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Abstract: In addition to energy recovery, the anaerobic digestion of agro-industrial byproducts can
also produce different high-value-added compounds. Two-stage and single-stage reactors were
compared for microbial communities’ selection and long-chain fatty acid (LCFA) accumulation to
investigate which microbial genera are most linked to the production of these compounds. The micro-
bial communities present in the two reactors’ configuration in the steady state were characterised by
16S rRNA amplicon sequencing, while LCFAs were extracted and quantified from digestate samples
by gas chromatography. The results showed the differentiation of the microbially dominant families
in the two setups: Defluviitaleaceae and Clostridiaceae in the acidogenic and methanogenic reactor
of the two-stage reaction respectively, while Dysgonomonadaceae in the single-stage set-up. LCFA
accumulation was significantly detected only in the acidogenic reactor, with palmitic (2764 mg/kg),
linoleic (1795 mg/kg) and stearic (1751 mg/kg) acids as the most abundant. The dominance of
Defluviitaleaceae UCG 011, along with the low abundance of the LCFA oxidiser Syntrophomonas spp.
in the acidogenic reactor, could be linked to the accumulation of such compounds. Therefore, the
different microbial communities shaped by the two reactors’ configuration affected the accumulation
of LCFAs, indicating that the two-stage anaerobic digestion of agro-industrial byproducts was more
effective than single-stage digestion.

Keywords: two-stage anaerobic digestion; dark fermentation; agro-industrial byproducts; long-chain
fatty acids; LCFAs; amplicon sequencing; microbiota; biogas; methane; CSTRs

1. Introduction

In a circular economy framework, the use of wastewater, organic fractions of municipal
waste, agri-based feedstock and byproducts from agro-industrial activities for biorefinery
processes has drawn much attention in terms of environmental sustainability and tech-
nological innovation [1]. Such feedstocks can be converted into a significant number of
valuable products, like biofuels, renewable gases, biofertilisers and biomolecules for green
chemistry, using a variety of technologies, including anaerobic digestion, pyrolysis and
gasification. The economic and ecological effects of these techniques have been largely
documented in the literature [2]. Anaerobic digestion (AD) is a well-known technology,
implemented on an industrial scale for biogas production [3]. AD of wastes and agri-based
feedstock is a flexible system, capable of contributing to many integrated pathways, such as
energy production, greenhouse gas emission reduction and byproduct valorisation. Some
of the output streams are methane, hydrogen, carbon dioxide and organic acids.
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Dark fermentation (DF) is a process based on the early stages of anaerobic digestion
(hydrolysis, acidogenesis and acetogenesis) and capable of converting feedstock into a
hydrogen-rich biogas and organic acids. When implemented together, DF and AD aim to
produce differentiated products in separate reactors connected in series (two-stage AD),
which can be carried out by means of layout and process modifications, optimising the use
of biomass and operating parameters (i.e., pH, organic loading rate, hydraulic retention
time) [4,5]. The acidification and methanogenesis stages are, thus, physically separated
to enhance the stability and the overall performance of the process [6]. This setup allows
for the conversion of the complex organic material into hydrogen, carbon dioxide and
organic acids during the acidogenic stage and the subsequent conversion of these easily
biodegradable compounds into methane and carbon dioxide during the methanogenic
stage [7]. Since hydrogen production through the DF process alone is not efficient due to
the low yields caused by intrinsic metabolic restrictions [8], the recovery of organic acids
and their use as biobased chemical building blocks can add value to the overall process [9].
Volatile fatty acids (VFAs) are a subgroup of fatty acids, ranging from two to seven carbon
atoms, including acetic, propionic, isobutyric, butyric, isovaleric, valeric, caproic, isocaproic
and heptanoic acids. Long-chain fatty acids (LCFAs), ranging from 12 to 26 carbon atoms,
result from the hydrolysis of lipid-rich feedstock fed into the anaerobic digester. VFAs and
LCFAs have a wide range of industrial applications in numerous areas, such as cosmetics,
chemicals, ingredients and pharmaceuticals; thus, they are considered building-block
chemicals. In addition, a characteristic of these high-value-added compounds is their
eco-friendly nature: they are non-polluting and biodegradable. LCFAs are the result of the
hydrolysis of lipid-rich matrices. Syntrophomonas spp. is recognised as syntrophic bacteria
capable of participating in the beta-oxidation reaction that converts LCFAs to acetate and
H2, which is then subsequently converted to methane by acetoclastic methanogens [10].
Consequently, the absence or low abundance of microorganisms capable of carrying out
this degradative pathway leads to the accumulation of LCFAs in the reactors, inhibiting the
methanogenic stage and resulting in low biogas yields [11]. This inhibition is reversible
since methane production continues as soon as LCFA degradation occurs again. Thus,
it is understandable how numerous studies have aimed to avoid the excessive LCFA
accumulation and instability in the digestion process, applying, for example, different pre-
treatments to biomass (e.g., saponification, emulsification or ultrasonication) [12]. Other
studies [13] have focused on the extraction of the LCFAs produced in reactors fed by
animal manure and oily effluent, with the aim of understanding the chemical pathways
that lead to the adsorption and degradation processes of LCFAs during anaerobic digestion.
Few studies [14,15], on the other hand, have been conducted by considering a two-stage
process (DF+AD), which can be used with a dual purpose: (a) collecting LCFAs in the
acidogenic reactor for their recovery and exploitation; (b) avoiding inhibition issues during
the production of biogas and obtaining significant energy yields because the methanogenic
phase occurs in a second dedicated reactor. Moreover, this clarifies how DF can contribute to
the concept of the circular economy, considering how agri-based wastes are not only reused
for energy production but, within the process, there is also a recovery of high-value-added
byproducts (LCFAs) and not an out-of-system import of resources [16].

