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Abstract
Our study aims to define resting energy expenditure (REE) and describe the main nutritional patterns in a single-center cohort 
of children with Smith-Magenis syndrome (SMS). REE was calculated using indirect calorimetry. Patients’ metabolic status 
was assessed by comparing measured REE (mREE) with predictive REE (pREE). Patients also underwent multidisciplinary 
evaluation, anthropometric measurements and an assessment of average energy intake, using a 3-day food diary, which 
was reviewed by a specialized dietitian. Twenty-four patients (13 M) were included, the median age was 9 years (IC 95%, 
6–14 years), 84% had 17p11.2 deletion, and 16% had RAI1 variants. REE was not reduced in SMS pediatric patients, and 
the mREE did not differ from the pREE. In patients with RAI1 variants (16%, n = 3/24), obesity was more prevalent than 
those with 17p11.2 deletion (100% vs 38%). Lower proteins intake and higher total energy intake were reported in obese and 
overweight patients, compared to healthy weight children. No significant difference was found between males and females 
in energy or macronutrient intake. Conclusions: In SMS, the onset of obesity is not explained by REE abnormalities, but 
dietary factors seem to be crucial. Greater concern should be addressed to patients with RAI1 variants. A better understand-
ing of the molecular mechanisms causing obesity in SMS patients could set the basis for possible future targeted therapies.

What is Known:
• More than 90% of SMS patients after the age of 10 are overweight or obese.
What is New:
• Onset of overweight and obesity in SMS pediatric patients is not explained by abnormal resting energy expenditure.
• The development of syndrome-specific dietary guidelines for SMS patients should be of utmost relevance and are highly needed.
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Abbreviations
BMI	� Body mass index
IC	� Indirect calorimetry
mREE	� Measured resting energy expenditure
pREE	� Predictive resting energy expenditure
RAI1	� Retinoic acid induced 1
SMS	� Smith-Magenis syndrome

Introduction

Smith-Magenis syndrome (SMS) (OMIM #182290) is a 
genetic disorder characterized by peculiar dysmorphisms, 
intellectual disability, behavioral abnormalities, sleep dis-
turbance, and childhood-onset abdominal obesity. Moreover, 
patients may also suffer from seizures, hearing loss, scolio-
sis, cleft lip and/or palate, renal, ocular, or other congenital 
anomalies [1, 2]. Since the first description of this condition, 
cardiac anomalies have also been reported in patients with 
17p11.2 deletion [3] and confirmed recently [4–6].

The etiology of this syndrome is secondary to retinoic 
acid-induced 1 (RAI1) gene haploinsufficiency. This is 
mainly caused by a recurrent interstitial microdeletion at the 
17p11.2 locus (90% of cases), commonly spanning 3.5 Mb. 
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Less frequently, pathogenic variants in the RAI1 gene itself 
are responsible (10% of cases) [7]. Patients with RAI1 vari-
ants are more likely to exhibit characteristic behavioral pat-
terns and severe obesity [3, 8].

SMS newborns tend to follow a normal growth pattern, 
which precedes a deceleration in weight gain during infancy 
due to feeding difficulties, such as oral motor dysfunction 
with poor sucking, and swallowing and textural aversion or 
gastroesophageal reflux disease [2, 9–12]. Nutritional pat-
terns may also be hindered by hypotonia and hyporeflexia 
[13, 14]. During school age and adolescence weight man-
agement becomes a concern, with more than 90% of SMS 
individuals being overweight or obese after the age of 10 [2].

Despite many reports about obesity, our knowledge con-
cerning energy metabolism in pediatric patients with SMS 
is poor. Resting energy expenditure (REE) represents the 
amount of calories required for a 24-h period during a non-
active period. Its assessment is a valid tool to understand 
nutritional features in children with rare diseases [15]. Indi-
rect calorimetry (IC) is the gold standard for measuring REE 
[16]. However, in practice, predictive resting energy expend-
iture (pREE) is often calculated using validated prediction 
equations based on age, sex, and anthropometrics.

Given the relevance of these aspects, we prospectively 
performed a quantitative and qualitative description of nutri-
tional intakes in a single-center cohort of SMS pediatric 
patients. Hence, the aim of this study was to understand the 
causes of obesity in SMS. A genotype-obesity phenotype 
correlation of the syndrome was also established.

