate the prediction error of our model and simul-
aneously compare the three preprocessing methods, we employed a
ested CV approach. In the inner loop, we selected the hyperparameter
f the PLSR model—specifically, the number of components denoted
s 𝑙. The outer loop was dedicated to testing the model’s performance
nd comparing the preprocessing methods. The dataset was partitioned
nto 𝑘𝑜𝑢𝑡 outer folds, and for each outer fold, an inner 𝑘𝑖𝑛-fold CV loop

3 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
avgol_filter.html.

4 https://scikit-learn.org/stable/modules/generated/sklearn.cross_
ecomposition.PLSRegression.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
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Table 1
Root Mean Squared Error of prediction (𝑅𝑀𝑆𝐸), percentage error w.r.t. the
target mean (𝑅𝑀𝑆𝑃𝐸) and 𝑅2 values of the PLSR models for predicting TSS
and anthocyanin content based on the per-bunch dataset using SNV, MSC
and SG(derivative order, polynomial degree, window length) preprocessing.
𝑙∗ is the best value for the number of PLSR components optimized by a
single 10-fold CV.
Parameter Preprocessing RMSE RMSPE R2 𝑙∗

TSS SNV 1.5824 ◦Brix 10.4% 0.5910 4
MSC 1.6378 ◦Brix 10.8% 0.5802 5
SG(1,7,8) 1.2655 ◦Brix 8.4% 0.7475 1

Anthocyanins SNV 0.0357 mg/g 30.9% 0.6331 3
MSC 0.0358 mg/g 31.0% 0.6258 3
SG(1,9,14) 0.0333 mg/g 28.8% 0.6750 1

was employed for model selection based on the remaining 𝑘𝑜𝑢𝑡−1 folds.
The optimal model was then retrained on the remaining 𝑘𝑜𝑢𝑡 − 1 folds
and evaluated on the outer fold. The final estimate of the generalization
error was computed as the average of the errors across the outer folds.
Folds were also stratified based on the target variable, ensuring that
each fold adequately represented the variability of the target variable.
With 𝑘𝑜𝑢𝑡 = 𝑘𝑖𝑛 = 10, the number of PLSR components 𝑙𝑖𝑛,𝑖 ∈ {1,… , 15},
and the set of preprocessing options  ∈ {SNV,MSC, SG(𝑑, 𝑝,𝑤)} with
𝑑 ∈ {0, 1, 2}, 𝑝 ∈ {2,… , 10}, 𝑤 ∈ {2,… , 15} representing the derivative
order, polynomial degree, and window length, respectively, we imple-
mented the nested CV as outlined in Algorithm 1. The algorithm output
provided the best preprocessing option denoted by 𝑃 ∗—the one with
the lowest CV MSE. Subsequently, for each preprocessing method, we
determined the optimal number of components 𝑙∗ using a single 10-fold
CV loop on the entire dataset .
Algorithm 1
Nested CV.  is the set of different preprocessing options,  is our (per-
bunch or per-vine) dataset, 𝑙∗𝑖𝑛,𝑖 is the optimal number of components
found within an inner loop.
1: for 𝑃 ∈  do
2: Apply the preprocessing 𝑃 to the data 
3: Partition  in {𝐼1, ..., 𝐼10} disjoint outer folds
4: for 𝑖 = 1, ..., 10 do
5: Select 𝑙∗𝑖𝑛,𝑖 using 10-fold CV on ∖𝐼𝑖
6: Train a PLSR model of rank 𝑙∗𝑖𝑛,𝑖 on ∖𝐼𝑖
7: Compute 𝑀𝑆𝐸(𝑙∗𝑖𝑛,𝑖; 𝐼𝑖)
8: end for
9: Compute 𝑀𝑆𝐸𝐶𝑉 (𝑃 ;) = 1

10
∑10

𝑖=1 𝑀𝑆𝐸(𝑙∗𝑖𝑛,𝑖; 𝐼𝑖)
10: end for
11: Select 𝑃 ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃 {𝑀𝑆𝐸𝐶𝑉 (𝑃 ;)} as the best preprocessing

option

3. Results and discussion

We present the results of predicting TSS (◦Brix) and anthocyanin
(mg/g) concentration. The nested CV MSE is presented for the three
preprocessing methods under scrutiny, namely, SNV, MSC, and SG, and
for the two kinds of datasets, that is, per-bunch and per-vine spectra.
The per-bunch results are detailed in Table 1.

