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Abstract: Perceptual and statistical evidence has highlighted voice characteristics of individuals
affected by genetic syndromes that differ from those of normophonic subjects. In this paper, we
propose a procedure for systematically collecting such pathological voices and developing AI-based
automated tools to support differential diagnosis. Guidelines on the most appropriate recording
devices, vocal tasks, and acoustical parameters are provided to simplify, speed up, and make the
whole procedure homogeneous and reproducible. The proposed procedure was applied to a group
of 56 subjects affected by Costello syndrome (CS), Down syndrome (DS), Noonan syndrome (NS),
and Smith–Magenis syndrome (SMS). The entire database was divided into three groups: pediatric
subjects (PS; individuals < 12 years of age), female adults (FA), and male adults (MA). In line with the
literature results, the Kruskal–Wallis test and post hoc analysis with Dunn–Bonferroni test revealed
several significant differences in the acoustical features not only between healthy subjects and patients
but also between syndromes within the PS, FA, and MA groups. Machine learning provided a k-
nearest-neighbor classifier with 86% accuracy for the PS group, a support vector machine (SVM)
model with 77% accuracy for the FA group, and an SVM model with 84% accuracy for the MA group.
These preliminary results suggest that the proposed method based on acoustical analysis and AI
could be useful for an effective, non-invasive automatic characterization of genetic syndromes. In
addition, clinicians could benefit in the case of genetic syndromes that are extremely rare or present
multiple variants and facial phenotypes.

Keywords: genetic syndrome; acoustical analysis; artificial intelligence; machine learning; classification

1. Introduction

The human voice results from a complex configuration, arrangement, and coordina-
tion of the elements that make up the phonatory apparatus, the respiratory system, and the
central nervous system. Therefore, abnormal neurological and anatomical features often
related to genetic syndromes could alter voice production. Over the years, several works
have investigated the detection of voice pathology due to benign formations (e.g., nodules
and polyps), neuromuscular disorders (e.g., paralysis of the vocal cords) [1,2] and neurode-
generative diseases such as Parkinson’s disease [3,4] by using acoustical features extracted
from a sustained vowel (/a/). Vocal-tract, larynx, and vocal-fold abnormalities can be
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identified by analyzing key acoustical parameters assessed perceptually by experienced
clinicians and objectively by dedicated software. In the latter context, some of the most
important parameters are [5]:

• The fundamental frequency (F0), which describes the vibration frequency of the
vocal folds;

• The first formant (F1), which is related to the constriction of the anterior half of the
oral cavity; the larger the cavity, the lower the F1. F1 is also raised by the constriction
of the pharyngeal tract;

• The second formant (F2) (linked to tongue movements), which is lowered by posterior
tongue constriction and raised by anterior tongue constriction;

• The third formant (F3), which depends on the rounding of the lips; the more this
configuration is accentuated, the lower the F3;

• F0 and formants F1–F3, which are inversely proportional to the size and thickness of
the vocal folds and the length of the vocal tract.

In the last two decades, acoustical analysis has been applied to patients affected by
genetic syndromes such as Costello (OMIM #218040, CS), Down (OMIM #190685, DS),
Noonan (OMIM #163950, NS), and Smith–Magenis syndromes (OMIM #182290, SMS),
with interesting results highlighting highly irregular voices. The non-invasive semiotics of
these diseases are generally determined by studying somatic traits. A promising approach
to obtain a more detailed phenotype involves the use of objective acoustical analysis to
identify parameters associated with individual pathological conditions.

Perceptually, low tonality and voice intensity, as well as hoarseness, are typical charac-
teristics of adult CS individuals [6]. The rarity of this syndrome has made it particularly
difficult to outline a precise acoustical profile, and no objective acoustical analysis has been
carried out on these patients.

In Down syndrome, Moura et al. [7] found statistically significant differences compared
to HS in the F0 for sustained vowels (/a /, /e /, /i /, and /O/), as well as for formants F1–F2
and HNR measures in Portuguese-speaking children. In adults, Bunton and Leddy [8]
highlighted difficulties in phonating the three cardinal vowels (/a/, /I/, and /u/), which
were associated with reduced vowel space and intelligibility.

Turkyilmaz et al. [9] analyzed the sustained /a/ vowel of 11 children with Noonan
syndrome using MVDP software (Kay Elemetrics Corporation, Lincoln Park, NJ, USA);
no significant differences were found compared to a control group, except for the soft
phonation index (SPI). Moreover, in a single case report, Wilson and Dyson [10] found
vowel neutralization and nasalization in a female child.

In a study by Hidalgo et al. [11], SMS adults showed higher F0 values for the vowel
/a/ than normophonic subjects, but no significant differences were found in voice disorder
measures. In another paper [12], the same authors experimented with the same vocal task
with SMS children, analyzing formants F1–F2 and cepstral peak prominence (CPP) [13],
an important parameter for the assessment of dysphonia. Only CPP showed a significant
difference between patients and controls.

