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A Multimodal Approach Exploiting EEG to Investigate the Effects of VR 
Environment on Mental Workload

Marta Mondellinia , Ileana Pirovanob , Vera Colomboa , Sara Arlatia , Marco Saccoa ,  
Giovanna Rizzob , and Alfonso Mastropietrob

aIstituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, Lecco, Italy; 
bIstituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Milan, Italy 

ABSTRACT 
Virtual reality (VR) is a technology that allows users to experience multisensory and interactive 
environments that simulate real or imaginary scenarios. The effect of different VR immersive tech-
nology on mental workload (MWL), i.e., the amount of resources required to perform a task, is still 
debated; however the potential role of EEG in this context was never exploited. This paper aims 
to investigate the effects on MWL of performing a cognitive task in a VR environment in two con-
ditions characterized by different degrees of immersion using a multimodal approach which com-
bines well-assessed subjective evaluations of MWL with physiological EEG measures. A cognitive 
task based on the n-back test was proposed to compare the performance and MWL of partici-
pants who used either a head-mounted display (HMD) or a desktop computer to present the stim-
uli. The task had four different complexity levels (n¼ 1 or 2 with either visual or visual and audio 
stimuli). Twenty-seven healthy participants were enrolled in this study and performed the tasks in 
both conditions. EEG data and NASA Task Load indeX (NASA-TLX) were used to assess changes in 
objective and subjective MWL, respectively. Error rates (ERs) and reaction times (RTs) were also col-
lected for each condition and task level. Task levels had significant effects on MWL, increasing sub-
jective measures and decreasing performance, in both conditions. EEG MWL index have shown a 
significant increase especially if compared to rest. Different degrees of immersion did not show 
significant differences neither in individual’s performance nor in MWL as estimated by subjective 
ratings. However, HMD reduced the EEG-derived MWL in most conditions indicating a lower cogni-
tive load. In conclusion, HMD may reduce the cognitive load of some tasks. The reduced level of 
MWL, as depicted by the EEG MWL index, may have implications for the design and future evalu-
ation of VR-based applications.
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Mental workload; EEG; 
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1. Introduction

Mental workload—(MWL) is a multidimensional construct 
that reflects the amount of mental resources required to per-
form a task or a set of tasks. While there’s still no consensus 
on MWL definition, a novel, inclusive and operational defin-
ition of human MWL can be found in a recent paper by 
Longo and colleagues (Longo et al., 2022). MWL depends 
on various factors such as the complexity (Bl€asing & 
Bornewasser, 2021) and duration (Khaksari et al., 2019) of 
the task, environmental and situational conditions, and indi-
vidual characteristics and skills (Brookhuis et al., 2009; 
Verwey, 2000). High MWL levels, as well as too low levels, 
can lead to decreased performance and increased errors 
(Fan & Smith, 2017; Kantowitz, 2000; Lysaght et al., 1989). 
This can affect human performance, well-being, and safety 
in complex human-machine systems (Midha et al., 2022).

Nowadays, people are required to multitask and maintain 
prolonged vigilance while still performing well (Haavisto 

et al., 2010; Holm et al., 2009). This can happen during daily 
activities or in working environments, or even more specif-
ically in rehabilitation and training settings (Falkenstein & 
Gajewski, 2021; Karbach & Strobach, 2022; Smithers et al., 
2018). Furthermore, it is worth noticing that some individu-
als may have additional cognitive demands due to aging 
(Tucker-Drob et al., 2019) or some psychophysiological con-
ditions, such as after an accident or a stroke affecting brain 
regions (Riese, 1999). In this perspective, assessing the level 
of MWL is essential and can help optimize task design, 
rehabilitation strategies, training, and in general human- 
machine interactions (Asgher et al., 2021; Wickens, 2017). 
This can potentially lead to the informed development of 
new technologies, information-based procedures, and user 
interfaces that maximize human performance.

The complexity of the MWL paradigm led to the use of a 
multidomain evaluation of MWL involving a combination 
methods, including subjective ratings, task performance 
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outcomes, and psychophysiological measures (Arana-De las 
Casas et al., 2021; Charles & Nixon, 2019; Tao et al., 2019), 
providing a more comprehensive assessment of an individu-
al’s mental workload (Albuquerque et al., 2020; Borgheai 
et al., 2019).

Over the last 25 years, VR-based technologies have played 
a growing role in mediating human-machine interactions 
across different areas spanning from training and entertain-
ment to education and rehabilitation (Slater & Sanchez- 
Vives, 2016). VR is a technology that allows users to experi-
ence multisensory and interactive environments that simu-
late real or imaginary scenarios. More recently, the advent 
of good-quality and affordable devices, such as HTC Vive 
and Oculus Quest, has greatly increased the widespread use 
of immersive virtual reality (IVR). Such devices, namely 
Head Mounted Displays (HMDs), can completely immerse 
the users in a virtual scenario, thus increasing their Sense of 
Presence and involvement (Krokos et al., 2019; Mondellini 
et al., 2018; North & North & North, 2016; Pallavicini et al., 
2019; Schwind et al., 2019). On the other hand, IVR also 
poses some challenges and risks for the users, as it may 
induce cybersickness, anxiety, or mental fatigue, which can 
strongly impact the perceived quality of the whole experi-
ence (Weech et al., 2019).

