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Abstract: Hepatocellular carcinoma (HCC) represents a worldwide health matter with a major care
burden, high prevalence, and poor prognosis. Its pathogenesis mainly varies depending on the
underlying etiological factors, although it develops from liver cirrhosis in the majority of cases. This
review summarizes the role of the most interesting soluble factors as biomarkers for early diagno-
sis and as recommended targets for treatment in accordance with the new challenges in precision
medicine. In the premalignant environment, inflammatory cells release a wide range of cytokines,
chemokines, growth factors, prostaglandins, and proangiogenic factors, making the liver environ-
ment more suitable for hepatocyte tumor progression that starts from acquired genetic mutations.
A complex interaction of pro-inflammatory (IL-6, TNF-α) and anti-inflammatory cytokines (TGF-α
and -β), pro-angiogenic molecules (including the Angiopoietins, HGF, PECAM-1, HIF-1α, VEGF),
different transcription factors (NF-kB, STAT-3), and their signaling pathways are involved in the
development of HCC. Since cytokines are expressed and released during the different stages of HCC
progression, their measurement, by different available methods, can provide in-depth information on
the identification and management of HCC.

Keywords: biomarkers; cytokines; hepatocellular carcinoma; personalized medicine

1. Introduction

Hepatocellular carcinoma (HCC) is the most frequent type of cancer affecting the liver,
and its incidence almost exceeds mortality. All those risk factors (chronic HBV or HCV
infection, alcohol, aflatoxin B1, NAFLD/NASH) that concur with liver cirrhosis may be
involved in HCC pathogenesis [1].

Cirrhotic liver tissue is characterized by low levels of hepatocyte cell proliferation
in favor of a greater abundance of inflammatory mediators, fibrosis, and activation of
the extracellular matrix environment. Therefore, a hepatocyte clone with a deregulated
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proliferative rate finds more suitable conditions for expansion, unlike in a normal and
proliferating liver [2].

Following a viral infection or toxic tissue damage, a tightly regulated and coordinated
multistep process may start in the liver, characterized by activation and local infiltration of
immune cells and subsequent engagement in tissue repair. In this refined orchestration of
events, the release of a wide range of soluble factors takes place [3].

In liver cirrhosis, a wide proliferation of stellate cells has been described, generating
an abundance of extracellular matrix proteins, cytokines, growth factors, and oxidative
stress products. The unbalanced expression of these factors and the initial unresolved
inflammatory response produce a suitable microenvironment for developing neoplasm.
Cytokines released by the tumor, neighboring non-tumor cells, and immune cells can act
as a promoter of tumor survival [4] (Figure 1). Carcinogenetic events of HCC involve
angiogenesis, chronic inflammation, and tumor micro and macro-environment (Figure 1).
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Figure 1. Major pathogenetic events and cytokine network involved in hepatocellular carcinogenesis.
Following persistent liver damage, locally activated chronic inflammation favors the release of soluble
factors sustaining the proliferation and survival of tumor cells. Angiogenic factors (angiopoietins,
VEGF), growth factors for normal and transformed hepatocytes (HGF), adhesion molecules and
cytokines for recruitment and activation of leukocytes (PECAM, IL-6), and stellate cells upregulates
TGF in the liver and, consequently, regeneration, proliferation, and hepatocyte dysplasia, and,
ultimately, the development of HCC.

Since cytokines production regulates HCC evolution and worsening progression, their
evaluation can provide useful information on the identification and management of HCC.

2. Cytokines and Growth Factors
2.1. Stimulators of Angiogenesis and Tumor Invasiveness

The progression of liver disease takes into account pathological angiogenesis, a prereq-
uisite that facilitates the development of HCC. Angiogenesis is the result of a multiphase
process and is the limiting step of tumor growth. In normal conditions, there is a bal-
ance between angiogenic inducers and inhibitors that keeps the angiogenic process under
control and prevents inappropriate tissue vascularization. Angiogenesis inhibitors often
derive from circulating extracellular matrix proteins (because of injury to the matrix), e.g.,
fibronectin, prolactin, collagen XVIII (endostatin), Hepatocyte Growth Factor fragment
NK1, and angiostatin. Although tumors initially engage the pre-existing vascularity, an an-
giogenetic “switch” consisting of the production of factors inducing angiogenesis crucially
modifies the tumor phenotype [5].