The aim of this study was to simulate, at the lab scale, the process layout of a two-stage
anaerobic digestion plant at the full-scale level, to evaluate the effect of reactor configuration
(one- and two-stage continuous stirred tank reactors, CSTRs) on the performance of the
anaerobic digestion of agri-based feedstock. Specifically, the effect of the different-shaped
microbial consortia on the production of LCFAs was investigated by means of 16S rRNA
amplicon sequencing and gas chromatograph-based LCFA profiling.

2. Materials and Methods
2.1. Reactor Set-Up

Regarding the two-stage process, the experimental setup simulated the layout and the pro-
cess of a full-scale two-phase biogas plant facility (TPBG) and consisted of two 23 L lab-scale
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CSTRs fed agri-based feedstock at mesophilic temperature (42 ± 0.2 ◦C). The first stage was
carried out in an acidogenic reactor (R1) with a working volume of 14 L; the second stage
was carried out in a methanogenic reactor (R2) with a working volume of 16 L. For the final
calculations of specific methane yield, a reduction factor was counted for R1, according
to the effective proportions at the full-scale facility, to consider the net contribution of the
R1 reactor to the whole process. A hydraulic retention time (HRT) of 5 days was set for R1
and of 27 days for R2, while the organic loading rate (OLR) was set at 23.7 gVS L−1 day−1

for R1 and 2.34 gVS L−1 day−1. As regards the single-stage process, a third 23 L control
reactor (R3) was set up, with a working volume of 16 L, an HRT of 33 days and an OLR
of 3.14 gVS L−1 day−1. The three digesters were continuously mixed and kept at the
temperature set via a water bath surrounding the reactors. Before reaching the operational
conditions, the reactors were slowly adapted to digest the material through a feeding ramp,
to stabilize the microbiology and avoid overloading conditions. The feeding procedure
was in semicontinuous regime; i.e., the planned amount of digestate (measured as wet
weight) was removed, and an equal volume of feeding mixture was added. Following the
TPBG operational procedure, R1 was fed the raw agro-industrial feedstock plus digestate
recirculation from R2; R2 was fed pig slurry plus the outcoming digestate from R1; R3
was normally fed the feeding mixture. The amount of feeding mixture was divided into
three shares per day in the case of R1, while it was added all at once in the case of R2
and R3.

Agro-industrial byproducts and manure were used as feeding substrates for the
experiment. The feeding mixture was composed of pig slurry (71% w/w), barley residues
(12% w/w), ryegrass silage (7% w/w), poultry manure (5% w/w), olive pomace (3% w/w)
and milling byproducts (2% w/w). The substrates were collected every month at the TPBG
facility and stored at 4 ◦C prior to use. The feeding mix to be loaded was prepared every
day, during the trial, with stored raw substrates (age < 1 month). To start the reactors,
two different inocula were collected: digestate coming out from the first digester (acidogenic
stage) of the full-scale TPBG was used as inoculum for R1, while digestate coming from the
second digester (methanogenic stage) of the full-scale TPBG was used as inoculum for R2
and R3.