In this context, the evaluation of the effects of VR on 
MWL is a hot topic. Previous studies have shown that VR 
might increase MWL (Jost et al., 2020; Wu et al., 2020) 
because it can require additional information processing 
from the user, such as the processing of visual and auditory 
stimuli, which can increase the user’s cognitive load. 
Conversely, other papers have shown that VR can reduce 
mental workload. For example, Chang et al. (2019) have 
shown that VR reduces the individual’s MWL during the 
process of programming an industrial robot, and Chao et al. 
(2017) reported that VR training can reduce mental work-
load compared to traditional training methods. In other 
papers, VR had no significant effect on any of the dimen-
sions of workload (Luong et al., 2019; Xi et al., 2023). 
Specifically, Chen and colleagues have shown that VR had 
no significant effect on any workload sub-dimensions in a 
shopping-related task, whereas the results described by 
Luong and colleagues support the fact that there is no spe-
cific additional mental effort related to the immersion in a 
VE using a VR HMD. In conclusion, there is still a lack of 
consensus on whether the degree of immersion provided by 
a VR device could affect the MWL of the users. This might 
be due to the different methodological approaches that have 
been used for the MWL evaluation, as well as different 
experimental protocols and stimulation. However, the use of 
electroencephalography (EEG) has not been explored yet, 
although EEG is a widely used technique, in other contexts, 
for the estimation of MWL. Indeed, EEG allows obtaining a 
direct non-invasive measurement of brain activity in differ-
ent conditions (Borghini et al., 2014; Chikhi et al., 2022; 
Holm et al., 2009).

Therefore, the main goal of this paper was to explore the 
effects of different levels of immersion on MWL using a 
multimodal approach that combines subjective evaluations 

and physiological EEG measures. We also aimed to compare 
different task levels (n-back tests) in terms of their impact 
on MWL. We hypothesize that the VR environment, as well 
as the complexity of the tasks, has a significant effect 
on MWL.

2. Materials and methods

2.1. Participants

27 participants (16 males and 11 females) aged between 24 
and 41 years (mean ¼ 31.37, SD¼ 4.32) were enrolled. The 
study was conducted according to the principles expressed 
in the Declaration of Helsinki and was approved by the eth-
ics committee of the National Research Council of Italy. All 
participants had normal or corrected-to-normal vision and 
no history of neurological, cognitive, or psychiatric disor-
ders. The participants signed a written informed consent 
before participating in the study.

2.2. Experimental protocol

The experimental sessions were carried out in a controlled 
laboratory environment to avoid any external noise sources 
that could interfere with the participants’ cognitive perform-
ance. The same room was used for all sessions and the time 
range was fixed to avoid variations in circadian rhythms.

Participants were required to have a sufficient night’s 
sleep before each session and to refrain from consuming any 
caffeinated beverages within 4 h before the experiment. They 
were randomly assigned to one of two groups: one group 
used the desktop computer (Desktop) in the first session 
and then switched to immersive virtual reality (HMD) after 
a week, while the other group did the opposite. The pro-
posed cognitive task, based on the n-back test (see section 
2.3 for further details), was identical in both sessions and 
was performed within a natural environment (see section 
2.4 for further details). The experimenters explained to the 
participants how to perform the task and to keep their heads 
still and restrain from sudden movements as far as possible 
during the entire EEG acquisition. They also gave them 
instructions on how to fill out the NASA Task Load indeX 
(NASA-TLX) (see section 2.6 for further details) that was 
integrated into the digital application and administered at 
the end of each level of the task. The participants performed 
a 2-min familiarization session with the cognitive tasks; this 
activity was performed at least 10 min before the beginning 
of the experimental test. During this phase, doubts about 
the execution of the test and the meaning of the questions 
were clarified. Furthermore, participants could see the ori-
ginal NASA-TLX on paper.

The session proceeded with the dressing of the EEG hel-
met followed by the HMD in case of immersive VR sessions. 
We carefully checked that any EEG channels would not 
detach during the HMD wearing, that the electrodes’ imped-
ance would remain in the accepted values range (below 20 
kX) and that the channels’ bridge would not occur due to 
the spreading of gel. The HMD used in this study is an 
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HTC Vive Pro (2011-2023 HTC corporation#) with a wire-
less adapter, characterized by a resolution of 1440� 1600 
pixels per eye, a field of view of 1108, and a 90 Hz refresh 
rate. The HTC Vive Pro is a Hi-res certified headset, with 
Hi-res certified headphones integrated with 3D spatial audio. 
Resting-state EEG signals were then recorded for 3 min 
before each session; subsequently, the experimental phase 
started. The whole task was divided into four blocks of 
4 min each in which the user performed the cognitive task 
with incremental difficulty (see section 2.3). At the end of 
each level of cognitive task, the NASA-TLX was adminis-
tered to evaluate subjective MWL. A schematic representa-
tion of the whole protocol is displayed in Figure 1.

2.3. N-back test

N-back test is a tool that measures a part of working mem-
ory and working memory capacity (Jaeggi et al., 2008). It 
involves presenting a sequence of stimuli (such as images or 
letters) one by one and asking the participants to indicate if 
the current stimulus is the same as the one that appeared n 
steps before (one or two steps in our protocol). In the dual- 
task paradigm (Jaeggi et al., 2003), two independent sequen-
ces are presented simultaneously, in our case an auditory 
and a visual stimulus. In this way, the attentive resources 
from the participants should be distributed in two cognitive 
functions. The load factor n was set to 1 in the first (Level 
1) and third levels (Level 3), and to 2 in the second (Level 
2) and fourth levels (Level 4). In the first two levels (Level 1 
and Level 2), the participant responded only to visual stim-
uli. In levels 3 and 4 (Level 3 and Level 4), the auditory 
stimuli were added to the visual stimuli. At each level, the 
participants were required to react differently depending if 

the repeated stimulus was visual or auditory. They were also 
instructed to respond as quickly and accurately as possible.