Vascular endothelial growth factor (VEGF) is the most powerful stimulator of normal
and pathological angiogenesis (Table 1). Circulating VEGF may be derived mainly from
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the large burden of tumor cells released under hypoxic conditions. Its expression is
regulated by the hypoxia-inducible factor 1α (HIF-1α), which, induced during the hypoxic
conditions, triggers the transcription of VEGF that stimulates the formation of new vessels
(Figure 2A) [6]. This indicates that VEGF participates in the initial phase of angiogenesis. As
a result, the transition of endothelial cells from an inactive to an active state can occur along
with their proliferation, migration, and formation of new vessels, which can act as new
gates for the recruitment of inflammatory cells, releasing cytokines and inducing further
inflammation (Figure 2B). Different reports analyzed serum levels of VEGF in HCC patients
in comparison to patients with or without HCV-related cirrhosis, often with opposite
results [7,8]. Mukozu et al. showed that VEGF was higher in HCC patients compared to
controls [7], while the results from Abden–Ramahal et al. displayed significantly higher
serum levels of VEGF in HCC in comparison to cirrhotic patients, but no significant
differences in healthy controls [8]. However, altogether these data highlight the important
role of VEGF as a biomarker of vascular invasion in disease progression from liver cirrhosis
to HCC.J. Pers. Med. 2022, 12, x FOR PEER REVIEW 5 of 16 
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Figure 2. (A) Hypoxic environment stimulates neoangiogenesis, thanks to a circuit involving HIF-1α
-induced VEGF release by tumor cells. (B) A wide range of cellular released growth factors, derived
from a tumor, stroma, and leukocytes, ensures the formation of new vascularity and the sustainment
of cell growth, allowing the worsening progression of the initial tumor burden.
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Patients with HCC showed a significant increase in VEGF after anticancer therapy
compared to the values reported at the time of diagnosis, as well as to the levels of lympho-
cytes [9]. This may be partly explained by the rebound effect of VEGF, induced by hypoxia
following locoregional treatments, often associated with treatment failure and low survival
rates in patients [10]. Levels of VEGF are increased in patients who later experienced
progression of HCC compared to those who remained stable [11]. Additionally, higher
VEGF levels prior to sorafenib treatment (a multikinase inhibitor employed in several
locally recurrent or metastatic solid tumors, including HCC) are associated with shorter
survival [12,13].

Table 1. Role of the main cytokines and growth factors in hepatocarcinogenesis.

Biomarkers Abbreviation Role in HCC Study

Vascular endothelial
growth factor VEGF

♦ Regulates initial phase of angiogenesis.
♦ Higher VEGF levels associated with poor outcomes in

HCC patients (prior to sorafenib treatment).
♦ Indicator of clinical efficacy

Tammela, T. et.al., 2005 [6]

Angiopoietin/Tie system ♦ Key role during the late phase of angiogenesis,
responsible for development of newly established
vascular structures.

♦ Their activity determines the stabilization of
new vessels.

Naldini, A. et al., 2005 [14]Tyrosine kinase with Ig and
EGF-homology domains-1 and 2 Tie1, Tie2

Angiopoietin ligands 1–4 Ang1, Ang2, Ang3, Ang4

Hepatocyte growth factor HGF ♦ Stimulates the invasiveness of tumor cells.
♦ Correlates with patient survival time and tumor size. García-Vilas JA, et al., 2018 [15]

Platelet endothelial cell
adhesion molecule-1 PECAM-1

♦ Crucial for the angiogenesis process.
♦ Positively correlate with MELD and its identification

can help to assess the degree of tumor angiogenesis.
♦ Promotes the formation of metastases.

DeLisser, H.M. et al., 1997 [16]

Interleukin 6 IL-6

♦ Serum levels increased in advanced HCC.
♦ Serum levels associated with lower overall survival

and prone to early relapses in HCC patients
undergoing hepatectomy.