2.2. Sampling, Biomass Characterisation and Process Analyses

Six different types of biomass were used to produce the feedstock of the reactors (F)
(Table S1), the acidogenic and methanogenic inocula from the full-scale TPBG facility used
to start the lab-scale reactors (T0), and the digestate at two timepoints of the lab-scale
reactors steady state (T1 and T2: 2 and 4 months after the reactors’ start-up, respectively)
were collected in triplicate and analysed, for a total of 42 samples. The same inoculum was
used to start both the methanogenic reactor of the two-stage process (R2) and the single-
stage control reactor (R3). All samples were physico-chemically and microbiologically
characterised. Specifically, each biomass of the feeding mixture was characterised in terms
of total solids (TS) and volatile solids (VS) according to APHA standard methods [17]. The
amount of biogas produced by the lab-scale reactors was continuously measured through
a manometric system and electronically recorded. Biogas composition was determined
using a portable biogas analyser (Biogas 5000, Geotech Instruments, London, UK); the
concentrations (v/v) of CH4, CO2, H2, and H2S were measured and registered daily. The
temperature inside the reactors was continuously monitored. The digestate was sampled
and analysed once per week. pH was monitored weekly through a pH meter (Hach Lange
GmbH, Düsseldorf, Germany). Every two weeks, total solids (TS), volatile solids (VS) and
chemical oxygen demand (COD) were measured, in addition to the FOS/TAC ratio and
VFAs concentration. FOS and TAC were measured by 2 pH-point Nordmann titration
method [18] using 0.1 N sulphuric acid with pH 5.0 and pH 4.4 as endpoints; FOS (volatile
organic acidity) is expressed as mgHAceq/kg, while TAC (total alkalinity = basic buffer
capacity) is expressed as mgCaCO3 eq/kg. VFA concentration was measured using a gas
chromatograph (Agilent 7820A, Santa Clara, CA, USA) equipped with a flame ionization
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detector (FID) and automatic sampler. The column used was a J&W DB-FFAP of 30 m
length, 0.25 mm inner diameter and 0.25 µm film thickness. The calibration was made from
a mixture of 8 acids (standard solution): acetic (C2), propionic (C3), butyric (C4), isobutyric
(iC4), valeric (C5), isovaleric (iC5), caproic (C6) and heptanoic (C7). On the final digestate,
obtained at the end of the trial, LCFA concentration was measured. The LCFA extraction
from digestate was carried out in chloroform through hydrolysis and methylation using a
mixture of methanol/sulfuric acid (85:15%, v/v) and submitting the sample to digestion
for 3.5 h at 100 ◦C [13]. The methyl esters were detected and quantified with the same
equipment as the volatile fatty acids (GC-FID and DB-FFAP capillary column) but with
different operating parameters.

2.3. Microbial Communities’ Characterisation
2.3.1. DNA Extraction and Amplicon Sequencing

DNA extraction was carried out from 200 mg of each sample using the Fast DNATM

SPIN Kit for Soil (MP Biomedicals, LLC, Solon, OH, USA) according to the manufacturer’s
protocol. DNA concentration was determined with the Quant-iT dsDNA HS assay kit and
the Qubit fluorometer (Invitrogen, Carlsbad, CA, USA). The quality of the extracted DNA
was checked with agarose gel electrophoresis and then sent to the sequencing facility for
16S rRNA gene amplicon sequencing (V3-V4 regions) using the Illumina Miseq technology
(2 × 300 bp) (Illumina Inc., San Diego, CA, USA).