2.4. Digital environment

The digital environment—developed in Unity (version 
2020.3.29f1)—consisted of two scenes. The first one—loaded 
when the application is launched—was used for the REST 
assessment (Figure 2(a)). The participant was asked to relax 
and focus his/her gaze on a white cross placed over a black 
background. The participant was asked to press the Space 
bar to start the rest phase, which then lasts three minutes.

After this period, the second scene was automatically 
loaded. The virtual scenario reproduced a park where the 
user moved automatically along a predefined path at a con-
stant speed of 60 revolutions per minute. The participant 
observed the virtual environment from a first-person per-
spective. The virtual park scenario derives from previous 
works carried out by the STIIMA research group (Colombo 
et al., 2023; Mrakic-Sposta et al., 2018). Such an environ-
mental setting was considered suitable as relaxing and not 
containing too many elements that could distract the partici-
pants’ attention from the main cognitive task (e.g., no sud-
den events). The original setup, designed for dual-task 
training, for rehabilitation purposes, foresees that the user 
controls the movement in the virtual environment by 
cycling on a stationary bike (Arlati et al., 2019; Pedroli 
et al., 2018). In the present study, aimed at specifically eval-
uating how increasing the immersion of such VR training 
could impact the mental workload, we maintained the ori-
ginal setup with the exclusion of the cycling part to focus 
the evaluation on the cognitive aspect and avoid other influ-
encing factors. Letting the user the possibility to explore the 

Figure 1. Experimental protocol. The figure shows the timeline of events in each session. The participants performed a rest phase followed by four levels of cogni-
tive task based on the n-back test. The task was presented in either a desktop computer or a head-mounted display (HMD) condition. The EEG signals were 
recorded throughout the session. The NASA-TLX was administered after each level of the task to assess the subjective MWL.
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virtual park scenario, even without actively controlling 
the movement, is important to facilitate the transfer of 
results to future rehabilitation settings. The following fea-
tures characterizing the n-back cognitive task were added 
for the purpose of this study.

The LSL4Unity plugin was imported into the Unity pro-
ject to allow EEG acquisition synchronization. The package 
enables the integration of the labstreaminglayer—an open- 
source networked middleware ecosystem to stream, receive, 
synchronize, and record neural, physiological, and behav-
ioral data streams acquired from diverse sensor hardware 
(Kothe et al., 2014). Before starting the task, the participant 
was shown all the visual stimuli, i.e., nine red spheres on a 
3� 3 invisible grid, to familiarize with the nine positions 
(Figure 2b). Since the purpose of the present study was not 
to evaluate a specific cognitive ability—e.g., the discrimin-
ation of shape or position in space—one of the visual fea-
tures of the stimulus already used with the n-back task, 
namely the spatial position of the stimulus (Jaiswal et al., 
2019) was chosen. For the audio stimulus, a pre-recorded 
voice spelled a letter among nine possible ones (a, e, i, o, u, 
h, g, m, j). The choice of this kind of verbal auditory stimu-
lus was based on the fact that, in the Italian language, the 
letters proposed are easily distinguishable sounds. The par-
ticipant had to respond by pressing the “A” key on the key-
board when the visual target appeared and the “L” key if the 
auditory target occurred. In our experiment, the time 
between the disappearance of one stimulus and the appear-
ance of the next was 2500 ms, and each visual stimulus 
remained on the screen for 500 ms. Reaction times (RTs) 
and the correctness of the answers were automatically col-
lected by the application. The four tasks—as described in 

section 2.3—were presented in sequence; an example in 
which the sphere appears in position 7 is shown in Figure 
2(c). At the end of each task level, the NASA-TLX was pre-
sented on a UI panel at the center of the user’s point of 
view (Figure 2(d)).

2.5. Performance metrics

The objective cognitive task performances were evaluated 
using the error rate (ER) and the reaction time (RT). The 
ER was calculated by dividing the number of incorrect 
answers (False Positive, FP and False Negative, FN) by the 
total number of stimuli requiring an answer (True Positive, 
TP; FP and FN) from the participants.

The ER is defined as:

ER ¼
FP þ FN

TP þ FP þ FN
(1) 

which is equivalent to 1-Jaccard Index (Jaccard, 1912; Taha 
& Hanbury, 2015)

2.6. Subjective MWL assessment

Subjective MWL was evaluated using NASA-TLX (Hart, 
2006; Hart & Staveland, 1988), a widely used multidimen-
sional assessment tool that rates perceived workload across 
six dimensions: mental demand, physical demand, temporal 
demand, performance, effort, and frustration. Each dimen-
sion of NASA-TLX is rated on a scale from 0 (very low) to 
20 (very high). The participants completed the questionnaire 
after each task’s level using the digital version of the ques-
tionnaire embedded within the software developed to 

Figure 2. Digital environment. The figure shows the screenshots of the digital environment developed in Unity. (a) The environment proposed for rest phase; (b) 
The nine possible positions for visual stimuli; (c) A visual stimulus appears in position 7; (d) The NASA-TLX questionnaire.
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present stimuli. Both the scores in the six dimensions and 
the sum of the scores (Overall NASA-TLX Score) were con-
sidered in this study.

