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CHAPTER 1 

GENERAL INTRODUCTION 

 

1. INSECTICIDE RESISTANCE 

 

1.1 WHAT IS INSECTICIDE RESISTANCE? 

Insecticide resistance is an evolutionary process resulting from genetic adaptation 

of pest populations due to selection pressure exerted by pesticides (Mota-Sanchez 

et al. 2002). After the first report at the beginning of the last century (Melander 

1914), the frequency of resistant cases grew during the years, with an exponential 

increase during the late 1970s and early 1980s (Georghiou et al. 1991). This trend 

has continued into the 21st century and pesticide resistance has become a subject 

of interest for the scientific community, as demonstrated by the high number of 

scientific contributors, including international health organizations and 

agrochemical companies. For these reasons, the definition of resistance has been 

adapted and refined over the years. In 1957, a panel of the WHO (World Health 

Organization) experts defined resistance as “the development of an ability in a 

strain of pests to tolerate doses of toxicants which would prove lethal to the 

majority of individuals in a normal population of the same species” 

(http://whqlibdoc.who.int/Hq/1998/WHO_CDS_CPC_MAL_98.12.pdf).  

However, the definition was focused on a population view rather than individuals. A 

few years later, J.F. Crow proposed a more flexible version that considered the 

survival of single individuals within a population: “Resistance marks a genetic 

change in response to selection” (Crow 1960). In 1987, R.M. Sawicki expanded this 

definition that became “a genetic change in response to selections by toxicants that 

may impair control in the field” (Sawicki 1987). With their interpretations, both 

authors introduced the important concept of resistant management: focusing on 

http://whqlibdoc.who.int/Hq/1998/WHO_CDS_CPC_MAL_98.12.pdf
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single specimens, it is possible to encourage an early detection of resistance instead 

of initiate countermeasures after field failures of a product. 

The most recent revision of resistance definition is the one proposed by IRAC 

(Insecticide Resistance Action Commitee) that gives a more practical interpretation 

of resistance: “Resistance is a heritable change in the sensitivity of a pest population 

that is reflected in the repeated failure of a product to achieve the expected level of 

control when used according to the label recommendation for that pest species” 

(http://www.irac-online.org/about/resistance). The interpretation differs slightly 

from the others, giving a  restricted criteria by which the establishment of 

resistance could be reported only after confirmation of field failures and in a strict 

linkage with product dosages. Even if this is the more recent definition, the 

approach adopted can be problematic and leaves open questions (an early 

detection of low frequencies of resistant alleles in a population may not represent a 

threat and the acceptance of resistance is strictly linked to the registered product 

dosages), showing how difficult it is to contain the nuances of pesticide resistance  

in a single definition. 

 

1.2 IMPACT OF RESISTANCE IN ARTHROPODS 

Resistance is a widespread phenomenon within the phylum Arthropoda. Over the 

years, the increased use, overuse and even misuse of pesticides has led to the 

selection of resistance in more than 500 from the estimated 10000 arthropod pest 

species, most of which have been recorded over the last 60 years of intensive 

pesticide use. Michigan State University developed an online database (APRD) 

(http://www.pesticideresistance.com) to enumerate the resistance cases reported 

from 1914 to the present, in order to provide an up to date list based on the 

published literature and help the management resistance practices. 

Within the phylum Arthropoda, insects represent the major class. The order with 

the highest number of resistant species is Diptera (27%) followed by Lepidoptera 

(25%), Homoptera (15%), Coleoptera (10%) and Hemiptera (2.0%) (Whalon et al. 

http://www.pesticideresistance.com/
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2012). Most of the species in these orders represent a serious threat for  

agricultural production, although a consistent number of them, mainly among the 

Dipteran, have also medical and veterinarian importance. The use of insecticides 

plays an important role in controlling populations of insect pests, but as a result of 

the continued applications over time many resistance mechanisms allowing survival 

have evolved and have been selected. The possibility and success in resistance 

development depends upon a variety of genetic, biochemical and ecological factors 

such as generation time, fecundity rate, dispersal ability or fitness costs, together 

with the frequency, the dosage or the persistence of insecticide applications 

(Brattsen et al. 1986; Hemingway et al. 2002). 

The presence of different genotypes in a population can explain how some 

individuals have a selective advantage and survive after insecticide exposure. As a 

result of continued insecticide application, the proportion of resistant insects 

increases compared to the susceptible and the population becomes increasingly 

difficult to control (Nauen 2007). Resistant specimens could be killed by using new 

products with different modes of action or by increasing the application rates and 

frequencies. Both these hypothetical solutions are not really feasible: the 

development of new compounds is slow and expensive, whilst the use of higher 

amounts of insecticides is not allowed, because it results in environmental 

contamination and higher risk of exposure to insecticides. Resistant management 

strategies must follow indications provided by the product labels reporting 

recommended doses to be used in the field. 

 

1.3 INSECTICIDES MODES OF ACTION 

The development and occurrence of insect resistance have been widely studied by 

academics as well as by several organizations and action committees. In order to 

describe insecticide resistance data and encourage homogeneus reporting of 

resistance cases, IRAC developed a “Mode of Action (MoA) classification” of 

insecticides (http://www.irac-online.org/documents/moa-classification). The more 
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recent update (release 7.3, February 2014) reports 27 different MoA groups. 

Insecticide compounds included in the active list must have a minimum of one 

registered use in at least one country. Active ingredients are allocated to specific 

groups according to their targets: 

 Nerve and muscle targets. 

Most of the insecticides that are now available act on nervous and muscular 

systems. They are generally fast acting, causing hyperexcitation, convulsion, 

nerve block or paralysis. 

 Growth and development targets. 

Growth regulator insecticides act directly against cuticle formation, lipid 

biosynthesis or by mimicking one of the principal hormone that control insect 

development. 

 Respiration targets. 

Several insecticides are known to interfere with mitochondrial respiration by the 

inhibition of electron transport or oxidative phosphorylation. 

 Midgut targets. 

Some insecticides act as microbial disruptors of Lepidoptera/Coleoptera midgut 

membranes. 

 Unknown or non-specific targets. 

Several insecticides are known to affect less well-described target-sites or 

functions, or to act non-specifically on multiple targets. 

The assignment usually involves the identification of the target protein responsible 

for the biological effect; nevertheless until now for several modes of action the 

target protein can only be supposed or  remains unknown. The aim of this 

classification is to provide a complete guide that can help farmers, growers and 

other professional staff in the product selection for resistance management 

strategies (Nauen 2007). 
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1.4 INSECTICIDE RESISTANCE MECHANISMS 

Despite the large diversity in insect species showing insecticide resistance, only a 

few resistance mechanisms have been identified. Resistance could be achieved by 

biochemical and molecular mechanisms, causing the sequestration or the disruption 

of the toxic agent or involving changes in its site of action (see sections 1.4.1 and 

1.4.2) or by behavioural and physiological adaptations (see section 1.4.3). Generally, 

these resistance factors do not occur alone but  interact with each other to enhance 

the level of resistance. 

The presence of combinations of different resistance mechanisms has been 

demonstrated in many insect populations and also for single individuals within a 

population. “Cross-resistance” occurs when a single defence mechanism against 

one insecticide is capable of conferring resistance to other insecticides, even if the 

insect has not been previously exposed to the latter product. This phenomenon can 

result from physical factors, that can affect chemically unrelated compounds, or 

non specific enzymes, that attack functional groups of insecticides rather than 

specific molecules; indeed it is not only restricted to a specific chemical class but  

can involve  insecticides with different mode of actions. “Multiple-resistance” 

occurs when different resistance mechanisms coexist and confer resistance to 

different insecticides to which the organism has been exposed (Oppenoorth & 

Welling 1976; Yu 2008). The occurrence of both cross-resistance and multiple-

resistance is of particular importance, because they result in great difficulty in pest 

control. Clearly, because pest insect populations are usually large in size and breed 

quickly, there is always a risk that insecticide resistance may evolve, especially when 

insecticides are misused or over-used (Soderlund & Bloomquist 1990). 

 

1.4.1 Metabolic resistance 

Metabolic resistance is a common defence mechanism, based on enzymatic systems 

that protect the insect by detoxifying insecticide molecules. The involved enzymes 

are the same defence mechanisms that insects have developed as protection 
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against naturally occurring plant toxins (allelochemicals) such as alkaloids, terpenes 

and phenols, in order to overcome the potential toxicity of the plants they feed on. 

This could explain the rapid development of metabolic resistance against a very 

broad spectrum of insecticides. 

Enzymes can detoxify xenobiotics by changing their molecular structure into a non-

toxic compound and/or into a form more suitable for a rapid elimination from the 

body. Resistant insects metabolise the insecticide faster because they possess more 

effective forms of the enzyme with a higher catalytic rate, or higher quantities of 

the involved enzymes resulting from increased trascription or gene amplification. 

Detoxification can be divided into phase I (primary) processes, consisting of 

hydrolysis or oxidation, and phase II (secondary) processes, consisting of 

conjugation of phase I products with endogenous compounds, like glutathione, and 

their subsequent excretion from the body (Li et al. 2007; Hollingworth & Dong 

2008; Yu 2008). 

 

1.4.1.1  Esterases 

Esterases are a large group of phase 1 metabolic enzymes that are able to 

metabolise a variety of exogenous and endogenous substrates. Their involvement in 

detoxifying insecticide molecules is well documented and it has already been 

demonstrated that they can act against a broad range of products, including 

pyrethroids, organophosphates and carbamates (Hollingworth & Dong 2008). 

Detoxification can occur through degradation or sequestration of the insecticide 

molecules. Esterases catalyse the hydrolysis of ester insecticides into their 

corresponding acid and alcohol compounds (Fig. 1.1); this increases the polarity of 

the insecticidal metabolites  that can then be excreted more easily from the insect 

body. They can also sequester insecticides through the formation of stable 

compounds such that the toxic molecules are no longer available for chemical 

reactions (Devonshire & Moores 1982; Oakeshott et al. 2005; Wheelock et al. 

2005). 
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Figure 1.1: Esterase hydrolysis reaction. Esterases hydrolyse an ester by the addition of 

water to form the corresponding alcohol and acid. 

 

Esterases have been associated with insecticide resistance in many insect species. It 

can occur from both quantitative and qualitative changes, consisting in the 

overproduction of the enzymes or in modifications of their structures (Li et al. 

2007). 

Esterase overexpression can be due to either gene amplification or upregulation, or 

a combination of both. The most extensively studied example of insecticide 

detoxification by gene amplification is the overproduction of a specific 

carboxylesterase in the green peach aphid Myzus persicae Sulzer (Hemiptera: 

Aphididae) (Field et al. 1988) but amplified esterases associated with insecticide 

resistance have been also found in mosquitoes of the Culex genus (Diptera: 

Culicidae) (Hemingway et al. 2004) and other species, for example in the brown 

planthoppers Nilaparvata lugens Stal (Hemiptera: Delphacidae) (Small & 

Hemingway 2000). In other species, like Aphis gossypii Glover (Hemiptera: 

Aphididae) or B-biotype Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), the 

increased expression of esterases results from increased transcription levels, due to 

upregulation of the corresponding gene (Cao et al. 2008; Alon et al. 2008). 

Esterase-based resistance can occur also through qualitative changes of the 

enzyme, which confers an enhanced ability to metabolise the insecticide. This 

mechanism was first described in the housefly Musca domestica L. (Diptera: 

Muscidae) and it became known as the “mutant ali-esterase theory” (Oppenoorth & 

van Asperen 1960). The resistant insects showed a decreased esterase activity 



CHAPTER 1                                                                                                                                                General introduction 

18 

 

compared to the susceptibles, showing that structural modifications of the enzyme 

can facilitate the hydrolysis of the insecticide but prevent or reduce the hydrolysis 

of the model substrates conventionally used to determine the esterase activity. It 

was subsequently demonstrated the presence of two amino-acid substitutions 

(Gly137Asp and Trp251Leu) in those resistant houseflies as well as in other insect 

species belonging to the order of Diptera (Campbell et al. 1998; Claudianos et al. 

1999; Carvalho et al. 2006). 

 

1.4.1.2 Monooxygenases 

Mixed function oxidases (MFOs), or microsomal oxidases, are a large family of 

phase 1 enzymes involved in the detoxification of xenobiotics, but also in the 

metabolism of endogenous substances such as hormones, pheromones or fatty 

acids. They are able to convert lipophilic compounds into polar metabolites that can 

be easily eliminated from the body; for that reason, they are mainly located in the 

digestive apparatus (Feyereisen 2005). 

Cytochrome P450s monooxygenases (P450s) are microsomal oxidases that belong 

to the group of the hemethiolate proteins and are so named because they show a 

characteristic absorbance peak at 450 nm (Soret peak) in their reduced form when 

complexed with carbon monoxide. They catalyse the transfer of one atom of 

molecular oxygen to a substrate and the reduction of the second atom of oxygen in 

water; the process requires the transfer of two electrons provided by NADPH 

cytochrome P450 reductase (Feyereisen 2005; Guengerich 2008). The reaction is 

commonly described as: 

RH + O2 + NADPH + H+  ROH + H2O + NADP+ 

Due to the large number of enzymes and their substrate specificity, P450s are able 

to catalyse different reactions like epoxidation, hydroxylation, N-dealkylation, O- 

dealkylation or desulfurization; for that reason they play an important role in the 
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metabolism of many insecticide classes, including carbamates, organophosphates, 

pyrethroids and DDT (Yu 2008). 

A single P450 is named as CYP followed by an arabic number to designate the 

family, a capital letter to designate the subfamily and an arabic number to 

designated the individual protein; each form is coded by its own gene. To date, 

more than 600 insect P450 genes have been characterised and genes belonging to 

the families CYP4, CYP6, CYP9 and CYP12 have been associated with insecticide 

resistance (Feyereisen 2005; Li et al. 2007). 

Because of the complexity of the P450 system and the difficulties in purifying these 

enzymes (due to their instability or to the difficulty to obtain high yields), it is not 

easy to determine the mechanisms underlying resistance. However, it has already 

been demonstrated that resistant insects can show increased levels of P450s and an 

enhanced monooxygenase activity. Many cases of resistance correlated to 

overexpression of P450 activity have been reported in the literature and it is 

generally caused by gene upregulation, probably through changes in the regulatory 

elements (Feyereisen 2005). Although this is the main mechanism described, cases 

of gene amplification or qualitative changes have also been reported in other 

species (Amichot et al. 2004; Wondji et al. 2009; Puinean et al. 2010). 

 

1.4.1.3 Glutathione-S-transferases 

Glutathione-S-transferases (GSTs) are a group of multifunctional phase II enzymes 

involved in the detoxification of several hydrophobic endogenous or exogeneous 

compounds. They catalyse the conjugation of the reduced glutathione (GSH) with 

electrophilic substrates, converting those reactive molecules into more water-

soluble and non-toxic conjugates that can be more readily excreted from the body 

(Hayes et al. 2005). 

Insect GSTs are divided in two different groups according to their location within 

the cell, microsomal and cytosolic, but only the latter is implicated in the 

metabolism of insecticides. Due to the broad range of substrates of the individual 
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enzymes, they play an important role in resistance to different classes of 

insecticides, including organophosphates and pyrethroids; a DDT-dehydrochlorinase 

GST is also responsable for DDT resistance in houseflies and mosquitoes (Enayati et 

al. 2005). GST-based resistance is generally due to an increased amount of enzyme, 

resulting either from gene amplification or overexpression (Vontas et al. 2002; 

Ranson & Hemingway 2005). GSTs may also protect against pyrethroid toxicity in 

insects by sequestering the insecticide (Kostaropoulos et al. 2001). 

 

1.4.2 Target-site resistance 

Target-site resistance is one of the most important mechanisms that determine 

resistance to different classes of insecticides. It is based on alterations in the 

sequences of genes encoding for the insecticide target proteins, reducing the 

binding affinity of the toxic compound. Conserved target-site mutations conferring 

different levels of insensitivity to the insecticides have already been detected in 

genes encoding for voltage-gated sodium channel, acetylcholinesterase, nicotic 

receptor, GABA receptor and ryanodine receptor (Hollingworth & Dong 2008; Yu 

2008). 

 

1.4.2.1 Voltage gated sodium channels 

Voltage-gated sodium channels (VGSC) are large trans-membrane spanning proteins 

that are essential for electrical signalling in nerve cell membranes. They are 

composed of one pore-forming α-subunit of about 260 kDa and up to four smaller 

β-subunits of about 30-40 kDa. The α-subunit is the principal structural element and 

consists of a single transmembrane polypeptide chain with four internally repeating 

homologous domains (I to IV), each with six hydrophobic transmembrane segments 

(S1 to S6) connected by intracellular or extracellular loops. S5 and S6 helices form 

the central pore, whilst S1-S4 helices form the voltage sensing domains. This 

structure mediates the sodium ion permeability that is essential for the normal 
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transmission of nerve impulses (Catterall 2000). Because of their critical role in 

electrical signalling, sodium channels have been used as important target of a 

variety of natural or synthetic neurotoxins, including pyrethroid insecticides. DDT, 

pyrethrins and pyrethroids act on the VGSC and modify the gating kinetic, mainly by 

slowing channel deactivation; it results in a prolonged opening of the individual 

channel that stimulates the production of repetitive discharges, causing the 

paralysis and the consequent death of the insects (Davies et al. 2007; Soderlund 

2012). 

A large number of target-site mutations in the sodium channel protein have been 

identified in several insect species. More than 30 of these substitutions (or 

combinations of them) have been detected in more than one species, whilst others 

are unique. A certain number of these mutations have been functionally expressed 

in Xenopus oocytes, confirming their role in reducing sodium channel sensitivity to 

pyrethroids; however, most of them remain uncharacterised (Rinkevich et al. 2013). 

Non synonymous mutations were first described in M. domestica and indicated as 

“knock-down resistance” traits, as they confer resistance to the paralytic effect 

(knock-down) caused by DDT and pyrethroids and reduce their efficacy (Busvine 

1951; Williamson et al. 1996). 

The most common amino acid substitutions is from Leu to Phe, identified in the 

housefly (L1014F) and in the German cockroach (L993F); it is located in domain IIS6 

and termed as “knock-down resistance” (kdr). In addition to this mutation, a second 

amino acid substitution from Met to Thr has been detected in highly pyrethroid 

resistant housefly (M918T); it is located in the IIS4-S5 linker and termed as “super-

kdr” (s-kdr) (Williamson et al. 1996; Davies 2007). Those two mutations have been 

documented in most of the major arthropod pests frequently treated with 

pyrethroids. Variability in amino acid substitutions of both these residues 

(L1014H/S/C/W and M918I/L/V) is documented in different species and some of 

these replacements have been functionally associated with resistance to pyrethroid 

insecticides. In addition, in a few cases, it is possible to find more than one of these 

possible alternatives in the same species (Rinkevich et al. 2013). 
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1.4.2.2 Acetylcholinesterases 

Acetylcholinesterase (AChE) is the enzyme that catalyses the hydrolysis of the 

excitatory neurotransmitter acetylcholine (ACh) which is responsible for the nerve 

impulse transmission across the cholinergic synapses. Organophosphate (OP) and 

carbamate insecticides interfere in this process because they are able to 

phosphorylate or carbamylate the critical serine residue in the active site, that is 

subsequently incapable of hydrolysing its normal substrate. The inhibition of AChE 

activity impairs the removal of ACh, which accumulates in the synapse causing a 

continuous stimulation, resulting in the death of the insect (Eldefrawi 1985; Casida 

& Quistad 2003). 

Modified AChE (MACE), with alterations in the primary structure of the enzyme, 

results in a reduced sensitivity of AChE to OPs and carbamates and provides to the 

insect some levels of resistance (Fournier & Mutero 1994). Sequencing of AChE 

genes (ace) of resistant insect has revealed the presence of several point mutations 

that result in amino acid substitution of residues located in the active site of the 

enzyme, close to the catalytic triad. These mutations confer different levels of 

resistance and the effects among different insecticide products can vary 

considerably (Fournier 2005). Higher Diptera have only one gene (ace) for AChE, 

whereas it has been shown that in the majority of the insect species there are two 

genes, ace-1 (paralogous to ace) and ace-2 (orthologous to ace) encoding for two 

different acetylcholinesterases, AChE1 and AChE2. Different point mutations have 

been discovered in ace-1 genes of several insect species, providing some degrees of 

resistance (Fournier 2005). 

 

1.4.2.3 Nicotinic acetylcholine receptors 

Nicotinic acetylcholine receptors (nAChR) are proteins commonly found in the 

insect nervous system and are so called because they are particular responsive to 

nicotine. They belong to the “Cys-loop” superfamily of ligand-gated ion channels 

and are composed of 5 subunits (usually 2 identical  subunits and 3  subunits) 
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arranged around a central ion pore. At least two ACh-binding sites are present and 

they must be occupied to start the channel opening (Karlin 2002). 

Nicotine and the neonicotinoid insecticides mimic the neurotransmitter ACh and act 

as agonists activating the receptor and causing an influx of sodium ions with the 

generation of action potentials. Normally the synaptic action is terminated by the 

enzyme AChE, that hydrolyses the neurotrasmitter; because the insecticides are not 

destroyed, the persistant activation leads to hyperexcitation, convulsion, paralysis 

and death of the insect (Jeske and Nauen 2005). Modified nAChR has recently been 

documented in different insect species and a correlation between the presence of 

target-site mutations and alteration in the sensitivity to the effect of the 

insecticides has been reported (Nauen & Denholm 2005; Crossthwait et al. 2014). 

