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Pre-transplant gene profiling
characterization by next-
generation DNA sequencing
might predict relapse
occurrence after hematopoietic
stem cell transplantation in
patients affected by AML
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Background: In the last decade, many steps forward have been made in acute

myeloid leukemia prognostic stratification, adding next-generation sequencing

techniques to the conventional molecular assays. This resulted in the revision

of the current risk classification and the introduction of new target therapies.

Aims and methods: We wanted to evaluate the prognostic impact of acute

myeloid leukemia (AML) mutational pattern on relapse occurrence and survival

after allogeneic stem cell transplantation. A specific next-generation

sequencing (NGS) panel containing 26 genes was designed for the study.

Ninety-six patients studied with NGS at diagnosis were included and

retrospectively studied for post-transplant outcomes.

Results: Only eight patients did not show any mutations. Multivariate Cox

regression revealed FLT3 (HR, 3.36; p=0.02), NRAS (HR, 4.78; p=0.01), TP53

(HR, 4.34; p=0.03), and WT1 (HR 5.97; p=0.005) mutations as predictive

variables for relapse occurrence after transplantation. Other independent

variables for relapse recurrence were donor age (HR, 0.97; p=0.04), the

presence of an adverse cytogenetic risk at diagnosis (HR, 3.03; p=0.04), and

the obtainment of complete remission of the disease before transplantation

(HR, 0.23; p=0.001). Overall survival appeared to be affected only by grade 2–4

acute GvHD occurrence (HR, 2.29; p=0.05) and relapse occurrence (HR, 4.33;

p=0.0001) in multivariate analysis.
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Conclusions: The small number of patients and the retrospective design of the

study might affect the resonance of our data. Although results on TP53, FLT3,

and WT1 were comparable to previous reports, the interesting data on NRAS

deserve attention.
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Introduction

The term acute myeloid leukemia (AML) includes a

heterogeneous group of hematological diseases described by

the World Health Organization (WHO) in 2016 (1). AML is

the most common acute leukemia in adults, with an overall

incidence of approximately 2.5–3 cases per 100,000 people per

year (2), which progressively increases with age, from 1.3 per

100,000 subjects under 65 years to 12.2 cases per 100,000 in

those subjects over 65 years (3). Molecular studies have led to the

identification of several chromosomal abnormalities and genetic

mutations involving sequences encoding for genes responsible

for hematological disease development. Some of these

mutations, particularly those affecting epigenetic proteins

DNA methyltransferase 3 alpha (DNMT3A) and Tet

methylcytosine dioxygenase 2 (TET2), are weakly expressed in

many individuals over 50 years. In 10%–40% of cases, the clone

progresses into clonal hematopoiesis of undetermined potential,

and a minority of them develop hematological neoplasms (age-

related clonal hemopoiesis) (4). Among the genes reported as

significantly associated with AML induction, there are genes

involved in DNA methylation like isocitrate dehydrogenase

(IDH1 and IDH2), DNMT3A, TET2, oncosuppressor genes

like TP53, and spliceosome genes (5, 6). Karyotype

abnormalities stratification according to European Leukemia

Net predicts response and overall survival in patients with

AML and guides the physicians in therapeutic choices (7).

Approximately 60% of the newly diagnosed AML present gene

mutations involving activation pathways with a relevant

pathogenic role (8). The translocations t(8;21), t(15;17), and

inv (16) define a favorable prognosis (9, 10), while complex

karyotype, chromosome 5 or 7 monosomy, t(6;9), inv (3), and

other mutations involving chromosome 11q predict poor

outcome and treatment resistance (11). Gene mutational status

results are likewise relevant in the large slice of individuals with

normal karyotypes. In these patients, biallelic mutation of

CCAAT enhancer binding protein alpha (CEBPA) and

nucleophosmin 1 (NPM1) mutation, in the absence of Fms-

related receptor tyrosine kinase 3 (FLT3) mutation, confer a

favorable prognosis (9, 12, 13). On the other hand, FLT3-ITD
02
mutation determines the poor outcome (14), especially when a

high mutated/wild-type ratio is detected (15, 16). Mutated TP53,

frequently associated with complex karyotype, is reported as an

adverse prognostic factor (17) even when it represents the only

mutation detected (18). Mutated DNMT3A predicts unfavorable

outcomes (19), particularly when combined with mutated

NPM1 and FLT3 (20). Partial tandem duplications of lysine

methyltransferase 2A (KMT2A) have also been associated with a

worse prognosis in normal karyotype AML (17, 18, 21). TET2

mutation described in the AML inactivates the enzyme and

seems to confer a worse prognosis to the disease (21). The

prognostic impact of IDH-1/IDH-2 mutations is less well

established and is likely modified by concomitant mutations.