Patients and methods

A longitudinal observational study in SMS patients was con-
ducted at the Center for Rare Diseases and Birth Defects, 
Fondazione Policlinico Universitario A. Gemelli Roma, 
Italy. All pediatric patients with a clinical and molecular 
diagnosis of SMS were consecutively enrolled over a period 
of 3 years (September 2020–September 2023).

The study was conducted according to the Declaration of 
Helsinki and was approved by the local Ethical Committee 
as part of a larger study on nutritional aspects in patients 
with disabilities and rare diseases. Informed consent was 
obtained from all parents.

Patients were consecutively included in the present study 
according to the following inclusion criteria: a confirmed 
genetic diagnosis of SMS, body weight ≥ 10 kg (in line 
with the device instruction used to assess energy expendi-
ture), age 1 to 18 years. Exclusion criteria considered were 
absence of genetic confirmation, no compliance to study pro-
cedures, significant disease that modify energy expenditure 
(e.g., cardiovascular or respiratory failure, kidney, liver or 
inflammatory diseases), and absence of informed consent.

All patients underwent anthropometric measurements, 
assessment of average energy intake (AEI) and REE evalu-
ation. Anthropometric measurements were performed in 
triplicate by the same investigator (EK) and included body 
weight, height, and body mass index (BMI) with criteria 
established by the World Health Organization (WHO) [17]. 
The weight was evaluated using a digital scale accurate to 
0.1 kg. The height was measured in a recumbent (under 
2 years old) or standing position, with an accuracy to the 
nearest 0.1 cm. Weight, height, and BMI were converted to 
standard deviation (SD) or percentile scores with reference 
to CDC 2000 data [18].

Dietary intake was assessed using a 3-day food diary, 
two on weekdays and one at the weekend. Average energy 
intake (kcal/day), protein intake (g/kg/day, %), carbohy-
drate intake (%), fat intake (%), and liquid intake (ml/kg) 
including sweetened beverages were evaluated [19]. Liquid 
intake was recorded in increments of 100 ml/kg, ensuring 
consistency and accuracy in the measurements. The diary 
was carefully explained by an experienced dietician and was 
recorded by parents and then reviewed by the same special-
ized dietician. During 3 days, all daily meals and snacks 
eaten were recorded continuously throughout the day. For 
each meal, participants were requested to report an exhaus-
tive description of food and recipes, food amount measured 
using a scale and brand of packaged foods consumed. All 
diaries were analyzed using an Excel spreadsheet to estimate 
the composition of the macronutrients of the diet and the 
frequency of foods. The nutrient composition and energy 
of food were derived from the Food Composition Database 
for Epidemiological Studies in Italy (Banca Dati di Com-
posizione degli Alimenti per Studi Epidemiologici in Ita-
lia—BDA) [20]. Expected energy and macronutrient intake 
were defined according to the age- and gender-based and 
weight-dependent LARN (Livelli di Assunzione di Riferi-
mento di Nutrienti ed energia per la popolazione italiana) 
by the Italian Society of Human Nutrition (SINU) [21]. The 
level of physical activity was also registered.

The measured REE (mREE) was determined by IC using 
an open-circuit calorimeter (QUARK RMR open-circuit 
indirect calorimeter by Cosmed Italy). Its accuracy and use 
in syndromic patients have been described in a previous 
report [15]. The machine was calibrated automatically before 
each measurement in accordance with the manufacturer’s 
instructions. Patients lay in a supine position for 30 min with 
a canopy placed over their heads during the measurement. 
The first 10 min of the measurements were needed to ensure 
that the patient was settled and that the air inside the canopy 
reached a steady state, the following 20 min were used to 
calculate REE. Fasting for a minimum of 6 h was manda-
tory in order to record a reliable estimation. The measure-
ments took place in a thermo-neutral environment (ambient 
temperature 24–26 °C) deprived of any external stimuli. 
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Steady state was determined by five consecutive minutes 
in which VO2 and VCO2 variations were less than 10%. 
Averaging the steady state values allowed the determination 
of 24 h REE, done by using the abbreviated Weir equation: 
REE Kcal/day = (3.941 VO2 mL/min + 1.106 VCO2 mL/
min) × 1.44 [22].

Measured REE values were compared with pREE based 
on the Schofield, Harris-Benedict, Mifflin, and Muller equa-
tions [23–25].

Patients’ metabolic status was classified as hyper-
metabolic if their percentage pREE (defined as mREE/
pREE × 100) was > 110%, hypometabolic if their percent 
pREE was < 90%, and normal if their percent pREE was 
between 90 and 110% [26, 27].