2.3.2. Bioinformatic and Statistical Analyses

Raw data sequences were elaborated with QIIME2 2021.11 [19]. Specifically, demul-
tiplexing and quality filtering were performed using the q2-demux plugin followed by
denoising with Deblur [20]. Samples were rarefied (subsampled without replacement)
to 8365 sequences per sample. Taxonomy was assigned to OTUs using the q2-feature-
classifier [21] classify-consensus-vsearch taxonomy classifier against the SILVA 138 99%
OTU reference sequences [22]. Sample diversity was evaluated and visualized with Micro-
biomeAnalyst tool [23]. α-diversity was measured with the Shannon index, and significance
was calculated with ANOVA (p-value cut-off = 0.05). β-diversity was estimated using Prin-
cipal Coordinate Analysis (PCoA) based on Bray–Curtis dissimilarity, and significance
was calculated with PERMANOVA (p-value cut-off = 0.05). The same tool was utilized
for the visualization of taxonomy-related stacked bar plots. Taxonomic results were fil-
tered as follows: low-count filtering considering 20 reads as minimum count and 20% as
prevalence in samples; low-variance filtering, based on inter-quantile range, considering
10% of removal. In order to investigate the relationship between process parameters and
microbial families found in the three reactors, canonical correspondence analysis (CCA)
was performed with Past4 (4.03) [24]. Finally, Orthogonal Projections to Latent Structures
Discriminant Analysis (OPLS-DA), considering data from the three reactors, was carried
out using SIMCA 13 (Umetrics, Malmo, Sweden). The supervised OPLS-DA models were
constructed considering bacterial genera found in R1, R3 and R3 and the LCFA production
observed in them. Additionally, the OPLS-DA model validation parameters (goodness-
of-fit R2Y and goodness-of-prediction Q2Y) were inspected, considering a Q2Y prediction
ability of >0.5 as the acceptability threshold. The importance of each variable for discrimi-
nation purposes was calculated through a VIP (variable importance in projection) selection
method, considering, as the minimum significant threshold, VIP scores > 0.8 [25].

3. Results and Discussion
3.1. Process Performance

The trial lasted 125 days, including startup (41 days) and the subsequent steady
state (84 days). The steady state was achieved with at least a 2.5 hydraulic retention
time and once process conditions (i.e., pH, FOS/TAC, digestate total solids content and
volume of gas produced) were kept constant. The specific methane production (SMP) and
the methane content in biogas (%CH4) were evaluated for the two-stage (R1 + R2) and
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single-stage (R3) AD reactors. The average SMP value observed for both processes was
161 NLCH4/kgVS, confirming the similar performances of the two-stage AD compared
to single-stage AD considering the energetic point of view. In contrast with various
previous literature contributions [26], in which a better performance of the two-stage AD
was observed over the single-stage AD, in this study, no significant differences in terms
of energy production could be found between the two processes. Similar results were
also achieved by [27], confirming that deeper analytical approaches are needed to better
understand the mechanisms producing these results. The SMP reached in both processes
was lower than expected using this kind of agri-based feedstock. A possible explanation
of such a slow process efficiency could be due to the 33 days of hydraulic retention time,
which represents a shorter time than the average retention time of 63 days observed for the
anaerobic digestion of agri-based feedstocks [28]. Regarding the quality of the produced
biogas, the average CH4 content of R2 was 61.8%, while the average CH4 content of R3
was 56.6%. The DF process, as previously mentioned, should be able to produce, mainly,
hydrogen and carbon dioxide, while the presence of methane indicates that the process is
shifting towards the methanogenic stage, with the consequent consumption of hydrogen
and organic acids. Low hydrogen production was observed in the acidogenic reactor R1
(<1000 ppm), and the biogas was composed, on average, of 15% of CH4 and 85% of CO2.
The yields of VFAs and hydrogen produced through two-stage AD are largely dependent
on process conditions. Studies have remarked that bioprocesses that are favourable for
the formation of VFAs at high yields usually produce hydrogen as a byproduct, and vice
versa [29]. Indeed, the low hydrogen concentration of the R1 biogas could be due to its
consumption by homoacetogens or could be the result of the partial inhibition of microbial
hydrogen production at an acidic pH due to the presence of organic acids in undissociated
molecules [30]. Although the differences in energy yields were negligible, the two processes
showed dissimilarities in terms of process conditions. In the acidogenic reactor R1, in which
mainly hydrolysis, acidogenesis and acetogenesis of the AD occurred, the accumulation of
VFAs implied by the constant pH value of 5.5 could have led to a reduction in the methane
produced, as methanogens require a higher pH. In the steady state, R1 showed the highest
concentration of VFAs, mostly related to acetate, propionate and butyrate, in descending
order (Table 1). The total VFA concentration was in line with other studies [6,31], even if
this depends strictly on feedstock and process parameters.