The NASA-TLX proposed to participants slightly differs 
from the original version. First of all, in the original, the six 
scales are all reported on the same page, one below the 
other; in the present study, this was not possible as this 
choice would have made the six scales impossible to read, 
especially in HMD mode. This is why the six scales were 
proposed in six successive steps/pages, one after the other. 
However, the original scale was shown to all participants 
before the test was performed. Additionally, each NASA- 
TLX scale in this study was proposed with a default value in 
the center, and the scale was not graduated, unlike the ori-
ginal NASA-TLX. However, in this study, the goal was to 
evaluate the variations related to the difficulty of the tasks 
and the degree of immersion; therefore any underestimation 
or overestimation effects should not affect the results.

2.7. Objective MWL assessment

2.7.1. EEG acquisitions
Continuous EEG data were collected using a compact 32- 
channel system (eegoTMsports 32, ANT NeuroVR , Enschede, 
The Netherlands). A gel-based electrode cap with sintered 
Ag/AgCl electrodes was used (Waveguard, ANT NeuroVR , 
10–20 system). The online reference was placed at the CPz 
electrode. The signal was acquired with eego sports acquisi-
tion software connected to a 24 bits amplifier at a sampling 
rate of 500 Hz. Impedances for all electrodes were kept 
below 20 kX. EEG signals were recorded across 30 channels: 
Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, 
C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, 
POz, O1, Oz, and O2 excluding the mastoids electrodes (M1 
and M2). The starting and ending points of each trial com-
posing the whole session (e.g., Rest, Task 1, Task 2, Task 3, 
Task 4) were automatically labeled using the lab stream layer 
(LSL).

2.7.2. EEG pre-processing
EEG signals were processed as previously suggested by 
Mastropietro et al. (Mastropietro et al., 2023). In particular, 
EEG signals were band-pass filtered in the range 1–45 Hz 
using a Hamming windowed sinc Finite Impulse Response 
(FIR) filter. Bad channels were removed by evaluating the 
normed joint probability of the average log power across the 
channels (Gabard-Durnam et al., 2018). Channels whose 
probability falls more than three standard deviations from 
the mean are removed as bad channels. Subsequently, the 
Artifact Subspace Reconstruction (ASR) algorithm (Mullen 
et al., 2013) was used to interpolate artifact “bursts” with a 
variance higher than fifteen standard deviations different 
from the automatedly detected reference signal, as previously 
suggested (Chang et al., 2018). Independent Component 
Analysis (ICA) was then used to detect and remove artifacts 
(such as eye movements and electrocardiographic signals) 
that usually overlay with brain activity in EEG recordings. 

The extended Infomax (Bell & Sejnowski, 1995) ICA algo-
rithm was used in this work. ICLabel (Pion-Tonachini et al., 
2019) was used to automatically reject independent compo-
nents having a probability to be plausible brain sources of 
less than 40%. Channels that were removed as “bad 
channels” were replaced by data interpolated from nearby 
“artifact-free” channels using a spherical function, and EEG 
signals were re-referenced to the average of the channels. All 
the pre-processing steps were implemented in MATLAB 
(R2021b, The MathWorks) using the EEGLAB toolbox 
(Delorme & Makeig, 2004).

2.7.3. MWL index calculation
Welch’s method was used to analyze the pre-processed EEG 
signals in the frequency domain and obtain the power spec-
tra in the 1–45 Hz range. We divided the EEG signal into 
non-overlapping segments of 1 s length (500 samples) and 
multiplied each segment by a Hamming window. We then 
computed the discrete Fourier transform of each segment 
and squared its magnitude to get the periodogram. We aver-
aged the periodograms across segments for each of the three 
experimental blocks to get the power spectra for each task. 
Next, we computed the absolute band power for each chan-
nel by integrating the power spectrum over theta (4–8 Hz) 
and alpha (8–13 Hz) frequency bands. Finally, according to 
the formulation reported in Holm et al. (2009), we calcu-
lated the MWL index (MWLI) of each block by dividing the 
absolute power h at Fz, corresponding the a frontal midline 
electrode, by the absolute power a at Pz, corresponding to a 
parietal midline electrode.

MWLI ¼
hFz

aPz
(2) 

2.8. Statistical Analysis

Descriptive analyses of performance metrics, subjective and 
EEG-based objective MWL were run. Due to the small sam-
ple size, asymmetry and kurtosis of some variables, a trans-
formation of the data has been performed in their respective 
ranks. The reliability of NASA-TLX was evaluated by Alpha 
and Omega coefficients (Dunn et al., 2014; Sijtsma, 2009). A 
frequently cited acceptable range of Alpha coefficient is a 
value of 0.70 or above (Hair et al., 2010) and the same cut- 
off is set for Omega coefficient (McNeish, 2018). The 
repeated measure two-way ANOVA test on the rank-trans-
formed data (Iman & Conover, 1979) was used to examine 
whether the interaction of the two within-subjects factors 
(Immersion modality and task levels) had a significant effect 
on the MWL-related metrics measured by different tools 
(e.g., EEG, Error Rates, Reaction Times, Overall NASA-TLX 
Score, etc.). A pairwise two-sided Wilcoxon test was then 
conducted for multiple comparisons between groups and p- 
values were adjusted using the false discovery rate method. 
We considered p-values � 0.05 as significant. Finally, 
Spearman’s correlation coefficient was calculated to assess 
the intra- and inter-domain correlations between MWL met-
rics, considering total experience scores and not individual 
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task levels. Statistical analysis and tests were performed in 
R (version 4.2.1) (R Core Team, 2022) embedded in 
RStudio (2022.12.0 Build 353) and IBM SPSS v.28 (IBM 
Corp., 2021).