Statistical analysis

Given the small sample size, a non-parametric approach 
was used. Medians with the interquartile ranges (IQR) and 
absolute frequencies with percentage summarized quantita-
tive and qualitative variables, respectively. The differences 
between males and females were investigated with the Wil-
coxon sum-rank test and with chi-square or Fisher exact test.

The differences between measured REE and predicted 
REE calculated with the 3 different equations (Schofield, 
Harris-Benedict, Mifflin, and Muller) were investigated 
using the Wilcoxon sum-rank test.

A comparison between measured and expected values of 
total energy intake, proteins, and liquids was also performed 
via Wilcoxon sum-rank test.

The Fisher exact test was also used to evaluate the asso-
ciation between BMI classes (underweight, normal weight, 
overweight, obese) and patient’s metabolic status. A sensi-
tivity analysis compared total energy intake, macronutrients 

(carbohydrates, lipids, proteins), measured REE, and age 
between overweight and obese patients versus underweight 
or healthy weight ones. A p-value less than 0.05 was con-
sidered statistically significant. The whole analysis was per-
formed using R statistical software, version 4.3.2.

Results

Among the 28 children with SMS considered eligible, 4 
were excluded: 3 due to reduced compliance with the IC 
and study procedures and 1 due to the presence of a non-
pathogenic RAI1 variant. All data were collected success-
fully with no missing values across the variables analyzed.

Twenty-four patients were included in the analysis with a 
median age of 9 years (IQR, 6–14 years): 11 females and 13 
males, 21 had 17p11.2 deletion, while 3 had RAI1 variants 
(Supplementary Table 1).

No significant differences were detected between males 
and females in clinical and anthropometric characteristics 
(Table 1). Eleven patients (46%) were obese (54.5% male), 
5 (21%) were overweight (80% males), 7 (28%) had normal 
weight (57.1% female), and 1 (4%) underweight patient was 
female.

All patients with RAI1 variants (n = 3, 6%) were obese, 
vs 38% of those with 17p11.2 deletion (14% females and 
24% males).

Table 2 shows the total daily energy and macronutri-
ents’ intake obtained from parents’ report of the 3-day food 
diary. No significant difference was found between males 
and females (p > 0.05). Patients reported significantly higher 
values in measured proteins respect to the expected ones 
(p < 0.001), while no difference was found for the total 
energy intake and liquids’ intake (Fig. 1). Among obese 

Table 1   Distribution of patients’ characteristics according to the gender

BSA, body surface area; p refers to (a) Wilcoxon sum-rank test, (b)Fisher exact test; n, number

Patients’ characteristics All (n = 24) Female (n = 11) Male (n = 13) p

Age [years, median (IQR)] 9.1 (6.4; 14.04) 9.1 (7.1; 12.66) 9.1 (6.4; 14.6) 0.954a

Weight-for-age [SD, median (IQR)] 0.7 (− 0.3; 2.1) 0.5 (− 1.1; 1.6) 0.8 (0.01; 2.2) 0.173a

Height-for-age [SD, median (IQR)]  − 0.7 (− 1.3; 0.03)  − 1 (− 1.2; 0.05)  − 0.6 (− 1.8; 0) 0.794 a

BMI [kg/m2, median (IQR)] 23.5 (16.8; 27.3) 23.2 (15.65; 25.35) 24.8 (17.8; 29.8) 0.224 a

BMI-for-age [percentile, median (IQR)] 92.6 (74.1; 99) 84 (42.9; 96.5) 93.8 (85; 99) 0.256 a

BMI-for-age [SD, median (IQR)] 1.6 (0.5; 2.2) 0.98 (− 0.28; 1.88) 1.6 (1.03; 2.4) 0.203 a

BSA [m2, median (IQR)] 1.2 (0.8; 1.48) 1.2 (0.8; 1.3) 1.2 (0.8; 1.73) 0.464 a

Weight status category [n (%)] 0.486b

  Underweight 1 (4) 1 (9.1) 0 (0)
  Normal weight 7 (29) 4 (36) 3 (23)
  Overweight 5 (21) 1 (9.1) 4 (31)
  Obese 11 (46) 5 (45) 6 (46)

RAI variant [yes, n (%)] 3 (13) 2 (18) 1 (7.7) 0.576b
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individuals, sugar-sweetened beverage intake was ele-
vated. All measured values showed higher variability than 
the expected ones, due to the high age variability among 
patients.