♦ Elevated concentrations correlate with poor
overall survival

He, G. et al., 2013 [17]

Transforming growth factor alpha TGF-α
♦ Related to the hepatocarcinogenesis.
♦ Correlated with regeneration, proliferation, hepatocyte

dysplasia and the development of HCC.
Shao, Y. et al., 2017 [18]

Transforming growth factor beta TGF-β
♦ Related to the hepatocarcinogenesis.
♦ Regulates many inflammatory processes. Shao, Y. et al., 2017 [18]

Interleukin 10 IL-10
♦ Powerful anti-inflammatory cytokine.
♦ Serum levels as negative prognostic factor. Shakiba, E.et al., 2018 [19]

Interleukin 16–33, -17, -25 IL 16-IL-33, IL-17, IL-25 ♦ Biomarkers of disease progression. Cruikshank, W. et al., 2000 [20]
Askoura M. et al., 2022 [21]

Growth differentiation factor 15 GDF15

♦ Induced by HCV infection and regulates
hepatocellular carcinoma-related genes.

♦ Genetic ablation of GDF-15 has no apparent effect on
HCC tumor formation rate, growth rate or
invasiveness.

Myojin, Y. et al., 2022 [22]

Tumor necrosis factor TNF
♦ In liver induces biological responses (apoptosis,

necrosis, inflammation, regeneration) and progression
of HCC.

Tiegs, G.et al., 2022 [23]

Osteopontin

♦ Increased serum levels are found in individuals with
HCC compared to liver cirrhosis alone or chronic liver
disease

♦ Diagnostic efficacy in detecting early-stage HCC.

Zhao, H. et al., 2018 [24]
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The Tyrosine kinase proteins with Ig and EGF-homology domains 1 and 2 (Tie1 and
Tie2) and their angiopoietin ligands 1–4 (Ang1, 2, 3, and 4) play a key role during the late
phase of angiogenesis and are responsible for the maturation of newly established vascular
structures (Table 1). Ang1 and Ang2 have been deeply studied and characterized. The
activity of the Angiopoietin/Tie system determines the stabilization of new vessels [25].
There is growing evidence that the angiopoietin/Tie signal can modify ongoing inflam-
mation [14]. Ang1 appears to be a powerful activator of Tie2, as well as a regulator of
blood vessel formation and development. Experimental studies showed that Ang1 acts as
an anti-inflammatory molecule [26] but can induce pulmonary hypertension as a compli-
cation [27]. Ang1 also neutralizes tissue factor activity that is relevant for the induction
of coagulation, thrombosis, and inflammatory response. Furthermore, Ang1 reduces the
adhesion of VEGF-related leukocytes to the endothelium [28,29]. Conversely, Ang2 acts as
a competitive antagonist of Ang1, deregulates the signal pathway of Tie2 [25], and plays
a pro-inflammatory role [30,31]. Additionally, significantly high Ang2 serum levels have
been observed in patients during liver carcinogenesis [32]. An increase in Ang2 levels
has been observed in correlation with the liver disease progression [9,33], while Ang1
negatively correlates with the model for end-stage liver disease (MELD) and the hepatic
fibrosis index. All these data confirm the potential diagnostic utility of Ang1 and Ang2
levels as developing new quantitative biomarkers for staging cirrhosis. Serum Ang2 con-
centrations decrease significantly after treatment with Direct Antiviral Drugs (DAAs), and,
consequently, the Ang2/Ang1 ratio also drops. Ang2 is potentially useful in monitoring
antiviral therapy [9]. In a recent study, we reported that patients who died from HCC had
significantly lower Ang1 levels than those who did not die, placing Ang1 as a potential
prognostic index [9].

It has been shown that the Hepatocyte growth factor (HGF) is over-expressed in HCC
compared to the normal and cirrhotic liver without signs of neoplasia (Table 1) [9,15,34].
Expression of HGF and its receptor supports the existence of both autocrine and paracrine
mechanisms of HGF action in HCC if compared to the unique paracrine mechanism found
in normal liver tissue (in the absence of cancer), suggesting that it also plays a role in tumor
development and progression [15,34,35]. Stellate cells and myofibroblasts are induced to
secrete HGF from tumor cell products, and HGF, in turn, stimulates tumor cell invasiveness.
Recent reports show that higher serum HGF levels negatively correlate with patient survival
time [36] and positively with tumor size [37].