 

1.4.2.4 GABA receptors 

GABA gated-chloride channels receptors (GABAR) are membrane-bound proteins 

located in the central nervous system and also at the peripheral neuromuscolar 

junctions. GABAR belong to the superfamily of ligand-gated channels known as 

“Cys-loop” receptors and consist of 5 subunits that form a central ion pore; each 

subunit has a long N-terminal domain that contributes to the GABA binding site. -

aminobutyric acid (GABA) is the main inhibitory neurotransmitter and it is 

responsible for the nerve impulse inhibition when it links to GABAR (Buckingham & 

Sattelle 2005). Those ligand-gated ion channels are blocked by the linkage of 

cyclodiene insecticides, which act as receptor antagonists leaving GABA 

neurotransmitter unable to bind the same receptors and to stop the impulse 

transmission. The absence of synaptic inhibition leads to hyperexcitation, 

convulsions and consequent dead of the insect (Bloomquist 2001). 

Modified GABAR, caused by a target-site mutation in the gene encoding for that 

protein, results in a reduced affinity of the receptor for the insecticide. The gene 

involved in resistance, termed Rdl (Resistance to Dieldrin), was isolated from a field 

collected population of Drosophila melanogaster; homologous mutations have 
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already been described in many other insects and correlated with a certain level of 

resistance (fFrench-Constant et al. 1993; Buckingham & Sattelle 2005). 

 

1.4.2.5 Ryanodine receptors 

Ryanodine-sensitive calcium release channels, commonly known as ryanodine 

receptors (RyR), are large tetrameric proteins found in sarcoplasmic/endoplasmic 

reticulum membrane in muscles and nervous tissue. They show the same basic 

structure of the sodium channels, with 4 homologous domains arranged around a 

central ion pore, and play a key role in calcium homeostasis. Calcium is a universal 

intracellular messanger and its release from intracellular stores is modulated by 

channels such as RyR and is important for many physiological activities including 

muscle contraction (Hamilton 2005). 

RyR have been taken into consideration as a potential insecticide target for 

decades. Plant extracts from Ryania speciosa (Flacourtiaceae) proved to be quite 

efficacious against many targets (Rogers et al. 1948; Molinari et al. 2005). However 

it is only recently that economically relevant compounds have been developed: 

flubendiamide and anthranilic diamides, both particularly active against 

lepidopteran pest species. They are selective RyR activators that stimulate calcium 

release causing impaired regulation in the contraction of insect muscles, which 

culminates in paralysis and subsequent mortality (Nauen 2006). Resistance to these 

insecticides has recently been reported in the diamondback moth Plutella xylostella, 

a global lepidopteran pest of cruciferous crop, and the association with a target-site 

mutation in the membrane-spanning domain of the RyR has been demonstrated 

(Troczka et al. 2012). 

 

1.4.3 Other resistance mechanisms 

Target site and metabolic resistance are the main mechanisms by which resistance 

is achieved. In addition, there are several other mechanisms that may contribute at 
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a more modest level but relatively little attention has been paid to them. Although 

individually they may be only moderate in their impact, they can act as important 

intensifiers of resistance when combined with the major mechanisms in the same 

insect. 

 

1.4.3.1 Pgp pumps  

P-glycoprotein (Pgp) transporters are integral membrane proteins that belong to 

the ATP binding cassette (ABC) superfamily, which utilise the energy derived from 

ATP hydrolysis to translocate a variety of different metabolites and xenobiotics 

across cellular membranes (Hollenstein et al. 2007). The action of Pgp pumps in 

removing a broad range of toxic compounds from cells is well established as a 

mechanism of antibiotic resistance in bacteria and of fungicide resistance in fungi 

(Lage 2003); in contrast very little is known about their physiological functions in 

insects. Only recently ABC transporters in insects have emerged as a putative 

mechanism which can contribute to resistance by facilitating efflux transport of 

insecticides and their metabolites derived from phase I and II reactions (O’Donnell 

2008). The involvement of Pgp pumps in insecticide resistance has been 

documented in several insect species and it has been correlated to increased 

expression of genes encoding ABC transporters (Porretta et al. 2008; Aurade et al. 

2010; Bariami et al. 2012). A survey of cases where the involvement of ABC 

transporters in insecticide resistance is suggested has been recently reviewed by 

Dermauw & Van Leeuwen (2014). ABC transporters have been associated with 

resistance to insecticides with different modes of action, with evidences based on 

the quantification of transcript or protein levels and by synergism studies using ABC 

inhibitors (Buss & Callaghan 2008; Dermauw & Van Leeuwen 2014). In addition, a 

mutant allele in different lepidopteran species has recently been discovered and 

confers resistance to the pore-forming Cry1Ac toxin from Bacillus thuringiensis (Bt) 

by a mechanism that is not related to toxin extrusion, but because it causes the loss 

of Cry1Ac binding to membrane vesicles (Gahan et al. 2010; Heckel 2012). 
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1.4.3.2 Penetration resistance 

To reach its target, an insecticide must first penetrate the cuticle of the insects. 

Penetration resistance occurs when the insects have physico-chemical alterations to 

the structure of their cuticle that results in a slower absorption of the chemicals or 

in a reduced amount of the insecticide passing through these physical barriers. This 

mechanism protects insects from a wide range of insecticides, but on its own it 

confers low levels of resistance. Indeed, it is usually found in combination with 

other forms of resistance, enhancing their effects. For example a delayed and 

slower penetration can provide more time for the detoxification of the insecticide 

(Oppenoorth & Welling 1976; Scott 1990). 

 

1.4.3.3 Behavioural resistance 

Behavioural resistance consists of the adaptation of insect behaviour in order to 

avoid the insecticide. This phenomenon is stimulus dependent and resistant insects 

can detect or recognise the danger and simply stop feeding or leave the treated 

area, walking or flying away. They can respond to lower concentrations of 

insecticide than normal insects, indicating the presence of receptors that allow the 

development of the ability to better detect the presence of insecticides (Sparks et 

al. 1989; Yu 2008). 

 

1.5 SYNERGISTS 

Synergists are compounds that can be used in combination with insecticides to 

increase their efficacy against resistant insect pests. These molecules are 

themselves non-toxic at the doses applied and can inhibit enzymes usually involved 

in xenobiotic detoxification, temporarily restoring the susceptibility of resistant 

insects or making the susceptible more sensitive (Metcalf 1967). For that reason, 

synergists have been used for a long time in laboratory bioassays to determine the 

presence of metabolic resistance in insect pests. The efficacy of a synergist is 
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commonly expressed as the synergism factor (SF), which is the ratio between the 

LC50 value of an insecticide applied alone and the LC50 value obtained when the 

insecticide is mixed with a synergist (Metcalf 1967; Ishaaya 1993). 

Studies on insecticide synergists started in 1940s, with the observation of an 

enhanced insecticidal activity of pyrethrum when combined with sesame oil; the 

active components were identified as sesamin and sesamolin (Fig. 1.2), two 

methylenedioxyphenyl (MDP) compounds (Haller et al. 1942). Since then, many 

MDP compounds have been investigated for their synergistic effects, including 

piperonyl butoxide (PBO) (Fig. 1.3). 

 

Figure 1.2: Sesamin and sesamolin structures. 

 

Figure 1.3: PBO structure. 

 

Today PBO is probably the best known synergist, widely used in the household 

insecticide market but with a limited application in agriculture. At present 

registered PBO formulations for agriculture  are available only in Australia and USA. 
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In Europe the status of PBO and synergists in general is still not completely defined 

by the legislation. Currently, mixtures between PBO and natural pyrethrins are, at 

least in Italy, registered and commonly used in organic farming; another registered 

application of PBO is to synergise synthetic pyrethroids to protect stored cereals 

(http://www.fitogest.it). 

PBO was developed in the 1950s, first synthesised using the raw material safrole 

and later produced synthetically. Initially it was reported to be a specific inhibitor of 

cytochrome P450 enzymes (Casida 1970; Wilkinson 1984; Hodgson et al. 1998), but 

more recently it has been demonstrated to be involved also in esterase-based 

resistance in some agriculturally important pests (Gunning et al. 1998; Young et al. 

2005). 

The synergistic effect of PBO has been demonstrated with different classes of 

insecticides, including pyrethroids, OPs, carbamates and recently also with 

neonicotinoids (Casida 1970; Bingham et al. 2008). Furthermore, it has been shown 

how these effects can be enhanced with an appropriate pre-treatment time, 

depending on the insect pest. This phenomenon is known as “temporal synergism” 

and refers to a delay  between the application of the synergist and the insecticide, 

allowing full inhibition of the specific metabolic enzymes involved in resistance prior 

to the addition of the insecticidal component (Moores et al. 2005). This concept has 

led to the development of microencapsulated insecticides with PBO, that initially 

release PBO and several hours later the insecticide. For example, 

microencapsulated formulations of PBO with α-cypermethrin and bifenthrin were 

found to be effective against a few important agricultural insect pest species 

(Bingham et al. 2007; Mazzoni et al. 2010). 

http://www.fitogest.it/
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2. MYZUS PERSICAE (SULZER) (HEMIPTERA: APHIDIDAE) 

 

2.1 THE GREEN PEACH APHID 

The green peach or peach potato aphid Myzus persicae (Sulzer) (1776) (Hemiptera: 

Aphididae) is one of the key pests of many agricultural and horticultural field and 

glasshouse crops. It causes significant damage by direct feeding, transmission of 

many plant viruses and honeydew production. This aphid is distributed worldwide 

(http://www.cabi.org/isc/datasheet/35642) and highly polyphagous, with a host 

range of more than 400 species in 40 different plant families including economically 

important crop plants (Blackman & Eastop 2000). In Europe, the main crops that can 

be infested are peach, potato, pepper and oilseed rape. In Italy, the most damaged 

cultivations are peach orchards and open-field cultures such as sugar beet, potato 

and tobacco (Barbagallo et al. 2007). 

The life cycle of M. persicae depends on the climate and on the availability of its 

primary winter host Prunus spp., expecially peach (P. persica) and nectarine (P. 

persica var laevis) (Blackman 1974). In temperate latitudes, both cold winters and 

the presence of overwintering hosts allow the green peach aphid to be holocyclic, 

with a sexual phase in autumn and a parthenogenetic (asexual) reproduction in 

spring and summer. Sexual morphs mate after an autumn migration on primary 

host, where they lay cold-resistant eggs that represent the overwintering stage; the 

fundatrices that hatch from the eggs start a succession of parthenogenetic all-

female generations, with wingless or winged forms that can migrate on a wide 

number of secondary hosts. In warm climate and in the absence of the primary 

host, the life cycle is usually anholocyclic, with the loss of sexual reproduction and a 

continual parthenogenesis all year. Considering the short generation time, 

parthenogenesis allows a rapid increase of the population under favourable 

conditions, causing high density infestations and quick damage to plants. 

 

 

http://www.cabi.org/isc/datasheet/35642
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2.2 INSECTICIDE RESISTANCE IN THE GREEN PEACH APHID 

M. persicae is now considered one of the most widely and strongly resistant species 

worldwide (http://www.pesticideresistance.com). The control of this pest is 

achieved mainly by the application of chemical insecticides, often with multiple 

applications each year. In order to control this pest, several insecticides have been 

used: carbamates (IRAC MOA 1A), organophosphates (IRAC MOA 1B), pyrethroids 

(IRAC MOA 3A), neonicotinoids (IRAC MOA 4A) and feeding inhibitors (IRAC MOA 9). 

These continuous treatments have selected resistant populations showing a variety 

of resistance mechanisms, well documented in the literature. After the first report 

of resistance to organophosphates in this species (Anthon 1955), the frequency of 

resistant cases grew during the years and today is reported to most classes of 

insecticide including organophosphates, cyclodienes, carbamates, pyrethroids and 

in the last few years also neonicotinoids (Bass et al. 2014) (Fig. 1.4). 

 

Figure 1.4: Timeline of resistant development in M. persicae. Green bars: years when 

insecticides provide good control; red bars: years when cases of compromised resistance 

control provided by the same insecticides (Bass et al. 2014). 

 

2.2.1 Resistance to organophosphates and carbamates 

Metabolic resistance against organophosphates and carbamates (and to a less 

extent against pyrethroids) based on enhanced levels of esterases has been well 

studied and was the first resistance mechanism described in M. persicae. It was 

demostrated biochemically over 40 years ago, by the observation that resistant 

strains had an enhanced ability to hydrolyse the model substrate 1-naphthyl acetate 

http://www.pesticideresistance.com/
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(1-NA) compared to the susceptible ones (Needham & Sawicki 1971). It was 

subsequently explained that this was due to the increased esterase production 

(Devonshire & Moores 1982), which occurs by gene amplification (Field et al. 1988). 

In M. persicae two different esterase variants, E4 and FE4, have been described. 

Their genes show 99% sequence identity of the coding region and both have seven 

introns of the same size and in identical positions. The two proteins differ by only 9 

amino acid substitutions and have a molecular mass of 65 kDa for E4 and 66 kDa for 

FE4, respectively, as a consequence of a non-sense mutation bringing  a premature 

stop codon in the E4 gene (Field et al. 1993 and 1996). Despite their very similar 

molecular weights, the FE4 isoform appears slightly faster when run on 

electrophoresis gels (Devonshire & Moores 1982; Devonshire et al. 1983). 

The E4 variant is widespread in North Europe populations and is correlated with a 

particular translocation between autosome 1 and 3; FE4 is mainly diffused in the 

Mediterranean regions and is not associated with chromosomal rearrangements. 

Usually just one of the two paralogues genes is amplified in individual aphids; 

amplification of both forms is very rare (Blackman et al. 1996 and 1999). However, 

in recent years, such cases of gene flow have been suggested from field collected 

aphids around Europe. In England, two clones of M. persicae with both E4 and FE4 

amplified genes were found in 2002 (Field & Foster, 2002); in Greece, analysis on 

populations collected during the years 2002-2007 showed marked changes in the 

frequencies of E4 and FE4 genes compared to old data obtained in the middle of 

1990s (Kati et al. 2014). In addition, FE4 genes associated with the A1,3 

translocation have been reported in samples collected in central-southern Italy (Rivi 

et al. 2013). These are indications of gene flow between sexually reproducing FE4 

genotypes and parthenogenetic populations carrying the translocation and/or the 

E4 genes. 

Furthermore, “revertant” clones have been described in populations with amplified 

E4 genes: it has been demonstrated that demethylation can cause gene silencing 

and consequent loss of esterase-based resistance (Field 2000). 
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2.2.2 Resistance to dimethylcarbamates 

Dimethylcarbamates are members of the carbamate class of insecticide and 

represent excellent aphicides, acting specifically on their AChE. Pirimicarb is the 

most important insecticide in this group, widely used because it is very efficacious 

and is less effected by high levels of esterase. Nevertheless, highly pirimicarb 

resistant M. persicae clones were detected in Greece in the early 1990s and their 

AChE insensitivity to pirimicarb was demonstrated biochemically (Moores et al. 

1994). 

Sequencing of ace1 and ace2 (respectively paralogue and orthologue of ace gene in 

dipteran D. melanogaster/M. domestica) of resistant and susceptible samples of M. 

persicae revealed the presence of a point mutation in ace1 causing a single amino 

acid substitution (S431F) in the acyl pocket of AChE (Nabeshima et al. 2003). Further 

experiments with both wild-type or mutated recombinant enzyme confirmed its 

correlation with resistance to pirimicarb because it strongly affects insecticide 

binding to the enzyme (Benting & Nauen 2004). Sequences derived from non-aphid 

species and vertebrates showed a high conserved residue of Phe in the same 

position, whilst in other wild-type aphid species the presence of a Ser residue was 

confirmed. This demonstrates the strong selectivity of pirimicarb and its excellent 

specificity on aphid pests and also that the mutation associated with pirimicarb-

insensitivity restores the residue to that normally found in other organisms 

(Andrews et al. 2004). 

 

2.2.3 Resistance to cyclodienes 

Although now cyclodiene insecticides like endosulfan have been phased out, they 

have been used for many years as aphicides on a range of crops, in rotation with 

other products. Resistance to this insecticide class was detected for the first time in 

clones collected from peach and nectarine orchards in US (Unruh et al. 1996). It 

results from a mutation in the gene encoding for the GABA receptor, which causes a 

single amino acid substitution in position 302. In a wide range of insects the Ala 
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residues are replaced with a Ser whilst in some M. persicae clones it has been found 

to be either a Ser or a Gly. Southern blot analysis revealed the presence of two 

independent loci, one carrying alleles A or G and the other  carrying allele S. Only 

allele G has been correlated with resistance to cyclodienes, whilst the functional 

significance of the other allele is still unclear, although it is present in all studied 

clones regardless of their resistance status (Anthony et al. 1998). 

 

2.2.4 Resistance to pyrethroids 

For a long time pyrethroids have been one of the main insecticide classes used 

against M. persicae and it has led to the development of populations showing high 

levels of resistance, both metabolic and target site. Metabolic resistance is 

conferred by esterases and monooxygenases. These enzymes are responsible for 

the sequestration (Devonshire et al. 1998) or detoxification of pyrethroid molecules 

by ester group cleavage or through oxidative mechanisms, respectively (Berge et al. 

1998; Wheelock et al. 2005). Target-site resistance causes pyrethroid insensitivity 

through mutations in the sodium channel protein and it is considered the most 

important resistance mechanism against pyrethroids (Devonshire et al. 1998). 

L1014F (kdr) and M918T (s-kdr) are the two most common target-site mutations 

described in this pest. M918T has always been found in combination with L1014F, 

leading to high levels of pyrethroid resistance (Martinez-Torres et al. 1999; 

Eleftherianos et al. 2008). Also a few other mutations have been reported (F979S 

and L932F), but their possible involvement in resistance is only partially or not at all 

characterised (Criniti et al. 2008; Fontaine et al. 2011). Additionally, another amino 

acid substitution (M918L) in the s-kdr locus has recently been identified in French 

populations of M. persicae and linked to a resistant phenotype even in the absence 

of the classic kdr (Fontaine et al. 2011). 

Although in most insect species kdr and s-kdr mutations have been shown to be 

inherited as recessive traits, M. persicae heterozygous clones display a resistant 
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phenotype to a range of pyrethroids (Eleftherianos et al. 2008; Fontaine et al. 

2011). 

 

2.2.5 Resistance to neonicotinoids 

After their introduction on the market in the early 1990s, neonicotinoid insecticides 

became one of the key components of pest management strategies used by 

growers against many crop pests and in recent years they have been considered the 

main effective control measure adopted against M. persicae on many crops (Nauen 

& Denholm 2005). Nevertheless, recent field-collected samples of this aphid 

showed a significant level of resistance to neonicotinoids. 

The involvement of detoxifying enzymes was confirmed with bioassays in a clone 

collected in 2007 from Greece that exhibited 30-60-fold resistance to different 

neonicotinoids when compared to a reference susceptible strain (Philippou et al. 

2010). Microarray analysis revealed the constitutive overexpression of a single P450 

gene (CYP6CYP3), data confirmed by quantitative PCR (Puinean et al. 2010). 

Some further findings suggested the contribution of additional mechanisms in 

conferring resistance to neonicotinoid insecticides. Enzyme inhibitors did not 

restore complete susceptibility; LC50 values were lower in feeding bioassays 

compared to the topical applications; up-regulation of ESTs encoding for cuticular 

proteins in microarrays compared between resistant and susceptible clones: these 

observations are evidence of a reduced cuticular penetration of the insecticide in 

resistant aphids (Puinean et al. 2010). 

Later, in a population collected from Southern France expressing extremely high 

resistance to neonicotinoids, a new single point mutation causing an Arg to Thr 

substitution in position 81 (R81T) in the loop D region of the nicotinic acetylcholine 

receptor β1 subunit (nAChRβ1) was discovered. This substitution confers a 

vertebrate-like character to the insect and results in a reduced sensitivity to 

neonicotinoids because it changes their binding affinity to the nicotinic 

acetylcholine receptor (Bass et al. 2011). 
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2.2.6 Further considerations 

Despite the primary importance of M. persicae in agriculture, limited genomic 

informations were available for this species so far. However, recent advances in 

DNA sequencing allowed to rapidly acquire data about cDNA libraries and to create 

expressed sequence tags (ESTs) databases to make in silico predictions of 

differentially expressed genes, SNPs identification or microarrays creation for gene 

expression studies (Ramsey et al. 2007). The produced M. persicae EST collections 

together with the pea aphid Acyrthosiphon pisum (Harris) genome (International 

Aphid Genomics Consortium, 2010) allowed, for example, a direct comparison of 

xenobiotic detoxification enzymes in those two related insect species with different 

feeding habits (Ramsey et al. 2010). 

The International Aphid Genomics Consortium (IAGC) has recently released a 

working draft of the genome assembly version of M. persicae clone O (GPA_Ov1, 

the green peach aphid clone that is prevalent in UK) and scaffolds are now available 

for BLAST searches (http://www.aphidbase.com/download). The availability of 

genome sequence could be very powerful to find new potential targets involved in 

insecticide resistance. For example, it could allow phylogenetic analysis among 

different insect species, in order to infer orthologous relationships that might 

suggest conserved function and thus to better investigate mechanisms that have 

already been described in other insect species, as it has been recently done in 

studies on ABC transporter gene family (Dermauw & Van Leeuwen 2014). 

Furthermore, genome assembly will represent an important source for increasing 

understanding of insecticide resistance mechanisms that have already been 

characterised. For example, if it is well know that metabolic resistance occurs by 

enhanced production of specific enzymes, to date the mechanism(s) by which 

detoxification genes are amplified has not been identified, as well as how genes are 

copied and moved around the genome. The interrogation of genome sequence will 

help to better exploring those and other issues. 

http://www.aphidbase.com/
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CHAPTER 2 

AIM OF THE PROJECT 

 

Insect pests represent a serious threat for agricultural production, human health 

and animal protection, because of crop damage and transmission of several 

diseases. Chemical insecticides have been used to control these pests for many 

decades and today they remain essential to ensure a supply of affordable food and 

as part of disease vector control strategies. The green peach aphid M. persicae is a 

globally significant crop pest that has evolved high levels of resistance to almost all 

classes of insecticide. Due to its widespread distribution, the host range of over 400 

species, the short life cycle and the high capacity of dispersion, it is now considered 

one of the major arthropod pests worldwide (Whalon et al. 2008). Work spanning 

over 40 years has shown its ability to evolve mechanisms that overcome the toxic 

effect of insecticides, leading this insect to be regarded as one of the most 

important “case studies” for the evolution of insecticide resistance (Bass et al. 