These studies suggest that acoustical analysis can provide helpful information to
doctors and speech therapists. However, the cited works focused on a single pathology and
identified acoustical parameters that show statistically significant differences compared to
the normophonic case. It is therefore important to extend this research by analyzing and
comparing the vocal phenotypes of different syndromes to find significant changes that
could support and speed up differential diagnosis and guide clinicians in the development
of treatment or rehabilitation programs, especially for syndromes that are characterized by
several variants that have yet to be discovered, such as Noonan’s syndrome [14]. Artificial
intelligence represents a powerful automatic system to recognize and monitor actions
and movements of daily life in elder care [15] and to analyze and distinguish images of
patients diagnosed with various genetic syndromes by relying on features extracted from
their facial appearance [16]. However, such a technique has never been applied to these
patients’ voice and speech characteristics, even though both anatomo-physiological and
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statistical studies of voice quality measures have shown significant differences compared
to healthy subjects. Therefore, a methodology that allows for homogeneous collection of
relevant data to perform deeper statistical analysis and novel machine learning experiments
could be helpful. In this work, we propose a procedure for standardizing the recording
and analysis of patients’ voices affected by different genetic syndromes. Specifically, this
procedure focuses on the most appropriate devices for voice recording and vocal tasks.
To ensure repeatability, we also propose signal preprocessing and feature extraction steps.
Furthermore, this thesis describes statistical analysis, the development of machine learning
models, and performance evaluation. The validation, feasibility, and robustness of the
proposed procedure were tested by applying the proposed approach to 72 patients recruited
at the Fondazione Policlinico Universitario A. Gemelli (FPUG) in Rome, Italy.

2. Background

When performing voice analysis, it is essential to consider several aspects. In this
section, we highlight the theoretical and practical basis that was considered to outline
our procedure regarding recording devices, vocal tasks, preprocessing methods, feature
extraction, and machine learning techniques.

2.1. Audio Recordings

In the guidelines provided by the Committee on Phoniatrics of the European Laryn-
gological Society (ELS) [17], the importance of high-quality recordings is highlighted as
far as both perceptual and acoustical analyses are concerned. However, no further specifi-
cations are given, which may cause difficulty in selecting an adequate recording system.
Indeed, the choice of the most suitable device and its characteristics strongly depends on
the application. Nevertheless, some general rules can be identified for the most appropriate
microphones for different purposes [18]:

1. Flat frequency response;
2. Noise level at least 15 dB lower than the sound level of the softest phonation;
3. Dynamic-range upper limit higher than the sound level of the loudest phonation;
4. Distance between the microphone and source for which the maximally flat frequency

response occurs.

For example, a cardioid microphone performs well in noisy environments for per-
turbation metrics. On the other hand, its short distance to the sound source may distort
spectral evaluation and result in unreliable sound pressure level measurements, as pointed
out by Svec and Granqvist [18]. However, such microphones can be easily miniaturized
and mounted on the subject with a clip, making them particularly well-suited for children
or patients with behavioral issues to avoid distraction, which could negatively affect phona-
tion and task completion. This recording device has been successfully used to study vowel
utterances of patients with Smith–Magenis syndrome [12] and Williams syndrome [19].
To reduce ambient noise, a headset with incorporated microphones has been proposed as
well [20]. However, this choice strictly depends on the experimental design (i.e., Down
syndrome prosody evaluation through serious games), and its use with other syndromes
should be considered with caution due to its possible discomfort. Condenser microphones
represent another possibility; for example, Bunton and Leddy [8] used a SHURE SM81
microphone to record the voices of Down syndome patients. Smart phones represent a
promising alternative for voice recordings; several studies have reported their efficiency,
portability, and cost-effectiveness in collecting pathological voices [21–23], although they
must be used with caution in noisy environments and in terms of distance and inclination
with respect to the radiation source. Manfredi et al. [24] tested two smart phones at the
extremes of the commercial price range, which were found to perform similarly in voice
acquisition, suggesting that almost any smartphone-integrated microphone could be used
to reliably record audio signals for acoustical analysis purposes. Cavalcanti et al. [25]
performed a similar analysis, finding that smartphones seem not to alter most acoustical
properties as compared to professional microphones, except for the harmonic-to-noise
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ratio (HNR) and cepstral peak prominence (CPP). These results partially agree with those
reported in a study by Glover and Duhamel [26], where noise measurements were sig-
nificantly different when comparing audio samples from smart phones and digital voice
recorders. However, such differences may have been caused by incorrect positioning of
recording devices and the small number of participants. As Cavalcanti et al. [25] state,
the highly dynamic smartphone industry, the lack of standardization, and the fact that
companies usually do not disclose microphone characteristics limit the effective usability
of smartphones. Nevertheless, their ubiquity and ease of use offer a relevant opportunity
to monitor the voice quality for longitudinal evaluation and during daily activities. Sound-
treated booths are advisable, especially when using smart phones. However, they can make
the acquisition process slower and more complex, undermining the advantages of using a
smart phone.

2.2. Vocal Tasks

The evaluation of voice condition is typically based on two types of utterances: sus-
tained vowels and running speech. In this work, we refer to [5] for vowel symbols. Several
papers have highlighted that certain pathologies can be more easily described and identi-
fied when examining specific tasks. For instance, Hidalgo-De la Guia et al. [19] required
the utterance of the /a/ vowel to favor a less forced phonation in patients with neuromotor
deficits due to the stable tongue and jaw position. Frassineti et al. [27] proved that adding
/I/ and /u/ phonations improved pathology detection. The /e/ and /o/ vowels can be
used as well. for example, Suppa et al. [28] performed acoustical analysis of a sustained
/e/ to detect Parkinson’s disease in elderly patients; however, these utterances are more
sensitive to dialects, and therefore, results may be less reliable. Instead, /a/, /I/, and /u/,
usually referred to as cardinal or corner vowels, are characterized by a well-defined vocal
tract configuration and remain stable during articulation, which makes them substantially
independent of dialectal and even linguistic diversity [29].

Running speech could provide further information to describe voice quality, as some
aspects are highlighted in a voiced context or after a glottal closure. According to the
European Laryngology Society (ELS), it is essential that running speech in the form of
a single sentence or a short, standardized passage be characterized by constant voicing
and not contain fricatives. This reduces possible biases in the computation of noise-level
metrics due to articulation noise and better highlights the habitual fundamental frequency
during speaking. As suggested by Gomez-Garcia et al. [30], a coarticulation task should
also be included to evaluate the influence of the preceding and succeeding acoustical units
on the current unit under analysis. For instance, Alpan et al. [31] successfully employed
this utterance to predict perceptual scores of the GRBAS scale with acoustical parameters.