3. Results

To provide a comprehensive overview of the findings and 
describe all the relevant results, this paragraph is divided 
into four sections. The first section describes changes in 
objective measures of performance (i.e., ER and RT). The 
second section describes changes in subjective measures of 
MWL determined through the NASA-TLX. The third sec-
tion describes quantitative changes in MWL metrics derived 
from EEG. Finally, the fourth section shows significant cor-
relations among parameters.

3.1. Performance assessment

As shown in Figure 3(a,b), in both Desktop and HMD con-
ditions, ERs to visual stimuli showed a tendency to increase 
over task levels. Similarly, ERs to auditory stimuli increased 
over task levels in both conditions. Two-way ANOVA 
revealed that task levels had a significant effect on the ERs, 
as indicated by a p-value < 0.001 for both visual and audi-
tory stimuli. All of the differences in ERs among task levels 

were statistically significant, except those in response to vis-
ual stimuli between levels 2 and 3 for Desktop and levels 1 
and 3 for HMD as listed in Table 1.

As shown in Figure 3(c,d), in both Desktop and HMD 
conditions, RTs to visual stimuli constantly increased over 
task levels. Similarly, RTs to auditory stimuli increased over 
task levels in both conditions. Two-way ANOVA revealed a 
significant effect of task levels on the RTs with p-value <
0.001 in both visual and auditory stimuli. Even in this case, 
the differences in RTs among task levels were statistically 
significant, except those in response to visual stimuli 
between levels 2 and 3 for both Desktop and VR as shown 
in Table 1.

Considering both the visual and audio tasks, the degree 
of immersion had not a significant effect on ERs (p> 0.05) 
whereas the two-way ANOVA revealed a significant effect of 
HMD environment on RTs in response to auditory stimuli 
(p¼ 0.038). Regardless of the task levels, neither ERs nor the 
RTs showed any significant difference between Desktop and 
HMD after the pairwise comparison.

3.2. Subjective MWL assessment

3.2.1. NASA-TLX Overall Score
The overall scale obtained good reliability in both Desktop 
(a¼ 0.75 and x¼ 0.74 level 1; a¼ 0.82 and x¼ 0.82 level 2; 

Figure 3. Performance metrics. The figure shows the boxplots of error rates (ERs) (a) and (b) and reaction times (RTs) (c) and (d) for visual and auditory stimuli in 
desktop and HMD conditions. For Desktop, ERs for visual stimuli had median values of 0, 0.2, 0 and 0.5 in levels 1, 2, 3 and 4 respectively. As to HMD, ERs had 
median values of 0 in level 1, 0.25 in level 2, 0 in level 3 and 0.5 in level 4. ERs for auditory stimuli had median values of 0 and 0.25 in levels 3 and 4 respectively 
for Desktop whereas the median values for HMD were 0 and 0.4 respectively. For Desktop, RTs to visual stimuli had median values of 0.79 s in level 1, 1.01 s in level 
2, 1.12s in level 3, and 1.75 s in level 4. For HMD, RTs had median values of 0.81 s in level 1, 1.02 s in level 2, 1.16 s in level 3, and 1.60 s in level 4. In the case of 
auditory stimuli, RTs had median values of 1.27 s and 1.75 s in levels 3 and 4 respectively for Desktop whereas the median values for HMD were 1.28 s and 1.88 s 
respectively. There were no significant differences between desktop and HMD conditions in terms of ERs and RTs.
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a¼ 0.81 and x¼ 0.82 level 3; a¼ 0.75 and x¼ 0.75 level 4) 
and HMD (a¼ 0.78 and x¼ 0.77 level 1; a¼ 0.86 and 
x¼ 0.87 level 2; a¼ 0.81 and x¼ 0.82 level 3; a¼ 0.83 and 
x¼ 0.82 level 4) conditions.

As displayed in Figure 4, in both Desktop and HMD 
conditions, the Overall NASA-TLX Score showed a tendency 
to increase over task levels, analogously to what was previ-
ously described for ERs and RTs.

Most of the differences in Overall NASA-TLX Score 
among task levels were statistically significant, except those 
in response to visual stimuli between levels 2 and 3 for both 
Desktop and HMD as listed in Table 2.

Even for the Overall NASA-TLX Score, regardless of the task 
levels, there was no significant difference between Desktop and 
HMD and no effect was revealed by two-way ANOVA.

3.2.2. NASA-TLX subscales
Median and interquartile differences for each subscale of the 
NASA-TLX are reported in Table 3.

Regarding Mental Demand, Temporal Demand, 
Performance, Effort, and Frustration no differences between 

the two conditions were found, at any level. Physical 
Demand differed between conditions in the first level 
(p¼ 0.002) and the third level (p¼ 0.022).

The differences in scores between levels, separated by 
experimental condition, are reported in supplementary files 
Table 1.

3.3. Objective MWL assessment by EEG

As shown in Figure 5, MWLI assessed using EEG signals 
did not reveal any significant trends with respect to task lev-
els. However, there was a consistent increase in MWLI dur-
ing tasks compared to rest in both Desktop and HMD 
conditions, as shown in Table 4. Additionally, when using a 
desktop, a slight but significant difference was observed 
between Levels 3 and 4 whereas in the case of HMD, Levels 
1, 2, and 4 were all significantly different from Level 3.

As regards the effect of HMD environment on MWLI 
values, the two-way ANOVA test has shown a significant 
result (p¼ 0.024). In particular, the pairwise comparisons 
showed significant lower MWLI in HMD if compared to 
Desktop between levels 2, 3 and 4 as shown in Table 5.