Table 3 shows the comparison between mREE and pREE 
according to the Schofield, Harris-Benedict, and Mifflin and 
Muller different equations. Measured REE was significantly 
greater than pREE according to the Mifflin and Muller equa-
tion when considering the whole population (both males and 
females). Measured REE was also often higher than pREE 
based on Schofield and Harris-Benedict equations, although 
no significant difference was detected.

No association was found between metabolic status 
(hypometabolic, normometabolic, hypermetabolic) and 
weight classes based on BMI values (Table 4).

Obese or overweight subjects reported lower percent-
age of proteins in daily food (p = 0.024) in comparison 

with underweight or healthy weight subjects. No difference 
was found in the percentage of carbohydrates and lipids. 
Obese or overweight patients showed significantly higher 
mREE (p = 0.023) and higher total energy intake (p = 0.017) 
than underweight or healthy weight patients (Supplemen-
tary Table 2). The ratio between the total energy intake 
and mREE was higher in obese and overweight patients, 
although not significantly different (p = 0.111).

Discussion

An accurate assessment of energy requirements and defini-
tion of the optimal method of nutrient delivery, including 
oral, enteral and parenteral route are critical elements in 
the care of children with disability and rare diseases [28, 
29]. Furthermore, a thorough understanding of energy 

Table 2   Total energy intake and macronutrients’ intake obtained from 3-day food diary

p refers to the Wilcoxon sum-rank test
n, number

All (n = 24) Female (n = 11) Male (n = 13) p

Total energy intake [Kcal/day. median (IQR)] 1974 (1422; 2402) 2000 (1250; 2300) 1949 (1800; 2410) 0.271
Carbohydrates [% of daily food. median (IQR)] 48 (45; 53.5) 48 (45.1; 53.5) 50 (49.4; 53) 0.336
Lipids [% of daily food. median (IQR)] 35 (33.2; 37) 35 (33.5; 37.7) 35 (33.3; 37) 0.725
Proteins [% of daily food. median (IQR)] 15 (11.9; 15.9) 15.9 (10.5; 16.5) 15 (13; 15) 0.559
Proteins [g/kg. median (IQR)] 1.2 (1; 1.7) 1.7 (1.5; 2) 1.2 (1; 1.2) 0.159
Liquids [ml/kg. median (IQR)] 1500 (1200; 1500) 1300 (1025; 1500) 1500 (1400; 2000) 0.051

Fig. 1   Comparison between measured and expected intakes. Meas-
ured total energy intake (kcal/day), proteins intake (g/kg/day), and 
liquids intake (ml/kg/day) as reported in the 3-day food diary com-

pared with the expected intakes defined according to the age- and 
gender-based and weight-dependent LARN by the Italian Society of 
Human Nutrition
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balance is required to develop strategies and reduce syn-
dromic obesity [30].

Previous research studies showed that more than 90% of 
SMS patients after the age of 10 are overweight or obese, 
and severe obesity might also lead to increased risk for 
related health issues (e.g., type 2 diabetes and hypercholes-
terolemia) in adulthood [2].

In our study, less than 70% of children were overweight or 
obese with no gender preponderance. However, considering 
the young age of our cohort (median age of 9 years), the real 
obesity prevalence might be underestimated and therefore 
will be reassessed in the future. Indeed, food-related behav-
ioral problems like hyperphagia and food foraging at night, 
along with a sedentary lifestyle and psychotropic medica-
tion side effects (affecting appetite/weight gain), typically 
deteriorate with school age [2]. In our series, overweight 
was seen only in patients older than 9 years. This strongly 
suggests that 9–10 years should be considered the critical 
age threshold for bodyweight gain.

Surprisingly, our data confirmed that higher BMI is posi-
tively correlated with age, but in contrast with the previously 
published study by Alaimo et al. [31], no association with 
the percentage of carbohydrate or fat intake could be estab-
lished. This study suggested that Rai1-haploinsufficient mice 
were more susceptible to diet induced obesity, and a high fat 
or high carbohydrate diet might trigger early onset obesity 
in SMS patients [31].

On the other hand, in our cohort, obese children showed 
unbalanced protein consumption in favor of other nutrients 
than normal weight patients. Even though these findings 
need to be confirmed in larger controlled studies, this result 
suggests that potentially high-protein diet might modify obe-
sity prevalence in these patients.