2014). 

Despite the numerous papers present in the literature regarding M. persicae, only a 

small number relate to investigations on the Italian presence and impact of 

insecticide resistance in this aphid. The last data available were published by Criniti 

et al. in 2008 considering populations collected around Italy in the previous years. 

Since then changes in resistance management strategies have been established, 

with different guidelines based on the fact that some products have been phased 

out whilst others were introduced into the market. Among them, neonicotinoid 

insecticides represented a key element for many agricultural systems, allowing a 

diversification of the selection pressure due to a different chemistry and mode of 

action. In recent years, cases of reduced efficacy of this class have been reported 

and new mechanisms of resistance have been described. The aim of this project is 

to investigate the main biochemical and molecular mechanisms underlying 
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resistance in Italian populations of M. persicae, in order to provide an update of the 

current situation, taking into account these recent  topics. 

The first part of this thesis (Chapters 4 and 5) is related to target-site resistance and 

aims to analyse the distribution of the main mutations responsible for resistance. In 

particular, the present work is focused on target-site mutations that have already 

been associated to neonicotinoid resistance (involving nicotinic acetylcholine 

receptors) and pyrethroid resistance (involving voltage gated sodium channels), 

compromising those insecticides that in recent years have been the main 

components of pest management strategies used by growers against the green 

peach aphid. The present survey doesn’t include data about the presence of 

another well-known mutation located in the acetylcholinesterase enzyme, 

conferring target-site insensitivity to pirimicarb (a dimethylcarbamate). Despite its 

importance in many part of Europe, where this mutation is predominant in analysed 

populations, preliminary data collected at the beginning of this work indicated that 

its frequency has not increased since the last Italian survey in 2008. In addition, the 

use of pirimicarb in peach orchards is now greatly reduced in Italy although it is still 

permitted in the legislation and included in official Integrated Pest Management 

guidelines. This choise depends primarly on the fact that pirimicarb easily produce 

residues that can influence the good quality of the productions although they 

remain lower that the maximum values allowed. Also, the small portion of resistant 

insects can survive to the treatment and then generate rapid reinfestations in the 

field. Results obtained by this investigation will be important to develop proper 

insecticide resistance management strategies, in order to avoid ineffective 

applications and improve the long-term sustainability of chemical control against M. 

persicae. 

The second part of this thesis (Chapter 6 and 7) is focused on metabolic resistance 

in order to verify the involvement of the main detoxyfing systems responsible of 

resistance. Again, literature data have already shown that esterases and 

monoxygenases are the main mechanisms responsible for the detoxification or 
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sequestration of pyrethroid and neonicotinoid insecticides; the present work aims 

to investigate the involvement of both these two enzymatic classes in resistant 

populations recently collected in Italy. 

Furthermore, the possibility of overcome this kind of resistance has been taken in 

account with analysis conducted within the framework of the European project 

called “EcoSyn” (Ecofriendly synergists for insecticide formulations - Grant 

Agreement no: 605740). This is a FP7 project that aims to characterise the 

interactions between the main detoxifying metabolic systems, esterases and 

monoxygenases, and synergistic compounds that are able to inhibit these enzymes 

and thus metabolic resistance mediated by an enhanced production. The present 

work analyses the “in vitro” interaction between purified esterase or recombinant 

P450 enzymes of the green peach aphid with a wide range of compounds; structure 

activity relationship (SAR) analysis will then aid the design of bespoke structures, to 

be tested with “in vivo” bioassays and field trials, in order to select novel 

compounds with high inhibition potency. The last aim is the production of new 

synergists for use with insecticides, and thus allowing a reduction of the active 

ingredients in agricultural applications. 
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CHAPTER 3 

GENERAL MATERIALS AND METHODS 

 

1. INSECTS 

 

1.1 APHID REARING 

M. persicae populations were maintained on pea-seedlings (cv Meraviglia d’Italia) in 

controlled environmental conditions (21 ± 0.5 °C with a 16:8 h light:dark 

photoperiod) to be reared as colonies of parthenogenetic females according to a 

previously reported procedure (Mazzoni & Cravedi 2002) (Fig. 3.1). 

 

 

 

 

 

 

 

 

1.2 FIELD COLLECTION 

M. persicae populations were collected in different areas of Italy, mainly from peach 

orchards but also from herbaceous hosts. In most cases populations were collected 

after control failures but a detailed list of insecticide treatments was not available. 

Usually, according to local aphid management practices, aphids collected from 

peach survived at least to a neonicotinoid and in many cases also to a pyrethroid 

application; collection from secondary host generally occurred after pyrethroid 

failures. During field sampling, specimens were randomly collected from infested 

leaves. Some were directly stored in acetone at -20 °C and then used for DNA 

Figure 3.1: M. persicae rearing collection. Different aphid populations are maintained 

isolated in small plastic boxes containing 3-5 pea-seedlings 5 days old. 
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extraction and molecular analysis, while others were put on pea-seedlings and 

reared as colonies of parthenogenetic females in controlled environmental 

conditions as described above. A full list of M. persicae populations collected in 

2012 and 2013 is reported in table 3.1. 

 

Region Area Host 
n° populations 

2012              2013 

Emilia-Romagna Bologna peach 8 3 

Emilia-Romagna Forlì-Cesena peach 16 10 

Emilia-Romagna Forlì-Cesena eggplant 2 
 

Emilia-Romagna Forlì-Cesena pepper 1 1 

Emilia-Romagna Ravenna peach 17 3 

Emilia-Romagna Rimini peach 1 
 

Abruzzo Chieti peach 1 1 

Calabria Cosenza peach 1 
 

Campania Salerno tobacco 1 
 

Lazio Latina peach 
 

1 

Lazio Latina pepper 
 

1 

Lazio Viterbo peach 
 

1 

Lazio Roma peach 1 1 

Puglia Foggia peach 1 3 

   
Tot. 50 Tot. 25 

 

Table 3.1: Geographical and host distribution of M. persicae populations collected in 

2012/2013. 

 

1.3 REFERENCE CLONES 

Aphid parthenogenetic lineages available in the rearing were used as references in 

full dose-response bioassay and molecular analysis. The fully susceptible strain 1X 

was collected in Tuscany in 1995 on peach and was lab-reared without any 

insecticide selection pressure. Three clones (92H6, 99H1 and 175H2) were selected 
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from resistant populations collected after serious neonicotinoid control failures 

respectively in 2010 in Cesena (92H6), in 2011 in Ravenna (99H1) and in 2013 in 

Chieti (175H2). Clone 384C heterozygous for the M918L mutation was kindly 

provided by Séverine Fontaine (Unité Résistance aux produits phytosanitaires, Lyon, 

France). 

A full list of the clones used as references is reported in table 3.2. Their genotypes 

were assessed by direct sequencing of the amplicons encompassing the target-site 

mutations under investigation, according to previously described protocols 

(Cassanelli et al. 2005; Bass et al. 2011). 

 

clone 

nAChR 

(R81T) 

aga-->aca 

Kdr 

(L1014F) 

ctc-->ttc 

s-kdr 

(M918T) 

atg-->acg 

s-kdr 

(M918L) 

atg-->ttg 

s-kdr 

(M918L) 

atg-->ctg 

1X SS SS SS SS SS 

62H 
 

SR SR 
  

92H6 SS RR RR - - 

97H1 SR 
    

99H1 RR 
    

384C 
 

SS SS SR SS 

175H2 
 

SR SR SS SR 

 

Table 3.2: Reference clones of M. persicae used in bioassays and molecular analysis. 

Genotypes of interest are reported for each clone. 

 

2. BIOASSAYS 

Susceptibility towards different insecticide products with or without synergists was 

investigated by dip-test bioassays. Pea seedlings were dipped for 5 s in insecticide 

(or insecticide plus synergist) solutions and after 15 min batches of 10-15 individuals 

of M. persicae were transferred onto the plants. Each experiment was replicated at 

least 4 times and with 5-6 different concentrations of insecticide (or insecticide plus 
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synergist); test subjects were selected randomly from all available and different 

groups were assigned randomly to each concentration. In each replication a control 

group was included, with the same number of subjects selected from the 

population with the same criteria and treated with water. 

Tests with insecticide products used in combination with a synergist were 

performed starting from a tank mix 1:5 ratio of active ingredient: synergist. The 

choise of a constant ratio instead of a variable one that is a fixed amount of the 

synergist added to variable doses of the insecticidal component is to better simulate 

field conditions and thus getting results more suitable from an applicative point of 

view. Also, ratio 1:5 has been decided because it is a commercially cost-effective 

ratio often used in household products (Farnham 1998). 

Samples were maintained at 21 ± 0.5 °C with a 16:8 h photoperiod. Mortality 

assessment was done 24 h after pyrethroid application or 72 h after neonicotinoid 

application. Data recorded for each combination of clone/insecticide/concentration 

were pooled together and concentration-mortality relationships were estimated by 

probit analysis (Finney 1971). Data were processed using POLO-Plus software (LE-

ORA Software). Concentrations required to kill 50% of the population (LC50), 95% 

confidence limits (CL95%), slopes with standard errors (SE), chi-square (χ2) and 

degrees of freedom (df) were estimated. The LC50 values were used to calculate a 

“resistance factor” (RF) and a “synergistic factor” (SF) as follow: 

• RF = LC50 resistant population / LC50 susceptible population 

It estimates the effect of a certain treatment if tested against both resistant and 

susceptible populations. Generally it indicates how much more insecticide is 

required to provide equal control against a resistant population compared to a 

susceptible one. 

• SF = LC50 without synergist / LC50 with synergist 

It estimates the effect of a synergist when used in conjunction with an 

insecticide on a particular insect population (either resistant or susceptible). The 

toxicity of the insecticide normally increases with the relative amount of 

synergist in the synergist/insecticide treatment. 
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2.1 INSECTICIDES 

• imidacloprid (Confidor, 200 SL; Bayer CropScience S.r.l., Milan, Italy) 

(neonicotinoid) 

• bifenthrin (Brigata Flo; SIPCAM, Pero, Milan, Italy) (type I pyrethroid) 

• λ-cyhalothrin (Karate Zeon 1.5; Syngenta Crop Protection, Gallarate, Milan, Italy) 

(type II pyrethroid) 

• DDT (Sigma Aldrich) 

 

2.2 SYNERGISTS 

Technical PBO and analogues of PBO with modifications in the 

methylenedioxyphenyl (MDP) mojety, alkyl and polyether side chains were supplied 

by Endura SpA, Italy. 

• structures of EN 1-14, 1-16, 1-40, 1-42, 1-101, 1-162, 1-93, 1-129, 1-180, 1-186, 

1-175, 1-179, 1-164, 1-125, 1-163, 1-183, 1-181, 1-182, 16-05, 16-06, 14-05, 16-

17, 16-18, 25-10, 25-35, 25-37, 25-36: see Philippou et al. 2013; 

• structure of EN 1-126: see Philippou & Moores 2014; 

• structures of EN 18-05, 1-48, 1-44, 25-08, 25-09: Endura SpA, personal 

communication. 

 

3. BIOCHEMICAL AND MOLECULAR ANALYSIS 

 

3.1 SUBSTRATES AND CHEMICALS 

• 1-NA (1-naphthyl acetate), MW: 186.21 (Sigma-Aldrich) 

• 1-NB (1-naphthyl butyrate), MW: 214.26 (Sigma-Aldrich) 

• 1-NP (1-naphtol), MW: 144.17 (Sigma-Aldrich) 

• FBB (Fast blue B), MW: 475.46 (Carlo Erba) 

• FBRR (Fast Blue RR salt), MW: 387.89 (Sigma-Aldrich) 

• pNA (4-nitrophenylacetate), MW: 181.15 (Sigma-Aldrich) 
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• ATChI (acetylthiocholine iodide), MW: 289.2 (Sigma-Aldrich) 

• DTNB (5,5’-dithiobis(2-nitrobenzoic acid)), MW: 396.3 (Sigma-Aldrich) 

• 7-MFC (7-methoxy-4-trifluoromethylcoumarin), MW: 244.17 (Sigma-Aldrich) 

 

3.2 BUFFERS 

• 0.02 M sodium phosphate buffer pH 7.0 

• 0.02 M Tris/HCl buffer pH 8.5 

• TNES (Tris 50 mM, NaCl 400 mM, EDTA 20 mM, SDS 0.5%) buffer pH 7.5 

 

3.3 DNA EXTRACTION PROTOCOL 

Genomic DNA was extracted from a single specimen by a “salting-out” protocol, as 

already described (Sunnucks & Hales 1996; Guillemaud et al. 2003). Individual 

adults were homogenised using a QIAGEN TissueLyser LT for 30 s at 50 Hz in a 2 mL 

tube containing one stainless steel bead and TNES buffer pH 7.5 (300 μL) with 

proteinase K (100 μg mL−1). The homogenate was heated at 55 °C for 1 h and then 

proteins were precipitated with 5 M NaCl (85 μL) and pelleted at 16000 x g  for 5 

min. DNA was isolated from the supernatant by ethanol precipitation and 

resuspended in sterile water (50 μL). 

The DNA concentration was assessed using a Qubit Fluorimeter 2.0 instrument 

(Quant-iT ds DNA HS Assay kit; Invitrogen, Carlsbad, CA, USA). The amount of 

genomic DNA obtained was in the range 2-50 ng μL−1. For each population, DNA 

extraction was carried out from 5-10 specimens randomly selected from previously 

collected and acetone-preserved samples. 

 

3.4 PRIMERS 

A full list of the primers used is reported in table 3.3: 
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Table 3.3: Primers sequences. 

 

Primer name Sequence (5'-3') References Notes 

kdr-F1 TCGTGGCCCACACTGAATCT Cassanelli et al. 2005 

Primers used for kdr (L1014F) 

characterisation by pasa-PCR. 

(See Chapter 4) 

kdr-R4 GTTCATGTAAGATACATGAATTC Cassanelli et al. 2005 

Sd2 CTACTGTTGTCATTGGTAACC Guillemaud et al. 2003 

Rv2 ATAGTACTTATACATACCACGAA Guillemaud et al. 2003 

MpSK-F25 TGAAACTGATGGCGATGAGCCCTA Cassanelli S, p. comm. 

Primers used for s-kdr (M918T) 

characterisation by pasa-PCR. 

(See Chapter 4) 

MpSK-R3292 GTAGGTTCTGGATAGCAATTGTTGC  

MpSKs-RE GCACCGATGGTTCGACCCA  

MpSKr-FW GCCCACACTGAATCTTTTAATATCCATAAC  

MpNACR-F52 ATTGTTCGTATAGTTACAGAATC  

Primers used for R81T 

characterisation by pasa-PCR. 

(See Chapter 4) 

MpNACR-R514 GAGATAAATCGCTGAGTAGATTTC  

MpNACRs-FW GATAATGAAATCAAACGTTTGGTTGAG  

MpNACRr-RE TATATTAAGTAGGTTACTCACAAGTG  

MpSK-R21 TCCCGTCACCAATGTCATCTCCA Cassanelli S, p. comm. 

Primer used togheter with MpSK-

F25 for amplification and 

sequencing of locus encompassing 

kdr and s-kdr mutations. 

(See Chapter 5) 
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Tab 3.3: cont. 

 

Primer name Sequence (5'-3') References Notes 

65-F GCCCACACTGAATCTTTTAA Nauen R, p. comm. Primers used for PCR reaction 

before pyrosequencing assay. 

(See Chapter 5) 
98-R-btn CATACCCATGACGGCAAATA Nauen R, p. comm. 

116-seq TGAATCTTTTAATATCCAT  Nauen R, p. comm. 
Primer used for pyrosequencing 

assay. 

(See Chapter 4) 

T7 TAATACGACTCACTATAGGG pGEM-T Easy Vector (Promega) Primers used for the cloning 

experiment. 

(See Chapter 5) 
Sp6 TATTTAGGTGACACTATAG pGEM-T Easy Vector (Promega) 
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CHAPTER 4: 

TARGET-SITE RESISTANCE TO PYRETHROIDS AND 

NEONICOTINOIDS: AN ITALIAN SURVEY 

 

DETECTING THE PRESENCE OF TARGET-SITE RESISTANCE TO 

NEONICOTINOIDS AND PYRETHROIDS IN ITALIAN POPULATIONS OF 

MYZUS PERSICAE. 

Michela Panini, Davide Dradi, Gabriele Marani, Alda Butturini and Emanuele 

Mazzoni. 

Pest Management Science 2014; 70: 931-938. 

Abstract 

BACKGROUND: Myzus persicae is a key pest of peach, which in commercial orchards 

is mainly controlled by chemical treatments. Neonicotinoids represent the main 

control strategy, but resistance monitoring programmes in Southern Europe have 

shown the widespread presence of populations highly resistant to this insecticide 

class in peach orchards. Moreover, in Italy reports of neonicotinoid application 

failures are increasing. This work describes the status of the main target-site 

mutations associated with neonicotinoid and pyrethroid resistance in Italian 

populations collected in 2012. 

RESULTS: R81T mutation linked with neonicotinoid resistance was found in 65% of 

analysed aphids (35.5% with a homozygous resistant genotype). For the first time, 

R81T was found in samples collected from herbaceous hosts. Bioassays on a few 

genotyped populations also revealed the involvement of P450-based metabolic 

resistance. Only a few individuals without kdr (L1014F) and s-kdr (M918T) target-

site mutations were collected. A new single nucleotide polymorphism in the s-kdr 

locus producing M918L substitution was found. 

CONCLUSION: Target-site resistance to neonicotinoids is common in specialised 

peach-growing areas, and it is spreading in other Italian regions and on herbaceous 

hosts. The high frequency of target-site mutations and data obtained from 

bioassays confirm the presence of multiple resistance mechanisms and suggest the 

importance of coordinated control strategies. 



CHAPTER 4                                                 Target-site resistance to pyrethroids and neonicotinoids: an Italian survey 

48 

 

1. INTRODUCTION 

The control of the green peach aphid has relied almost exclusively on the use of 

chemical insecticides and during the last years pyrethroids and neonicotinoids 

represented the main products used by growers. In particular, since their recent 

introduction, neonicotinoids have been considered the key elements for the control 

strategies, because of the different chemistry and mode of action. 

However, recently field-collected samples of M. persicae showed a significant level 

of resistance to neonicotinoids and the involvement of detoxifying enzymes, with 

the overexpression of a single cytochrome P450 gene (CYP6CY3), was demonstrated 

(Philippou et al. 2010; Puinean et al. 2010). The situation changed significantly 

when in 2009 a clone of M. persicae exhibiting extremely high resistance to 

neonicotinoids was collected in France (IRAC newsletter, issue 25). In this clone a 

new single point mutation causing an Arg to Thr substitution at position 81 (R81T) in 

the loop D region of the nicotinic acetylcholine receptor 1 subunit (nAChR 1) was 

discovered (Bass et al. 2011). This substitution reduces the binding affinity of 

neonicotinoids to the nicotinic acetylcholine receptor, giving a target-site resistance 

that compromises the efficacy of these insecticides against M. persicae populations 

in peach orchards (Slater et al. 2012). 

Following these discoveries, monitoring programmes were established in France 

and Spain in order to investigate the geographical distribution and widespread 

presence of resistant populations of M. persicae, sampling peach orchards as well as 

some other herbaceous crops. In Italy, some failure cases were reported in 2010, 

and resistance was confirmed in 2011 (IRAC newsletter, issue 29; Mazzoni et al. 

2012). In order to provide additional data for this survey, and in view of the 

increasing number of reports concerning the loss of efficacy of insecticide 

treatments, in spring 2012 we started a screening of M. persicae populations 

collected in different areas of Italy, focusing mainly on the most important peach-

growing area (Emilia-Romagna). This work aims to investigate the diffusion of the 

main target-site mutations underlying the insensitivity to neonicotinoids and 

pyrethroids, both used in peach orchards against aphids and other pests. 
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2. MATERIALS AND METHODS 

 

2.1 APHID SAMPLES 

M. persicae populations were collected from spring to autumn 2012 in different 

areas of Italy, mainly from peach orchards (n=46), but also from a few herbaceous 

hosts (n=4) (Table 4.1). 

Region Area Host n° populations 

Emilia-Romagna Bologna peach 8 

Emilia-Romagna Forlì-Cesena peach 16 

Emilia-Romagna Forlì-Cesena eggplant 2 

Emilia-Romagna Forlì-Cesena pepper 1 

Emilia-Romagna Ravenna peach 17 

Emilia-Romagna Rimini peach 1 

Abruzzo Chieti peach 1 

Calabria Cosenza peach 1 

Campania Salerno tobacco 1 

Lazio Roma peach 1 

Puglia Foggia peach 1 

   
Tot. 50 

 

Table 4.1: Total number of M. persicae populations collected in Italy in 2012, divided by 

site and host of collection. 

 

 

2.2 INSECTICIDE BIOASSAYS 

Susceptibility towards the neonicotinoid imidacloprid (Confidor, 200 SL; Bayer 

CropScience S.r.l., Milan, Italy) and towards imidacloprid plus the synergist 

piperonyl butoxide (PBO) (PBO 80 EC; Endura, Bologna, Italy) was investigated by a 
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dip-test bioassay on reference clones 1X, 92H6 and 99H1, as previously described 

(see chapter 3, section 2). 

 

2.3 DNA EXTRACTION 

Genomic DNA was extracted from a single specimen by a “salting-out” protocol as 

already described (see chapter 3, section 3.3). 