3.4. Correlations among metrics

As to the performance metrics, both ERs and RTs were sig-
nificantly moderately correlated with each other (desktop 
condition: q¼ 0.46, p< 0.001 for visual and q¼ 0.33, 

Table 1. Pairwise comparisons between task levels for both ERs and RTs, using the Wilcoxon test.

ER visual RT visual ER audio RT audio

MODALITY Group 1 Group 2 p adj p adj signif p adj p adj signif p adj p adj signif p adj p adj signif

DESKTOP Level 1 Level 2 0.002 �� 0.005 ��

DESKTOP Level 1 Level 3 0.034 � 0.01 �

DESKTOP Level 1 Level 4 0.000166 ��� 0.0000519 ����

DESKTOP Level 2 Level 3 0.179 ns 0.264 ns
DESKTOP Level 2 Level 4 0.002 �� 0.0000522 ����

DESKTOP Level 3 Level 4 0.000166 ��� 0.000106 ��� 0.001 �� 0.001 ��

HMD Level 1 Level 2 0.011 � 0.006 ��

HMD Level 1 Level 3 0.592 ns 0.000165 ���

HMD Level 1 Level 4 0.000454 ��� 8.94E-07 ����

HMD Level 2 Level 3 0.041 � 0.243 ns
HMD Level 2 Level 4 0.015 � 0.000189 ���

HMD Level 3 Level 4 0.000516 ��� 0.000788 ��� 0.0000432 ���� 0.0000432 ����

The adjusted p-values and statistical significance for both visual and auditory stimuli are listed.

Figure 4. Subjective MWL assessment. The figure shows the boxplots of the 
overall NASA-TLX score in desktop and HMD conditions. In the case of Desktop, 
the Overall NASA-TLX had median values of 33, 52, 53 and 73 in levels 1, 2, 3 
and 4 respectively. In the case of VR, Overall NASA-TLX showed median values 
of 40 in level 1, 57 in level 2, 49 in level 3 and 70 in level 4. There were no sig-
nificant differences between desktop and HMD conditions in terms of the over-
all NASA-TLX score.

Table 2. Pairwise comparisons between task levels for Overall NASA-TLX, 
using the Wilcoxon test.

Overall NASA-TLX

MODALITY Group 1 Group 2 p adj p adj signif

DESKTOP Level 1 Level 2 0.0000111 ����

DESKTOP Level 1 Level 3 0.0000111 ����

DESKTOP Level 1 Level 4 0.0000111 ����

DESKTOP Level 2 Level 3 0.736 ns
DESKTOP Level 2 Level 4 0.0000384 ����

DESKTOP Level 3 Level 4 0.0000111 ����

HMD Level 1 Level 2 0.0000118 ����

HMD Level 1 Level 3 0.0000192 ����

HMD Level 1 Level 4 0.0000118 ����

HMD Level 2 Level 3 0.258 ns
HMD Level 2 Level 4 0.0000124 ����

HMD Level 3 Level 4 0.0000118 ����

The adjusted p-values and statistical significance are listed.
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p¼ 0.02 for audio stimuli; HMD: q¼ 0.33, p< 0.001 for vis-
ual and q¼ 0.34, p¼ 0.012 for audio stimuli). When consid-
ering the relationship between performance metrics and 
subjective MWL, ERs exhibited stronger significant correla-
tions with the Overall NASA-TLX Score. The correlation’s 
indexes between RT, ER and NASA-TLX total score in both 

conditions are reported in Figure 6 for both visual and audi-
tory stimuli.

ERs and RTs for visual and auditory stimuli were found 
to be correlated with several domains composing the NASA- 
TLX, in both conditions. All correlation indexes between 
NASA-TLX subscales and performance metrics are shown in 
Supplementary Figures 1–4. The strongest correlation coeffi-
cients were found among NASA-TLX domains with values 
up to 0.87 as in the case of the correlation between Mental 
Demand and NASA-TLX Total Score in desktop condition, 
and up to 0.90 in the case of Effort and NASA-TLX total 
score using HMD, when visual stimuli were presented. No 
correlations were found between MWLI and either the 
objective performance metrics or the subjective metrics.

4. Discussion

This study investigated the effects of different levels of 
immersion (Desktop vs HMD) in a VR environment on 
MWL using a multimodal approach that combines subject-
ive and physiological measures along with the assessment of 
individual’s performance.

4.1. Effect of task levels on MWL

The results showed that ERs and RTs increased over task 
levels in both desktop and HMD conditions; this is consist-
ent with what was reported by the Norman and Bobrow 
model (Norman & Bobrow, 1975), whereby performance in 
a task can be affected when the task overloads the amount 
of available resources, in our case the working memory span 
(Navon & Gopher, 2014). Similarly, the Overall NASA-TLX 
Score, namely the subjective MWL, increased over task lev-
els in both desktop and HMD conditions, as reported in 
other studies (e.g., Aksu et al., 2023). Furthermore, the cor-
relation that emerged between objective performance and 
perceived workload is consistent with what is reported in 
the literature (Moray, 1982). This proves that N-back tasks 
effectively elicit varying levels of MWL, as demonstrated by 

Table 3. Median and interquartile difference (in the brackets) for Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD), Performance (P), Effort 
(E), and Frustration (F) in both conditions.