The Società Italiana di Fonologia e Laringologia (SIFEL) considers the singing voice
to evaluate a different aspect of speech production [17]; it does not entirely reflect daily
conversational performance, but since voice is used at a higher functional level, it can
provide an interesting insight into vocal properties, even in non-professional singers or
actors. Seok et al. [32] demonstrated that adding such a task to their voice evaluation
protocol allowed for better assessment of vocal properties before and after thyroid surgery,
helping to monitor postoperative voice changes and improving the assessment of subjective
voice discomfort.

2.3. Preprocessing of Audio Samples

Speech and voice signals may undergo several preprocessing techniques to enhance
feature extraction. One of the most used techniques is inverse filtering. In voice pathology
detection, the vibratory dynamics of the vocal folds can be analyzed, removing the influence
of vocal-tract resonances [33,34]. However, when dealing with genetic syndromes, vocal-
property alterations may not be uniquely associated with biomechanical factors of the vocal
folds but also with several morphological anomalies that affect the vocal tract. Examples
include laryngomalacia, redundant nasal tissue, and hypopharyngeal veil collapse for
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CS [6,35]; arytenoid cartilage enlargement and pharyngeal constriction for DS [20,36];
ogival palate and tongue malformations for NS [37]; and velopharyngeal insufficiency for
SMS [38]. Therefore, filtering to reduce background or convolutional noise is discouraged in
our procedure, as it could remove important information about irregularities or turbulence
connected with the pathologies themselves [30]. Thus, more appropriate tools could
consist of voice/unvoiced and/or silence detectors, which might allow for more efficient
identification of the segments of the recording in which vocal-fold vibration occurs [39,40].
This approach can be applied to sustained vowels as well.

2.4. Acoustical Feature Extraction

The aim of characterizing voice signals is to extract features to describe the properties
of the pathological groups under examination. Gomez-Garcia et al. [30] pointed out that
identifying voice impairments is a difficult task, since certain phenomena typically asso-
ciated with vocal disorders (i.e., aperiodicity) can be inherent to physiological phonation
processes. Thus, it is important to implement techniques to obtain a large number of
features to maximize the probability of finding a range of metrics capable of separating
normophonic and pathological subjects and/or differentiating pathologies. In recent years,
several methodologies have been proposed and implemented to improve feature extraction;
however, the interpretability of the results must be considered, especially when exploratory
analyses are performed. The open-source BioVoice tool performs objective acoustical analy-
sis [41] in both the time and frequency domains. The number, length, and percentage of
voiced and unvoiced segments (V/UV) are detected in the time domain. In the frequency
domain, the fundamental frequency (which measures the vibration of the vocal folds in Hz
(F0)), formant frequencies (in Hz, which are related to the configuration of the articulators
along the vocal tract (F1–F3)), noise level (normalized noise energy (NNE), in dB), and jitter
(in %) are estimated. NNE ranges from 0 dB downwards. Thus, the higher the noise
level, the closer its value is to 0 dB. For F0 and each formant, the mean, median, standard
deviation, maximum, and minimum values are calculated. Moreover, the power spectral
density (PSD) is computed in the frequency range of each category (newborn, child, adult
female, adult male, and singer), and normalized with respect to its maximum value; this
allows for comparison among different PSDs. Excel tables and pictures are automatically
saved in devoted folders (one for each recording). The BioVoice dropdown menu allows the
user to choose the gender, age, and type of emission without requiring any manual setting
to be selected. This greatly simplifies its usage by non-expert users, automatically adjusting
the frequency ranges for F0 and formant estimation with respect to other commonly used
software, such as PRAAT [42].

2.5. Machine Learning

The automatic assessment of voice quality based on machine learning (ML) represents
a well-established strategy that typically relies on supervised learning techniques such as
k-nearest neighbors (KNN), support vector machines (SVM), and random forest (RF) [1,30].
Statistical analyses of the voice properties of genetic syndromes have already highlighted
significant differences in phonation and articulation. When focusing on prediction rather
than inference, it is crucial to develop a tool capable of generalizing the underlying pattern
of training data to identify new observations. ML is suitable for this task, and several
studies have demonstrated that such methods can separate data even if they do not show
statistically significant alterations [43,44]. Moreover, ML requires few assumptions about
the data-generating systems, as opposed to statistical analysis, where possible violations of
the assumptions can lead to unreliable results. In a previous study, we demonstrated that
machine learning algorithms can effectively discriminate between the same four genetic
syndromes with an overall accuracy < 50% [27]. However, feature extraction was per-
formed with PRAAT, and healthy subjects were not considered. These promising results
need further examination.
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3. Materials and Methods

Figure 1 displays and summarizes the proposed procedure. Details are given in the
following subsections: Recordings, Vocal tasks, Preprocessing of audio samples, Acoustical
analysis, Machine Learning, and Statistical Analysis. Procedure assessment is discussed in
the subsection named Procedure validation.

Figure 1. Procedure pipeline.

3.1. Recordings

Taking into account the pathological subjects under study, our procedure suggests
the use of a smart phone, as it allows for the collection of a large number of recordings
quite easily and quickly. Only one smartphone model should be used for all acquisitions to
ensure experimental repeatability and uniformity of the recordings. This device should be
kept 15 cm from the mouth at a 45◦ inclination to reduce lateral distortions [45]. Background
noise should be <50 dB, and subjects must speak with conversational tone and intensity.