Furthermore, the comparison of cirrhotic patients with and without HCC suggests
that HGF levels are potentially useful for monitoring the onset of HCC after a diagnosis of
cirrhosis [9]. Interestingly, patients with lower HGF levels prior to treatment display major
benefits from sorafenib therapy in terms of overall survival and time to progression [12].

Platelet endothelial cell adhesion molecule-1 (PECAM-1), also known as CD31, is
normally found on the surface of endothelial cells, platelets, leukocyte subpopulations,
and Kupffer cells [38] (Table 1). This molecule is highly expressed within the vascular
compartment but largely concentrated at junctions between adjacent cells, and its receptors
mediate these interactions that play a crucial role during angiogenesis. In this context,
PECAM-1 can mediate both homophilic and heterophilic adhesion [16]. PECAM-1 has
been found to positively correlate with MELD, and its identification may aid in assessing
the degree of tumor angiogenesis, which may indicate a rapidly growing tumor [39].
Furthermore, PECAM-1 promotes the formation of metastases by inducing the epithelium-
mesenchymal transition in HCC by increasing the regulation of β1 integrin through the
FAK (focal adhesion kinase) /Akt signaling pathway [40].

2.2. Stimulators of Chronic Inflammation, Liver Fibrosis, and Proliferation

Interleukin (IL)-6 acts as an important inducer of the acute phase response and in-
fection defense in the liver [41]. IL-6 binds to the signal-transducing subunit gp130 on
target cells either in complex with the membrane-bound or with the soluble IL-6 receptor
to activate intracellular signaling. By the latter ‘trans-signaling’ mechanism, IL-6 can target
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monocyte chemotaxis and maintain sustained chronic inflammation towards any injured
tissue [42,43]. Increased serum levels of IL-6 have been found in patients with advanced
HCC compared to those with the early stage [44] (Table 1). Additionally, elevated serum
IL-6 levels in HCC patients undergoing hepatectomy are associated with lower overall
survival and are prone to early relapses [45]. Research results from mouse models of HCC
have shown that isolated HCC progenitor cells can give rise to cancer in the presence
of ongoing liver damage and that these cells promote their own growth and progress to
malignancy via autocrine IL-6 signaling [17]. A clinical study analyzing 128 HCC patients
treated with sorafenib evaluated the prognostic value of serum IL-6 levels before treatment.
Elevated pretreatment IL-6 concentrations have been found to be an independent predictor
of poor overall survival, although there is no association with the efficacy of sorafenib [18].

Transforming growth factors (TGF)-α and TGF-β are closely related to the hepatocar-
cinogenesis process (Table 1). Normal hepatocytes show low TGF-α expression compared
to tumor cells. In fact, following chronic inflammation due to persistent liver damage, the
secreted cytokine pool upregulates TGF-α in the liver and, consequently, regeneration,
proliferation, hepatocyte dysplasia, and, ultimately, the development of HCC [46]. TGF-β
is a key regulator of the late phase of inflammatory processes, not only promoting tissue
repair but also inhibiting leukocyte activation and infiltration, acting at least in part using
control of adhesion molecules on parenchymal cells [47]. In this way, TGF-β counteracts the
effects of proinflammatory cytokines, leading to the inhibition of cellular processes, such as
proliferation, differentiation, and survival. Paradoxically, cancer cells may exploit these
microenvironment modifications to their advantage [48]. During carcinogenesis, malignant
cells can often attenuate the suppressive TGF-β signaling by altering the expression of its
receptors but also hijacking the signaling cascade. HCC cell lines with metastatic potential
have been described to downregulate TGF-βR2. Interestingly, a reduced expression of
TGF-βR2 in HCC correlates with larger tumor size and various metastatic features, such as
poor differentiation, portal vein invasion, and intrahepatic metastases [49,50]. In the early
stages of cancer, TGF-β acts as a tumor suppressor by inducing cytostasis and apoptosis,
while in the later stages, it promotes pro-tumorigenic events, such as the transition of epithe-
lial cells to mesenchymal, invasion, metastasis, and angiogenesis [51]. The simultaneous
exposure (or addition) of TGF-β and IL-6 to human HCC cell cultures (Huh) highlighted
an attenuation of the pro-proliferative effects induced by IL-6 by TGF-β. This explains a
decrease in the transcription levels of the IL-6 receptor (IL-6R), in the expression of STAT-3
(signal transducer and activator of transcription) induced by IL-6, its nuclear localization,
and, finally, a reduced activation of p65 compared to the unperturbed activation of the
pathway. SMAD (small mother against decapentaplegic)-dependent TGF-β, resulting in
the transition from epithelial to mesenchymal cells and, thus, loss of cell polarity and cell
adhesion, as well as the acquisition of invasive and migratory properties, coupled with cell
growth arrest [52].