MD PD TD P E F

Level Condition DESK HMD DESK HMD DESK HMD DESK HMD DESK HMD DESK HMD

Lev.1 6 (6) 8 (6) 3 (4) 5 (7) 7 (5) 7 (4) 5 (6) 6 (6) 5 (4) 7 (6) 6 (5) 6 (6)
Lev.2 11 (6) 12 (5) 5 (6) 8 (7) 10 (6) 10 (5) 8 (6) 8 (5) 11 (5) 11 (5) 9 (6) 8 (6)
Lev.3 11 (5) 11 (4) 6 (6) 8 (6) 10 (5) 10 (5) 7 (4) 7 (5) 11 (5) 10 (6) 9 (6) 8 (6)
Lev.4 16 (6) 15 (5) 7 (8) 10 (9) 10 (7) 12 (7) 12 (6) 12 (6) 13 (6) 14 (6) 11 (8) 11 (8)

Figure 5. Objective MWL assessment by EEG. The figure shows the boxplots of 
the mental workload index (MWLI) derived from EEG signals in desktop and 
HMD conditions. MWLI, in the case of Desktop, had median values of 1.12 at 
rest, 1.80 in level 1, 2.01 in level 2, 1.87 in level 3 and 2.16 in level 4. 
Considering HMD, MWLI showed median values of 0.978 at rest, 1.79 at level 1, 
1.67 at level 2, 1.51 at level 3 and 1.87 at level 4. The MWLI was significatly 
lower in HMD than in desktop condition in levels 2, 3 and 4.

Table 4. Pairwise comparisons between task levels for MWLI, using the 
Wilcoxon test.

MWLI

MODALITY Group 1 Group 2 p adj p adj signif

DESKTOP REST Level 1 9.93E-08 ����

DESKTOP REST Level 2 1.12E-07 ����

DESKTOP REST Level 3 9.93E-08 ����

DESKTOP REST Level 4 9.93E-08 ����

DESKTOP Level 1 Level 2 0.159 ns
DESKTOP Level 1 Level 3 0.732 ns
DESKTOP Level 1 Level 4 0.169 ns
DESKTOP Level 2 Level 3 0.06 ns
DESKTOP Level 2 Level 4 0.732 ns
DESKTOP Level 3 Level 4 0.046 �

HMD REST Level 1 0.0000084 ����

HMD REST Level 2 1.42E-06 ����

HMD REST Level 3 0.000209 ���

HMD REST Level 4 1.42E-06 ����

HMD Level 1 Level 2 0.698 ns
HMD Level 1 Level 3 0.029 �

HMD Level 1 Level 4 0.534 ns
HMD Level 2 Level 3 0.006 ��

HMD Level 2 Level 4 0.953 ns
HMD Level 3 Level 4 0.005 ��

The adjusted p-values and statistical significance are listed.

Table 5. Pairwise comparisons between different VR environments for each 
task level for MWLI using the Wilcoxon test.

MWLI

TASK Group 1 Group 2 p adj p adj signif

REST DESKTOP HMD 0.455 ns
Level 1 DESKTOP HMD 0.106 ns
Level 2 DESKTOP HMD 0.006 ��

Level 3 DESKTOP HMD 0.03 �

Level 4 DESKTOP HMD 0.006 ��

The adjusted p-values and statistical significance are listed.
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both subjective and objective metrics, and it is consistent 
with previous research (Herff et al., 2013; Luong et al., 
2019).

However, our study found consistent significant differen-
ces in the EEG MWL index mainly between rest and each 
task level while only incidentally among task levels. 
Additionally, no significant correlations were found between 
the EEG-derived MWL index and other subjective measures 
or performance metrics. To explain this partial inconsist-
ency, it should be considered that our definition of the 
MWL index considers the contributions of theta band 
power, which is associated with working memory processes, 
and alpha band power, which has long been considered an 
indicator of the brain’s “wakefulness” state due to its desyn-
chronization during cognitive tasks (Chikhi et al., 2022). In 
our study, the cognitive workload increased compared to the 
resting condition but remained relatively stable regardless of 
task complexity. This may be due to the low frequency of 
events requiring active user intervention (a maximum of five 
events in each task) during the proposed sessions. As a 
result, the average MWL index derived from EEG signals 
over the 4-min task duration may not be sensitive enough 
to the low effect on working memory and attention elicited 
by such a small number of events to be detected. Recently, 
Tremmel and colleagues (Tremmel et al., 2019) found that 
the spectral power of EEG signals can effectively discrimin-
ate workload levels during an N-back task presented in a 

VR environment. Specifically, they found a correlation 
between workload levels and b and c power for frontal elec-
trodes. However, they did not find the typical frontoparietal 
h/a variations consistently in all subjects, which is in agree-
ment with our results.

4.2. Effect of immersive VR environments on MWL

As to the effect of different immersive VR environments on 
MWL, no significant differences between desktop and HMD 
condition was revealed neither by performance measures 
nor by subjective MWL metrics. However, interestingly, the 
study revealed that when a HMD was used, the EEG-derived 
MWLI decreased in most conditions. To control for possible 
biases due to the setup variations in desktop and HMD 
tests, we performed a signals sanity check, both during the 
acquisitions and the off-line pre-processing. Moreover, we 
did not find significant differences between the baseline 
EEG-MWLI acquired in the two conditions, suggesting that 
significant changes observed during the tasks could be 
ascribed to the VR modality. We may hypothesize that the 
reduced MWL recorded in the HMD condition can be due 
to the higher sense of presence provided by the device 
(Gorini et al., 2011; Paes et al., 2021; Pallavicini et al., 2019), 
which have contributed in distracting the participants from 
the demands of the n-back cognitive task (as it happens, 
e.g., for pain (Shahrbanian et al., 2012) or perceived effort 