 

2.4 BI-PASA PCR 

The presence of single point mutations was assessed with allele specific polymerase 

chain reaction amplification (PASA-PCR). This method allows the genotyping of a 

particular site in a target gene with a single reaction, through the combination of 

four different primers: two common primers are used to amplify the region of 

interest, while the other two internal specific primers are used for the specific 

amplification of the susceptible or resistant allele. The 3’ of the internal primers are 

designed specifically on the wild-type or mutate nucleotide and have different 

directions. Thus, in combination with the external primers, asymmetrically located 

in respect to the mutation of interest, they produce fragments of different size 

corresponding to homozygous or heterozygous genotypes (Liu et al. 1997). 

Results of bi-PASA-PCR were validated by sequencing the control fragments directly 

amplified with the external primers, encompassing the mutations under 

investigation. This check was performed previously on the reference clones (see 

chapter 3, section 1.3) and on at least five different aphid samples for each target, 

randomly selected. 

 

2.4.1 Characterisation of R81T mutation 

In order to detect the presence of the substitution associated with neonicotinoid 

resistance (Bass et al. 2011), four new primers were designed (see chapter 3, table 
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3). Primer MpNACRs-FW is specific for the wild-type allele and in combination with 

MpNACR-R514 amplifies a177 bp fragment; primer MpNACRr-RE is specific for the 

resistant allele and in combination with MpNACR-F52 amplifies a 332 bp fragment 

(Fig. 4.1). The PCR reaction (25 μL) contained 12.5 μL of DreamTaq Green PCR 

Master Mix (Thermo Scientific, Milan, Italy), 0.4 μM of each primer and 1 μL of 

genomic DNA. Amplification started with 2 min at 94 °C, followed by 30 cycles of 94 

°C for 30 s, 61 °C for 30 s and 72 °C for 45 s, with a final elongation at 72 °C for 5 

min. 

 

2.4.2 Characterisation of kdr and s-kdr mutations 

In order to detect the presence of the kdr mutation (L1014F), primers kdr-F1 and 

kdr-R4 (Cassanelli et al. 2005) were used in combination with primers Sd2 and Rv2 

(Guillemaud et al. 2003) (see chapter 3, table 3). Primer Sd2 is specific for the wild-

type allele and in combination with kdr-R4 amplifies a 195 bp fragment; primer Rv2 

is specific for the kdr allele and in combination with kdr-F1 amplifies a 380 bp 

fragment (Fig. 4.1). The PCR reaction (25 μL) contained 12.5 μL of DreamTaq Green 

PCR Master Mix (Thermo Scientific), 0.4 μM of each primer and 1 μL of genomic 

DNA. Amplification started with 2 min at 94 °C, followed by 30 cycles of 94 °C for 30 

s, 61 °C for 30 s and 72 °C for 45 s, with a final elongation at 72 °C for 5 min. 

In order to detect the presence of the s-kdr mutation (M918T), four new primers 

were designed (see chapter 3, table 3.3). Primer MpSKs-RE is specific for the wild-

type allele and in combination with MpSK-F25 amplifies a 310 bp fragment; primer 

MpSKr-FW is specific for the s-kdr allele and in combination with MpSK-R3292 

amplifies a 495 bp fragment (Fig. 4.1). The PCR reaction (25 μL) contained 12.5 μL of 

DreamTaq Green PCR Master Mix (Thermo Scientific), 0.4 μM of each primer and 1 

μL of genomic DNA. Amplification started with 2 min at 94 °C, followed by 30 cycles 

of 94 °C for 30 s, 66 °C for 30 s and 72 °C for 45 s, with a final elongation at 72 °C for 

5 min. 
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Figure 4.1: Bi-PASA-PCR products on R81T, kdr (L1014F) and s-kdr (M918T) mutations. 

Amplification profile of the possible genotypes: R81T: SS (508 bp and 177 bp); SR (508 bp, 

332 bp and 177 bp), RR (508 bp and 332 bp); kdr: SS (575 bp and 195 bp); SR (575 bp, 380 

bp and 195 bp), RR (575 bp and 380 bp); s-kdr: SS (805 bp and 310 bp); SR (805 bop, 495 

bp and 310 bp), RR (805 bp and 495 bp). 

 

2.4.3 M918L detection 

In order to detect polymorphisms in s-kdr locus reported by other authors (Fontaine 

et al. 2011), direct PCR was assembled using primers kdr-F1 and kdr-R4 (see chapter 

3, table 3.3) that encompass the codon of interest, as already described (Cassanelli 

et al. 2005). Amplicons were sequenced in both directions. This check was 

performed on wild-type aphid samples for both the common kdr (L1014F) and s-kdr 

(M918T) mutations, because, as reported in the literature, the new M918L 

(atg→ttg) was not found to be linked with them and because primers used in the bi-

PASA (MpSKs-RE and MpSKr-FW) could not detect this nucleic substitution (a/t) 

(EMBL accession number FR774834). 
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3. RESULTS 

 

3.1 NEONICOTINOID RESISTANCE 

Probit analysis was used to estimate an imidacloprid baseline for the reference 

clone and indicated differences of the two neonicotinoid-resistant populations 

(92H6 and 99H1) compared with the susceptible population (1X). Results obtained 

from probit analysis are indicated in table 4.2. 

Strain Treatment 
LC50 

(µg mL -1) 
CI 95% slope d.f. χ2 R.F. R.S. 

1X I 0.49 0.35 0.64 2.46 ± 0.21 39 93.6 
  

92H6 I 5.72 3.55 7.73 3.20 ± 0.47 45 91.7 11.6 
 

 
I + P 2.58 1.51 3.63 2.23 ± 0.35 45 94.1 5.3 2.2 

99H1 I 297 n.c. n.c. 1.21 ± 0.32 21 66.2 605 
 

 
I + P 54.1 7.70 243 0.97 ± 0.21 13 28.7 110 5.5 

 

Table 4.2: Log-dose probit-mortality data for imidacloprid (± PBO) against adults of 

different clones of M. persicae in pea seedling dip bioassays. LC50: lethal concentration 

that is expected to cause 50% of mortality; CI 95%: confidence interval limits at 95%; d.f.: 

degree of freedom; R.F.: resistance factor (calculated as the ratio between LC50 of 

resistant strain and LC50 of susceptible strain 1X); R.S.: synergism factor (calculated as the 

ratio between LC50 without PBO and LC50 with PBO). 

 

In both “resistant” clones the LC50 was significantly higher than the LC50 of the 

susceptible clone, as indicated by the non-overlapping of the confidence limits. The 

higher value was in clone 99H1, carrying the target-site mutation R81T in 

homozygous form, as confirmed by cDNA sequencing. The LC50 of clone 92H6, with 

susceptible genotype (R81) and presumed to be quite resistant to neonicotinoids 

owing to metabolic resistance, was lower; nevertheless it was significantly higher 

than the LC50 of the susceptible strain. Resistance factors (RFs) were calculated and 

were equal to 12 for strain 92H6 and more than 600 for strain 99H1. These values 

were significantly reduced by the use of the synergist PBO. The synergism factors, 
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2.2 for 92H6 and 5.5 for 99H1, suggest a possible involvement of an oxidative 

metabolic resistance mechanism, at least for clone 99H1. 

Furthermore, a dose-response curve comparison of clones 1X and 92H6 does not 

reject the hypothesis of parallelism (χ2=2.84; df=1; P=0.092), while for curves of 

clones 1X and 99H1 this hypothesis is rejected (χ2=5.63; df=1; P=0.018), confirming 

the involvement only of metabolic resistance in the former and a combination of 

metabolic and target-site resistance in the latter (Robertson et al. 2007). 

 

 

Figure 4.2: Distribution map of collection sites showing the presence of neonicotinoid 

target-site resistance genotypes. 

 

Bi-PASA analysis of field samples collected in 2012 showed the presence of the R81T 

mutation in more than half of the populations: 35.5% of the individuals were 

homozygous, 29.5% were heterozygous and 35.0% showed a homozygous wild-type 

form. Homozygous resistant aphids were found only in Emilia-Romagna (Fig. 4.2) 
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and it was the only genotype present in 13 out of 45 samples collected in this 

region. At the same time, in the same areas, 7 wild-type populations were found. A 

fairly high percentage of heterozygous resistant specimens (70%) was found in 

sample from Lazio, near Rome, while in Abruzzo and Puglia they were present but in 

a lower percentage, 10 and 30% respectively. No aphids with this mutation were 

found in samples from Campania and Calabria. Specimens carrying this mutation 

were also found in 2 samples collected in autumn from herbaceous hosts: eggplant 

(100% homozygous resistant) and pepper (80% homozygous resistant, 20% 

heterozygous). (Table 4.3). 

 

3.2 PYRETHROID RESISTANCE 

Molecular analysis showed the presence of the common kdr and s-kdr mutations in 

almost all the populations collected, with higher percentages in Emilia-Romagna 

compared with the central and southern areas (Table 4.3). 

Kdr (L1014F) was found in 97.4% of analysed aphids (n=467) (62.9% showed a 

homozygous genotype and 34.5% a heterozygous one). A few wild-type individuals 

were observed only in 3 of the 50 populations, coming from Emilia-Romagna 

(eggplant), Abruzzo (peach) and Campania (tobacco). s-kdr (M918T) was found in 

94.4% of analysed aphids (50.1% showed a homozygous genotype and 44.3% were 

heterozygous). Wild-type individuals were observed only in 9 of the 50 populations. 

These aphids were collected from peach as well as from herbaceous hosts (tobacco 

and eggplant); they were present in all the populations coming from central and 

southern Italy and in a few populations collected in Emilia-Romagna. 

s-kdr mutation was detected only in insects with the kdr mutation. When kdr was 

found in the homozygous form, s-kdr was homozygous or heterozygous; when kdr 

was in the heterozygous form, the s-kdr homozygous form was never detected 

(Table 4.4). Considering target-site resistance to neonicotinoids, R81T genotypes are 

quite uniformly distributed among kdr resistant genotypes (Table 4.5). 
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     s-kdr   

    RR SR SS Total 

kdr      

 RR 50.1% 12.4% 0.4% 63.0% 

 SR   31.9% 2.6% 34.5% 

 SS    2.6% 2.6% 

 Total 50.1% 44.3% 5.6%  

 

Table 4.3: Percentage of specimens with different kdr and s-kdr genotypes combinations. 

 

 

     R81T   

    RR SR SS Total 

kdr      

 RR 21.8% 20.3% 20.8% 62.9% 

 SR  13.7% 9.0% 11.8% 34.5% 

 SS   0.2% 2.4% 2.6% 

 Total 35.5% 29.5% 35.0%  

 

Table 4.4: Percentage of specimens with different kdr and R81T genotypes combinations. 

 

Only 12 specimens were fully susceptible for both kdr and s-kdr mutations. They 

were investigated for the presence of the other s-kdr mutation (M918L). This was 

indicated only in one specimen, collected from peach in Abruzzo, but differing from 

literature reports (Fontaine et al. 2011). Two differences were found: (1) it was 

caused by an a/c nucleic substitution instead of the a/t already documented; (2) the 

mutation was in homozygous form. This specimen was the only kdr wild-type aphid 

bearing R81T. 
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Table 4.5: M. persicae populations collected in Italy in 2012. 

 

Sample 

(code) 

Site 

(province) 
Host 

Pop. 

(n.) 

R81T genotype (%) kdr genotype (%) s-kdr genotype (%) 

RR SR SS RR SR SS RR SR SS 

132 RA peach 10 50.0 30.0 20.0 80.0 20.0 0.0 80.0 20.0 0.0 

133 RA peach 10 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

150 RA peach 10 80.0 10.0 10.0 100.0 0.0 0.0 100.0 0.0 0.0 

107 RA peach 10 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 

108 RA peach 9 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

121 RA peach 10 0.0 80.0 20.0 90.0 10.0 0.0 90.0 10.0 0.0 

149 RA peach 9 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

129 RA peach 9 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

106 RA peach 9 0.0 0.0 100.0 66.7 33.3 0.0 66.7 33.3 0.0 

115 RA peach 9 66.7 33.3 0.0 33.3 66.7 0.0 22.2 77.8 0.0 

122 BO peach 10 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 

141 BO peach 10 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 

143 BO peach 10 50.0 50.0 0.0 60.0 40.0 0.0 60.0 40.0 0.0 

140 BO peach 10 100.0 0.0 0.0 30.0 70.0 0.0 0.0 100.0 0.0 

142 BO peach 10 0.0 20.0 80.0 100.0 0.0 0.0 100.0 0.0 0.0 

127 BO peach 10 100.0 0.0 0.0 70.0 30.0 0.0 50.0 50.0 0.0 

109 BO peach 10 0.0 0.0 100.0 60.0 40.0 0.0 50.0 10.0 40.0 

128 RA peach 10 50.0 50.0 0.0 70.0 30.0 0.0 70.0 30.0 0.0 

111 BO peach 10 10.0 40.0 50.0 70.0 30.0 0.0 70.0 30.0 0.0 

131 RA peach 10 0.0 80.0 20.0 100.0 0.0 0.0 20.0 80.0 0.0 

151 RA peach 10 0.0 60.0 40.0 100.0 0.0 0.0 100.0 0.0 0.0 

136 RA peach 10 0.0 100.0 0.0 10.0 90.0 0.0 10.0 90.0 0.0 
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Table 4.5: cont. 

 

Sample 

(code) 

Site 

(province) 
Host 

Pop. 

(n.) 

R81T genotype (%) kdr genotype (%) s-kdr genotype (%) 

RR SR SS RR SR SS RR SR SS 

146 RA peach 9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 

147 RA peach 9 0.0 11.1 88.9 77.8 22.2 0.0 77.8 22.2 0.0 

117 FC peach 10 90.0 10.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

144H FC peach 10 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 

139 RA peach 8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 

134 FC peach 8 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

126 FC peach 10 0.0 20.0 80.0 100.0 0.0 0.0 90.0 10.0 0.0 

116 FC peach 10 0.0 100.0 0.0 10.0 90.0 0.0 10.0 90.0 0.0 

137 FC peach 10 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 

138 FC peach 9 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

110 FC peach 10 0.0 10.0 90.0 80.0 20.0 0.0 20.0 80.0 0.0 

113 FC peach 9 0.0 22.2 77.8 44.4 55.6 0.0 22.2 66.7 11.1 

112 FC peach 10 0.0 90.0 10.0 80.0 20.0 0.0 50.0 50.0 0.0 

119 FC peach 10 30.0 70.0 0.0 80.0 20.0 0.0 50.0 50.0 0.0 

135 FC peach 10 0.0 20.0 80.0 80.0 20.0 0.0 0.0 90.0 10.0 

125 FC peach 8 100.0 0.0 0.0 50.0 50.0 0.0 50.0 50.0 0.0 

148 FC peach 10 0.0 0.0 100.0 0.0 100.0 0.0 0.0 80.0 20.0 

118 FC peach 10 100.0 0.0 0.0 50.0 50.0 0.0 40.0 60.0 0.0 

130 FC peach 10 100.0 0.0 0.0 70.0 30.0 0.0 70.0 30.0 0.0 

120 RI peach 10 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 
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Table 4.5: cont. 

 

Sample 

(code) 

Site 

(province) 
Host 

Pop. 

(n.) 

R81T genotype (%) kdr genotype (%) s-kdr genotype (%) 

RR SR SS RR SR SS RR SR SS 

154 FC eggplant 6 0.0 0.0 100.0 0.0 16.7 83.3 0.0 16.7 83.3 

152 FC eggplant 6 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 

153 FC pepper 5 80.0 20.0 0.0 60.0 40.0 0.0 60.0 40.0 0.0 

114 CH peach 10 0.0 10.0 90.0 50.0 40.0 10.0 20.0 70.0 10.0 

155 RO peach 10 0.0 70.0 30.0 80.0 20.0 0.0 50.0 20.0 30.0 

145 FG peach 10 0.0 30.0 70.0 60.0 40.0 0.0 10.0 70.0 20.0 

124 SA tobacco 6 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 

123 CS peach 9 0.0 0.0 100.0 0.0 100.0 0.0 0.0 88.9 11.1 
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4. DISCUSSION 

In recent years, in Italy, neonicotinoids and to a lesser extent pyrethroids have been 

the key components of the pest management strategies used by growers against 

the peach potato aphid M. persicae. Neonicotinoids were considered to be a key 

instrument in resistance management strategies (Elbert et al. 2008) but, in time, 

cases of reduced efficacy were reported. Recent monitoring programmes in 

Southern Europe have revealed the widespread distribution of resistant 

populations, posing a serious threat to the long-term efficacy of these insecticides. 

The present work aimed to investigate the current Italian status of genomic 

mutations linked to neonicotinoid and pyrethroid insecticide target-site resistance. 

Emilia-Romagna was the main area monitored because it is the most important 

cultivation area for peach in Italy, but the survey was extended also to other 

regions. Great attention was paid to those instances where neonicotinoid 

treatments were not efficacious and peach growers observed consistent re-

infestations of the pest. 

The present data confirm a quite worrying situation in the more specialised peach-

growing area of Italy. Aphids carrying the R81T substitution in the loop D region of 

the nAChR 1 were very common and uniformly distributed in Emilia-Romagna. A 

few samples from different parts of Italy indicated the presence of a potentially 

critical situation in other regions also: the mutation was found in many specimens 

of populations collected in Lazio, Abruzzo and Puglia. Only aphids from Calabria and 

Campania showed a complete wild-type genotype. Until now this mutation has 

been described only in populations collected from peach  (Slater et al. 2012; IRAC 

newsletter, issue 29). Here, for the first time, its presence also in M. persicae 

samples collected from herbaceous hosts is described. It is worth noting that, in one 

case, aphids collected on the same farm but at different times from peach (in 

spring) and from eggplant (in autumn) showed the same genotype (100% 

homozygous resistant). This underlines the fact that resistant aphids, spreading on 

secondary hosts, can also affect any neonicotinoid-based management strategy on 

these crops. 
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The present data also confirm the compromised effectiveness of pyrethroids, the 

employment of which in M. persicae control strategies must be avoided owing to 

the extremely high frequencies of kdr and s-kdr mutations. Only in one population, 

collected in Campania from tobacco plants, all the analysed specimens were wild 

type. 

In comparison with previously published data concerning the presence of different 

resistance mechanisms in Italian populations of M. persicae (Criniti et al. 2008), 

here emerges a huge increase in the percentage of pyrethroid-resistant 

populations. In particular, s-kdr specimens are much more abundant and aphids 

with homozygous resistant genotype have been found. This could be explained by 

the fact that in Italy pyrethroids remain one of the few solutions against thrips on 

nectarines, and they are usually applied pre- or post-flowering in a period that is 

also critical for insecticide application against M. persicae, so giving, at least 

indirectly, a significant selection pressure with this mode of action. 

Furthermore, the new s-kdr mutation (M918L) has been found, although for the 

moment it seems to be quite rare in Italy. In fact, our data described only one 

specimen carrying that mutation in an homozygous form. Actually, this survey 

considered the presence of that mutation only in wild-type aphids for both the 

original kdr and s-kdr mutations; nevertheless it is important to consider the 

possibility that it could be present also in samples with different genotypes, i.e. 

heterozygous for the same mutations, in order to verify different hypothetical 

combinations of them, because of a possible location on different chromosomes. In 

addition, literature data showed that M918L can affect pyrethroid resistance 

(Fontaine et al. 2011). For that reason, its spread should be considered and 

monitored more in details in further sampled field populations. 



CHAPTER 5                          Target-site resistance: alternative s-kdr mutations in the voltage-gated sodium channel 

62 

 

CHAPTER 5 

TARGET-SITE RESISTANCE: ALTERNATIVE S-KDR MUTATIONS 

IN THE VOLTAGE-GATED SODIUM CHANNEL 

 

PRESENCE AND IMPACT OF ALLELIC VARIATIONS OF TWO 

ALTERNATIVE S-KDR MUTATIONS, M918T AND M918L, IN THE 

VOLTAGE-GATED SODIUM CHANNEL OF THE GREEN PEACH APHID 

MYZUS PERSICAE. 

Michela Panini, Matteo Anaclerio, Vincenzo Puggioni, Lorenzo Stagnati, Ralf 

Nauen and Emanuele Mazzoni. 

Pest Management Science (DOI 10.1002/ps.3927) 

Abstract 

BACKGROUND: Pyrethroids have been widely employed in order to control several 

agricultural pests, including M. persicae. Target-site resistance is the main 

mechanism that confers insensitivity to this class of compounds. The most common 

amino acid substitutions are kdr (L1014F) and s-kdr (M918T), but recently another 

mutation in the s-kdr locus (M918L) has been described in French and Korean 

populations of M. persicae. 

RESULTS: Molecular analysis of several Italian populations of M. persicae by 

pyrosequencing revealed the presence of the new s-kdr mutation (M918L) in 

different forms. It was found in two possible nucleotide polymorphisms (a/t or a/c 

substitution), in heterozygous or homozygous status, and also in combination with 

the classic kdr and s-kdr. Bioassays on populations carrying M918L mutation show 

that it strongly affects pyrethroid efficacy, particularly of type II pyrethroids such as 

λ-cyhalothrin, whilst it has no effect against DDT. 

CONCLUSION: This work contributes to add more information about the new s-kdr 

M918L mutation in M. persicae, describing a more complicated situation due to the 

possible combination with the classic L1014F and M918T. Our data open new 

questions on the origin of these new genotypes with different combinations of 

target-site mutations and also on their possible influence on control strategies. 
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1. INTRODUCTION 

Pyrethroids is one of the main insecticide classes widely used for both agricultural 

and public health purposes, in order to control several pests and vectors of human 

diseases. This class of synthetic insecticides affects the insect nervous system, 

acting on the voltage-gated sodium channels (VGSC), large trans-membrane 

spanning proteins that are essential for electrical signalling in nerve cell membranes 

(Davies et al. 2007). 