In patients with normal karyotype, FLT3-ITD-negative, and

NPM1 mutations, the IDH-1/IDH-2 mutation appears to

improve overall survival (21). In 2017, the European Leukemia

Net (ELN) published the classification of AML, according to

molecular and cytogenetic risk, into favorable, intermediate, and

adverse risk. Acute myeloid leukemia represents the major

indication for allogeneic stem cell transplantation (HSCT),

especially for patients in the adverse risk group and for those

at high risk of relapse who had achieved a complete remission

(7). Here, we wanted to evaluate howmolecular mutations might

affect the outcome of patients with acute myeloid leukemia

submitted to allogeneic stem cell transplantation.
Materials and methods

The study was conducted according to the Declaration of

Helsinki and was approved by the ethics committee of the

Fondazione Policlinico Universitario Agostino Gemelli IRCCS

in Rome (Protocol ID 4417).
Sample processing, DNA sequencing,
and mutation analysis

We analyzed bone marrow mononuclear cells collected at

the time of AML diagnosis. DNA was isolated using the Qiamp
frontiersin.org
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DNA Blood Mini Kit (Qiagen, Germantown, MD). A custom

enrichment panel (Illumina, San Diego, CA) with target regions

of 26 genes was designed using Illumina Design StudioTM

software. Genes were selected based on the available evidence

in myeloid neoplasms (Table 1). The custom panel consisted of

263 selected targets, 86,715 bp in cumulative target length, for a

total of 2.088 probes. Unique dual-indexed paired-end libraries

were created from high-quality double-stranded genomic DNA

(gDNA) inputs of 10–1,000 ng, using the Nextera DNA Flex for

Enrichment workflow, updated during the study with Illumina

DNA Prep with Enrichment workflow. Libraries were sequenced

on the MiniSeq sequencing system using the MiniSeq Mid

Output kit (300 cycles) and setting up a paired-end run with

149 cycles per reading (2×149) and 10 cycles per index read. The

resulting average depth of sequencing coverage was 1,000×.

Sequence reads were initially aligned to the human genome

(GRCh37/hg19) using the Burrows–Wheeler aligner. All

enrichment values were calculated without padding (sequence

immediately upstream and downstream). If any targeted region

overlapped another region, the region positions have been

adjusted to remove overlaps. For alignment, somatic variant

caller (version 3.5.2.3) was selected. The variants were identified
Frontiers in Oncology 03
by BaseSpace Variant Interpreter Software Illumina.

Functionally annotated variants were filtered accordingly to

the following criteria: synonymous variants and variants

located outside protein-coding regions were filtered;

polymorphisms described in dbSNP (version 155) with a

population frequency >1% were removed; and variants with

coverage <30× and <10 supporting reads and variants with an

allelic fraction (VAF) lower than 5% were filtered. The

remaining variants, evaluated as candidate somatic mutations,

were finally tagged as oncogenic using different criteria

based on information retrieved from the literature, sequence

conservation, and in silico prediction effect (22–25). NPM1 and

FLT3 mutations were detected as previously described (26, 27).

Patients reported as FLT3 positive were those with a high

allelic ratio.
Patients

We enrolled 96 patients with AML candidates to receive

HSCT between 2016 and 2021 for which an AML NGS panel

was available at diagnosis. Patient characteristics, data on AML
TABLE 1 NGS gene panel used.