Table 1. Main physico-chemical parameters of the acidogenic (R1) and methanogenic (R2 and R3)
inocula (T0), and of the digestate samples collected in the reactors’ steady state (T1 and T2).

Parameter
Inoculum Steady State

T0 T1 T2

R1 R2/R3 R1 R2 R3 R1 R2 R3

TS (g/kg) 139.8 ± 10.1 48.1 ± 3.2 102.4 ± 9.9 58.7 ± 4.2 78.3 ± 4.1 127.0 ± 10.2 61.0 ± 3.6 79.3 ± 6.2
VS (g/kg) 123.1 ± 9.2 38.0 ± 2.2 88.6 ± 9.2 45.5 ± 3.2 62.7 ± 3.5 111.5 ± 10.2 48.9 ± 2.6 65.0 ± 5.8

COD (mg/kg) 247,513.0 ±
13,336.6

55,075.0 ±
1423.6

105,821.3 ±
19,472.0

46,872.0 ±
13,186.8

56,694.3 ±
19,175.5

117,311.3 ±
9333.1

47,288.7 ±
4230.7

49,235.0 ±
2138.0

FOS/TAC 5.6 ± 0.7 0.3 ± 0.0 6.1 ± 0.7 0.2 ± 0.0 0.3 ± 0.0 5.0 ± 0.4 0.3 ± 0.0 0.3 ± 0.0
pH 5.5 ± 0.2 8.2 ± 0.0 5.4 ± 0.2 7.8 ± 0.0 7.8 ± 0.1 5.6 ± 0.0 7.7 ± 0.1 7.7 ± 0.1

Acetate
(mg/kg)

5617.0 ±
1492.1 413.0 ± 223.6 5201.7 ±

1199.9 59.1 ± 51.1 73.7 ± 69.5 5080.0 ± 471.1 101.3 ± 92.4 135.0 ± 123.4

Propionate
(mg/kg) 3483.0 ± 39.7 n.d. 1 2904.3 ± 68.9 n.d. n.d. 3140.0 ± 351.6 n.d. n.d.

Butyrate
(mg/kg) 5395.0 ± 447.7 n.d. 2698.3 ± 552.4 n.d. n.d. 2463.0 ± 647.1 n.d. n.d

1 n.d.: not detected; values < 50 mg/kg.

3.2. Microbial Characterisation
3.2.1. Microbial Diversity

Considering the microbial diversity among the sample categories, an α-diversity
analysis based on the Shannon index showed that R1, R2 and R3 had significantly higher
(p-value: 4.0025 × 10−18) microbial richness and evenness than feedstock, which presented,
on the other hand, high variability (Figure 1a). Regarding the three reactors, R2 and R3
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showed similar values of microbial richness, while the acidogenic reactor R1 had lower
biodiversity compared with the methanogenic and one-stage counterparts (R2 and R3,
respectively). Taking into account β-diversity, PCoA explained, on the three axes, 70%
of the overall sample diversity (Figure S1), showing a significant difference between the
microbial communities considered (p-value: 0.001) (Figure 1b), especially between R1
and the other reactors and feedstock communities. A slight dissimilarity was also found
between R2 and R3, however, likely related to the different process configuration (two-
vs. one-stage anaerobic digestion), leading to higher microbial selection in the separated
methanogenic stage.
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Figure 1. (a) α−diversity of feedstock and digestate samples based on Shannon index. (b) PcoA plot
representing the β−diversity of sample categories: digestate from acidogenic (R1), methanogenic
(R2) and control (R3) reactors, and feedstock (VF: vegetable feedstock = barley residues, ryegrass
silage, milling byproducts, olive pomace; PM: poultry manure; PS: pig slurry).