For a long time pyrethroids have been used against M. persicae and the continuous 

treatments have led to the development of populations showing high levels of 

resistance (Devonshire et al. 1998). L1014F (kdr) and M918T (s-kdr) are the two 

most common target-site mutations described in this pest; until now, M918T has 

always been found in combination with L1014F, leading to high levels of pyrethroid 

resistance (Martinez-Torres et al. 1999; Eleftherianos et al. 2008). 

Another amino acid substitution (M918L) in the s-kdr locus has recently been 

identified in French and Korean populations of M. persicae and linked to a resistant 

phenotype even in the absence of the classic kdr (Fontaine et al. 2011; Roy et al. 

2013; Kim et al. 2014). Interestingly, literature data describe two different 

polymorphisms responsible for this mutation: in samples collected in France an a/t 

nucleotide substitution (atg  ttg) was found only in a heterozygous status 

(Fontaine et al. 2011), whilst in Italian populations an a/c nucleotide substitution 

(atg  ctg) was described in a homozygous status (Panini et al. 2014, see chapter 

4). 

In this work we document the contemporary presence of both allelic variants of the 

M918L mutation together with the kdr L1014F, resulting in novel M. persicae 

genotypes not yet described by other authors. The discovery underlines the 

importance of these critical sites in the voltage gated sodium channels, where the 

main target-site mutations are localised, and also provide additional information 

regarding the evolution of target-site resistance in the green peach aphid. 
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2. MATERIALS AND METHODS 

 

2.1 APHID SAMPLES 

M. persicae populations were collected from spring to autumn 2012 (n=50) and 

2013 (n=25) in different areas of Italy, mainly from peach orchards (n=69), but also 

from secondary hosts (n=6) (Table 5.1). 

 

Region Area Host 
Populations 2012 

n° tot        M918L 

Populations 2013 

n° tot       M918L 

Emilia-Romagna Bologna peach 8   3   

Emilia-Romagna Forlì-Cesena peach 16 2 10 1 

Emilia-Romagna Forlì-Cesena eggplant 2 1     

Emilia-Romagna Forlì-Cesena pepper 1   1   

Emilia-Romagna Ravenna peach 17 3 3 1 

Emilia-Romagna Rimini peach 1       

Abruzzo Chieti peach 1 1 1 1 

Calabria Cosenza peach 1 1     

Campania Salerno tobacco 1       

Lazio Latina peach     1 1 

Lazio Latina pepper     1 1 

Lazio Viterbo peach     1   

Lazio Roma peach 1   1   

Puglia Foggia peach 1 1 3 3 

   
Tot. 50 Tot. 9 Tot. 25 Tot. 8 

 

Table 5.1: Geographical and host distribution of M. persicae populations collected in 

2012/2013. For each year the total number of sampled populations and the number of 

them in which M918L mutation was detected are reported. 
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2.2 DNA EXTRACTION 

Genomic DNA was extracted from a single specimen by a “salting-out” protocol as 

already described (see chapter 3, section 3.3). 

 

2.3 PYROSEQUENCING ASSAY FOR S-KDR GENOTYPING 

Pyrosequencing is a DNA sequencing-by-synthesis technology that allows the 

detection of single nucleotide polymorphisms (SNPs). This method is based on the 

luminometric detection of pyrophosphate (PPi) released upon nucleotide 

incorporation (Ahmadian et al. 2000). Target-site mutations located in the s-kdr 

locus (M918T/L) were investigated with this technique. 

A short gene fragment of 109 bp was amplified by PCR from genomic DNA. Primers 

65-F and 98-R-btn (see chapter 3, table 3.3) were designed using the “Assay Design 

Software” (PSQ-Biotage AB, Uppsala, Sweden); the reverse primer was biotinylated 

at the 5’ end. The PCR reaction (50 μL) contained 1X Taq enzyme reaction mix 

(RedTaq JumpStart Master Mix, Sigma Aldrich, Milan, Italy), 0.4 μM of each primer 

and 5 μL of genomic DNA. Amplification started with 1 min at 94°C, followed by 45 

cycles of 94 °C for 30 s, 52 °C for 45 s and 72 °C for 30 s, with a final elongation at 72 

°C for 10 min. PCR products were controlled in 2% agarose gel. 

The biotinylated single strands of the PCR products were obtained by using the 

Vacuum Prep Tool (Biotage AB) in combination with streptavidin coated beads 

(Streptavidin Sepharose High Performance beads, GE Healthcare Bio-Sciences AB, 

Uppsala, Sweden). The pyrosequencing reactions were performed with the PSQ 

96MA System, using dedicated PSQ 96 SNP Reagent Kit and HS Plate (Qiagen) and 

according to the manufacturer’s instructions. The genotyping was assessed with the 

sequence-primer 116-seq (see chapter 3, table 3.3), starting one nucleotide 

upstream of the site of interest. Pyrograms were analysed using the PSQ96 MA SNP 

Software. 
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2.4 CLONING 

DNA fragments 600 bp long were PCR-amplified with primers kdr-F1 and kdr-R4 (see 

chapter 3, table 3.3) and then cloned in pGEM-T Easy Vector (Promega, Madison, 

WI, USA) using T4 DNA ligase, according to the manufacturer’s instructions. Ligated 

plasmids were transformed into E. coli High Efficiency Competent Cells (Promega). 

Selection of recombinant clones was made with white:blue colonies screening on 

Luria-Bertani agar containing X-gal (40 μg mL-1), IPTG (0.4 mM) and ampicillin (0.05 

mg mL-1) (Sambrook et al. 1989). 

White colonies were re-suspended in 15 μL of sterile distilled water and lysed at 95 

°C for 10 min. The presence of cloned insert was evaluated by Colony PCR using 

T7/Sp6 primers (see chapter 3, table 3.3). PCR reactions (25 μL) contained 12.5 μL of 

DreamTaq Green PCR Master Mix (Thermo Scientific, Milan, Italy) and 0.4 μM of 

each primer. Amplification started with 5 min at 95 °C, followed by 35 cycles of 95 

°C for 30 s, 50 °C for 40 s, 72 °C for 1.5 min and a final extension at 72 °C for 10 min, 

using GeneAmpR PCR System 2700 (Applied Biosystems, Life Technologies, USA, 

Foster City, CA, USA). Plasmids were extracted from positive clones using an alkaline 

lysis method (Sambrook et al. 1989). Inserts were sequenced using a BigDye v3.1 

Sequencing kit according to the manufacturer’s instructions (Applied Biosystems). 

After unincorporated dye terminators removal, sequences were loaded and run on 

the ABI Prism 3100 Genetic Analyzer (Applied Biosystems). 

 

2.5 cDNA SEQUENCING 

Total RNA was isolated from 15 mg of fresh aphids using TRI Reagent (Sigma-

Aldrich), according to the manufacturer’s instructions. RNA pellets were dissolved in 

DEPC water and their quality was assessed by denaturing electrophoresis in 

TBE/formamide 1.2% agarose gel. The concentrations were determined using a 

Qubit Fluorimeter 2.0 instrument (Qubit RNA Assay Kit; Invitrogen). All the samples 

were diluted in DEPC water to obtain stocks 1 μg μL-1. First-strand cDNA was 
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synthesized from 1 μg of the total RNA using RevertAid H Minus First Strand cDNA 

Synthesis Kit (Thermo Scientific) according to the manufacturer’s protocol. 

In order to detect the presence of the mutations under investigation, primers 

MpSK-F25 and MpSK-R21 were used (see chapter 3, table 3.3). PCR reactions (25 μL) 

contained 2 μL of cDNA, 12.5 μL of DreamTaq Green PCR Master Mix (Thermo 

Scientific), 0.4 μM of each primer. Amplification started with 2 min at 94 °C, 

followed by 30 cycles of 94 °C for 30 s, 58 °C for 30 s and 72 °C for 2 min, with a final 

elongation at 72°C for 10 min. PCR products obtained were purified with GenElute 

PCR Clean-Up Kit (Sigma-Aldrich) and direct sequenced in both strands using the 

same primers. 

 

2.6 INSECTICIDE BIOASSAYS 

Susceptibility toward the type I pyrethroid bifenthrin (Brigata Flo; SIPCAM, Pero, 

Milan, Italy), the type II pyrethroid λ-cyhalothrin (Karate Zeon 1.5; Syngenta Crop 

Protection, Gallarate, Milan, Italy) and DDT (Sigma Aldrich) was assessed by a dip-

test bioassay (see chapter 3, section 2). DDT was emulsified in water using rapeseed 

oil and ethylene glycol monostearate. Piperonyl butoxide (PBO) (PBO 80EC; Endura, 

Bologna, Italy) was used to synergize pyrethroid efficacy. 

 

3. RESULTS 

 

3.1 CHARACTERISATION OF M918L MUTATION 

The s-kdr mutation M918L was detected in all regions where populations were 

collected, except Campania (Table 5.1). There are a few cases of samples carrying 

this mutation that were collected in the same orchards in 2012 and 2013, 

confirming its persistence over the years. Furthermore, the mutation was found not 
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only in populations collected from peach, but also from secondary hosts (eggplant 

and pepper). 

Two different polymorphisms, giving the same amino acid substitution, were found. 

The most common is the a/c substitution, already documented in Italian 

populations of M. persicae (Panini et al. 2014, see chapter 4); the other is the a/t 

substitution, already detected in populations collected in other areas of Southern 

Europe and Korea and reported here for the first time also in Italy. The presence of 

the mutation was checked in total in 293 aphids and the percentage of specimens 

carrying it was about 20%. In particular both polymorphisms, a/c and a/t, account 

for 15% and 5% of the total analysed cases, respectively. The a/t substitution was 

detected only in the heterozygous form, whilst the a/c substitution was present also 

in the homozygous form. Indeed the latter  seems to be very rare: only two 

specimens were found and both samples were collected from the same orchard in 

Abruzzo. 

 

3.2 M918L AND M918T COMBINATION 

Analysing the s-kdr locus, in some specimens, contemporary nucleotidic 

substitutions in both the first and second position of the “atg” methionine codon 

have been detected: a/c or a/t in position 1 and c/t in position 2 (Fig. 5.1). 

Their combination can theoretically encode for other aminoacid substitutions (“ccg” 

for a proline and “tcg” for a serine) and not necessary for M918L or T. In order to 

characterise the true amino acid substitutions encoded by such mutations and to 

confirm or exclude the presence of new mutations, never reported in literature in 

this locus, a fragment encompassing the kdr and s-kdr locus was cloned and 

sequenced. According to the cloning experiment results, the only codons detected 

were, “acg” (threonine) and “ctg” or “ttg” (leucine) whilst other possible codons 

were not found. 
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Figure 5.1: Pyrosequencing of the short fragment of genomic DNA encompassing the s-kdr 

locus in M. persicae. Highlighted areas evidence the nucleotides of interest, showing 

alternative polymorphisms in different clones. A: wild-type; B: homozygous for the nucleic 

substitution responsible for the M918L mutation; C: heterozygous for both s-kdr 

mutations (M918L and M918T) with the a/c substitution; D: heterozygous for both s-kdr 

mutations (M918L and M918T) with the a/t substitution. 

 

As confirmed by the sequencing of the cloned fragment, the two  nucleotidic 

substitutions are located on different alleles. Moreover “ctg” or “ttg” (M918L) was 

never found linked with the classic kdr mutation, whilst “acg” (M918T) was always 

linked with L1014F, confirming literature data already available (Lee et al. 1999; 

Soderlund 2008; Rinkevich et al. 2013).  So, for the first time, the simultaneous 

presence of M918T and M918L mutations, located on different alleles, in the same 

individual (Fig. 5.2) is described. 

This evidence is also important to justify the homozygous status of M918L mutation 

only in samples that are wild-type (L1014 and M918). cDNA sequencing 

demonstrates that both alleles are transcribed in clones with both s-kdr mutations 

(M918T and M918L) as well as in heterozygous clones (wild-type and M918L) (Fig. 

5.3). 
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Figure 5.2: Alignment of sequences derived from cloning experiments. Only the regions 

encompassing kdr and s-kdr mutations are reported and sites of amino acid substitutions 

are boxed. Nucleotide substitutions are highlighted. 

 

 

 

Figure 5.3: cDNA sequencing of s-kdr (A) and kdr (B) loci. Sites of amino acid substitutions 

are boxed. Alternative SNPs are in correspondence with double peaks. 

 

 

A summary of all the possible s-kdr genotypes detected in analysed aphids are listed 

in table 5.2, together with the percentages of their frequencies. 
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mutation(s) genotype codon(s) 2012 2013 

wild type homozygous atg 17.1% 17.0% 

M918T only heterozygous acg + atg 59.0% 45.5% 

 

homozygous atg 2.6% 17.6% 

M918T + M918L heterozygous acg + ctg 14.5% 8.0% 

 

heterozygous acg + ttg 2.6% 2.8% 

M918L only heterozygous atg + ctg 3.4% 4.5% 

 

heterozygous atg + ttg 

 

4.0% 

 

homozygous ctg 0.9% 0.6% 

  

specimens (n) 117 176 

 

Table 5.2: s-kdr genotypes and their frequencies detected in M. persicae populations 

collected in 2012/2013. 

 

3.3 BIOASSAYS 

The influence of different s-kdr genotypes on pyrethroid and DDT efficacies was 

investigated with full dose-response bioassays in four clones: a fully susceptible 

(1X), a L1014F+M918T clone (92H6), a M918L clone (384C) and a 

M918T+M918L+L1014F clone (175H2) (see chapter 3, table 3.2). Parameters of 

baselines for bifenthrin, λ-cyhalothrin and DDT, estimated by probit analysis, are 

summarised in table 5.3. 

Estimated LC50 values for bifenthrin in clones 384C and 175H2 were significantly 

different from LC50 values of the susceptible clone (1X), as indicated by non-

overlapping confidence limits. The LC50 value of bifenthrin in clone 92H6 was 

extremely high and it was not possible to calculate its confidence limits. Among 

clones with a M918L mutation the highest resistance factor (more than 1400-fold) 
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was observed in clone 175H2 (M918T and M918L simultaneously) that showed also 

the highest synergistic ratio when combined with PBO (about 20). Clone 384C 

(M918L only) showed a much lower resistance factor (RF = 86) and synergistic ratio 

(SF = 3.2). 

Resistance to λ-cyhalothrin was higher and it was not possible to achieve significant 

regression estimates for clones 384C and 175H2 using the insecticide alone. As a 

consequence, resistance and synergistic ratios could not be calculated. On the 

contrary, in bioassays with λ-cyhalothrin/PBO it was possible to estimate significant 

regression coefficients and to calculate resistance factors, however again clone 

175H2 showed the highest resistance factor (RF = 1466). 

In summary, for both M918L clones resistance factors calculated for λ-

cyhalothrin+PBO were higher than those calculated for bifenthrin+PBO but 

resistance factors of clone 384C was always lower for both insecticides than the 

corresponding resistance factors of clone 175H2. 

In DDT bioassays no differences were observed between the susceptible clone and 

clone 384C. The hypothesis of equality (equal slopes, equal intercepts) evaluated 

with probit analysis was not rejected (P>0.05; χ2: 4.93, degrees of freedom: 2). In 

clone 175H2 a resistant factor of 3.5 was observed and baseline comparison rejects 

the equality as well as parallelism hypothesis and confidence limits for LC50 values 

are completely separated from those of the susceptible clone.  
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Treatment Clone LC50 (µg mL-1) CI 95% slope d.f. χ2 R.F. S.F. 

bifentrin 1X 1.07 0.56 1.67 1.65(± 0.31) 8 6.2   

bifentrin + PBO 1X 0.46 0.22 0.72 1.69 (± 0.34) 8 6.8  2.3 

bifentrin 384C 92.3 15.5 256 0.77 (± 0.16) 13 19.7 86.4  

bifentrin + PBO 384C 28.8 14.6 45.8 1.85 (± 0.36) 13 14.7 63.3 3.2 

bifentrin 175H2 1534 383 10800 0.67 (± 0.11) 18 65.8 1436  

bifentrin + PBO 175H2 77.8 40.8 123 1.57 (± 0.20) 18 20.2 171 19.7 

bifentrin 92H6 10900 - - 0.71 (± 0.24) 28 36.4 >10000  

bifentrin + PBO 92H6 124 70.2 200 1.34 (± 0.18) 28 41.1 273 87.6 

λ-cyhalothrin 1X 1.93 0.85 3.00 1.70 (± 0.32) 23 40.4   

λ-cyhalothrin + PBO 1X 0.63 0.10 1.35 1.34 (± 0.18) 18 77.2  3.1 

λ-cyhalothrin 384C - - - 0.25 (± 0.14)* 15 14.9 n.e.  

λ-cyhalothrin + PBO 384C 99.6 57.0 154 1.46 (± 0.17) 13 18.1 158 n.e. 

λ-cyhalothrin 175H2 - - - -0.40 (± 0.62)* 18 27.6 n.e.  

λ-cyhalothrin + PBO 175H2 923 243 1000 2.43 (± 0.66) 14 16.2 1466 n.e. 

DDT 1X 112 67.2 139 3.08 (± 0.89) 11 11.1   

DDT 384C 131 85.0 186 1.83 (± 0.27) 18 20.4 1.2  

DDT 175H2 390 169 829 0.95 (± 0.10) 21 58.8 3.5  

 

Table 5.3: Log-dose probit-mortality data for bifenthrin (± PBO), λ-cyhalothrin (± PBO) and DDT against adults of different clones of M. persicae in 

pea seedling dip bioassays (24h) (Legend: * = not significant; n.e. = not estimable). 
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4. DISCUSSION 

In this work we describe the presence and distribution of the s-kdr mutation M918L 

in Italian populations of the green peach aphid. It has been found to be not a rare 

mutation, as suggested from previous preliminary data available (Panini et al. 2014, 

see chapter 4), but on the contrary, it is present throughout the country and, even if 

our samples were collected mainly from peach, it has been detected also in 

populations from secondary hosts. The discrepancy with the previous survey is 

explained by the different methodology adopted, that allows to evaluate at the 

same time all the SNPs present in the s-kdr locus giving a more clear view of the 

presence of this mutation. 

Fontaine et al. (2011) pointed out a significant increase of resistance to λ-

cyhalothrin (type II pyrethroid) due to the presence of the M918L mutation in 

French populations of M. persicae. Our data confirm the resistance and show that 

also the efficacy of type I pyrethroids such as bifenthrin is strongly affected by this 

mutation. A comparison of label field rates for both pyrethroids and the 

corresponding estimated LCs values confirm the possibility for that populations with 

M918L mutation (even if in heterozygous status) to survive to field treatments. 

Furthermore, the contemporary presence of both mutations (M918T and M918L) in 

individual aphids increases the resistance levels to both types of pyrethroids (even if 

metabolic resistance could play a role as suggested by synergism observed in 

bioassays with PBO). Resistance factors are different between type I and type II 

pyrethroids, i.e. resistance ratios to λ-cyhalothrin are higher. This is in agreement 

with earlier findings suggesting an important role of mutations especially in the s-

kdr locus, and reporting higher resistance levels to type II pyrethroids like λ-

cyhalothrin (Eleftherianos et al. 2008). 

Interestingly, the presence of M918L alone, in heterozygous form, does not confer 

resistance to DDT in our bioassays since baseline data for the susceptible clone are 

not statistically different from that of clone 384C. This finding is in line with recent 

data showing that the presence of s-kdr (M918T) does not affect DDT sensitivity 

(Usherwood et al. 2005). 
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No data of the influence on resistance levels of the homozygous genotype for the 

M918L mutation are available. This genotype seems to be quite rare and has not yet 

been described in lab established populations used to isolate clones for bioassays. It 

is likely produced by the mating of heterozygous adults but it may have high fitness 

costs and as a consequence it could be less competitive in co-existence with the 

other genotypes. This can explain its extinction in lab reared populations and its low 

frequency in the field: indeed homozygous M918L samples have been detected 

early in the season but they were never collected later in secondary colonies from 

peach or from secondary hosts. 

Our data show for the first time the combination of M918L and M918T in the same 

specimen. The presence of the double mutation could be explained by the sexual 

holocycle of M. persicae on peach, i.e. it is possible that, in autumn, sexual morphs 

with classical kdr and s-kdr mutations (L1014F & M918T) mate with M918L 

specimens and produce offspring with both mutations in the s-kdr locus. This 

genotype apparently does not suffer severe disadvantages compared to other 

genotypes as it represents more than 50% of the samples collected with the M918L 

mutation in Italy. 

Artificial crosses of M. persicae clonal populations with different combinations of 

resistant alleles could be important to demonstrate what mentioned above and 

better investigate the heredity of resistance. Unfortunately, crosses between aphids 

require a lot of efforts and time, due to difficulties to induce sexual stages under 

laboratory conditions and, above all, to get eggs hatching as they usually require 

cold accumulation and suffer high mortality (Blackman et al. 1996). Nevertheless, 

these experiments could allow to confirm the origins of the M918L homozygous 

genotype as well as the combination of M918L and M918T in the same aphid. 