GENE (exon) ID Trascript Mutation frequencyn. (%)

ASXL1 (13) NM_015338.5 13 (13.5)

CALR (9) NM_004343.3 0 (0)

CBL (8, 9) NM_005188.3 3 (3.1)

CBLB (10) NM_170662.3 0 (0)

CEBPA (all) NM_004364.4 10 (10.4)

KIT (2, 8–11, 13, 17) NM_000222.2 4 (4.2)

CSF3R (14–17) NM_156039.3 0 (0)

CUX1 (all) NM_181552.3 0 (0)

DNMT3A (all) NM_175629.2 29 (30.2)

EZH2 (all) NM_004456.4 2 (2.1)

IDH1 (4) NM_005896.3 8 (8.3)

IDH2 (4) NM_002168.3 12 (12.5)

IKZF1 (all) NM_006060.5 0 (0)

JAK2 (14) NM_004972.3 2 (2.1)

KRAS NM_033360.3 1 (1)

MPL NM_005373.2 0 (0)

NRAS NM_002524 7 (7.3)

RUNX1 (all) NM_001754.4 11 (11.5)

SETBP1 (4) NM_015559.2 0 (0)

SF3B1 (13–16) NM_012433.3 3 (3.1)

SRSF2 (1) NM_001195427 4 (4.2)

TET2 (3–11) NM_001127208.2 34 (35.4)

TP53 (2–11) NM_000546.5 6 (6.3)

U2AF1 (2–6) NM_006758.2 4 (4.2)

WT1 (7–9) NM_024426.4 7 (7.3)

ZRSR2 (all) NM_005089.3 2 (2.1)
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diagnosis, features, previous treatment, and transplant

conditions are reported in Table 2.
Statistical analysis

Statistical analysis was realized using NCSS10 software. For

each NGS mutation, the frequency was reported as an absolute

value and as a percentage of the entire population. A comparison

between continuous numerical variables among different groups

was made using the Mann–Whitney U test. To identify the

association between categorical variables, chi-square and

Fisher’s exact test were used. One-year survival curves for

overall survival (OS) were built with the Kaplan–Meier

method, and a comparison between curves was assessed with

the log-rank test. Cumulative incidence of relapse was calculated

considering death as a competitive event, and a comparison

between curves was made using Gray’s test. Cumulative

incidence of transplant-related mortality (TRM) was calculated

considering relapse occurrence and death by other causes as

competitive events. The Cox regression method was used to

identify variables affecting the time-dependent outcomes OS,

TRM, and DFS. Variables with a p-value <0.1 in univariate

analysis were included in multivariate one. Statistical

significance was assigned for p-value <0.05.
Results

Only eight patients (8.3%) did not show any mutation.

Twenty-three patients (24%) had one mutation, 25 patients

(26%) had two mutations, the other 25 patients (26%) had

three mutations, 10 patients (10.5%) had four mutations, and

5 patients (5.2%) had five mutations. Mutation frequencies are

listed in Table 1.
Mutations and leukemia features

Total white blood count at AML diagnosis was higher in

patients with FLT3 mutation (64.7 vs. 7.8×109/L, p=0.0004),

NPM1 mutation (35.9 vs. 6.2×109/L, p<0.0001), and DNMT3A

mutation (29.5 vs. 7.7×109/L, p=0.001), whereas it was lower in

patients with IDH2 mutation (2.9 vs. 10.9×109/L, p=0.04) and

RUNX1 mutation (3.0 vs. 12.4×109/L, p=0.02). In relation to

bone marrow blasts percentage at AML diagnosis, it was higher

in patients with FLT3 mutation (74% vs. 45%, p=0.007) and

NPM1 mutation (70% vs. 41%, p=0.002). Furthermore,

hemoglobin levels at AML diagnosis were higher in patients

with ASXL1 mutation (10.5 vs. 8.9 g/dl, p=0.006), whereas

platelet count was higher in patients with DNMT3A mutation

(77 vs. 47×109/L, p=0.02). Finally, we observed that FLT3
Frontiers in Oncology 04
mutation was frequently combined with NPM1 mutation

(83%, p<0.0001) and DNMT3A mutation (67%, p=0.0001).