IL-10 is a potent anti-inflammatory cytokine (Table 1). Its role in HCC is less docu-
mented than in viral infections. A recent meta-analysis showed that IL-10 levels in HCC
patients increased compared to cirrhotic patients and healthy controls but not compared to
viral hepatitis patients [53]. Individuals with resectable HCC and IL-10 levels > 12 pg/mL
display worse postoperative outcomes [54]. A study showed that in unresectable HCC, the
serum levels of IL-10 acted as a negative prognostic factor [19].

Tumor necrosis factor (TNF) (Table 1) is a cytokine produced by proteolytic cleavage
from a transmembrane protein precursor (mTNF) into a soluble TNF (sTNF). sTNF binds
TNF receptors (TNFR1) (constitutively expressed in most tissues) and TNFR2 (expressed
only in hematopoietic and endothelial cells), while mTNF only the type 2 receptor. TNF
induces numerous biological responses in the liver, such as apoptosis, necrosis hepatocytes,
hepatic inflammation, and regeneration, as well as the progression of HCC [23]. Studies on
mouse models provided the role of TNF in the immunopathogenesis of HCC by focusing
attention on the transcription factor NF-kB (nuclear factor kappa–light–chain–enhancer
of activated B cells) involved in the regulation of the pathway activated by the binding
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of TNF to the TNFR receptor [23]. In fact, a deficiency of the TNFR-dependent anti-
apoptotic NF-kB signaling pathway seems to be essential for the induction of compensatory
proliferation of alive hepatocytes in response to hepatocyte death, which results in the
development of HCC [55]. Mice lacking the kB regulatory subunit of the kinase-function
protein complex (IKK), particularly in hepatocytes, spontaneously develop a chronic liver
disease that evolves into HCC [56]. Furthermore, specific deletion of hepatocyte IKKβ

protein exacerbated chemically induced liver cancer in mice, possibly worsening carcinogen-
induced hepatocyte death and induction of compensatory hepatocyte proliferation [57].
The role of TNFR2 receptors has not been widely analyzed; therefore, preclinical studies in
chronic liver injury models are widely desired. The few studies on TNFR2 suggest that they
may facilitate TNFR1-induced liver cell death. New-generation drugs against TNFR2 could
be relevant for suppressing regulatory T-cell activity and, consequently, improving the
efficacy of cancer immunotherapy [58]. A recent study has shown the correlation among
polymorphisms of TNF-α and IL-10 genes as an increased risk of developing HCC in
patients with chronic HCV infection, suggesting that gene variants are associated with
more severe inflammation of the liver [59]. IL-10 is a cytokine with strong anti-inflammatory
properties, which plays an important role in limiting the host’s immune response, thereby
reducing damage and keeping the tissue in normal balance [60].

A study on HCV patients who have completed antiviral treatment with DAAs has
shown the correlation between the genotyping of IL-10 (polymorphism IL-10 rs1800871)
and the incidence of complications, such as HCC. This explains that the IL-10 genotype can
help select the safest and most accurate drug regimen also based on the follow-up of the
resistance of the genotype [59].

Jing et al. found that TNF-α overexpression promotes HCC through the activation of
hepatic progenitor cells, while TNF-α deficiency inhibits the activation and proliferation of
these cells, reducing tumor incidence. This confirmed that TNF-α plays a significant role in
liver damage and prognosis [61].