3.2. Vocal Tasks

Factors like age, scarce cooperation, language deficits, and cognitive disorders pose
a challenge to the feasibility of running speech and singing tasks in patients affected by
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genetic syndromes, since they are typically characterized by severe cognitive and behavioral
impairments. Despite such difficulties, our procedure consists of three repetitions of the
following items (Italian language):

• List of numbers from 1 to 10;
• Word /aiuole/ (IPA transcription: «a’jwOle»; English translation: «flowerbeds»);
• Vowels /a/, /e/, /I/, /o/, and /u/, sustained for at least 3 s;
• Sentence “io amo le aiuole della mamma” (IPA transcription: «’io ‘amo ‘le a’jwOle

‘del:a ‘mam:a»; English translation: “I love mother’s flowerbeds”);
• Sung sentence “Fra Martino campanaro, dormi tu” (Italian version of the first sentence

of the well-known European traditional song Frère Jacques).

Three repetitions are required to account for biological variability and obtain (usu-
ally by averaging) more reliable parameters [46]. However, this is not always possible,
depending on the severity of the pathology.

In this work, acoustical analysis is performed on /a/, /I/, and /u/ utterances only.

3.3. Preprocessing of Audio Samples

In our procedure, we suggest selecting only the central part of the signals to obtain
more reliable acoustical measures, as they correspond to the “steady-state” part of the
recording. Such a selection has also been reported in the literature [25]. Manual segmenta-
tion was carried out for validation of the procedure using Audacity software [47].

3.4. Acoustical Analysis

Thirty-seven parameters were extracted from audio samples with BioVoice, as listed
in Table 1, along with their meanings. Some metrics were ignored because the syndromes
we considered are usually not characterized by spasmodic muscle contraction or frequent
voice breaking.

Table 1. BioVoice and derived acoustical parameters. (+) denotes the parameters used in this study.

Feature Description

F0 mean (Hz) + Mean fundamental frequency
F0 median (Hz) + Median fundamental frequency

F0 std (Hz) + Standard deviation of the fundamental frequency
F0 min (Hz) + Minimum fundamental frequency

T0 (F0 min) (s) + Time instant at which the minimum of F0 occurs
F0 max (Hz) + Maximum fundamental frequency

T0 (F0 max) (Hz) + Time instant at which the maximum of F0 occurs
Jitter (%) + Frequency variation of F0

NNE (dB) + Normalized noise energy
F1 mean (Hz) + Mean value of the first formant

F1 median (Hz) + Median value of the first formant
F1 std (Hz) + Standard deviation of the first formant
F1 min (Hz) + Minimum value of the first formant
F1 max (Hz) + Maximum value of the first formant

F2 mean (Hz) + Mean value of the second formant
F2 median (Hz) + Median value of the second formant

F2 std (Hz) + Standard deviation of the second formant
F2 min (Hz) + Minimum value of the second formant
F2 max (Hz) + Maximum value of the second formant

F3 mean (Hz) + Mean value of the third formant
F3 median (Hz) + Median value of the third formant

F3 std (Hz) + Standard deviation of the third formant
F3 min (Hz) + Minimum value of the third formant
F3 max (Hz) + Maximum value of the third formant
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Table 1. Cont.

Feature Description

Signal duration (s) Total audio file duration
% voiced Percentage of voiced parts inside the whole signal

Voiced duration (s) Total duration of voiced parts
Number units Number of voiced parts

Duration mean (s) Mean duration of voiced parts
Duration std (s) Standard deviation of the duration of voiced parts
Duration min (s) Minimum duration of voiced parts
Duration max (s) Maximum duration of voiced parts
Number pauses Total number of pauses in the audio file

Pause duration mean (s) Mean duration of pauses
Pause duration std (s) Standard deviation of the duration of pauses
Pause duration min (s) Minimum duration of pauses
Pause duration max (s) Maximum duration of pauses

VSA + Vowel space area
FCR + Formant centralization ratio

F ratio+aI Formant ratio between F1 of /a/ and F1 of /I/
F ratio+au Formant ratio between F1 of /a/ and F1 of /u/
F ratio+Iu Formant ratio between F2 of /I/ and F2 of /u/

To carry out a more detailed voice analysis, we also included articulatory parameters,
which are related to the so-called vowel triangle. Figure 2 displays the American English
vowel triangle [5] and the Italian vowel triangle, which refers to adult males. The only
slight difference concerns the vowel /I/ (Italian), with a mean F2 value about 300 Hz lower
than for the American English /i/. This difference is taken into account in this paper).

Figure 2. American English and Italian vowel triangles. /I/ is a cardinal vowel in Italian. /A/, /U/,
/R/, /E/, /c/ and /@/ represent non-cardinal vowels in both languages.

The vowel space area (VSA, Equation (1)) measures the vowel triangle area, quantify-
ing the articulatory ability [48].

VSA =
| (F1I × (F2a− F2u) + F1a× (F2u− F2I) + F1u× (F2I − F2a) |

2
(1)
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The formant centralization ratio (FCR) represents a normalization procedure con-
ducted to obtain an acoustical parameter that maximizes dysarthria detection and mini-
mizes intervariability [49]. It is expressed as:

FCR =
F2u + F2a + F1I + F1u

F2I + F1a
(2)

Formant ratios, as proposed by Shapir et al., are other important parameters to evaluate
tongue movements and articulatory capabilities [50].

F-ratioaI =
F1a
F1I

(3)

F-ratioau =
F1a
F1u

(4)

F-ratioIu =
F2I
F2u

(5)

In particular, Equations (3) and (4) are sensitive to vertical tongue movements, and
Equation (5) is sensitive to horizontal movements.