The potential effect of M918L mutations on control strategies are yet to be fully 

understood, especially for secondary hosts that could rely, more than peach, on 

pyrethroid application against M. persicae. Our data revealed that, at least for type I 

pyrethroids, resistance conferred by the M918L mutation is lower than that 

conferred by homozygous L1014F+M918T. 
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The presence of M918L genotypes with multiple resistance mechanisms towards 

other insecticide modes of actions also needs to be considered. Some preliminary 

data about the presence in Italy of neonicotinoid and dimethyl-carbamate target-

site resistance do not show special association with M918L, but further surveys are 

needed and are currently in progress. Data presented here and in the previous 

chapter clearly demonstrate the coexistence of different resistance mechanisms 

within the same aphid, resulting in populations that are resistant to multiple 

insecticides. Literature works have already shown a reduction in aphid fitness in 

populations with one or two resistance mechanisms (Foster et al. 1996, 1997). It 

has been also demonstrated that kdr mutation is responsible of altered sodium 

channel gating properties. This results in a general reduction of the excitability of 

the nervous system and thereby potential disruption in the perception and 

behavioural responses to various stimuli that could be important for aphid survival, 

like an altered response to the alarm pheromone Β-farnesene (Foster et al. 1999, 

2007). Clonal lineages carrying multiple resistant mechanisms, including different 

kdr and s-kdr (M918L and M918T) allelic combinations, as well as others like 

neonicotinoid target-site resistance or metabolic resistance, could be established 

for ad hoc designed experiments to test possible interactions of resistance 

mechanisms and their impact on fitness costs.  
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CHAPTER 6: 

METABOLIC RESISTANCE IN ITALIAN POPULATIONS 

 

1. INTRODUCTION 

In M. persicae, esterases and cythocrome P450s are the main classes of enzymes 

involved in the detoxification of insecticides used against this pest. Both these two 

phase I enzymatic systems are capable of acting directly on the intact insecticide 

molecules and the enhanced production of these enzymes results in the 

metabolism or sequestration of the insecticide before it reaches the target protein 

(Devonshire et al. 1998; Bass et al. 2014). 

Enhanced levels of the resistance-associated esterase (E4 or FE4) confers a broad-

spectrum of resistance against organophosphates, carbamates and pyrethroids and 

results from gene amplification (Needham & Sawicki 1971; Devonshire & Moores 

1982; Field et al. 1988). Different approaches exist to demonstrate the increased 

production of esterases. Total esterase activity of aphid homogenate can be easily 

measured by biochemical tests using model substrates such as 1-naphthyl acetate 

(1-NA) or 1-naphthylbutyrate (1-NB) (Devonshire et al. 1992). The same substrates 

can also be used for staining a native polyacrylamide gel  following electrophoresis 

in order to detect the esterase banding pattern (Devonshire & Moores 1982). Also, 

“in vivo” dose-response bioassays with insecticide products, used alone or in 

combination with esterase-inhibitors, represent an indirect method to determine 

the involvement of esterases in resistant populations. If insecticide toxicity 

increases in the presence of the inhibitor, esterases are being blocked by the action 

of the inhibitor and are no longer available to sequester or detoxify insecticide 

molecules. 

Increased production of one single P450 enzyme (CYP6CY3) has been correlated  to 

high levels of resistance to neonicotinoid (Puinean et al. 2010). Measurement of 

P450 activity is difficult due to the large number of enzymes with a very high 

substrate specificity. Although biochemical assays have been successfully used in 
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many insect species to measure monooxygenase activity, e.g. O-deethylation 

activity with the model substrate 7-ethoxycoumarin, they cannot  be used directly 

with M. persicae: no appreciable activity has been found in aphid microsomal 

preparations, possibly due to high levels of oxidase inhibitors present in the 

homogenates (Philippou et al. 2009). Since monooxygenase-inhibitors are available, 

monooxygenases studies can alternatively be performed with “in vivo” insecticide 

bioassays, that can indirectly suggest the involvement of P450s enzymes in 

resistance. 

Piperonyl butoxide (PBO) is a well-known monooxygenase-inhibitor (Casida 1970; 

Wilkinson 1984), often used in bioassays for monooxygenases studies. It has been 

reported that it can also inhibit esterase activity (Gunning et al. 1998; Young et al. 

2005). The ability of PBO to inhibit both major metabolic resistance enzymes makes 

it an ideal inhibitor to provide evidences of metabolic mechanisms in resistant 

populations, but cannot characterise between esterase or P450 involvement. 

In addition, some analogues of PBO derived from modifications in the molecule 

structure are now available. In M. persicae, the analogue EN 16/5-1 used in 

combination with technical α-cypermethrin showed a specific ability to inhibit 

esterase activity, with a greatly reduced activity against microsomal oxidases 

(Moores et al. 2009). Another analogue EN 1-126 has been investigated recently 

against a  clone of M. persicae exhibiting 90-fold resistance to imidacloprid. The 

compound showed the capacity to greatly reduce the resistant factors of the 

resistant population in comparison to a susceptible one and thus it can be very 

effective against monooxygenases (Moores & Philippou 2014). 

This thesis aims to investigate the involvement of esterase and monooxygenase 

enzymes in Italian populations of M. persicae. A combination of “in vitro” 

biochemical assays and “in vivo” dose-response bioassays with neonicotinoid and 

pyrethroid products in the presence of PBO and PBO analogues will enable the 

characterisation of these metabolic resistance mechanisms in some recently 

collected populations. 
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2. MATERIALS AND METHODS 

 

2.1 APHID SAMPLES 

M. persicae populations collected between 1999 to 2013 from different areas of 

Italy were maintained as parthenogenetic lineages in controlled environmental 

conditions as described previously (see chapter 3, section 1.1). 

 

2.2 INSECTICIDE BIOASSAYS 

Susceptibility towards the pyrethroid bifenthrin (Brigata Flo; SIPCAM, Pero, Milan, 

Italy) and the neonicotinoid imidacloprid (Confidor, 200 SL; Bayer CropScience S.r.l., 

Milan, Italy) was investigated by a dip-test bioassay as described previously (see 

chapter 3, section 2). Susceptibility toward bifenthrin or imidacloprid in 

combination with the synergist piperonyl butoxide (PBO) (PBO 80 EC; Endura, 

Bologna, Italy) and PBO analogues EN 16/5-1 and EN 1-126 was evaluated with the 

same procedures. 

 

2.3 DETERMINATION OF TOTAL ESTERASE ACTIVITY 

M. persicae clonal populations available in our rearing facility were screened for 

total esterase activity using a colorimetric assay as described by Devonshire (1977) 

and adapted for microplates by Devonshire et al. (1992). Single aphids were 

homogenized on ice in 100 µL of 0.02 M phosphate buffer pH 7.0 containing 0.1% 

Triton X-100 and centrifuged at 4 ˚C at 10000 x g for 10 min. The supernatant was 

used as an enzyme source and 20 µL were transferred to single wells of a 96-well 

microplate containing 30 µL of buffer/Triton. The reaction was started with the 

addition of 150 µL/well of 0.3 mM 1-naphthyl acetate (1-NA) previously diluted in 

buffer/ Triton from an acetone stock (30 mM). Diazo blue lauryl sulphate reagent 

(DBLS) was prepared by dissolving 0.015 g of Fast Blue B salt (tetra-azotized o-
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dianisidine/ZnCI2) in 5 mL of 3.5% SDS (sodium dodecyl sulphate). After 5 min of 

incubation at 25 ˚C, 25 µL of DBLS were added to each well and the microplate left 

in the dark for 20 min. Esterase activity was assayed by measuring the rate of 

hydrolysis of 1-NA to 1-naphthol (1-NP) and acetic acid. DBLS and 1-naphthol create 

a complex that can be detected at 620 nm. Three different measurments were done 

for each aphid and at least three aphids were assayed for each populations; 

incubations without enzyme were used as negative controls. Measurements were 

performed in a Genios pro microplate reader (Tecan, Mannedorf, Switzerland) 

taking endpoint readings at 620 nm. 

Absorbance values (OD620) were converted to 1-naphthol per protein unit (nmoles 

mg-1) using a 1-naphthol standard curve. Dilutions of 1-NP were prepared in 

acetone, from 25 mM to 0.5 mM stock solutions and then diluted 1:100 in buffer to 

obtain final concentrations ranging from 0.25 mM to 5X10-3 mM with 1% acetone. 

Measurements were performed in a Tecan Genios pro reader taking endpoint 

readings at 620 nm. Total protein content was measured with the Bradford assay 

(Biorad Protein Assay Kit), according to the manufacturer’s instructions. 

 

3. RESULTS 

 

3.1 INDIRECT DETERMINATION OF METABOLIC RESISTANCE IN BIOASSAYS 

Inhibition studies with PBO were performed on selected populations available in 

our rearing facility. Some had been collected recently (164H and 175H2 in 2013; 

96H in 2011; 92H5 and 92H6 in 2010) whilst others had been reared long-term 

(47H, 54H and 62H from 1999). In addition, a fully susceptible strain (1X) was 

included. These populations were reared  in large numbers to obtain sufficient 

aphids to set up dose-response bioassays. Probit analysis was used to estimate 

bifenthrin and imidacloprid baselines for the reference clone 1X and populations 

mentioned above; LC50s, resistance factors (RFs) (LC50 for resistant clone / LC50 for 
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susceptible clone) and synergistic factors (SFs) (LC50 insecticide / LC50 insecticide + 

synergist) were calculated (Fig. 6.1 and 6.2). The use of PBO combined with 

insecticide revealed a synergistic action in all analysed clones, suggesting the 

involvement of metabolic resistance mechanisms. The highest synergistic factors 

were found in bioassays with bifenthrin for two clones: 92H6 (SF: 87.6) and 96H (SF: 

61.1) (Table 6.1 and 6.2). 
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Figure 6.1: Bifenthrin and bifenthrin + PBO baselines for clones 47H, 54H, 62H, 92H5, 

92H6, 96H, 164H17 and 175H2. The susceptible clone 1X has been included as reference. 

 

 

     

      

 

Figure 6.2: Imidacloprid and imidacloprid + PBO baselines for clones 92H5, 92H6, 96H, 

99H1. The susceptible clone 1X has been included as reference. 
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Clone 92H6 was selected for further bioassays with an analogue of PBO, EN 1-126, 

in combination with both bifenthrin and imidacloprid (Fig. 6.3) and the calculated 

synergistic factors were compared to those obtained for PBO. They were very 

similar in bioassays with imidacloprid (2.2 for PBO and 2.9 for EN 1-126) whilst a  

difference was observed in bioassays with bifenthrin (87.6 for PBO and 29.4 for 1-

126) (Table 6.3). 

A further set of bioassays were performed using clone 62H and bifenthrin only, but 

incorporating  two  PBO analogues (EN 1-126 and EN 16/5-1) (Fig. 6.3). In this case, 

the synergistic factor for EN 1-126 was slightly higher than PBO (6.6 and 6.3), whilst 

the third analogue, EN 16/5-1, more than 3X lower (1.9) (Table 6.3). 

 

     

 

 

Figure 6.3: Bifenthrin and bifenthrin + PBO, EN 1-126 or EN 16/5-1 baselines for clone 62H. 

Bifenthrin and bifenthrin + PBO or EN 1-126 baselines for clone 92H6. Imidacloprid and 

imidacloprid + PBO and EN 1-126 baselines for clone 92H6. The susceptible clone 1X has 

been included as reference. 
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Treatment Clone LC50 (mg mL -1) CI 95 slope d.f. χ2 R.F. S.F. 

bifentrin 1X * 1.07 0.56 1.67 1.65 ± 0.31 8 6.2   

bifentrin + PBO 1X * 0.46 0.22 0.72 1.69 ± 0.34 8 6.8  2.3 

bifentrin 47H 32.3 18.5 52.3 1.41 ± 0.21 18 21.6 30.2  

bifentrin + PBO 47H 11.3 8.25 14.6 2.27 ± 0.29 30 45.1 24.9 2.8 

bifentrin 54H 5.69 0.98 16.6 1.13 ± 0.16 18 65.7 5.3  

bifentrin + PBO 54H 2.59 0.49 8.12 0.91 ± 0.09 24 130 5.7 2.2 

bifentrin 62H 1563 898 3300 0.97 ± 0.13 32 57.2 1463  

bifentrin + PBO 62H 246 75.7 517 1.19 ± 0.14 25 105 542 6.3 

bifentrin 92H5 245 77.8 1734 0.75 ± 0.10 20 50.7 229  

bifentrin + PBO 92H5 24.2 13.8 39.5 2.03 ± 0.44 13 8.3 53.1 10.1 

bifentrin 92H6 * 10900 - - 0.71 ± 0.24 28 36.4 10181  

bifentrin + PBO 92H6 * 124.1 70.2 200 1.34 ± 0.18 28 41.1 273 87.6 

bifentrin 96H 19463 - - 0.90 ± 0.53 18 11.3 18223  

bifentrin + PBO 96H 319 57.9 1224 0.67 ± 0.11 18 57.6 700 61.1 

bifentrin 164H17 98.8 2.23 367.2 0.57 ± 0.10 13 40.7 92.5  

bifentrin + PBO 164H17 37.4 13.9 78.3 1.18 ± 0.12 13 30.3 82.2 2.6 

bifentrin 175H2 * 1534 383 10763 0.67 ± 0.11 18 65.8 1436  

bifentrin + PBO 175H2 * 77.8 40.8 122 1.57 ± 0.20 18 20.2 171 19.7 

 

Table 6.1: Results obtained from probit analysis: bifenthrin ± PBO. LC50: lethal concentration that is expected to cause 50% mortality; CI 95%: 

confidence interval limits at 95%; d.f.: degree of freedom; R.F.: resistance factor (calculated as the ratio between LC50 of the resistant clone and LC50 

of the susceptible clone 1X; S.F.: synergism factor (calculated as the ratio between LC50 without PBO and LC50 with PBO).*data reported in chapter 5 

section 3.3). 
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Treatment Clone LC50 (mg mL -1) CI 95% slope d.f. χ2 R.F. S.F. 

imidacloprid 1X * 0.49 0.35 0.64 2.46 ± 0.21 39 93.6   

imidacloprid + PBO 1X * 0.27 0.19 0.35 3.30 ± 0.46 13 18.1  1.8 

imidacloprid 92H5 3.24 2.46 4.16 1.87 ± 0.20 31 47.6 6.6  

imidacloprid + PBO 92H5 2.22 1.02 3.77 2.59 ± 0.41 9 31.5 8.2 1.5 

imidacloprid 92H6 * 5.72 3.55 7.73 3.20 ± 0.47 45 91.7 11.7  

imidacloprid + PBO 92H6 * 2.58 1.52 3.63 2.23 ± 0.35 45 94.1 9.6 2.2 

imidacloprid 96H 12.4 - - 1.94 ± 0.87 17 51.9 25.2  

imidacloprid + PBO 96H 2.90 - - 3.47 ± 0.81 8 18.6 10.8 4.3 

imidacloprid 99H1 * 297 - - 1.21 ± 0.32 21 66.2 606  

imidacloprid + PBO 99H1 * 54 7.70 243.20 0.97 ± 0.21 13 28.7 200 5.5 

 

Table 6.2: Results obtained from probit analysis: imidacloprid ± PBO. LC50: lethal concentration that is expected to cause 50% mortality; CI 95%: 

confidence interval limits at 95%; d.f.: degree of freedom; R.F.: resistance factor (calculated as the ratio between LC50 of the resistant clone and LC50 

of the susceptible clone 1X; S.F.: synergism factor (calculated as the ratio between LC50 without PBO and LC50 with PBO). *data reported in chapter 

4 section 3.1). 
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Treatment Clone LC50 (mg mL -1) CI 95% slope d.f. χ2 R.F. S.F. 

bifenthrin 92H6 10874 70.2  0.71 ± 0.24 28 36.4 10181  

bifenthrin + PBO 92H6 124 174 200 1.34 ± 0.18 28 41.1 273 87.6 

bifenthrin + 1-126 92H6 370  836 0.84 ± 0.1 15 45.7  29.4 

imidacloprid 92H6 5.72 3.55 7.73 3.20 ± 0.47 45 91.7 11.7  

imidacloprid + PBO 92H6 2.58 1.52 3.63 2.23 ± 0.35 45 94.1 9.6 2.2 

imidacloprid + 1-126 92H6 2.01 0.77 2.99 2.81 ± 0.39 13 49.6  2.9 

bifenthrin 62H 1563 898 3300 0.97 ± 0.13 32 57.2 1464  

bifenthrin + PBO 62H 246 75.73 517 1.19 ±0.14 25 105.4 542 6.3 

bifenthrin + 1-126 62H 236   2.31 ± 0.6 9 18.8  6.6 

bifenthrin + 16/5-1 62H 837 474 1736 0.77 ± 0.1 16 23.6  1.9 

 

Table 6.3: Results obtained from probit analysis: bifenthrin or imidacloprid (± PBO or EN 1-126 or EN 16/5-1).  LC50: lethal concentration that is 

expected to cause 50% mortality; CI 95%: confidence interval limits at 95%; d.f.: degree of freedom; R.F.: resistance factor (calculated as the ratio 

between LC50 of the resistant clone and LC50 of the susceptible clone 1X; S.F.: synergism factor (calculated as the ratio between LC50 without PBO (or 

EN 1-126 or EN 16/5-1)  and LC50 with PBO (or EN 1-126 or EN 16/5-1)). 
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3.2 BIOCHEMICAL EVALUATION OF ESTERASE-BASED RESISTANCE 

Total esterase activity was measured in several  populations available in the rearing 

facility, some of which were reared long-term and  others recently collected (Table 

6.4). The susceptible clone 1X was used as reference. Esterase activity calculated for 

this clone was compared with another susceptible clone (33H) provided by 

Rothamsted Research and used as susceptible reference in the literature. The two 

clones showed similar values (data not shown). 

 

Sample 

(code) 

Site 

(province) 

Collection 

(year) 
Host 

Esterase activity 

(nmoles μg-1 min-1) 

1X * PI 1995 peach 0.130 ± 0.004 

4 * RA 1998 peach 0.551 ± 0.032 

6 * PC 1998 peach 0.527 ± 0.035 

10 * PC 1997 peach 0.385 ± 0.027 

11 * FE 1998 peach 0.451 ± 0.041 

12 * FE 1997 peach 0.753 ± 0.083 

14 * CN 1997 peach 0.603 ± 0.016 

15 * RA 1997 peach 0.585 ± 0.045 

16 * PC 1997 peach 0.466 ± 0.032 

17 * PC 1996 tomato 0.360 ± 0.020 

18H RA 1998 peach 0.809 ± 0.016 

19 * PC 1996 tomato 0.113 ± 0.004 

22 * CS 1997 peach 0.580 ± 0.030 

23 * CZ 1998 potato 0.114 ± 0.006 

24 * BO 1998 peach 0.397 ± 0.029 

26 * PI 1996 peach 0.110 ± 0.002 

27H RA 1998 peach 0.484 ± 0.038 

39 * FC 1999 peach 0.344 ± 0.006 

43 * RA 1999 peach 0.411 ± 0.007 

44 * RA 1999 peach 0.535 ± 0.066 

46 * TO 1999 peach 0.605 ± 0.035 

48 * BN 1999 tobacco 0.121 ± 0.005 

49 * SA 1999 tobacco 0.127 ± 0.006 

 

Table 6.4: Total esterase activities (nmoles μg-1 min-1) of M. persicae populations (*: data 

published in Rivi et al. 2013). 
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Sample 

(code) 

Site 

(province) 

Collection 

(year) 
Host 

Esterase activity 

(nmoles μg-1 min-1) 

50 * SA 1999 tobacco 0.121 ± 0.003 

51 * SA 1999 tobacco 0.113 ± 0.006 

52 * CH 1999 tobacco 0.123 ± 0.007 

53 * TO 1999 peach 0.504 ± 0.013 

54 * PD 1999 peach 0.462 ± 0.062 

57 * PE 1999 tobacco 0.130 ± 0.002 

58 AP 1999 peach 0.434 ± 0.009 

62H * RA 1999 peach 0.453 ± 0.032 

63 * LO 1999 peach 0.519 ± 0.009 

64 * CH 1999 tobacco 0.128 ± 0.002 

65 * CH 1999 tobacco 0.130 ± 0.002 

66 * CH 1999 tobacco 0.128 ± 0.003 

67H BO 2000 peach 0.484 ± 0.033 

69 * PC 2000 aubergine 0.673 ± 0.038 

70 * CS 2000 peach 0.510 ± 0.015 

92H5 * FC 2010 peach 0.478 ± 0.014 

92H6 FC 2010 peach 0.376 ± 0.032 

96H BO 2011 peach 0.378 ± 0.001 

97 BO 2011 peach 0.445 ± 0.030 

99H1 RA 2011 peach 0.339 ± 0.021 

114 CH 2012 peach 0.387 ± 0.006 

125 FC 2012 peach 0.215 ± 0.002 

149 RA 2012 peach 0.397 ± 0.004 

152 FC 2012 eggplant 0.376 ± 0.028 

164H17 FG 2013 peach 0.419 ± 0.020 

175H2 CH 2013 peach 0.319 ± 0.010 

188 RA 2014 peach 0.416 ± 0.007 

 

Table 6.4: cont. 

 

The mean value of the esterase activities obtained for clones collected from 1996 to 

2000 (0.381 nmoles μg-1 min-1) is very close to the mean value of esterase activities 

calculated for the recent clones sampled from 2010 to 2014 (0.379 nmoles μg-1 min-

1). In general, esterase activities of the older clones present a higher variability, with 

a few strains reaching very high values (0.67 nmoles μg-1 min-1 for clone 69H and 
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0.81 nmoles μg-1 min-1 for clone 18H) and others very close to the susceptible strain 

(e.g. 0.113 μg-1 min-1 for clone 19 and 0.121 μg-1 min-1 for 48). Also, populations 

collected from secondary hosts have, in general, lower esterase activity (0.183 μg-1 

min-1) to those derived from peach (0.484 μg-1 min-1) (Fig. 6.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Esterase activities: comparison between “old” and “recent” populations, 

collected from peach (in orange) or other herbaceous hosts (in green). 

 

 

Some of the long-termed reared populations used in this study were screened 

previously by Mazzoni & Cravedi (2002) and Criniti et al. (2008) and classified as 

susceptible (S) or resistant (R1, R2 or R3) according to absorbance ranges described 

by Devonshire et al. (1992). Comparing those results with the esterase activities 

here reported, it is possible to observe that populations showing activity values 

lower than 0.2 nmoles μg-1 min-1 (Fig. 6.4) were classified by the other authors as 

susceptible (S) or intermediate between susceptible and low resistant (S/R1). It 

could be then suggested 0.2 nmoles μg-1 min-1 as possible discriminant esterase 

activity value to identify resistant clones. 
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4. DISCUSSION 

In this thesis the contribution of metabolic resistance in Italian populations of the 

green peach aphid has been considered. In order to detect the involvement of 

both/either major enzymatic classes, esterases and monooxygenases, inhibition 

studies were  performed with “in vivo” bioassays using the well-known inhibitor 

PBO, in combination with pyrethroid or neonicotinoid insecticides. Recent 

(collected from 2010 to 2013) and old (1996 - 2000) populations, maintained under 

controlled conditions as parthenogenetic clones, were included in the investigation. 