An adequate diet for SMS patients requires the develop-
ment of personalized nutritional plan in relationship with 
patients’ age, gender, and nutritional status. Interestingly, 
dietary guidelines for patients with Prader-Willi syndrome 
(PWS), a common form of syndromic obesity, are well docu-
mented in the literature [32, 33]. Specifically, the distribu-
tion of macronutrients is in favor of the protein and complex 
carbohydrate ratio, with an adequate amount of fiber and 
a limited fat ratio [32]. However, given the lack of dietary 
SMS-specific indications and the absence of evidence to 
support increasing or limiting proteins, vitamins, and miner-
als in this population in relation to the onset of obesity, diet 

Table 3   Comparison between measured REE and predicted REE

p refers to the Wilcoxon sum-rank test: ameasured REE vs predicted REE according to Schofield equation; bmeasured REE vs predicted REE 
according to Harris-Benedict equation; cmeasured REE vs predicted REE according to Mifflin equation
n, number

Measured Schofield p Harris-Benedict p Mifflin and Muller p

All (n = 24)
[median (IQR)] 1380 (1103; 1613) 1358 (962.8; 1726.3) 0.574a 1281.4 (986.9; 1530) 0.212b 1137 (861.4; 1442.5) 0.046c

Female (n = 11)
[median (IQR)] 1364 (948; 1568) 1309.7 (892.8; 1413.8) 0.300a 1299.9 (1010; 1324.1) 0.365b 1114 (736.4; 1168.8) 0.116c

Male (n = 13)
[median (IQR)] 1393 (1168; 1835) 1364.4 (995.9; 1827.7) 0.840a 1220.8 (904.3; 1690) 0.448b 1197.6 (912.4; 1577.8) 0.264c

Table 4   Association between metabolic status and weight status

p refers to the Fisher exact test
n, number

Weight status

Under-
weight, n 
(%)

Normal 
weight, n 
(%)

Over-
weight, n 
(%)

Obese, n 
(%)

p

Metabolic 
status

Schofield 0.457
Hypometa-

bolic
0 (0) 0 (0) 0 (0) 3 (27)

Normomet-
abolic

1 (100) 2 (29) 3 (60) 4 (36)

Hypermeta-
bolic

0 (0) 5 (71) 2 (40) 4 (36)

Harris-
Benedict

0.476

Hypometa-
bolic

1 (100) 0 (0) 0 (0) 1 (9.1)

Normomet-
abolic

0 (0) 3 (43) 3 (60) 5 (45)

Hypermeta-
bolic

0 (0) 4 (57) 2 (40) 5 (45)

Mifflin 0.111
Hypometa-

bolic
0 (0) 0 (0) 0 (0) 0 (0)

Normomet-
abolic

0 (0) 0 (0) 2 (40) 45.45 (50)

Hypermeta-
bolic

1 (100) 7 (100) 3 (60) 54.54 (50)
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recommendations should follow the balanced, normocaloric 
type in line with LARN suggestions [21].

For the first time, to our knowledge, REE using IC and the 
metabolic status in children with SMS were assessed. Spe-
cifically, REE is the most important contributor to the total 
energy expenditure (TEE), namely the amount of energy that 
individuals use daily. REE accounts for 50–70% of TEE. The 
other main contributors to TEE are physical activity, linear 
growth, and thermic effects of food intake and digestion [15].

In several medical conditions [26, 30, 34–36], REE is rou-
tinely estimated using standard equations and guides nutrient 
delivery in critically ill children. Previous studies [29, 37] con-
comitantly measured both TEE as well as REE in children with 
obesity, concluding that reduced REE on its own is not the 
major cause of common obesity. Abawi et al. showed that mean 
REE% (ratio between mREE and pREE) was higher in children 
with non-syndromic genetic obesity and lower in children with 
hypothalamic obesity compared to multifactorial obesity.

Predictive equations are the main clinical tools for deter-
mining REE. However, their precise application in over-
weight and obese syndromic patients is unclear.

REE was not reduced in SMS pediatric patients. The 
mREE of children with SMS was well-correlated with pREE 
(p > 0.05) calculated with all validated equations tested, 
except for Mifflin and Muller equation which was mostly 
used for adolescents with severe obesity [24]. The different 
median age of our study population comparing to the one 
of Steinberg A. et al. (9.1 years vs 15.9 years, respectively) 
might explain this result. No higher prevalence of hypo-
metabolic status was found in overweight or obese patients: 
mREE was never significantly lower than pREE.