3.5. Dataset Separation

Previous studies have highlighted that analyzing male and female voices together
leads to less reliable results [27], mainly because of the different sizes and shapes of the
phonatory apparatus. Therefore, in this work, the database was split into three groups:
pediatric subjects (i.e., individuals < 12 years of age), female adults, and male adults, as
denoted by the acronyms PS, FA, and MA, respectively.

3.6. Machine Learning

Our procedure suggests using ML techniques to develop classifiers based on objec-
tive acoustical features to distinguish four pathological classes (Costello, Down, Noonan,
and Smith-Magenis syndromes) and normophonic subjects. Three models were developed
for the PS, FA, and MA groups. Specifically, in this work, KNN, SVM, and RF classifiers are
implemented. K-fold cross validation was performed with k = 10. Bayesian optimization
was carried out to find the best model hyperparameters that maximize global accuracy,
with 30 iterations for KNN and 60 iterations for SVM and RF [1]. In our study:

1. For the KNN classifier, between 2 and 27 neighbors (k) were evaluated. The considered
distance metrics were “cityblock”, “Chebyshev”, “correlation”, “cosine”, “Euclidean”,
“Hamming”, “Jaccard”, “Mahalanobis”, “Minkowski”, “seuclidean”, and “Spearman”.
The distance weight was selected among “equal”, “inverse”, and “squared inverse”.

2. For the SVM classifier, coding was selected between “one vs. one” and “one vs. all”.
The box constraint and kernel scale were evaluated between 10−3 and 103. The kernel
function was set as Gaussian.

3. For the random forest, the minimum number of leaves was selected among 2 and
27; the maximum number of splits was selected among 2 and 27; the split criterion
was selected among “deviance”, “gdi”, and “twoing”; and the number of variables to
sample was selected between 1 and 55.

All ML experiments were conducted in MATLAB® 2020b (The MathWorks, Inc., Natick,
MS, USA). A code was developed for each class to compute recall, specificity, precision, F1
score, accuracy, and area under the curve (AUC). Global accuracy was determined as well.
In conclusion, for each cardinal vowel, the first 24 parameters listed in Table 1, as denoted
by (+), plus 5 articulatory parameters (Equations (1)–(5)) were considered, for a total of
77 features. We remark that the details provided here in points 1–3 allow for experimental
repeatability, but they do not represent the unique procedure for future works. Indeed,
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with a larger dataset or when considering additional syndromes, other models (including
deep learning techniques) and hyperparameter tuning strategies should be tested.

3.7. Statistical Analysis

In addition to ML methods, a statistical analysis was performed to understand whether
the BioVoice acoustical parameters allow for the detection of significant differences among
syndromes and if these results align with the literature. To find the most appropriate
statistical test, Shapiro–Wilk and Lèvene tests were applied to check normality and ho-
moscedasticity, respectively. The SPSS tool (IBM Corp. Released 2021. IBM SPSS Statistics
for Windows, Version 28.0. Armonk, NY, USA: IBM Corp) was used. Based on the outcome,
a parametric one-way ANOVA or a non-parametric Kruskal–Wallis test was considered
to carry out a multivariate analysis of the acoustical features. The α-level of significance
was set equal to 0.05. Post hoc analysis considered t-tests with Tukey correction or Dunn–
Bonferroni tests.

3.8. Procedural Validation

Fifty-six patients were recruited at Fondazione Policlinico Universitario Gemelli
(FPUG), Rome, Italy. Genetic syndromes involved in this study are: Down syndrome
(13 subjects), Costello syndrome (10 subjects), Noonan syndrome (17 subjects), and Smith–
Magenis syndrome (16 subjects). Data from sixteen healthy subjects were also collected
to make up the control group. Inclusion criteria for the control group were: absence of
voice pathologies and acute or chronic inflammation of the airways (such as rhinosinusitis
or asthma).

A Huawei 10 Mate smart phone was used for the recordings. Acquisitions were per-
formed in empty rooms where only the experimenter and the patient were present (in the
case of minors, a parent or a tutor was also present, and they were required to stay silent).
All items of the SIFEL protocol described in [51] were recorded, but in this exploratory anal-
ysis, only those concerning the three sustained vowels (/a/, /I/, and /u/) are considered
to obtain statistical results comparable with those reported in the literature. Moreover, these
utterances were chosen because they were the most numerous, as they represent a relatively
easy task, even for patients with severe cognitive or behavioral impairments. Recordings
were acquired during regularly scheduled medical visits at the FPUG. This means that
some subjects were monitored longitudinally; therefore, multiple audio files were collected.
Although the measures are not strictly independent, we selected recordings with at least a
1-year interval between acquisitions to find a compromise between reaching an adequate
number of data to perform robust statistical analysis and classification experiments and
obtaining independent-like measures (especially in the case of pediatric subjects). This
approach was necessary, as some of the considered diseases are characterized by extremely
low prevalence, e.g., 1:500,000 live births for CS [35]. Data were treated anonymously,
and informed consent was obtained from each participant or their parents/tutor in the case
of minors. Table 2 shows the mean, standard deviation (in parentheses), and number of
recordings (in square brackets) of the considered genetic syndromes and control subjects in
each group.

Table 2. Mean age in years with standard deviation (in parentheses) and number of recordings (in
square brackets) in each group.

PS FA MA

CS 9.9 (2.0) [9] 16.4 (4.3) [15] 29.5 (2.1) [6]
DS 7.2 (3.6) [18] 21.2 (11.7) [12] 18.3 (2.2) [9]
NS 10.7 (2.3) [15] 22.4 (7.7) [18] 23.7 (8.4) [18]

SMS 8.0 (2.0) [24] 17.5 (1.3) [15] 16.3 (1.5) [9]
HS 8.9 (3.1) [21] 18.3 (6.8) [9] 21.3 (6.4) [18]
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A custom code was developed to guarantee classifier generalization capabilities for
ML experiments. Specifically, the code assigns the same indexes to all available recordings
of a single participant so that during the data split, they are strictly included in either
the training or validation set. This approach allows classifiers to recognize participants’
identity rather than their pathology, reducing possible data leakage.