Expression of IL-6 and TNF-α during chronic liver injury activates the transduction
pathway downstream of the transcription factor STAT3, which drives neoplastic transfor-
mation in the hepatic microenvironment [62]. IL-6 mediates its pro-proliferative effects
through activation and direct interaction with the p65 subunit of NF-kB, activation of
which is associated with a frequent and early event in liver fibrosis and HCC, regardless of
etiology [63,64].

2.3. Liver Tumor Inducers

IL-16 is a pleiotropic cytokine whose activity influences both the chemical attraction
and the modulation of the activation of T lymphocytes (Table 1) [20]. It has been identified
as an important over-expressed cytokine in human liver tissue of HCC in both non-tumor
and tumor regions compared to benign tumors and non-cancerous liver levels. Furthermore,
IL-16 production can activate the ERK (extracellular signal-regulated kinase)/cyclin D1
signaling pathway, leading to tumor growth [65].

Different research groups evaluate osteopontin as an early marker of HCC. Produced
by Kupffer cells, stellate cells, and hepatocytes, this cytokine is highly expressed at sites of
inflammation and tissue remodeling [66]. Osteopontin mediates a wide range of biolog-
ical functions in the immune and vascular systems and has been extensively studied in
numerous cancers [24]. An increase in serum osteopontin levels was found in individuals
with HCC compared to liver cirrhosis alone or chronic liver disease. The specific diagnostic
efficacy of osteopontin in detecting early-stage HCC by differentiating them from non-HCC
patients varies considerably among studies. Two studies report that osteopontin levels
within two years of diagnosis have a reasonable predictive value of HCC with an AUC
(area under the curve) of 0.82 [67,68].

In a recent study, Askoura et al. described the role of interleukins IL-33, IL-17, and
IL-25 in patients with HCV, the progression of the disease from chronicity to HCC, as
well as the importance of using them as biomarkers of disease progression (Table 1). They
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measured serum levels of interleukins in HCV-related chronic hepatitis patients, HCC, and
healthy controls. Their amounts were correlated with the degree of liver fibrosis and viral
load. In contrast to serum levels of IL-25, which increased only in HCC patients, serum
levels of IL-33 and IL-17 significantly increased in HCV and HCC patients. Furthermore,
increasing serum levels of IL-33 seem to parallel the progression of liver fibrosis and viral
load. The results indicate a significant role of IL-33 in liver inflammation and fibrosis
progression in HCV infection, while IL-17 and IL-25 were featured as biomarkers for
developing HCC [21].

After HCV eradication, patients undergo follow-up for the risk of developing HCC.
Growth differentiation factor 15 (GDF15) is a cytokine, induced by mitochondrial dysfunc-
tion or oxidative stress (Table 1). In one study, serum levels of GDF15 were measured
from patients with chronic HCV infection without a history of HCC who had achieved
a sustained virological response with DAAs. Serum levels of GDF15 were higher in pa-
tients with HCC onset after treatment with DAAs than in untreated patients. Furthermore,
the score obtained using an algorithm composed of the GDF15, AFP (alpha-fetoprotein),
and the FIB-4 index stratifies the risk of developing HCC de novo after the elimination
of HCV [22].

3. Detection and Measurement of Cytokines

The demand for increased testing, particularly for early events of hepatocellular
carcinogenesis, for its recurrence or detection of minimal residual disease in those asymp-
tomatic patients requiring alternative approaches. Different methods for measurement
of cytokines are currently available, including immunoassays for the detection of sin-
gle molecules (ELISA, western blot), multiplex assays (chemiluminescent, bead-based
(Luminex), and planar antibody arrays), and mass spectrometry [69].

3.1. Enzyme Immuno Assays: EIA

As well as for diagnostics and clinical research, immunoassays represent the most
often employed tests for detecting cytokines in biological fluids or cell culture media.
The ELISA tests developed in 1971 are the most employed for their high specificity and
sensitivity given by pairs of optimized antibodies and protein concentrations equal to
1–100 pg/mL (~10 times lower than the concentration of the most abundant plasma pro-
teins), respectively [70].