Similarly to that, NPM1 mutation was frequently revealed

together with FLT3 mutation (47%, p<0.0001) and DNMT3A

mutation (59%, p<0.0001), and DMT3A mutation was

frequently present together with FLT3 mutation (41%,

p<0.0001) and NPM1 mutation (65%, p<0.0001).
Relapse

The overall relapse rate in our cohort was 27% (n=26). One-

year cumulative incidence of relapse according to ASXL1

mutation was 32% (95% CI, 22.8–45.5) in the non-mutated

and 9.1% (95% CI, 1.4–58.9) in the mutated group (p=0.05,

Figure 1A). According to TP53 mutational status, 1-year

cumulative incidence of relapse was 24% (95% CI, 16.1–36) in

the non-mutated group and 100% in the mutated one (p<0.001,

Figure 1B). In patients mutated for WT1, 1-year cumulative

incidence of relapse was 66.7% (95% CI, 37.9–100) as compared

to 25.8% (95% CI, 17.5–38) in non-mutated patients (p=0.04,

Figure 1C). Patients carrying NRAS mutation showed a 1-year

cumulative incidence of relapse of 61.9% (95% CI, 32.9–100) as

compared to 26% (95% CI, 17.7–38.3) in the non-mutated group

(p=0.05, Figure 1D). A trend was observed according to FLT3

mutation, with a 1-year cumulative incidence of relapse of 25.1%

(95% CI, 16.4–38.4) in non-mutated patients and 43.8% (95%

CI, 25.1–76.3) in mutated ones (p=0.09, Figure 1E). According

to cytogenetic risk, 1-year cumulative incidence of relapse was

62.5% (95% CI, 37.7–100) in the adverse risk group and 24.2%

(95% CI, 16–36.7) in the others (p=0.003, Figure 1F). According

to ELN risk, 1-year cumulative incidence of relapse was 41.1%

(95% CI, 37–62.4) in the adverse group and 20.8% (95% CI, 12–

36.1) in the others (p=0.04, Figure 1G). Considering the

response status at transplant, 1-year cumulative incidence of

relapse was 18.4% (95% CI, 10.5–32.3) in patients who had

obtained a complete remission as compared to 52% (95% CI,

35.7–75.8) in the others (p=0.004, Figure 1H). Finally, patients

triple mutated for NPM1, FLT3, and DNMT3A (n=10) had a 1-

year cumulative incidence of relapse of 50% as compared to

25.9% in others, but the difference did not reach statistical

significance (p=0.07).

No statistical association was found between relapse and the

other variables.

Multivariate analysis realized with Cox regression model

(Table 3) confirmed complete remission before transplant (HR,

0.23; p=0.001), donor age (HR, 0.97; p=0.04), and adverse

cytogenetic risk (HR, 3.03; p=0.04) together with FLT3

mutation (HR 3.36, p=0.02), NRAS mutation (HR 4.78,

p=0.01), TP53 mutation (HR 4.34, p=0.03) and WT1 mutation

(HR, 5.97 ; p=0.005) as independent var iables for

relapse occurrence.
frontiersin.org

https://doi.org/10.3389/fonc.2022.939819
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Metafuni et al. 10.3389/fonc.2022.939819

Frontiers in Oncology 05
Overall survival and TRM

One-year OS of our study cohort was 71.5%. According to

mutational status, only TP53 mutation appeared to negatively

affect OS (50% vs. 71.7%, p=0.009). WT1 mutation made worse

1-year OS (43% vs. 74%, p=0.09), and ASLX1 mutation

ameliorated 1-year OS (92% vs. 67%, p=0.06), but statistical

significance was not reached in these cases. The Cox regression

model (Table 3) identified other variables as associated with OS

in univariate analysis (Table 4). However, multivariate analysis

confirmed only relapse occurrence (HR, 4.33; p=0.0001) and

grade 2–4 acute GvHD (HR, 2.29; p=0.05) as independent

variables for mortality.

No association was found between mortality and the

other variables.

Regarding TRM, 1-year cumulative incidence according to

TP53 mutation was 17% in non-mutated and 67% in mutated

patients (p=0.002). However, multivariate Cox regression

analysis confirmed only grade 2–4 acute GvHD as an

independent variable for TRM (HR, 3.43; p=0.02).

No association was found between TRM and the

other variables.
Discussion

Allogeneic hematopoietic stem cell transplantation represents a

potentially curative option for AML. Undoubtedly, patients and

donor characteristics and transplant type might affect post-

transplant outcome and TRM. On the other hand, molecular and

cytogenetic features of the underlying disease surely affect the post-

transplant relapse rate. The next-generation sequencing represents a

valuable tool for molecular sequencing in AML diagnostic process,

boasting a high sensitivity as compared to other molecular

laboratory techniques. Given the growing number of genes

required for diagnostic and prognostic classification, conventional

approaches may be insufficient for the current stratification of AML

patients (29). However, as there is still no definition of universal

standard quality criteria for NGS, its application to routine

diagnostic laboratories must be individually validated (7). Here,

we studied the impact of the molecular mutational status of AML

on relapse occurrence after HSCT.