4. Results

None of the groups achieved a positive result on the normality test; therefore, only the
Kruskal–Wallis test and post hoc analysis with a Dunn–Bonferroni test were performed.
Tables 3–5 report the H statistic and p value only for the acoustical parameters that showed
significant differences for the PS, FA, and MA groups, respectively. An acoustical parameter
able to discriminate between the normophonic class and one (or more) genetic syndrome is
marked with *, whereas for a separation across two (or more) pathological classes, (#) is
used. The details of multiple comparisons are reported in Appendices A–C for the PS, FA,
and MA groups, respectively.

Table 3. Statistically significant differences in the acoustical parameters for the PS group. * denotes
the difference between one (or more) pathological class and control subjects. # denotes one (or more)
difference across genetic syndromes.

Parameter Kruskal–Wallis H Statistic p Value

F0 std /a/ # 11.58 0.021

T0 (F0 min) /a/ * 19.68 <0.001
T0 (F0 max) /a/ * 23.40 <0.001

NNE /a/ 11.14 0.025

F1 median /a/ *# 20.02 <0.001

F1 min /a/ *# 21.56 <0.001

F1 max /a/ *# 16.50 0.002

F2 mean /a/ *# 20.29 <0.001

F2 std /a/ # 13.27 0.01

F2 min /a/ * 13.84 0.008

F2 max /a/ *# 29.77 <0.001

F3 mean /a/ * 10.80 0.029

F3 std /a/ # 22.01 <0.001

F3 min /a/ * 10.09 0.039

F3 max /a/ * 15.69 0.003

T0 (F0 min) /I/ * 19.58 <0.001
T0 (F0 max) /I/ 10.75 0.03

midrule F2 mean /I/ *# 20.62 <0.001

F2 max /I/ # 17.44 0.002

F1 mean /u/ # 10.93 0.027

F1 std /u/ # 10.44 0.034

F1 min /u/ # 15.70 0.003

F2 std /u/ # 14.29 0.006

F2 max /u/ # 10.93 0.027

F3 std /u/ # 12.80 0.012
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Table 3. Cont.

Parameter Kruskal–Wallis H Statistic p Value

F3 max /u/ # 10.50 0.033

F ratioaI *# 18.14 0.001

F ratioau * 18.07 0.002

F ratioIu
# 11.94 0.018

VSA *# 17.53 0.002

FCR *# 26.98 <0.001

Table 4. Statistically significant differences in the acoustical parameters for the FA group. * denotes
the difference between one (or more) pathological class and control subjects. # denotes one (or more)
difference across genetic syndromes.

Parameter Kruskal–Wallis H Statistic p Value

F0 mean /a/ *# 18.70 <0.001

F0 min /a/ # 14.76 0.005

F0 max /a/ *# 17.37 0.002

NNE /a/ 11.50 0.022

F1 mean /a/ 14.07 0.007

F1 std /a/ *# 18.53 <0.001

F1 min /a/ *# 18.14 0.001

F2 mean /a/ * 19.01 <0.001

F2 std /a/ *# 16.00 0.003

F2 min /a/ 10.20 0.04

F2 max /a/ *# 24.78 <0.001

F0 mean /I/ *# 18.70 <0.001

F0 std /I/ # 11.07 0.026

F0 min /I/ *# 13.05 0.011

F0 max /I/ *# 19.55 <0.001

Jitter /I/ # 21.09 <0.001

NNE /I/ # 10.41 0.034

F1 std /I/ # 15.94 0.003

F1 min /I/ # 13.07 0.011

F2 mean /I/ # 14.13 0.007

F2 std /I/ # 12.57 0.014

F2 min /I/ # 15.65 0.004

F3 mean /I/ # 17.60 0.001

F3 min /I/ # 14.07 0.007

F3 max /I/ # 15.14 0.004

F0 mean /u/ # 17.24 0.002
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Table 4. Cont.

Parameter Kruskal–Wallis H Statistic p Value

F0 std /u/ # 12.73 0.013

F0 min /u/ *# 19.72 <0.001

F0 max /u/ # 11.87 0.018

Jitter /u/ *# 11.77 0.019

F1 mean /u/ # 17.38 0.002

F1 min /u/ # 17.77 0.001

F2 mean /u/ * 13.89 0.008

F2 std /u/ # 14.65 0.005

F2 min /u/ *# 13.38 0.01

F2 max /u/ *# 17.54 0.002

F3 std /u/ 10.50 0.033

Table 5. Statistically significant difference in the acoustical parameters for the MA group. * denotes
the difference between one (or more) pathological class and control subjects. # denotes one (or more)
difference across genetic syndromes.

Parameter Kruskal–Wallis H Statistic p Value

F0 mean /a/ * 22.61 <0.001

F0 min /a/ * 21.28 <0.001

F0 max /a/ * 22.29 <0.001

F1 std /a/ *# 23.17 <0.001

F1 min /a/ * 14.70 0.005

F2 mean /a/ *# 20.67 <0.001

F2 min /a/ *# 29.86 <0.001

F2 max /a/ *# 15.38 0.004

F3 mean /a/ *# 19.49 <0.001

F3 min /a/ *# 18.36 0.001

F3 max /a/ *# 18.19 0.001

F0 mean /I/ * 18.31 0.001

F0 max /I/ * 21.74 <0.001

NNE /I/ * 24.75 <0.001

F2 mean /I/ * 15.58 0.004

F2 std /I/ * 13.60 0.009

F2 min /I/ * 16.94 0.002

F2 max /I/ * 11.81 0.019

F0 mean /u/ *# 25.06 <0.001

T0(F0 min) /u/ *# 15.99 0.003
F0 max /u/ *# 24.86 <0.001
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Table 5. Cont.