Piperonyl butoxide acted as a synergist in all the analysed clones and for both the 

tested products, bifenthrin and imidacloprid. The calculated synergistic factors were 

different among the considered clones which suggests a different involvement of 

enzymatic systems for the detoxification of the insecticide molecules. The 

contribution of each enzymatic class cannot be discriminated by these bioassays, 

since it has been reported that PBO has effects not only on microsome oxidases but 

also on esterases. 

Additional bioassays were then performed with different PBO analogues, EN 1-126 

(reportedly very active against P450s conferring resistance to imidacloprid) and EN 

16/5-1 (reportedly more specific against esterases). Clone 62H was the only clone 

tested with all three inhibitors. The lowest synergistic factor was obtained for EN 

16/5-1 (SF 1.9), suggesting that esterases are responsible for less metabolic 

resistance than monooxygenases in the instance of  bifenthrin detoxification.  

Clone 92H6 was tested with PBO and EN 1-126 only, but using both bifenthrin and 

imidacloprid. In this case, PBO showed a considerably higher synergism with 

bifenthrin than imidacloprid; in contrast, EN 1-126 performed slightly better than 

PBO in imidacloprid bioassays, agreeing with published data relating to bioassays 

with imidacloprid, in which EN 1-126 was the more effective analogue tested 

against a strain highly resistant to this insecticide (Philippou & Moores 2014). This 

suggests that the two different clones respond in different ways when treated with 

the same products. Looking at the high resistant factors showed by clone 92H6, it 

could be hypothesized that different monooxygenases are involved, for which PBO 
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has a higher affinity than 1-126. Another possible explanation is the involvement of 

further mechanisms, like cuticular changes, that can alter the permeability of the 

inhibitor and thus influencing its efficacy. Such alternative mechanism may act 

differentially on PBO and EN 1-126. 

In order to specifically detect esterase activities, a colorimetric assay was 

performed. The biochemical assay adopted allowed the rapid detection of 

enzymatic activities using aphid homogenate as a source of enzymes. Since there 

have been changes in the control strategies adopted against this pest during the 

years, a comparison between “old” and “recent” populations was performed. 

Esterases are enzymes able to act against carbamate, organophosphate and 

pyrethroid insecticides (Hollingworth & Dong 2008). The first two classes of 

products, widely used in the past, have been almost completely phased out recently 

in order to reduce exposure risks and environmental contamination problems. For 

this reason, the hypothesis of a reduction in the esterase-based resistant 

mechanisms is suggested. However, populations more recently collected (without 

exposure to OP or carbamate products) showed esterase activities similar to those 

collected in the past. Literature data report that FE4 variant esterases can act 

against pyrethroids and also, in a lesser extent, against neonicotinoid imidacloprid 

(Philippou & Moores 2010). The high esterase activities observed in recent 

populations suggest that the maintainance of this detoxifying mechanism is 

important and could be involved in resistance against pyrethroids and possibly also 

neonicotinoids. 

Unfortunately, the parallel biochemical assay for P450 activity cannot be used with 

M. persicae, and it was not possible to quantify their specific contribution as 

detoxification system. Although the specific P450 enzyme responsible of 

neonicotinoid resistant in M. persicae has been characterised (CYP6CY3), the 

quantification of the gene copy numbers of the considered populations was not  

performed during this research. Furthermore, it is not possible to exclude the 

involvement of other P450s in different populations. 
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Although a combination of “in vivo” synergist bioassays can provide important 

information, they are very time consuming and require high numbers of live aphids. 

This is the main reason for which, in the present study, only a few populations were 

analysed with this method and not all the combination of bioassays have been 

performed. Further bioassays on different aphid strains could provide important 

data for a better description of this phenomenon. However, the development of a 

biochemical assay able to detect monooxygenase activity will be very important for 

a better and more rapid quantification of metabolic resistance in field collected 

samples. 



CHAPTER 7                                                                                    Metabolic resistance: identification of novel synergists 

93 

 

CHAPTER 7 

METABOLIC RESISTANCE: IDENTIFICATION OF NOVEL 

SYNERGISTS 

 

NOVEL SYNERGISTS: CHARACTERISATION OF INTERACTIONS WITH 

DETOXIFYING ENZYMES FE4 AND CYP6CY3. 

EU project “EcoSyn: ecofriendly synergists for insecticide formulations”. 

7th Framework Programme for research, technological development and 

demonstration. 

Research for the Benefit of SMEs; grant agreement no 605740 (October 2013 - 

October 2015) 

 

1. INTRODUCTION 

Synergists are non-toxic compounds that act to increase the effectiveness of the 

insecticides they are used with. Their combination can enable a reduction in the 

amount of the insecticidal active applied in control strategies. They inhibit the 

metabolic system(s) that insects use to metabolise or sequester insecticide 

molecules; as a result, insect sensitivity increases and it is possible to overcome or 

delay the metabolic resistance conferred by the enhanced level of detoxifying 

enzymes (Ishaaya 1993). 

The proposed project “EcoSyn” aims to develop novel “ecofriendly” synergists for 

insecticide formulations and deployment strategies, in order to enable insect pest 

control with lower insecticide rates, without adverse effect on non-target insects, 

such as bees, or the environment (http://www.ecosyn.eu). Piperonyl butoxide 

(PBO) is a well-known synergist widely used in the household market and also in a 

niche market in agriculture. Many studies in literature document its interaction with 

phase 1 metabolic enzymes, initially only cytochrome P450s (Casida 1970; Wilkinson 

http://www.ecosyn.eu/


CHAPTER 7                                                                                    Metabolic resistance: identification of novel synergists 

94 

 

1984; Hodgson et al. 1998) and subsequently also esterases (Gunning et al. 1998; 

Young et al. 2005). Starting from the current knowledge concerning the biochemical 

mechanism of PBO, a range of existing analogues will be explored and evaluated for 

their inhibition efficacy against detoxifying enzymes of a variety of insect targets. 

Based on experimental laboratory and field results, novel analogues will be 

developed and tested for their potential synergistic activity, with particular 

evaluation of possible effects on beneficial insects and the cost-effectiveness for a 

wider use in agriculture and public health. 

M. persicae is one of the target insects that have been included in the project. It has 

been selected because it is one of the most economically important crop pests 

worldwide, with a rapid population growth due to its high fecundity and short 

generation time. Literature data are currently available on the interaction of PBO 

with the resistance-associated esterase E4 (Philippou et al. 2013) but no studies 

have been made on the Mediterranean variant FE4. Furthermore, it has recently 

been demonstrated that a single cytochrome P450 enzyme (CYP6CY3) is 

overexpressed in a resistant strain of this aphid (Puinean et al. 2010), but no 

research with the recombinant enzyme have been reported. This work aims to 

investigate the interactions between these detoxifying enzymes and PBO or other 

existing PBO analogues; experimental results derived from inhibition efficacies and 

structure activity relationships will help to design novel structures with hypothetical 

higher synergisms and thus possible agricultural applications. 

 

2. MATERIALS AND METHODS 

 

2.1 ESTERASE FE4 PURIFICATION 

Esterase FE4 was purified from aphid samples using size exclusion and ion exchange 

chromatography, as described by Philippou et al. (2013). Aphids (1 g), stored at -20 

˚C, were homogenised on ice in 20 mL of 0.02 M phosphate buffer pH 7.0 and 
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centrifuged at 10000 x g for 5 min. The supernatant was collected, filtered through 

cheesecloth and passed through a Sephadex G-25 column (Fine; Amersham 

Biosciences), diameter 3 cm x height 12 cm, to separate low-molecular-weight 

material. Proteins were eluted using 0.02 M Tris/HCl buffer pH 8.5 and then loaded 

onto an ion exchange column, DEAE Sepharose TM (Fast Flow; Amersham 

Biosciences), diameter 2.5 cm x height 8 cm. Fractions (5 mL) were eluted and 

collected using a linear 0-0.35 NaCl gradient in 500 mL of Tris/HCl buffer. 

Fractions were tested for total esterase activity using the colorimetric assay as 

described by Grant et al. (1989) and modified by Philippou et al. (2013). Briefly, 20 

µL of each fraction were transferred into a single well of a 96-well microplate (Nunc, 

maxisorb) and mixed with 200 µL of substrate solution (1-NA and FBRR). The 

substrate solution was prepared by adding 250 µL of the model substrate 1-

naphthyl acetate (1-NA) (stock 30 mM in acetone) to 25 mL of Fast Blue RR solution 

(FBRR) (30 mg dissolved in 50 mL of 0.02 M phosphate buffer pH 7.0), to give final 

concentrations of 0.3 mM and 1.5 mM respectively. 

Esterase activity was assayed by measuring the rate of hydrolysis of 1-NA to 1-

naphthol (1-NP) and acetic acid. FBRR and 1-NA create a complex that can be 

detected at 450 nm. The assay was performed in a Tmax kinetic microplate reader 

(Molecular Devices, Corporation; Menlo Park, CA) taking readings every 20 s at 450 

nm for 5 min. The integrated software programme Softmax Pro version 5.4 was 

used to fit linear regressions. The slopes were recorded as a rate of milli optical 

density change per minute at 450 nm (mOD450 min-1). 

Fractions with the highest activities were pooled together and passed again through 

a Sephadex G-25 column (Fine; Amersham Biosciences) to desalt and exchange to 

0.02 M phosphate buffer pH 7.0 for storage. Aliquots were frozen at -20 °C. 

 

2.2 ESTERASE INTERFERENCE ASSAY: INDIRECT DETECTION OF FE4 INHIBITION 

The interference assay is an indirect method to measure the binding affinity of an 

inhibitor to purified esterases. Aliquots of the enzyme (500 µL) were pre-incubated 



CHAPTER 7                                                                                    Metabolic resistance: identification of novel synergists 

96 

 

at 4 ˚C in Eppendorf tubes with the inhibitor (5 µL) prepared in acetone (10 mM 

stock solution); enzyme with acetone only was used as control. After 16 h of 

incubation, the esterase interference assay was carried out as described by Khot et 

al. (2008), using a 96-well microtitre plate (Nunc, maxisorb). Briefly, 25 µL of 

enzyme (or enzyme + inhibitor) were incubated for 1 h with 25 µL of two-fold serial 

dilutions of Azamethiphos (Aza) (stock 10-6 M in acetone) in 0.02 M phosphate 

buffer pH 7.0 (to give final concentrations ranging from 20 nM to 0.01 nM). Buffer 

only was used as control. 

At the same time, M. domestica head homogenate was prepared. 10 frozen 

housefly heads were homogenised in 1 mL of 0.02 M phosphate buffer pH 7.0, 

centrifuged at 10000 x g for 1 min and the supernatant used as a source of 

acetylcholinesterase (AChE): 25 µL were added to every well and incubated for 10 

min at room temperature. Acetylcholinesterase activity was measured using a 

colorimetric assay (Ellman et al., 1961) according to Moores et al. (1996): 100 µL of 

5,5’-dithiobis (2-nitrobenzoic acid) (DTNB) and 100 µL of the model substrate 

acetylthiocholine iodide (ATChI) were added to every well (final concentrations 0.5 

mM). The release of thiocholine was detected at 405 nm through its reaction with 

DTNB. 

A kinetic assay was performed using a Tmax kinetic microplate spectrophotometer, 

taking readings every 10 s for 10 min. Acetylcholinesterase only and buffer only 

were used as positive and negative controls respectively and each assay was 

repeated in triplicate. The integrated software programme Softmax Pro version 5.4 

was used to fit the linear regressions. The slopes were recorded as a rate of milli 

optical density change per minute at 405 nm (mOD405 min-1). 

In the absence of FE4, Aza inhibits AChE activity; in the presence of the esterases, 

the insecticide is sequestered by them and Aza is unable to acts against AChE. If an 

inhibitor is present, it binds the esterases and they became unable to sequester the 

insecticide, so it remains available to inhibit AChE activity. Acetylcholinesterase 

activity remaining was calculated by dividing the activity measured in the presence 

of the inhibitor by the activity in the absence of inhibitor (uninhibited control) and 
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multiplying by 100. Remaining activities (%) was then plotted against inhibitor 

concentrations. Indirect determination of FE4 inhibition was analysed by calculating 

the Aza concentrations required to inhibit 50% of AChE activity (IC50), using Grafit 

software (Leatherbarrow, R.J., Version 5.0.10, Erithacus Software Limited). 

 

2.3 DETECTION OF FE4 INHIBITION: 1-NA AND 1-NB ASSAY 

Inhibition of FE4 esterase activity was tested using the conventional esterase assay 

previously described (see section 2.1) using the model substrate 1-naphthyl acetate 

(1-NA) and a similar substrate 1-naphthyl butyrate (1-NB). Both the substrates were 

prepared adding 250 µL of  the stock 30 mM in acetone to 25 mL of FBRR solution. 

Two-fold serial dilutions of the inhibitor were prepared in acetone, starting from a 

10 mM stock solution and then added to 0.02 M phosphate buffer pH 7.0 and 

dispensed into a 96-well microplate (Nunc, maxisorb). Aliquots (10 µL) of the 

purified enzyme were added to each well and incubated with 2.5 µL of the 

inhibitors at room temperature for 10 min, followed by the addition of 200 µL of the 

substrate solution (1-NA or 1-NB and FBRR). Final concentrations of inhibitor ranged 

from 0.5 mM to 5x10-4 mM, with 1% acetone per well (total volume per well: 250 

µL); enzyme in the presence of 1% acetone was used as control. 

The integrated software programme Softmax Pro version 5.4 was used to fit linear 

regressions. The slopes were recorded as a rate of milli optical density change per 

minute at 450 nm (mOD450 min-1). Activity remaining was calculated by dividing the 

activity measured in the presence of inhibitor by the activity in the absence of 

inhibitor (uninhibited control) and multiplying by 100. Remaining activities (%) was 

then plotted against increasing concentrations of the inhibitor. 

 

2.4 DETECTION OF FE4 INHIBITION: PNA ASSAY 

Inhibition of FE4 esterase activity was tested using 4-nitrophenyl acetate (pNA) as 

an alternative substrate, according to the method described by Pocker & Stone 
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(1967). A 100 mM pNA stock was prepared in acetone and added to 0.02 M 

phosphate buffer pH 7.0 (final concentration 2 mM). Different concentrations of the 

inhibitor were prepared in acetone, diluted in buffer and dispensed into a 96-well 

microplate (Nunc, maxisorb), as described previously (see section 2.3). Aliquots (10 

µL) of the purified enzyme were added to each well and incubated at room 

temperature for 10 min. 100 µL of 2 mM pNA were then added (final concentration 

0.8 mM; total volume per well: 250 µL) and esterase activity was determined by 

measuring the rate of hydrolysis of pNA to 4-nitrophenol and acetate. Enzyme in 

the presence of acetone was used as the uninhibited control. The assay was 

performed in a Tmax kinetic microplate reader, taking readings every 10 s at 405 

nm for 5 min. 

The integrated software programme Softmax Pro version 5.4 was used to fit the 

linear regressions. The slopes were recorded as the rate of milli optical density 

change per minute at 405 nm (mOD405 min-1). Activity remaining was calculated by 

dividing the activity measured in the presence of inhibitor by the activity in the 

absence of inhibitor (uninhibited control) and multiplying by 100. Remaining 

activities (%) were plotted against inhibitor concentrations. Incubation of the 

enzyme with the inhibitor was repeated at different times (0, 5, 10, 30 and 60 min) 

to confirm the reversibility of the reaction. 

 

2.5 DETECTION OF CYP6CYP3 OXIDASE ACTIVITY: 7-MFC ASSAY 

Recombinant P450 CYP6CY3 was provided by Rothamsted Research, Biological 

Chemistry and Crop Protection (BCCP) department,  partner of the “Ecosyn” 

consortium. Gene constructs encoding for CYP6CY3 (Genbank accession no. 

AHB52756.1) and its redox partner NADPH cytochrome P450 reductase (CPR) from 

M. domestica (Genbank accession no. Q07994.1) were obtained by gene synthesis 

(Geneart, CA, USA) optimised for lepidopteran insect cell lines to ensure highest 

translation efficiency. Constructs were inserted in into the pDEST8 expression 

vector (Invitrogen); vector with no inserted DNA and vector with CPR only were 

used as negative controls. The recombinant baculovirus DNA was produced and 
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transfected into insect cells as already described (Bass et al. 2013). Microsomes of 

the membrane fraction were prepared according to standard procedures and P450 

expression and functionality was estimated by measuring CO-difference spectra in 

reduced samples (Philips & Shephard 2006). 

CYPCY3 enzymatic activity was tested for oxidase activity using a fluorometric assay 

according to Ullrich and Weber (1972) and adapted to the microplate format as 

described by De Sousa et al. (1995), but with a different model substrate: 7-

methoxy-4-trifluoromethylcoumarin (7-MFC). Briefly, 7-MFC was dissolved in DMSO 

to make a 20 mM stock solution and then diluted by the addition of 0.1 M sodium 

phosphate buffer pH 7.8 to give a concentration of 0.5 mM. Recombinant enzyme 

(10 μL) was added to a 96-well microplate (OptiPlateTM Perkin Elmer, white) and 

diluted to 50 μL with 0.1 M phosphate buffer pH 7.6, followed by the addition of 80 

μL of 0.5 mM 7-MFC; incubations without enzyme were used as negative controls. 

The microplate was incubated for 5 min at 30 °C and the reaction was initiated by 

the addition of 10 μL of 9.6 mM NADPH in 0.1 M sodium phosphate, pH 7.8. 

Enzyme activity was read in a Spectramax Gemini EM for 60 min, with readings 

taken every 2 min, using an excitation wavelength of 410 nm and an emission 

wavelength of 510 nm, with a 495 nm cut-off filter. O-demethylation activity was 

measured by the rate of production of 7-hydroxy-4-trifluoromethylcoumarin and 

expressed as fluorimetric units per minute (FU min-1). The integrated software 

programme Softmax Pro version 5.4 was used to fit the linear regressions. The 

enzymatic activity was compared to the  control containing CPR only, following the 

same procedure. 

 

2.6 DETECTION OF CYP6CYP3 INHIBITION 

Inhibition of recombinant P450 enzymes was measured following the method 

already described by Moores et al. (2009) but using the alternative substrate 7-

MFC. Dilution of the recombinant enzymes (50 μL) were dispensed into a 96-well 

microplate (OptiPlateTM Perkin Elmer, white), mixed with 3 μL of inhibitor (stock 0.1 
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M in acetone, final concentration 30 μM) and incubated 10 min at room 

temperature. Acetone only was used as control. After the incubation, 80 μL of 0.5 

mM 7-MFC was added, followed by 10 μL of 9.6 mM NADPH and the reaction was 

monitored as described above (see section 2.5). 

 

3. RESULTS 

 

3.1 ESTERASE FE4 PRODUCTION 

Different M. persicae clones were selected from the collection available in our 

rearing facility and screened for total FE4 esterase activity (see Chapter 6). Among 

clones that showed high activities compared to the susceptible clone 1X, two of 

them were selected and multiplied in large number to obtain a sufficient amount of 

aphids to purify the resistance-associated FE4 esterase (Mp18H and Mp27H). Both 

these clones have already been verified by PCR-RFLP to have the FE4 esterase 

variant (Bizzaro et al. 2005; Rivi et al. 2013). 

 

Figure 7.1: Esterase purification profile following size exclusion and ion exchange 

chromatography. Fractions were eluted using a linear 0-0.35 NaCl gradient and tested for 

the total esterase activity. Tubes 27-31, showing the highest activities, were pooled 

together. 
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From each clone, 1 g of aphids were collected and maintained at -20 °C before 

homogenisation on ice. After size exclusion and ion exchange chromatography, the 

eluted fractions were screened for total esterase activity and those with the highest 

values were pooled together (Fig. 7.1), desalted and stored at -20 °C after a final 

check on the esterase activity (Fig. 7.2). 

 

Figure 7.2: Monitoring the hydrolysis of 1-naphtyl acetate (1-NA) by the purified esterase 

FE4. The slope was recorded as a rate of milli optical density change per minutes at 450 

nm (mOD450 sec-1). 

 

3.2 INDIRECT DETERMINATION OF FE4 INHIBITION BY PBO OR ITS ANALOGUES 

The ability of PBO or its analogues to bind esterase FE4 was tested using the 

esterase interference assay, an indirect method that measures the sequestration of 

azamethiphos (Aza), a potent AChE inhibitor. This can be evaluated by calculating 

the concentration of Aza required to obtain 50% inhibition of AChE activity (IC50). In 

the absence of FE4, housefly AChE is inhibited by Aza and the IC50 is low. In the 

presence of FE4, Aza is sequestered before the addition of AChE and the IC50 

increases: it means that FE4 “protects” the AChE and higher concentrations of Aza 

are needed to inhibit the housefly enzyme. When FE4 is pre-incubated with PBO or 

its analogues, it is blocked by them and becomes unable to protect AChE from the 

action of the insecticide and the IC50 decreases again. 

Philippou et al. (2013) demonstrated that there is no direct inhibition of housefly 

AChE with the synergists. Thus, the IC50 values reflect the  affinity for the purified 
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FE4 and allow the comparison between different compounds. Piperonyl butoxide 

and four other analogues of variable efficacy were compared and their inhibition 

curves are shown in Fig. 7.3. 
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Figure 7.3: AChE activity remaining (%) calculated for different concentrations of 

Azamethiphos (Aza), in the presence of PBO and other analogues. Controls without FE4 

(no FE4) and FE4 without analogues (acetone) are reported. 