We found four molecular mutations to be predictive of

relapse occurrence 1 year after HSCT.

TP53 mutations conferred a four-times high risk for relapse

(100% vs. 24%) as compared to wild-type patients, and increased

three times the risk of death, even if this was not confirmed in

multivariate analysis. It is well known that mutated TP53 is one
TABLE 2 Patients, disease, and transplant characteristics.

Total cohort 96 patients

Sex M/F 57 (70%)/39 (30%)

Age at transplant 56 years (17–73)

Cytogenetic risk (28)
Favorable
Intermediate
Adverse

4 (4%)
79 (82%)
13 (14%)

ELN risk (7)
Favorable
Intermediate
Adverse

15 (16%)
43 (45%)
38 (39%)

Line of treatment before HSCT n.
None
1
2
3

4 (4%)
69 (72%)
19 (20%)
4 (4%)

Median time to transplant 183.5 days (30 to 645)

HCT-CI
0
1
2
3
4
≥5

9 (9%)
11 (11%)
17 (18%)
18 (19%)
23 (24%)
18 (19%)

Year of transplant
2016–2018
2019–2021

29 (30%)
67 (70%)

Disease status at transplant
Never treated
CR1
CR2
PR
Relapse/refractory

6 (6%)
54 (56%)
12 (13%)
6 (6%)
18 (19%)

Conditioning
ABL
RIC/NMA

42 (44%)
54 (56%)

Donor
HLA Id Sibling
Haploidentical
Mismatched unrelated
Matched unrelated

21 (22%)
32 (33%)
15 (16%)
28 (29%)

Stem cell source
PB
CB
BM

67 (70%)
4 (4%)
25 (26%)

GvHD prophylaxis
CSA+Cy
CSA+MFA+Cy
CSA+MFA
CSA+MTX

4 (4%)
70 (73%)
2 (2%)
20 (21%)

ATG 18 (19%)
M, male; F, female; HCT-CI, hematopoietic cell transplant comorbidity index; CR,
complete remission; PR, partial response; ABL, myeloablative; RIC, reduced intensity
conditioning; NMA, non-myeloablative conditioning; PB, peripheral blood; CB, cord
blood; BM, bone marrow; CSA, cyclosporine A; MFA, micofenolic acid; MTX,
methotrexate; CY, cyclophosphamide post-transplant; ATG, anti-thymocyte globulins.
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FIGURE 1

One-year cumulative incidence of relapse. (A) according to ASXL1 mutation; (B) according to TP53 mutation; (C) according to WT1 mutation;
(D) according to NRAS mutation; (E) according to FLT3 mutation; (F) according to cytogenetic risk; (G) according to ELN risk; (H) according to
remission status at transplant.
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of the main escape mechanisms adopted by neoplastic cells (30),

and it is detected in <10% of de novo AML cases (31). Patients

with TP53 mutations have a very poor prognosis, even when

submitted to HSCT in CR (32, 33). In our study, 1-year

cumulative incidence of relapse was 24% in the non-mutated

and 100% in the mutated group (p<0.001).

The second mutated gene that increased approximately three

times the risk of relapse after HSCT was FLT3. A few years ago, the

Leukemia Working Party of the European Group of Blood and

Bone Marrow Transplantation published data on 702 patients with

normal karyotype AML who had received HSCT in CR1. The

presence of FLT3mutations, rather than NPM1, increased twice the

risk of relapse and made worse overall survival but did not affect

NRM (34). In our experience, we observed a 1-year cumulative

incidence of relapse of 25.1% in non-mutated patients and 43.8% in

mutated ones (p=0.09). Zhang et al. studied the NGS molecular

profile of 332 AML patients submitted to HSCT. Multivariate

analysis revealed FLT3 high allelic ratio and TP53 mutations

together with MRD positivity, the lack of a CR1 before

transplant, and intermediate or adverse cytogenetic risk as

predictive variables for relapse occurrence (35).