Parameter Kruskal–Wallis H Statistic p Value

NNE /u/ * 16.51 0.002

F1 mean /u/ * 11.67 0.02

F1 std /u/ * 17.51 0.002

F1 min /u/ # 14.64 0.006

F1 max /u/ * 12.66 0.013

F2 mean /u/ * 16.32 0.003

F2 min /u/ 10.08 0.039

F2 max /u/ * 27.40 <0.001

F3 mean /u/ 11.58 0.021

F3 std /u/ * 12.71 0.013

F3 min /u/ * 18.99 <0.001

F ratioau * 10.27 0.036

F ratioIu * 23.07 <0.001

VSA * 22.82 <0.001

FCR * 19.33 <0.001

Table 6 shows the performance of machine learning classifiers for the PS, FA, and MA
groups. It displays the mean value of the evaluation metric across the 10 cross-validation
folders and the standard deviation (std). For pediatric subjects, a KNN model with k = 2,
distance metric = city block, and weight = equal was obtained. An SVM model with box
constraint = 515 and kernel scale = 11 was identified for female adults. The best model for
the male adults was an SVM model with box constraint = 526 and kernel scale = 13.

Table 6. Performance of the best classifiers for the PS, FA, and MA groups. Mean value ± std.

PS

Parameter SMS NS CS DS HS

Precision 88 ± 19% 88 ± 23% 100 ± 0% 93 ± 14% 100 ± 0%
Recall 100 ± 0% 80 ± 42% 50 ± 53% 100 ± 0% 100 ± 0%

Specificity 92 ± 14% 96 ± 10% 100 ± 0% 95 ± 11% 100 ± 0%
F1 Score 93 ± 12% 92 ± 15% 100 ± 24% 96 ± 8% 100 ± 0%

AUC 99 ± 1% 97 ± 3% 85 ± 4% 81 ± 10% 99 ± 0%

Validation Accuracy 87 ± 9%

FA

Parameter SMS NS CS DS HS

Precision 60 ± 33% 88 ± 34% 100 ± 0% 100 ± 0% 100 ± 0%
Recall 90 ± 32% 70 ± 48% 60 ± 52% 90 ± 32% 100 ± 0%

Specificity 70 ± 23% 100 ± 11% 100 ± 0% 100 ± 0% 100 ± 0%
F1 Score 77 ± 19% 100 ± 0% 100 ± 0% 100 ± 0% 100 ± 0%

AUC 95 ± 5% 96 ± 2% 79 ± 9% 93 ± 8% 100 ± 0%

Validation Accuracy 77 ± 19%
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Table 6. Cont.

MA

Parameter SMS NS CS DS HS

Precision 78 ± 36% 89 ± 33% 94 ± 17% 100 ± 0% 100 ± 0%
Recall 89 ± 33% 89 ± 33% 90 ± 32% 80 ± 42% 80 ± 30%

Specificity 88 ± 19% 97 ± 11% 95 ± 16% 100 ± 0% 100 ± 0%
F1 Score 92 ± 15% 100 ± 0% 96 ± 11% 100 ± 0% 87 ± 17%

AUC 93 ± 5% 97 ± 2% 100 ± 0% 100 ± 0% 94 ± 5%

Validation Accuracy 84 ± 17%

Figure 3 shows the vocalic triangles for the PS (a), FA (b), and MA (c) groups. The solid
line refers to the healthy subjects considered in our study, and the solid line with diamond
markers represents the vocalic triangle reported in [5], whereas:

• The dotted line refers to SMS patients;
• The dashed line with circle markers refers to NS patients;
• The simple dashed line refers to CS patients;
• The dash–dotted line refers to DS patients.

The Italian reference triangle shown in Figure 2, as represented by a solid line with
diamond markers in panels A, B, and C of Figure 3, is added to compare the general results
(healthy adult male subjects) to those related to our cohort of healthy subjects that differ in
terms of age and gender.

(a)
Figure 3. Cont.



Bioengineering 2023, 10, 1375 16 of 25

(b)

(c)
Figure 3. Vocalic triangles by group. (a) Vocalic triangle of pediatric subjects. (b) Vocalic triangle of
adult female subjects. (c) Vocalic triangle of adult male subjects.

Figure 4 shows ROC plots for the best PS, FA, and MA classifiers.
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Figure 4. ROC plots for the best classifier of the PS, FA, and MA groups.

5. Discussion

This paper proposes a detailed procedure for assessing the voice characteristics of
patients affected by genetic diseases. It was developed according to the general guidelines
provided by otolaryngological societies and associations and by reviewing literature articles
on voice analysis and automatic voice quality assessment. This is the first attempt to
standardize the acquisition, analysis, and classification processes of voice samples of
subjects affected by genetic syndromes. Acoustical analysis represents a promising, non-
invasive approach in this clinical field, and this work aims to establish ground rules for
uniform and comparable results. A Huawei Mate 10 Lite (RNE-L21) smart phone was
used for the recordings. Although rigorous, the proposed procedure is easily adaptable
to other pathologies. Moreover, this procedure might also be applied to languages other
than Italian, considering specific vocal tasks. Being an exploratory analysis, we validated
it with statistical analysis and machine learning techniques and reported the outcome.
Age range and gender were taken into account, which allowed us to obtain more reliable
acoustical parameters. Voice properties were compared between healthy and pathological
subjects and among genetic syndromes. Specifically, we considered Costello (CS), Down
(DS), Noonan (NS), and Smith-Magenis (SMS) syndromes. The results are discussed in
this order.