3.2.2. Feedstock and Inoculum Effects on the Dominant Reactors’ Steady-State
Microbial Families

The taxonomic profile of the microbial communities was analysed at the family level,
considering the feedstock, the two different inocula used to start the reactors (one for the
acidogenic reactor [R1] and one for both the methanogenic and control reactors (R2 and
R3, respectively)) and the reactors in the steady-state condition. The reactors’ microbial
communities were evaluated at two timepoints (defined as T1 and T2) to verify the actual
steady state from a microbial perspective and evaluate the possible microbial selection
operated by the two different reactor configurations. As shown in Figure 2a, on average,
the predominant families in feedstock were Lactobacillaceae, Bacillaceae and Chloroplast. Lac-
tobacillaceae was highly present in ryegrass silage, reaching 97.9% of relative abundance,
and in olive pomace (76.6%). Many bacterial species belonging to this family are recognised
as key players in silage fermentation processes, as well as improving silage quality [32].
Regarding olive pomace, however, the presence of Lactobacillaceae in this matrix may be
related to the metabolic activity during fermentation processes, which lead to the produc-
tion of acetic acid and lactic acid [33]. The Bacillaceae family was, instead, mostly present
in barley residues and poultry manure (52.6% and 36.4%, respectively), while Chloroplast
and Mitochondria (20.3%) are the main abundant families found in milling byproducts. Fur-
thermore, the results showed that, in pig slurry, the predominant family found belonged
to Clostridiaceae (33.4%). Considering, instead, the microbiota of the two different inocula,
they mainly differed in the specific presence of MBA03 and the Dysgonomonadaceae families
in the methanogenic inoculum and the Defluviitaleaceae family in the acidogenic inoculum
(Figure 2b). This was evidenced as the inoculum consortia mainly shaped the reactors’
microbial composition in the steady state, even if the configuration of the reactors (one- vs.
two-stage), sharing the same inoculum, also influenced the distribution of some bacterial
families: Clostridiaceae and Lachnospiraceae in R2 and Dysgonomonadaceae in R3.
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Regarding the digestate samples in the reactors’ steady state (i.e., the period with stable
biogas production, with a daily variation lower than 10% for at least 5 days [34]), the main
microbial families showed a moderate difference in terms of relative abundance, even if the
two timepoints considered (T1 and T2) were both in the steady-state condition (Figure 2b).
The Clostridiaceae family was the most abundant overall, with a decrease in relative abun-
dance for R1 (T0 = 44.8%, T2 = 13.2%) and R3 (T0 = 28.5%, T2 = 15.1%) but, conversely,
revealed a different trend for R2, which maintained stable relative abundance (from 28.4%
in T0 to 30.6% in T2). Although the bacterial species belonging to the Clostridiaceae family
are recognised as playing a key role in the hydrolytic stage of anaerobic digestion, it is pos-
sible to attribute their decrease in the acidogenic reactor to the low pH conditions (pH 5.5)
held during the test, while, instead, the pH of 7.8 in the methanogenic reactor maintained
the stable abundance of this family [35]. Furthermore, the decrease in Clostridiaceae that
occurred in R3 (compared to the linear trend present in R2) can be attributed to the single-
stage configuration of R3, where all stages of anaerobic digestion occurred within the same
reactor [36]. MBA03 represented the second family in the reactors in relative abundance.
Significant percentages were reported in R2 (T0 = 7.4%, T2 = 15.5%) and R3 (T0 = 7.4%,
T2 = 17.0%) but not in R1, where MBA03 was not present. This can be explained by the abil-
ity of species belonging to this family to maintain the stability of methanogenic microbial
communities [37], found in R2 and R3, and in their possible syntrophic relationship with
Methanosarcina [38], in addition to their capacity to produce VFAs. The results showed that
the Dysgonomonadaceae family was present in high relative abundance percentages only in
the control reactor (T0 = 5.0%, T2 = 17.2%). Species belonging to this family are involved in
the hydrolysis reaction of protein-rich substrates. This could explain their abundance in
R3, which was fed high-protein biomasses, such as poultry manure, pig slurry and milling
byproducts. On the other hand, in the acidogenic reactor, where biomass hydrolysis is
the main reaction, this family was not found, probably due to the acidic pH condition set
in R1 [39]. Rikenellaceae, Lachnospiraceae, Prevotellaceae and Defluviitaleaceae were found as
the most abundant families in R1, increasing at T2 with percentages of 9.2%, 12.3%, 14.7%
and 18.8%, respectively. Rikenellaceae and Lachnospiraceae include bacterial species able
to degrade lignocellulosic (Lachnospiraceae) and carbohydrate-rich (Rikenellaceae) matrices
through the secretion of hydrolytic enzymes [40,41]. In addition, the ability of Rikenellaceae
to ferment carbohydrates may also be correlated with the high production of propionic acid
that occurred in R1 [42]. The high abundance of the Prevotellaceae family, instead, could be
linked to its ability to hydrolyse the substrates fed into the reactor, consequently leading to
the production of VFAs, which are predominant in the acidogenic reactor [43].