With the dataset pertaining to bunches, SG outperformed SNV and
MSC for both TSS and anthocyanin concentration. In both analyses, the
optimal preprocessing involved a 1st derivative treatment. However,
the level of smoothing differed between the two cases. For TSS, the
optimal hyperparameters for SG were a polynomial of order seven
over a window length of eight points (Fig. 10(a)). Conversely, for
anthocyanins, the optimal hyperparameters were a polynomial of order
nine over a window of length fourteen, resulting in an overall higher
level of smoothing (Fig. 10(b)). The PLSR models achieved a coefficient

2
of determination (𝑅 ) of 0.75 for TSS and 0.68 for anthocyanins. When

8 
Table 2
Root Mean Squared Error of prediction (𝑅𝑀𝑆𝐸), percentage error w.r.t. the
target mean (𝑅𝑀𝑆𝑃𝐸) and 𝑅2 values of the PLSR models for predicting TSS
and anthocyanin content based on the per-vine dataset using SNV, MSC and
SG(derivative order, polynomial degree, window length) preprocessing. 𝑙∗ is the
best value for the number of PLSR components optimized by a single 10-fold
CV.
Parameter Preprocessing RMSE RMSPE R2 𝑙∗

TSS SNV 0.9629 ◦Brix 6.9% 0.7290 4
MSC 0.8846 ◦Brix 6.3% 0.7697 5
SG(2,4,15) 0.7294 ◦Brix 5.2% 0.8524 4

Anthocyanins SNV 0.0421 mg/g 40.4% 0.4386 2
MSC 0.0424 mg/g 40.6% 0.4289 2
SG(2,3,13) 0.0401 mg/g 38.4% 0.4896 2

identifying a single set of optimal hyperparameters through a single-
loop CV, the optimal number of components was determined to be one
for both analyses.

Considering the per-vine dataset, an SG 2nd derivative treatment
achieved better results than the SNV and MSC alternatives for both
TSS and anthocyanins (Table 2), with a minimal difference between the
three methods in the case of anthocyanins. As in the bunches’ analysis,
the level of smoothing was more considerable for anthocyanins, using a
polynomial of order three and a window length of 13 (Fig. 11(b)), than
for TSS, employing a polynomial of order four and a window length of
fifteen (Fig. 11(a)). The PLSR model achieved an 𝑅2 of 0.85 for TSS
and 0.49 for anthocyanins. Considering the complexity of the PLSR
models, a single loop CV indicated four LVs for TSS and two LVs for
anthocyanins. SG treatments achieved some level of separation of the
reflectance spectra based on the target variables but less than in the
per-bunch analysis, leading to more complex modeling choices.

TSS predictions were more accurate for both bunches and vines
than those for anthocyanins, aligning with findings in the literature (Ye
et al., 2022; Gutiérrez et al., 2019). This discrepancy may stem from the
nonuniform distribution of the chemical components. TSS uniformly
develops in grapes, making surface reflectance measurements effective
indicators of the entire sample’s TSS concentration. However, this
rationale only partially applies to anthocyanins. Anthocyanin accumu-
lation during ripening is influenced by sunlight exposure, concentrating
on the exposed skin portions of berries. Consequently, anthocyanin
concentrations vary within bunches, with higher levels in sun-exposed
berries and lower levels in shaded or covered berries. This inherent
variability may create a discrepancy between measured reflectance
signals, focusing on the external bunch surface, and reference chemical
quantities measured in the lab, reflecting the whole berries.

TSS values were better predicted using plants, while the opposite
was true for anthocyanins. To interpret this difference in performance,
two facts had to be considered: the nature of the recorded data and
the different sizes of the two datasets. The reflectance and chemical
measurements of the bunches were performed under the same envi-
ronmental conditions on the same day. They represented grapes at
a similar stage of ripening (at least at a temporal level), resulting
in reflectance signals that were similar in shape. On the other hand,
the plants’ dataset comprised measurements from two different dates
(August and September 2021). The shape of the reflectance signals
changed to a moderate degree between the two acquisition dates
(Fig. 12). Studying the differences in the chemical parameters via
nonparametric permutation tests (Pesarin and Salmaso, 2010) (which
were needed due to the non-gaussianity of the anthocyanins measure-
ments) showed that the TSS content varied significantly between the
two dates (p-value: 0.0367). In contrast, the changes in anthocyanin
content were less relevant (p-value: 0.2042). A possible interpretation
of the higher performance of the plants’ dataset for predicting TSS
could be associated with this difference: the PLSR model exploited the
shape dissimilarities of the signals, which carried information about the
underlying target variable, to make its guesses more precise. On the
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Fig. 10. Per-bunch spectra preprocessed with the optimal pretreatment for TSS and anthocyanins prediction, that is, SG(derivative order, polynomial degree, window length).
Fig. 11. Per-vine spectra preprocessed with the optimal pretreatment for TSS and anthocyanins prediction, that is, SG(derivative order, polynomial degree, window length).
Fig. 12. Per-vine spectra preprocessed with the optimal pretreatments for TSS and anthocyanins prediction. The spectra are colored based on the acquisition date: red for September
2021 and blue for August 2021.
contrary, the shape dissimilarities were not helpful for the prediction
of anthocyanins and possibly masked other informative characteristics
in the spectra, effectively lowering the predictive ability of the model.