Taking into consideration all these findings, the higher 
ratio between energy intake and expenditure in obese 
patients, compared to normal weight ones, might be 
explained by the higher energy intake (overfeeding) asso-
ciated with decreased physical activity rather than slower 
metabolic rate.

Studies in children with PWS show that their reduced 
REE can be explained by the reduced fat-free mass associ-
ated with the syndrome [38]. Future studies on body com-
position will probably unravel the multifaceted nature of 
obesity in SMS patients.

Our data confirm that obesity had a higher prevalence 
in patients with RAI1 variants (n = 3, 16%) than those with 
17p11.2 deletion (100% vs 38%). In line with our data, 
obesity was previously found in 12.9% of individuals with 
17p11.2 deletion and in 66.7% of patients with RAI1 variants 
[3]. Previous studies have tried to correlate obesity and gen-
der with contradictory outcomes. Edelman et al. [3] reported 
that obesity and eating disorders were more prevalent in the 
female gender, while, on the contrary, Gandhi et al. found 
that males with SMS might be more overweight and exhibit 
more severe eating behaviors than females [11]. In our study, 

11 males versus 6 females were overweight or obese, but 
given the gender composition of our study, these results were 
not considered statistically significant.

The molecular involvement of RAI1 gene in metabolic 
homeostasis and how its pathogenetic variants predispose to 
obesity still need to be defined clearly. It has been hypoth-
esized that RAI1 positively controls the transcription and the 
expression of several anorexogenic hormones [39] such as 
proopiomelanocortin and cholecystokinin. The downregula-
tion of these hormones has been detected by measuring their 
concentrations in blood samples of Rai1 ± murine models [39].

Moreover, Rai1-mice consume more food and show 
reduced satiation compared to wild type mice, because of a 
dysregulated signaling system affecting eating behavior [39].

By combining transcriptomic and lipidomic analyses, 
Turco et al. found that SMS patients had an altered expres-
sion of lipid and lysosomal genes, a deregulation in expres-
sion of gene implicated in lipid metabolism, lysosome 
activity, protein/lipid trafficking, impaired mechanism of 
autophagy/mitophagy, and increased cellular death with 
reactive oxygen species production [40].

From the clinical standpoint, nutritional issues could 
strongly influence other important aspects of the psycho-
logical profile of SMS patients, such as sleep disorders [41]. 
Food behavioral abnormalities increase with age, starting 
mostly at school age, peaking into a specific feeding disor-
der/severe overeating issue [42] in the early adolescence. The 
triggering factors causing transition from infancy to the onset 
of obesity in early adolescence with food-related problems, 
including impairment of satiety and impulsive response when 
food is denied, are still not well understood [9]. Even though 
a molecular deregulation is considered the common ground 
for eating behaviors, sleep, and obesity among individuals 
with SMS, it is highly plausible that other yet unknown bio-
logical factors might contribute as well [11].

Some limitations should be declared. Missing the exact 
amounts of sugar-sweetened beverages and their contri-
bution to total energy intake and/or carbohydrate intake 
requires that specific further observations are needed. 
Moreover, body shape or body composition lack of assess-
ment also provides the opportunity for future research to 
better characterize fat distribution patterns in SMS patients. 
In the future, further studies on nutritional/hydration sta-
tus assessment by examining the body composition might 
collect data regarding energy expenditure in SMS patients. 
Furthermore, the development of syndrome-specific dietary 
guidelines for SMS patients, as those created for PWS, might 
be of relevance aiming to hamper weight gain in this cohort 
of patients, even is not borne out by the data presented in 
this study.

Our results emphasize further the importance of a per-
sonalized clinical and nutritional management of SMS 
patients, especially in the pre-adolescent age when the risk 
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of bodyweight gain seems to peak. As mostly the exogenous 
nutritional factors may play a role in the onset of the obesity 
in these syndromic children, an early dietary intervention, 
such by correcting the energy balance between macronutri-
ents (increasing protein intake with a lower carbohydrate/
lipid consumption), might reduce the risk of the outbreak 
of overweight.

Conclusions

The onset of overweight and obesity in SMS pediatric 
patients is not explained by REE abnormalities, but dietary 
factors result crucial. Special attention should be given to 
patients with RAI1 variants due to their distinct nutritional 
and metabolic profile. A better understanding of the molecu-
lar mechanisms causing obesity in SMS patients could throw 
the basis for potential future targeted therapies.
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