Figure 6. Upper Panels show Spearman’s correlation indexes for visual ERs and TRs, as well as the total NASA-TLX score in both desktop (a) and HMD (b) 
conditions. Lower Panels display the same indexes for auditory ERs (c) and TRs (d). In each panel, on the bottom of the diagonal the bivariate scatter plots with a 
fitted line are displayed. On the top of the diagonal the value of the correlation plus the significance level as stars. Each significance level is associated to a symbol: 
p-values (0, 0.001, 0.01, 0.05, 0.1, 1) <¼ > symbols (“���”, “��”, “�”, “.” “).
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(Colombo et al., 2022; Gomez et al., 2022)). However, more 
specific studies investigating this relationship are needed to 
confirm this hypothesis. The effects of VR on MWL are still 
debated and controversial results have been reported in the 
recent literature, as described in the introduction. Our 
results, considering just the subjective and objective per-
formance metrics, agree with those described in some previ-
ous papers (Xi et al., 2023) that did not show any significant 
effect of an immersive environment on MWL levels. 
Specifically, Luong and colleagues conducted an experiment 
to assess the effect of being immersed in a virtual environ-
ment using an HMD on the user’s mental effort while per-
forming a standardized cognitive task (the well-known 
N-back task, with three difficulty levels). Their results sup-
port the fact that there is no specific additional mental effort 
related to immersion in a virtual environment using a VR 
HMD. However, the decrease in the EEG MWL index in 
HMD condition observed in this study is interesting and 
unprecedented, as no prior research has utilized EEG meas-
urements in this particular context. Other physiological 
measurements (e.g., Blood Volume Pulse; Photo 
Plethysmography; Electrodermal Activity, Heart Rate 
Variability) have failed to show any difference (Luong et al., 
2019) or seemed to be more sensitive in the comparison of 
a non-immersive VR-based industrial training versus a trad-
itional method (Chao et al., 2017). The methodology pro-
posed in this study may be replicated in future studies to 
extend the evaluation of MWL to other factors that charac-
terize VR, e.g., the ways of interaction, the types of instruc-
tions and/or feedback provided. In addition, other cognitive 
tests to elicit a stress response, e.g. the Stroop Test, specific-
ally adapted to VR applications, may be employed as pro-
posed and validated by Gradl and colleagues (Gradl et al., 
2019) but not yet tested with EEG-derived indexes.

The reduced level of MWL, as depicted by the EEG 
MWL index, may have implications for the design and 
evaluation of VR-based applications. In the rehabilitation 
field, measuring MWL can be essential to understand better 
which technology can favor the improvement of patients’ 
clinical outcomes. For instance, for administering cognitive 
training to patients or older adults with cognitive decline, it 
is key that only the task itself requires MWL and not the 
interaction with the technological means. Indeed, if acting in 
the virtual environment becomes too demanding, it may 
happen that: first, the cognitive training may not address the 
correct cognitive domains, and second, the task may become 
too challenging, jeopardizing any benefit for the patients. 
Again, in an assistive scenario, measuring the MWL can be 
essential to choose the right assistive technologies, beyond 
the rehabilitation tasks themselves, that can favor patient 
mobility and autonomy. In this context, recently, a light-
weight wearable robotic exoskeleton was proposed to assist 
potential stroke patients with an integrated portable brain 
interface using MWL signals acquired with a portable func-
tional near-infrared spectroscopy (fNIRS) system (Asgher 
et al., 2021). The system may generate command signals for 
operating a wearable robotic exoskeleton hand using two- 
state MWL signals, thus adapting to the user’s status.

4.3. Limitations and future works

The main limitation of this study is the low number of vol-
unteers involved in the experimentation. In the future, to 
generalize our findings, a larger sample size could be used 
to confirm the results pointed out in this study. If this hap-
pens, the fact that the MWL is lower using immersive VR 
environments will open up new perspectives; for example, in 
the field of training and rehabilitation, in which the subjects 
have to perform the same exercise numerous times, minim-
ize the cognitive load in patients already suffering from cog-
nitive and/or motor deficits could be a support to increase 
not only performance but the motivation itself for the activ-
ity. Another limitation of our study is that the target stimuli 
in the n-back task were few and infrequent. This probably 
did not stimulate the users’ attention and concentration and 
could have affected some parameters related to the perform-
ance, as reported in other works (Young et al., 2015; Young 
& Stanton, 2002). However, the minimum number of stim-
uli to be offered to the participants is not indicated in the 
literature and there are currently no guidelines on the devel-
opment of an n-back task with respect to various variables. 
Furthermore, it can be noted that, despite the small number 
of target stimuli, the parameters relating to reaction times 
and the number of errors changed as the difficulty of the 
tasks progressed thus indicating the effectiveness of the pro-
posed stimulation protocol. In future studies, proposing a 
task with more numerous target stimuli will therefore be 
more appropriate.

5. Conclusions

This study suggests that physiological EEG measures can be 
a valuable approach to investigate the impact of different 
levels of immersive VR on the complex MWL construct 
since it directly takes into account the underlying brain 
activity. Moreover, in our experimental protocol, it emerges 
that the use of HMD may reduce the cognitive load in most 
of conditions. However, further research is needed to under-
stand the relationship between immersion and MWL better 
and to develop more effective methods for measuring MWL 
in VR settings. Such information will be helpful in the 
future to make an informed design of novel VR-based appli-
cations in several fields, such as motor rehabilitation, cogni-
tive training, and industrial training.
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