 

 

 

 

 

 

 

 

Table 7.1: Results of esterase interference assays with PBO and its analogues showing the 

concentration of azamethiphos required to inhibit 50% of the AChE activity (IC50) following 

incubation of the synergists with FE4. 

 

Analogue IC50 (nM) s.e. 

No FE4 0.140 0.007 

acetone 2.072 0.109 

EN 16-17 0.166 0.014 

PBO 0.235 0.008 

EN 1-40 0.312 0.020 

EN 162 1.239 0.076 

EN 1-93 1.617 0.052 
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EN 16-17 showed the highest affinity for FE4, with the lowest IC50 value; it is 

followed by PBO, EN 1-40 and EN 1-162; analogue EN 1-93 gave the lowest 

inhibition, with an IC50 value very close to the acetone control (Table 7.1). 

 

3.3 DIRECT DETERMINATION OF FE4 INHIBITION BY PBO: SUBSTRATE 

COMPARISON 

PBO was tested for its ability to inhibit FE4 activity using a conventional, 

spectrophotometric assay. Three different substrates were tested: 1-naphthyl 

acetate (1-NA), 1-naphthyl butyrate (1-NB) and 4-nitrophenyl acetate (pNA). For the 

model substrate 1-NA and the alternative substrate 1-NB no evidence of inhibition 

was detected with increasing concentrations of the inhibitor: FE4 activity increased 

using 1-NA and remained stable with 1-NB. On the contrary it was possible to 

observe a decrease of esterase activity with pNA as an alternative substrate. The 

resultant curves derived from the FE4 activity remaining after inhibition by 

increasing concentrations of PBO are shown in Fig. 7.4. 
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Figure 7.4: FE4 activity remaining (%) after inhibition by increasing concentrations (mM) 

of PBO. E4 is the esterase variant used as control. FE4-Mp18H and FE4-Mp27H are the 

esterase FE4 variants purified from two different M. persicae populations. 100% of 

activity corresponds to the uninhibited enzyme. 
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3.4 DIRECT DETERMINATION OF FE4 INHIBITION BY PBO AND ITS ANALOGUES:      

PNA ASSAY 

Before doing inhibition tests using the alternative substrate pNA, the reversibility of 

the interaction between FE4 and PBO has been verified. As already described for 

the E4 variant, kinetic data collected after different incubation periods confirmed 

the same for the FE4 variant, as shown in table 7.2. 

 

   mOD/min 

  
 

0 min 5 min 10 min 30 min 1h 

 no PBO 1 repl. / 154.11 161.78 144.84 151.86 

  2 repl. / 154.25 165.20 151.27 149.86 

  3 repl. / 166.80 165.10 146.11 156.55 

  mean 
 

158.39 164.02 147.41 152.76 

  
 

     

 PBO (100 µM) 1 repl. / 63.90 68.47 65.71 62.07 

  2 repl. / 62.87 71.64 64.73 63.71 

  3 repl. / 66.18 68.40 67.49 63.67 

  mean 
 

64.32 69.50 65.98 63.15 

 

Table 7.2: Esterase activities (mOD/min) measured after different period of incubations 

with the enzyme alone or with PBO. 

 

PBO and other 4 analogues were tested with a direct spectrophotometer assay, 

using pNA as substrate. Inhibition by increasing concentrations of the inhibitors and 

the resultant curves are shown in Fig 7.5.  

The concentration of synergist at which 50% of esterase activity is inhibited (IC50) 

was calculated for each compound. EN 16-17 showed the highest affinity for FE4, 

with the lowest IC50 value; it is followed by PBO and EN 1-40; EN 1-162 and EN 1-93 

gave the lowest inhibition, as already shown by their inhibition curves, both 

overlapped the acetone control (Table 7.3). 
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Figure 7.5: Esterase activity remaining (%) calculated for different concentrations of PBO 

or other analogues. Control without analogues (acetone) is shown. 

 

 

Analogue IC50 (µM) s.e. 

acetone n.c. - 

EN 16-17 25.11 1.04 

PBO 184.30 22.40 

EN 1-40 192.70 12.48 

EN 1-93 518.00 77.32 

EN 1-162 620.20 77.47 

 

Table 7.3: Results of the direct esterase assay with PBO and its analogues, using pNA as 

substrate. The concentration of synergist required to inhibit 50% of the FE4 activity (IC50) 

and standard error (s.e.) are shown. 

 

 

3.5 CORRELATION BETWEEN DIRECT AND INDIRECT ESTERASE INHIBITION 

ASSAYS 

Esterase assay using pNA as substrate revealed that it is possible to observe directly 

the esterase-inhibiting capabilities of selected synergists. Results obtained with this 

method (see section 3.4, table 7.3) ranked the 5 analogues identically to the 
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interference assay (see section 3.2, table 7.1). Therefore, a diagnostic concentration 

of inhibitor (stock 10 mM in acetone, final concentration 100 µM) was chosen and 

the assay was used for further analysis with a large number of other analogues. 

Results are shown in Fig. 7.6. 

 

 

 

Figure 7.6: FE4 activity remaining (%) calculated for different analogues. Activity 

remaining was calculated by dividing the activity measured in the presence of inhibitor by 

the activity in the absence of inhibitor (uninhibited control, not shown) and multiplying by 

100. 

 

Inhibition data on esterase FE4 derived from this assay were compared to data 

already published on the variant esterase E4 obtained with the indirect interference 

assay (Philippou et al., 2012). A significant positive correlation was found between 

the two experiments, as shown in Fig. 7.7. 
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 Interference rank 

VS 

Inhibition rank 

Spearman r 0.7700 

95% confidence interval 0.5225 to 0.8978 

P value  

P (two-tailed) <0.0001 

P value summary **** 

Exact or approximate P value? Approximate 

Significant? (alpha = 0.5) Yes 

Number of XY pairs 24 

 

 

Figure 7.7: Correlation between the esterase interference assay (X-axis) and the direct 

esterase inhibition assay with pNA (Y-axis). Analogue’s ranking position derived from 

each assay are plotted, single points represent each analogue. The  list of the interference 

assay results was derived from literature data (Philippou et al. 2012) and replicate values 

were considered thanks to Philippou D., personal communication. 
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3.6 CYTOCHROME P450 CYP6CY3 PRODUCTION 

Microsomal preparations containing the recombinant cytochrome P450 CYP6CY3 

were prepared by Rothamsted Research (BCCP Department) in 1.5 mL aliquots and 

stored at -80 °C. The quality of the enzyme was previously estimated by measuring 

CO-difference spectra in reduce samples (Philips & Shephard 2006): the classic peak 

at 450 nm (Soret peak) was indicative of a stable enzyme (data not reported). 

CYP6CY3 enzymatic activity was checked by O-dealkylation activity on the 

fluorescent substrate 7-MFC (Fig. 7.8). 

 

 

Figure 7.8: Monitoring of 7-hydroxy-4-(trifluoromethyl) coumarin (7-HFC) produced by 

CYP6CY3  incubated with NADPH and 7-MFC. 

 

3.7 DIRECT DETERMINATION OF CYP6CY3 INHIBITION BY PBO AND ANALOGUES 

The purified enzyme was then used to characterise the interactions with piperonyl 

butoxide (PBO) or its analogues and to determine their ability to inhibit CYP6CY3 

activity. Inhibition of oxidase activity  can be detected directly using 7-MFC 

substrate. 

A diagnostic concentration of inhibitor (stock 0.1 mM in acetone, final 

concentration 2 µM) was chosen and the assay was used for analysis with PBO and 

a large number of other putative inhibitors. Results are shown in Fig. 7.9. 
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Figure 7.9: CYP6CY3 activity remaining (%) calculated for different analogues. Activity 

remaining was calculated by dividing the activity measured in the presence of inhibitor by 

the activity in the absence of inhibitor (uninhibited control, not shown) and multiplying by 

100. 

 

 

4. DISCUSSION 

Synergists are non-toxic compounds that are able to act against detoxifying 

enzymes and thus increase the effectiveness of the insecticidal actives they are 

combined with. The first part of the EU project “Ecosyn” aims to fully characterise 

the interactions between the standard synergist PBO (or novel synergists) and 

esterase or P450 enzymes derived from chosen agriculturally-important insect 

pests, including M. persicae.  Only enzymes that have been confirmed in the 

literature to  confer resistance to insecticide have been considered. The present 

work focuses on the green peach aphid and aims to investigate the interaction of 

PBO with the cytochrome P450 CYP6CY3 and the  resistant-associated esterase FE4. 

Currently, some works have been done regarding the interaction between PBO and 

the major human detoxifying P450 CYP3A4 (Moores et al. 2011) but no assays have 
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been performed using  CYP6CY3 from M. persicae, that has been demonstrated to 

be the enhanced P450 enzyme involved in insecticide detoxification (Puinean et al. 

2010). However, results from in vitro test are already available regarding its capacity 

to metabolize nicotine and two neonicotinoids (imidacloprid and clothianidin) into 

less-toxic metabolites (Bass et al. 2013). The efficacy of PBO (or its analogues) 

against this enzyme have been evaluated through inhibition of enzyme activity 

directly detected using the fluorimetric substrate 7-MFC. Data obtained from this 

assay show a very high inhibition efficacy of some analogues, with very low oxidase 

activity remaining. 

Much progress had already been made regarding the interaction of PBO (and its 

analogues) with the resistant-associated esterase E4, commonly found in Northern 

Europe, but no data were available on the other Mediterranean variant FE4. 

Because of the glycosylation sites within  the enzymes, recombinant production of 

E4 or FE4 was not considered and the evaluations were made on enzymes purified 

from insects. As already described for E4, direct inhibition of FE4 esterase activity 

could not be measured by simple colorimetric assays using classic model substrates. 

In fact, PBO does not interact with the active site of the enzyme, but binds to an 

adjacent  site in such a way that enhances substrate entry  instead of occluding it, 

so it can still be hydrolysed. Therefore, initially the “esterase interference assay” 

was carried out, as being the only method described in the literature (Khot et al. 

2008, Philippou et al. 2013). However, other esterase substrates were assessed and 

pNA was found to be suitable for directly monitoring inhibition. The assay was then 

used to screen PBO and other analogues for their inhibition efficacy against FE4. 

Results were found to correlate with the E4 data obtained with the interference 

assay (Philippou et al. 2013), confirming the same mechanism of action against both 

esterase variants; in addition, different periods of incubation of FE4 with the 

inhibitors showed the reversibility of the reaction, as already described for E4. 

The possibility of measuring inhibition of FE4 directly using a model substrate 

presents several advantages over the  indirect interference assay. Firstly, the latter 

is relatively time-consuming, requiring several incubation steps, one of which is 
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overnight; secondly, the interference assay is more dependent upon an initial 

purification of the esterase. For both assays, the resistance-associated esterase 

(FE4) would ideally be purified, but with the direct assay a simple homogenisation 

step will suffice to give approximate indications, whilst with the interference assay 

the FE4 must be at least partially purified for the assay to be completed. If insect 

availability is a factor, this could be important. 

Based on the results of the inhibition assays, a structure activity relationship (SAR) 

study will constructed to predict novel inhibitor structures for future testing. The 

structures  showing the most potent inhibition efficacy will be selected and tested 

in “in vivo” bioassays and then in field experiments, with the expectation to derive 

bespoke structures that are capable of high synergism to be used in agricultural 

applications. 
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSIONS 

 

Insect pests represent a serious threat to agricultural production and vector disease 

control. A high number of insect species are responsible for important agricultural 

yield losses which poses problems for maintaining future food security. An ongoing 

challenge for agricultural production is the presence of insecticide resistance, with 

more than 500 species for which at least one reported case of insecticide failure has 

been described (http://www.pesticideresistance.com). This is an important issue 

considering the increasing human population which will require more food from 

limited resources suitable for agricultural production. In order to maintain good 

yields from the existing production areas, the use of chemical insecticides for 

controlling insect pests represented the key tool of the last 60 years and remain 

essential for guaranteeing a supply of nutritious and affordable food for the near 

future. However, the worldwide use of high levels of insecticides over many years 

has led to increased selection for resistance populations. In addition, wasteful and 

ineffective insecticide treatments have contributed to environmental 

contamination and represent a health risk for operators and consumers. 

The understanding of insecticide resistance mechanisms has made remarkable 

advances in the last years. It has been shown that resistance can evolve by two 

main mechanisms: the enhanced production of metabolic enzymes, which 

sequester or detoxify the insecticide, and mutations of target proteins, which make 

them less sensitive to the insecticide. A number of subsidiary physiological 

mechanisms giving a contribute to enhance the insecticidal effects have also been 

described, e.g. a reduced penetration of the chemicals. A variety of different 

chemical classes has been developed (http://www.irac-online.org/documents/moa-

classification), which act on different biological targets. However during the years 

insects have evolved mechanisms to overcome the toxicity of most classes of 

http://www.pesticideresistance.com/
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insecticide. Thus, the possibility that they could evolve resistance also against 

potential new products with different mode of actions has to be taken in account. 

Aphids are an ideal model to study the complexity of insecticide resistance and 

increase understanding of how resistance evolve. They demonstrate coexistence of 

different reproductive modes, either as continuous and obligate parthenogenesis or 

alternating parthenogenetic reproduction in spring and summer with amphigonic 

reproduction in autumn, depending on the areas and the primary host availability. 

Parthenogenesis allows the rapid enstablishment of specific mutations, due to both 

the high fecundity and short life cycle of the aphids. On the contrary mating is 

responsible for the production of different genotype combinations, possibly 

explaining the coexistence of cross and multiple resistance and the presence of 

different resistance mechanisms within individuals, each contributing to enhance 

resistance factors.  

The green peach aphid is a particularly interesting example because of its 

widespread distribution, high efficacy as a virus vector, wide variability of properties 

such as color, life-cycle, host-plant relationships and ability to overcome insecticide 

treatments, with several resistance mechanisms already reported and described in 

this species (Blackman & Eastop 2000). It is considered one of the major agricultural 

pests, causing damages on many agricultural and horticultural crops resulting in 

significant yield losses if populations are not kept under economic damage 

thresholds. The first reports of resistance were to organophosphates (OPs) and 

carbamates by amplification of esterase genes, followed by resistance to 

dimethylcarbamates due to a target-site mutation in the acetylcholinesterase 

enzyme. Later, reduced sensitivity to pyrethroids was associated to target-site 

mutations in the voltage gated sodium channel and in lesser extent to esterase 

detoxification or sequestration (Devonshire et al. 1998). Finally, duplications of 

CYP6CY3 P450 gene and target-site mutation in a subunit of the acetylcholine 

receptor have recently been identified as responsible for neonicotinoid resistance 

(Bass et al. 2014). 
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For almost 50 years, the control of the green peach aphid has relied mainly on three 

insecticide classes: OPs and carbamates, acting of AchE, and pyrethoids, acting on 

the voltage-gated sodium channel. Their intensive use, together with only two 

biological targets being involved, has led to the development of multiple and 

widespread forms of resistance against them. To date, OPs and carbamates have 

been phased out, at least in Europe, because of their unfavourable toxicological and 

environmental profile. Dimethylcarbamates, like the established pirimicarb, are still 

permitted but today their use is severely restricted, at least in Italy. Treatments 

with pyrethroids have been reduced in the last few years because of the extent of 

target-site mutations causing insensitivity to this class of insecticides; nevertheless, 

they are still applied in peach orchards against other pests (they remain one valid 

alternative in pre-flowering control strategies against trips on nectarines) and thus 

they continue indirectly to exert selection pressure on M. persicae populations. 

These aphicides have been mainly replaced by neonicotinoids which represent the 

fastest-growing class of insecticides since their introduction on the market, due to 

the novelty and specificity of their target. Acting on the insect central nervous 

system as agonists of the postsynaptic nicotinic acetylcholine receptors (nAChRs), 

there is little or no cross-resistance to older insecticide classes, providing the 

growers new tool for managing a wide range of destructive crop pests, including M. 

persicae (Jeschke & Nauen 2005 and 2008). Also, neonicotinoids are specifically 

toxic to insects compared to mammals, due to fundamental structural differences in 

their receptor subunits (Tomizawa & Casida 2002). 

Although neonicotinoids have been considered remarkably resilient to resistance 

and were thus adopted as the key element of the control measures also against M. 

persicae (Nauen 2005), resistant aphids against this class of insecticide have 

recently been detected in Southern Europe, which poses a serious threat to their 

long-term efficacy (IRAC newsletters, issues 25 and 29; Philippou & Moores 2009). 

Furthermore, a European ban on certain neonicotinoid insecticides (imidacloprid, 

thiamethoxam and clothianidin) was introduced in December 2013 because of the 

possibility that they can affect bees and other insect pollinators (Regulation EU No 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:139:0012:0026:EN:PDF
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485/2013). In view of these restrictions together with neonicotinoid treatment 

failures, control strategies have to be reviewed taking into account both the crop 

and local guidelines. 

Monitoring and detection of insecticide resistance is currently one of the important 

factors of insect pest management. Previously, the discovery of resistance was 

linked to insecticide treatment failures when the proportion of resistant individuals 

was quite high. However, the significant amount of research carried out in recent 

years has provided several advances in understanding the evolution of resistance 

mechanisms and a variety of molecular and biochemical techniques have been 

developed allowing a rapid detection of resistance in specimens collected directly 

from the field. 

Aphid monitoring surveys in peach orchards have revealed that after more than 20 

years of neonicotinoid use on many crops, neonicotinoid resistant populations of 

the green peach aphid M. persicae exist in Southern France and Northern Spain. 

Data carried out in this thesis work have confirmed not only the presence but also 

the widespread distribution of resistant aphids in Italy. This is true not just in areas 

important for peaches but also in a small number of samples collected from 

secondary hosts. This poses a serious threat for countries where M. persicae 

reproduces only by parthenogenesis on herbaceous crop. Although the recent 

restrictions related to a few neonicotinoid products, they remain one of the main 

effective control measures adopted by growers. This emphasizes the importance of 

continuously monitoring the distribution and impact of resistant aphids, and the 

necessity to collaborate with local experts to create and implement effective 

resistance management strategies. 

Resistance management guidelines have been proposed by IRAC for stone fruits in 

Sothern Europe following the results of surveys from 2010 to 2012 

(http://www.irac-online.org/documents/myzus-persicae-irm-english), which took in 

consideration that the management of neonicotinoid resistant green peach aphid 

on peach and other fruit crops is complicated by the presence of pyrethroids and 

carbamate resistance aphids in the same areas. Where no loss of performance to 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:139:0012:0026:EN:PDF
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neonicotinoids has been reported, a maximum of one neonicotinoid application per 

crop cycle is recommended. This will minimize the further spread and intensification 

of resistance and maintain effectiveness of neonicotinoids. Where a decline of 

neonicotinoid efficacy has occurred, use of different insecticides with alternative 

modes of action is recommended as a preventive measure, depending on local 

registrations. Alternative products, i.e. pymetrozine, flonicamid, spirotetramat and 

diamide insecticides, with different modes of action (IRAC MOAs 9B, 9C, 23 and 28) 

to reduce the selection pressure exerted by neonicotinoids are available. They have 

been proved to be efficacious when applied after neonicotinoid failures and can 

therefore be considered and included in control strategy programmes, by rotating 

different insecticide modes of action rather than applying the same chemicals on 

consecutive generations of M. persicae. 

Historically, the problem of insecticide resistance has been overcome by 

continuously introducing new active ingredients to replace those which resulted in a 

loss of efficacy. Although there is an appreciable number of products available on 

the market, their modes of action are limited and recent phasing out of several 

actives has further reduced the MOA portfolio. Since the development of new 

compounds is slow and expensive, it is important to prolong the useful life of the 

existing and still effective insecticides by a judicious use of them. A possible solution 

to take in account is to enhance their actions by using synergic molecules in 

combination with them, allowing a reduction in the amount of insecticide active 

applied or overcoming metabolic resistance and maintaining the same level of 

control at the registered doses. 

This concept represents the central issue of the European project “EcoSyn: 

ecofriendly synergists for insecticide formulations” (http://www.ecosyn.eu), which 

is to investigate possible interactions between PBO/analogues and metabolic 

enzymes conferring insecticide resistance in different insect species with different 

insecticide resistance profiles. M. persicae has been included in the project and the 

current thesis presents preliminary data obtained by “in vitro” tests identifying 

http://www.ecosyn.eu/
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potential PBO analogue candidates to consider because of their high inhibition 

efficacies against detoxifying enzymes. 

Piperonyl butoxide is probably the best known synergist and it is widely used in the 

household market. Although literature data demonstrate its efficacy as an 

insecticide synergist on several crop pests, in Europe it is still not registered for use 

in the field. However, since it has been recognized as specific esterase and MFO 

inhibitor, it has been used for research purposes to characterise metabolic 

resistance using “in vivo” laboratory bioassays. This study confirms that in the green 

peach aphid PBO and other analogues, which have modifications in the MDP moiety 

and side chain, can inhibit both these phase 1 metabolic enzymes. Structure activity 

relationship studies (SAR) are currently underway to find bespoke parameters that 

can contribute to the design of more potent inhibitor structures to give higher 

binding affinities to the enzymes. Such results will then be confirmed in “in vivo” 

bioassays on resistant populations and finally tested in field experiment. 

At this stage of the study it can be concluded that some analogues, among the wide 

range of compound that were investigated, showed the potential to enhance 

insecticide efficacy. Such compounds could be possibly used as insecticide 

synergists in insect resistance management (IRM) programmes in order to maintain 

effective utility of current insecticides by preventing or slowing development of 

resistance. Also, considering differences in the enzyme structures among different 

insect species, specific chemicals could be designed for particular insects and thus 

minimize undesired effects on non-target species, in particular beneficial insects 

such as honey bees. 
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