The third mutated gene that heavily (~six times) affects the

relapse occurrence after HSCT is WT1, which additionally

worsens overall survival, although it did not reach statistical

significance. In our cohort of patients mutated for WT1, 1-year

cumulative incidence of relapse was 66.7% as compared to 25.8%

in non-mutated patients (p=0.04). Recently, Eisfeld reported

howWT1 mutation might refine ELN risk assessment in de novo

AML. WT1 mutation among non-core-binding factor AML

worsened CR rate, OS, and DFS in patients belonging to the

favorable-risk group, as they were in the intermediate one. In the

same way, WT1 mutation among patients in the intermediate

risk group conferred CR rate, DFS, and OS similar to those

registered in the high-risk group. Moreover, if isolated WT1

mutation get a worse CR rate as compared to non-mutation, the

combination with mutated NPM1 negatively affected DFS and

OS even when compared to sole WT1-mutated patients (36).
Frontiers in Oncology 07
Quek and colleagues studied the AML mutation profile

associated with disease relapse after HSCT. They registered an

increased risk of relapse for patients carrying TP53, WT1,

DNMT3A, and FLT3 mutations, although only WT1 and

DNMT3A were confirmed in multivariate analysis. TP53

mutation also resulted in a worse relapse-free survival and overall

survival, while IDH1 mutation appeared to reduce relapse

occurrence and improve survival after HSCT (32). In another

study by Kuskin et al., the mutational profile study of AML

submitted to HSCT confirmed an increased risk of relapse in

patients with FLT3, TP53, and WT1 mutations, while a lower

risk of relapse was found for isolated DNMT3A-mutated patients.

When they performed a subgroup analysis on patients transplanted

in CR, only TP53 maintained its prognostic effect on relapse, and

FLT3 showed only a trend in this sense (33).

In our cohort, NRAS is the last mutated gene that increased

approximately five times the risk of relapse occurrence after

HSCT. NRAS is a proto-oncogene that can be found mutated in

12% of AML cases (31). The only data we found in the literature

about the role of NRAS in AML relapse regarded the

identification of this mutation in approximatively 12% of

patients with AML relapsing after HSCT (37). NRAS has been

reported as one of those genes responsible for chemotherapy or

hypomethylating treatment failure and increased mortality rate

(38, 39). Fleming and colleagues recently presented the results of

a machine learning model of AML risk classification according

to karyotype and molecular mutations, which was conducted in

a large cohort of patients (n=1,961). Isolated mutation of NRAS

belonged to the poor risk group, conferring a 4-year OS of 31%

that can reach 50% after HSCT in first complete remission

(1CR). The association of NRAS with CEBPA or NPM1 and

cohesion mutations belonged to the very good risk group, with a

4-year OS of 96%, which fell down to 80% after HSCT (40).

In contrast to data reported by the ELN risk stratification (7),

in our population, ASXL1 mutation showed a protective role

against relapse (9% vs. 32%) and ameliorated survival (92% vs.

67%), but these data were not confirmed by the Cox regression
TABLE 3 Cox regression for disease-free survival.

Univariate Multivariate

Variable HR 95% CI p HR 95% CI p

TP53 mutated vs. not mutated 6.50 2.39–17.68 0.0002 4.34 1.11–16.99 0.03

WT1 mutated vs. not mutated 3.06 1.01–8.93 0.04 5.97 1.70–20.99 0.005

NRAS mutated vs. not mutated 2.75 0.94–8.03 0.06 4.78 1.34–17.02 0.01

Cytogenetic risk adverse vs. others 3.55 1.47–8.55 0.005 3.03 1.12–9.02 0.04

FLT3 mutated vs. not mutated 2.05 0.89–4.72 0.09 3.36 1.19–9.54 0.02

ELN risk adverse vs. others 2.19 1.01–4.76 0.04 1.95 0.77–4.96 0.1

Donor age continuous 0.96 0.93–0.99 0.006 0.97 0.93–0.99 0.04

Complete remission at SCT yes vs. no 0.34 0.16–0.74 0.007 0.23 0.09–0.56 0.001
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model. This was most probably because none of our patients

with ASXL1 mutation had adverse karyotype. In our opinion,

HSCT may overcome the deleterious effect of this mutation. A

similar result for ASXL1 was published by Grimm and

colleagues (41). They also confirmed the prognostic role of

ELN classification on the prediction of OS and relapse

occurrence. Moreover, they reported worse OS and relapse

rates for patients with minimal residual disease (MRD)