The non-competitive ELISA, which uses a capture monoclonal antibody (primary),
a biotinylated-detection monoclonal antibody (secondary), and a substrate complex of
the streptavidin enzyme, is among the most widely used tests [71,72] and, although not
as sensitive as biological tests, are more specific and have a quick and easy execution.
Competitive EIA, unlike the non-competitive assay, is based on employing polyclonal
capture antibodies and biotin-labeled ligands that compete for binding sites of the antibody
with the sample ligand. Compared to the non-competitive assay, EIA is more sensitive,
with high discriminating power in detecting free and protein-bound cytokines or soluble
cytokine receptors [70–72].

3.2. Western Blot

Unlike ELISA, which determines the quantification of proteins in solution, Western
Blotting is suitable for qualitative and semi-quantitative detection of cytokines by dena-
turing and separating them on the polyacrylamide gel, transferring to a nitrocellulose or
polyvinylidene membrane difluoride, and, finally, quantifying using specific antibodies [73].
Although not as sensitive as ELISA, it adds data to the molecular weight of proteins and,
therefore, can be used to determine splice variants or degradation of cytokine molecules.
In addition, it may distinguish inactive precursors of cytokines from active forms charac-
terizing the neoplastic environment [74]. It also allows the study of the phosphorylation
sites of receptor proteins, e.g., the effects of VEGF-A and its inhibitor (bevacizumab) on
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cell proliferation, migration, invasion, and production of other cytokines in melanoma
cell lines [75].

3.3. Electrochemiluminescence Immunoassays

Electrochemiluminescence (ECL), whose principle converts electrical energy into light
emission, is based on the multi-array technology replaced by the ruthenium complex of the
nineties [76]. ECL technology allows the simultaneous quantification of one to ten analytes
on 96 or 384-well plates. Anti-cytokine antibodies are adherent to the surface of carbon elec-
trodes, located on each well of the plate, and after the addition of the sample, the detection
of cytokines occurs thanks to antibodies conjugated to an electro-chemiluminescent label
(sulfo-tag). The passage of current through the carbon electrodes excites the sulfo-tags,
and the light intensity will be directly proportional to the analytes in the sample. The ECL
technique used both in clinical practice and scientific research, is based on the emission of a
specific signal with an almost equal sensitivity compared to cytometry [77].

3.4. Luminex

The evolution of the ELISA is represented by multiplex assays that allow measuring
multiple cytokines (for better disease monitoring) in the same reaction well, saving signifi-
cant quantities of sample, time, and costs. The technique is based on antibody arrays using
microspheres, such as Luminex assays, or planar arrays (antibody arrays and antibody
microarrays) [78,79].

Both methods have high reproducibility, but recent studies have shown that the mean
kit quality control coefficient of variation (CV) ranges from 1.9 to 18.2% for Luminex and
2.4 to 13.9% for Planar Antibody Array and that the latter has a lower limit of quantification
(LLoQ) than Luminex [80].

Such assays can measure up to 100 analytes in parallel, but the possibility of cross-
reactivity with antibodies has reduced the dosage to 30 analytes. Luminex assays provide
high throughput, precision, and sensitivity, reaching pg/mL concentrations and repro-
ducibility achieved with 25–50 µL of the sample [81].

3.5. Planar Antibody Array

The sandwich-based Planar antibody array methodology uses pairs of antibodies
tested to eliminate cross-reactivity to any other antigen / antibody in the array. Therefore,
high sensitivity, specificity, and productivity of the technique allows to detect between 10
and 80 analytes up to the quantification of 1000 secreted proteins including cytokines and
chemokines [78].

Antibodies immobilized on nitrocellulose membranes or on the glass slides allow easy
semi-quantitative and quantitative measurements with fluorescent detection.

The methodology finds application above helpful in the search for possible diagnostic
and prognostic biomarkers based on the development of the tumorigenesis process and
tumor progression [82].

3.6. Mass Spectrometry (MS)

This proteomics technique involves several steps, including the isolation of proteins,
digestion by proteases into smaller peptides, concentration and removal of salts, separation
by high-performance liquid chromatography (HPLC), and ionization based on the mass-to-
charge ratio (m/z) of peptides [83].