To investigate the correlation between the dominant families found in the reactors
and the process parameters, canonical correspondence analysis (CCA) was performed. As
shown in Figure 3, the first and second canonical axes represented 89.4% and 10.6% of
variance, respectively. R2 and R3 were clearly separated, on the second axis, from reactor R1.
Triplot analysis suggested that R1 was the most positively correlated with the production
of the main VFAs (i.e., acetate, propionate and butyrate) and FOS/TAC. This is in line with
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our results, as in the acidogenic stage that occurred in R1, bacterial families capable of
fermenting carbohydrate-rich substrates were mainly selected, resulting in the production
and accumulation of VFAs. R2 and R3, on the other hand, were found to correlate with the
pH parameter and the bacterial families MBA03 and Cloacimonadaceae, since it was found
that pH could be considered the limiting factor among the process parameters.
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3.2.3. Microbial Genera and LCFAs Production

Regarding LCFA production, digestate samples at the last timepoint of the steady-state
condition (T2) were considered. The results showed significant LCFA levels only in R1,
while in R2 and R3, they were less appreciable. As shown in Table 2, the most produced
acids in descending order were as follows: palmitic, linoleic and stearic. This result is in
line with [44], since, during the acidogenic stage, it is well known that LCFA accumulation
can occur as a result of the degradation of lipids present in the feedstock fed into the
reactors. Since palmitic acid and stearic acid are saturated LCFAs with significantly lower
degradation rates than unsaturated acids [45], an accumulation of these in the R1 reactor
can be expected.

Table 2. Concentration of the main LCFAs detected in digestate samples of the acidogenic (R1),
methanogenic (R2) and control (R3) reactors in the steady state (T2).

LCFA R1
(mg/kg)

R2
(mg/kg)

R3
(mg/kg)

Ottanoic Acid (C8) 208.5 ± 27.1 30.3 ± 1.5 27.6 ± 1.1
Palmitic Acid (C16) 2764.2 ± 420.9 445.7 ± 187.5 543.4 ± 165.1
Stearic Acid (C18) 1751.5 ± 154.1 153.1 ± 10.0 21.9 ± 4.5
Oleic Acid (C18:1) 1369.5 ± 258.3 252.4 ± 141.3 391.0 ± 118.9