positivity at transplant and those patients with TP53 mutation,

either in the setting of adverse karyotype (41). Another

observation that we made regarded patients with triple

positivity for NPM1, DNMT3A, and FLT3, occurring in 10

patients, who experienced a double risk of relapse after HSCT

(50% vs. 26%), although a statistical significance was not

reached. In other studies, AML patients with concurrent

mutated NPM1, DNMT3A, and FLT3 genes showed poor

overall survival (29, 42), but we did not observe it. Again,

HSCT may have a relieving role in this association.

Finally, relapse recurrence in our cohort of patients was

driven by the adverse cytogenetic risk category as compared to

favorable/intermediate ones (62% vs. 24%) with a three times

high risk, whereas the adverse ELN risk category appeared to

promote relapse only in univariate analysis (41% vs. 21%), but

the data were not confirmed in the multivariate one.

It has been previously reported that AML relapse occurrence

after transplant is linked to an adverse ELN genetic risk as

compared to the favorable one (43). Moreover, the lack of a 1CR

status before conditioning increases the risk of relapse after

HSCT. It has also been described that both these two features

negatively affected overall survival after HSCT (44). In our study,

we confirmed a threefold high risk of relapse in patients with

adverse cytogenetic risk. Concerning the AML response status

before transplant, we found a significant difference in terms of

relapse between complete remission and lack of complete
Frontiers in Oncology 08
remission, but no differences were seen between the first and

second complete remission in predicting relapse after HSCT. A

large multicenter study of the Center for International Blood and

Marrow Transplantation (CIBMTR) evaluated the prognostic

role of the ELN risk classification in predicting the post-

transplant outcome of patients with AML (45). Patients in the

adverse risk group reported the highest cumulative incidence of

relapse (37%) and the worse overall survival (54%) and disease-

free survival (45%) at 2 years. On the other hand, they found no

associations between ELN risk stratification and TRM (43, 45),

which we also saw in our cohort of patients.
Conclusions

In this study, we confirm the role of mutations of WT1,

FLT3, and TP53 genes as negative on the outcome of HSCT in

AML patients.

However, even if the negative prognostic impact of WT1,

FLT3, and TP53 on relapse is well known, we found the

discovery of NRAS mutations as a new prognostic factor in

that setting interesting. The main limitations of our study were

its small sample size, retrospective nature, and the lack of NGS

analysis performed at the relapse time; therefore, these results

require prospective validation in larger cohorts of patients.

The growing knowledge of the genetic landscape of AML allows

the development of new target strategies aimed at specific

subgroups of patients. Also considering the scarce benefit of

allogeneic stem cell transplantation in the presence of some

mutations, target drugs could be proven to eradicate MRD and

possibly replace the transplantation strategy in some cases or follow

it as maintenance therapy. Therefore, there is a need for new clinical

studies to test the use of target drugs or the combination of multiple

agents as an alternative to transplantation in the adverse categories.
TABLE 4 Cox regression for overall survival.

Univariate Multivariate

Variable HR 95% CI p HR 95% CI p

Patients age continuous 1.03 0.99–1.06 0.05 0.99 0.96–1.03 0.8

Lines of previous therapy continuous 1.64 0.99–2.71 0.05 1.19 0.65–2.20 0.6

HCT-comorbidity index continuous 1.26 1.06–1.51 0.009 1.13 0.94–1.36 0.2

Cytogenetic risk adverse vs. others 3.04 1.42–6.53 0.004 1.46 0.61–3.50 0.4

Complete remission at SCT yes vs. no 0.47 0.25–0.89 0.02 0.58 0.27–1.23 0.1

Conditioning reduced intensity vs. myeloablative 2.25 1.13–4.48 0.02 1.67 0.70–4.00 0.2

Acute GvHD 2–4 yes vs. no 3.31 1.66–6.59 0.0007 2.29 1.00–5.31 0.05

Relapse yes vs. no 6.21 3.19–12.11 <0.0001 4.33 2.07–9.06 0.0001

TP53 mutated vs. not mutated 3.34 1.28–8.70 0.01 1.16 0.41–3.32 0.8
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