TSS values exhibited superior predictability when using per-vine
data, whereas the reverse was observed for anthocyanins. To compre-
hend this performance discrepancy, we need to consider the nature
of the recorded data. Per-bunch reflectance and chemical measure-
ments were conducted under identical environmental conditions on
the same day, representing grapes at a comparable ripening stage, at
least temporally. This homogeneity resulted in reflectance signals with
similar shapes. Conversely, the per-vine dataset incorporated measure-
ments from two different dates (August and September 2021), causing
an increased dissimilarity in the reflectance signal shapes (Fig. 12).
Analyzing differences in chemical parameters through nonparametric
permutation tests (Pesarin and Salmaso, 2010) (necessary due to the
non-Gaussian nature of anthocyanins measurements) revealed signifi-
cant variation in TSS content between the two dates (p-value: 0.0367).
In contrast, changes in anthocyanin content were less relevant (p-value:
0.2042). A plausible interpretation of the superior performance with
the per-plant dataset in predicting TSS could be attributed to this dis-
tinction: the PLSR model exploited the more pronounced dissimilarities
9 
in signal shapes, which carried information about the underlying target
variable, enhancing the precision of its predictions. Conversely, these
shape dissimilarities were less pronounced with the anthocyanins and
did not contribute significantly to their prediction.

By observing the regression plots for the bunches’ dataset in Fig. 13
we noticed how the performance of the models, especially in the case of
anthocyanins, was deteriorated by a few problematic data points that
were poorly predicted. Implementing outlier detection and removal,
a common practice in the literature (Hernández-Hierro et al., 2013;
Fernández-Novales et al., 2019; Xu et al., 2023), is expected to yield
an improvement in the results. Overall, the performance in predicting
TSS and anthocyanins was comparable to similar studies (Benelli et al.,
2021; Gutiérrez et al., 2019), except for the prediction of anthocyanins
in the per-vine dataset. However, the key characteristic of this study,
using a hyperspectral snapshot camera on a moving vehicle, introduces
new challenges not currently addressed by other works, such as the
need for a registration procedure, which adds an additional source of
noise to the data. Nevertheless, snapshot and on-the-go hyperspectral
images offer the advantage of providing high-throughput and precise
monitoring of individual grape bunches.
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Fig. 13. Regression plots depicting the true vs. predicted nested CV values for TSS and anthocyanin concentrations. The 1:1 line is shown in blue, and the regression line of the
amples is presented in green.
. Conclusions

We presented a pipeline for processing on-the-go snapshot hyper-
pectral images of grapes in the vineyard, aiming to predict TSS and
nthocyanin concentration on a per-bunch and per-vine scale. Due
o vehicle movement and the sequential band acquisition, hypercube
ands were misaligned, prompting the introduction of a registration
echnique. Utilizing the full frame of the snapshot camera employed
n our study allowed us to employ an instance segmentation model for
etecting individual grape bunches. Notably, a model trained solely
n RGB images demonstrated strong performance on false RGB hy-
erspectral registered images, which visually differ from RGB images.
e computed the mean pixel value of grape bunches for each band

o obtain spectra, and compared three spectra preprocessing tech-
iques, with SG treatments proving superior in both per-bunch and
er-vine analyses over SNV and MSC. Successful predictions of chemical
ndicators were achieved at the bunch and vine level with a PLSR
odel. Overall, TSS predictions outperformed anthocyanins. This study

epresents the first pipeline description for acquiring and processing
n-the-go proximal snapshot hyperspectral images of grapes. The re-
ults highlight HSI as a viable, non-destructive alternative for TSS
nd anthocyanin analyses. The single bunch identification can en-
ance the characterization of chemical variability within and between
rapevine plants. Potential applications include generating prescription
aps to support selective harvesting and enabling automated solutions

o the labor-intensive manual harvesting of table grapes. In particular,
ccurate ripeness information for individual bunches would enable
ully automated harvesting by a robot equipped with a gripper arm
or picking grape bunches precisely. A strength of our work lies in
he simplified spectral representation, with a reduced number (52) of
avelengths compared to other studies in the literature. This results in

ower memory requirements, more frequent image acquisitions, and an
verall acceleration of the processing pipeline.

A limitation of our study is the small quantity and variety of
amples, a consequence of the expensive and time-consuming nature
f chemical laboratory analyses. To enhance the robustness of our
indings, the validation of predictive models should involve a more
10 
extensive dataset and incorporate an independent test set, possibly
of a different nature. Future research should focus on testing the
generalization capability of the prediction model on unseen vintages
and varieties. It is worth noting that in our experimental setup, vine
plants were defoliated. In cultivations where this practice is not ap-
plied, image collection may face challenges due to foliage occlusions,
necessitating active vision or tools like a blower to move leaves. Addi-
tionally, predictive analyses should extend to other relevant chemical
parameters, such as flavonols, tannins, titratable acidity, pH, and potas-
sium, which are other important indicators of grape ripening. In our
study, we conducted inference directly using an instance segmentation
model trained on RGB images of the same vineyard. While acceptable
segmentation results were achieved, the accuracy should be increased
by labeling false RGB hyperspectral images and fine-tuning the model
accordingly. Moreover, a larger sample size would enable the effective
use of more data-driven predictive methods. In particular, given the
rising interest in 1D CNN regression networks for their promising
predictive and generalization capabilities, additional exploration is
needed. Finally, using snapshot hyperspectral images paves the way for
exploring 3D CNN regression models to process masked hypercubes di-
rectly, although the associated higher computational costs need careful
consideration.
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