Linoleic Acid (C18:2) 1794.7 ± 389.4 450.6 ± 300.1 620.2 ± 201.7
Linolenic Acid (C18:3) 545.5 ± 140.1 213.7 ± 145.7 223.5 ± 86.9
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Considering the microbial communities present in the three reactors in steady state, the
most abundant genera are Clostridium sensu stricto 1, MBA03 and Defluviitaleaceae UCG 011
(57.4%, 31.6% and 18.1% relative abundance, respectively; Figure 4). The genus Clostridium
sensu stricto 1 had similar relative abundance percentages in R1 (13.2%) and R3 (13.7%)
but doubled in R2 (30.4%). This increase can be explained by the fact that the genus
Clostridium has been found to be a possible palmitic acid-degrading microorganism, thus
also explaining the decrease in palmitic acid production going from R1 to R2, as reported
by [46]. Focusing instead on the amounts of stearic acid, which decrease substantially from
R1 to R2 and in R3, it can be hypothesised that, as a result of the degradation of stearic acid
through the beta-oxidation reaction, Clostridium sensu stricto 1 played a role as a syntrophic
acetate oxidiser (SAO), thus acting syntrophically with the methanogenic bacteria that use
acetic acid to produce methane [47,48]. In R3, the same reasoning can be applied, despite
the lower percentages of Clostridium sensu stricto 1, as the reaction occurs continuously
since R3 is the single-stage reactor. Defluviitaleaceae UCG 011 showed significant relative
abundance only in the R1 reactor (17.7%), while in R2 and R3, it was almost absent. No
evidence was found linking this genus to the presence of LCFAs, but it includes bacterial
species with hydrolytic and saccharolytic activity, which are fundamental in the hydrolytic
stage of anaerobic digestion, leading to the accumulation of LCFAs in this reactor [49,50]. In
contrast, as reported by [11], Syntrophomonas was found in relatively low abundance only in
R2 and R3. This genus is recognised as a key player in the beta-oxidation reaction of LCFAs;
thus, its presence is to be expected in reactors where the degradation of long-chain fatty
acids can be assumed to occur. Nevertheless, its low abundance in the R2 and R3 reactors
implies that the beta-oxidation process could have been carried out by other microbial
genera. MBA03 belongs to the class Limnochordia and was found to be predominant in R2
(13.9%) and R3 (17.4%), while in R1, it was found in percentages close to zero. Braga Nan
et al. [51] confirmed the prevalence of this genus in reactors fed with livestock effluents,
such as poultry manure, and this could explain their presence in R3. Its presence in R2
but not in R1, on the other hand, can be attributed to its possible syntrophic activity with
methanogens [52], which were obviously absent in the acidogenic R1 reactor. No evidence
was found, however, to correlate this genus with the production or degradation of LCFAs.
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Subsequently, the supervised OPLS-DA prediction model was performed to under-
stand the actual discrimination of the reactor configurations and the variables that shaped
the microbial genera distribution. As seen in the OPLS-DA score plot shown in Figure 5,
a separation was found along the orthogonal latent vector between R1 and R2–R3. This
is in line with our results, considering the characteristics that differentiate the acidogenic
reactor R1 from the methanogenic R2 and the control R3, which, on the other hand, show
similarities in both process parameters and microbial composition. The prediction model
was characterised by good robustness, considering the goodness of fit (R2Y = 0.996) and
the goodness of prediction (Q2 = 0.985). LCFAs were found to be the discriminating factors
for R1, where the hydrolysis and accumulation stages of LCFAs occur. Furthermore, the
VIP selection method (VIP score > 0.8) was then used to extrapolate the most discriminant
variables that justify the separation observed among the three reactors (Table S2). The
VIP approach identified 18 variables involved in the two-stage and single-stage anaerobic
digestion process, which succeeded in differentiating R1, R2 and R3. Defluviitaleaceae (VIP
score = 1.81), Syntrophococcus (VIP score = 1.49) and Olsenella (VIP score = 1.47) are the
microbial genera that most discriminate the differences in the R1 reactor from the others due
to their active role in the acidogenic stage (Figure S2a). Among the LCFAs, stearic acid was
revealed as the one that could specifically differentiate the acidogenic reactor, probably due
to its above-mentioned low degradation rate. Overall, the prediction model successfully
excluded significant outliers (p < 0.01) by the Hotelling T2 (Figure S2b); in addition, a
permutation test was performed to validate the prediction ability of the developed model
(number of random permutations = 300; Figure S2c).
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4. Conclusions

The objective of this study was to compare two- and a single-stage reactors’ configura-
tion for the anaerobic digestion of agri-based feedstock, considering organic acids (VFAs
and LCFAs) and methane production. The two-stage AD process showed its effectiveness
from an energetic point of view, making an equal amount to one-stage AD. Defluviitaleaceae
UCG 011 and Clostridium sensu stricto 1 were found to be the distinctive genera in the acido-
genic and methanogenic reactors, respectively. The main LCFAs significantly produced in
the acidogenic reactor were, in decreasing order, palmitic, linoleic and stearic acids. The
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absence of the Syntrophomonas genus in this reactor, likely due to the acidic conditions,
could explain the accumulation of LCFAs, since different species belonging to this genus
are generally associated with the degradation of such compounds. Therefore, two-stage
anaerobic digestion may be a valuable option for a stable and efficient process, assuring
methane production, together with the potential recovery of value-added byproducts, such
as LCFAs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fermentation10060293/s1, Figure S1: 3D PCoA of feedstock and reactors
microbial diversity; Figure S2: Loading plot, Hotelling’s range and permutation test based on supervised
OPLS-DA prediction model; Table S1: Characteristics of vegetable and animal derived biomasses used
to feed the reactors; Table S2: VIP-markers from supervised OPLS-DA prediction model.
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