The high specificity of the methodology in the identification and quantification of
peptides/proteins of MS is contrasted by the low sensitivity due to the pretreatment of the
sample by the cytokines with the lowest molecular weight that negatively influence the
laborious and difficult ionization process, such as to provide a low yield of peptides and,
consequently, poor detection of these cytokines. Therefore, MS offers a higher multiplexing
capacity but lower sensitivity than immunoassays [83].
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3.7. Challenging Frontiers of Analytic Methods

Thanks to advanced technologies, ultra-sensitive methods that improve the sensitivity
of the analytic range down to the order of femtoliters and reduce the effects of the sample
matrix and minimization of sample volumes are currently available. Starting from tradi-
tional colorimetric, chemiluminescent, and fluorescent detection, laboratory diagnostics are
now moving towards electrochemical, optical, mechanical, or surface plasmon resonance
measurement biosensing [84–86].

Extracellular vesicles are plentifully released into the systemic circulation, where they
harbor molecules that provide biochemical information about their cells of origin [87].

Extracellular vesicles represent a challenging source of circulating analytes for cancer
liquid biopsy. A promising diagnostic alternative in precision medicine is noninvasive and
can be done more frequently than a tissue biopsy.

4. Conclusive Remarks

HCC is a major healthcare burden with a high prevalence and poor prognosis. The
identification of molecules as biomarkers for early cancer detection and therapeutic targets
for cancer treatment is an important issue in precision medicine.

In clinical practice, screening high-risk patients with ultrasound and/or alpha-
fetoprotein dosage is widespread. Now, the reduction in mortality is related to viral
infection control measures.

In this scenario, it is crucial for clinicians to provide benefits for HCC therapies.
Targeting the hallmarks of cancer represents one of the approaches to anchoring this
problem. For HCC, hallmarks include maintenance of proliferative signaling, avoidance
of growth suppressors, escape immune destruction, replicative immortality, promotion of
inflammation, activation of invasions and metastases, inducing angiogenesis, mediating
genome instability and mutation, resisting cell death, and deregulating cellular energy [88].
This means that more hallmarks, pathways, and cytokines are involved.

Currently, the molecular mechanisms underlying HCC remain partly enigmatic. Stud-
ies based on the so-called “omics” sciences (e.g., transcriptomics, proteomics, metabolomics)
facilitate the learning of global changes in molecules in a given disease in a high-throughput
way and, therefore, are suitable for understanding the complex changes that lead to the
onset and evolution of HCC.

In the premalignant environment, inflammatory cells release a multitude of cytokines,
chemokines, growth factors, prostaglandins, and proangiogenic factors, making the liver
environment a favorable zone for hepatocyte transformation from an accumulation of
genetic mutations. Survival of transformed hepatocytes is possible through the activation
of anti-apoptotic pathways and suppression of immune surveillance [89], as shown in
Figure 2A,B. VEGF, stimulated by HIF-1α induced in the hypoxic environment, plays a
central role [6].

The risk of developing HCC increases with the severity of liver inflammation and
fibrosis. Chronic inflammation is sustained by a range of inflammatory mediators also iden-
tified as a cause of carcinogenesis [90]. A complex interaction of several pro-inflammatory
cytokines (IL-6, TNF-α) and anti-inflammatory cytokines (TGF-α and β), different transcrip-
tion factors (NF-kB, STAT-3), and their signaling pathways are involved in the development
of HCC [68,91].

We recently found that angiogenic markers, with emphasis on Ang1/2, may contribute
to developing quantitative tools for liver disease staging and therapy monitoring [9]. A com-
parison of cirrhotic patients with and without HCC suggests that HGF levels are potentially
useful for monitoring the onset of HCC after a diagnosis of cirrhosis. Elevated Ang1 levels
in HCC patients appear to have a protective role, as well as prognostic significance [9].

Characterization of the expression profile of tumor-associated inflammatory cytokines
in HCC will require novel diagnostic and therapeutic strategies, such as a better under-
standing of cytokine regulatory mechanisms in the hepatic microenvironment.
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Early diagnosis of HCC remains the goal of precision medicine. The laboratory
participates in the follow-up of the patient at risk of a neoformation or recurrence, after
any surgical resection, by measuring the cytokines that activate gene transcription of the
cell to produce an adequate response to that stimulus. Therefore, the measurement of
biomarkers can represent an accurate diagnostic tool for the oncologist to be used alongside
imaging procedures.
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