Concerning F0-related parameters, CS pediatric subjects did not show any statistically
significant difference in acoustical parameters with respect to either healthy subjects or
patients except, for F0 std /a/, which could reflect a lower ability to sustain vowel emission
with respect to SMS patients due to generalized hypotonia or neck-muscle spasticity [52].
Articulation deficits were highlighted by the vowel triangle (shrunk and left-shifted dia-
gram in Figure 3a), which may depend on detectable deformations of the vocal tract such as
an ogival palate, macroglossia, hypopharyngeal velum laxity, and supraglottic stenosis [52].
These signs, as well as pharynx structural malformations, might cause difficulties in tongue
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movements. Statistical analysis detected significant differences in formant ratios (related
to tongue motor ranges) and articulatory measures, e.g., the F ratioaI with respect to DS
(p-value = 0.006) and HS (p-value = 0.014) and FCR with respect to NS (p-value = 0.021), DS
(p-value = 0.015), and HS (p-value < 0.001).

Vocal instability and noise metrics computed for /I/ showed significant differences in
the FA CS group: jitter with respect to DS (p-value = 0.018) and NNE with respect to NS
(p-value = 0.026). The latter finding agrees with the perceptual evaluation of the CS voice,
which is defined as hoarse [6]. Hypotonia constraints of lips and tongue movements, espe-
cially in reaching their limit positions, and pharyngeal space reduction due to macroglossia
could be the reason for significant differences in F2 mean /a/ and F2 max /a/ with respect
to the control group (p value = 0.031 and p value = 0.005, respectively).

In adult CS males, statistical analysis showed differences concerning articulation,
specifically with respect to NS (p-value = 0.044) for F2 min /a/ and with respect to HS
(p-value = 0.024) for F2 mean /u/, which is also supported by the vowel triangle shown in
Figure 3c. This could be related to structural alterations of the posterior fossa, which can
cause dysarthria [53], macroglossia, or generalized hypotonia. This medical evidence also
relates to a significant difference in F3 min /u/ with respect to HS (p-value = 0.023).

In the DS PS group, unlike the results reported by Moura et al. [7], the F0 of vowels
and jitter did not significantly differ from the HS group. Such a discrepancy could be
related to different spoken languages (Brazilian Portuguese in [7]), the size of the sample
(The authors of [7] applied acoustical analysis to a group of patients ten times larger than
the one of this study), and the software used for acoustical analysis (PRAAT [42]). In a
review by Kent [36], it was also stated that voice impairments with neurologic origin cause
large variability in results, especially when evaluating F0 and its perturbations. As far as
formant analysis is concerned, multiple comparisons showed statistical differences with
respect to CS in F1 mean /a/ (p = 0.002) and VSA (p = 0.015) and with respect to NS in
F2 max /I/ (p = 0.021). These could be related to larger tongue dimensions, which affect
tongue movements and modify vocal tract resonances.

Multiple comparisons in for DS adult females showed significant differences for jitter
/I/ with respect to CS (p value = 0.018) and NS (p value < 0.001) and for jitter /u/ with
respect to CS (p value = 0.037) and HS (p value = 0.038). Articulation problems, which are
still present in adults, determine significant differences in F1 mean /u/ and F1 min /a/
with respect to NS (p value = 0.001 and p value = 0.028) and F2 max /u/ with respect to SMS
(p value = 0.003).

In the MA DS group, post hoc analysis detected significant statistical differences for FCR
with respect to HS (p-value = 0.007), for F2 mean /a/ with respect to NS (p value < 0.001)
and HS (p-value = 0.015), for F2 mean /I/ with respect to HS (p-value = 0.004), and for
F3 mean /a/ with respect to NS (p-value = 0.008) and HS (p-value = 0.004). Neurologic
abnormalities located in the low temporal regions of the motor cortex could be the reason
for these results.

For NS pediatric subjects, generalized low muscular tone, which tends to make lateral-
ization and protrusion of the lips and tongue difficult and limits jaw opening, might explain
statistical differences in F1 min /a/ with respect to HS (p = 0.024), in F2 mean /a/ with
respect to HS (p = 0.001), in F2 mean /I/ with respect to SMS (p = 0.001), and F ratioIu with
respect to CS (p = 0.049). Indeed, with ultrasonographic measures, Lee et al. [54] demon-
strated that F1 and F2 are strongly correlated to the oral cavity anterior length and the
tongue posterior superficial length. Moreover, T0(F0 min) /a/ and T0(F0 max) /a/ show
significant statistical differences with respect to HS (p ≤ 0.001 and p = 0.002, respectively),
which could be related to patients’ difficulty in maintaining stable and regular vocal-fold
vibration during phonation.

Statistical analysis of FA diagnosed with NS has highlighted differences in F0 mean
/a/ and F0 mean /I/ with respect to HS (p value = 0.005 and p value = 0.028, respectively)
and in F0 mean /u/ with respect to CS (p-value = 0.006). These alterations might depend on
the shorter height and neck with respect to control subjects, a common phenotypical feature
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for this syndrome. Moreover, jitter /I/ showed a significant difference with respect to CS
(p-value = 0.018) and SMS (p-value = 0.025). However, this consideration must be taken with
caution due to the limited size of our database. As shown in Figure 3b, the NS FA vowel
triangle is characterized by a small area, but VSA did not show any statistical significance.
Nevertheless, formant coordinates have shown significant differences in F2 mean /a/ with
respect to HS (p-value = 0.001), in F1 mean /u/ with respect to DS (p-value = 0.001), and in
F2 mean /I/ with respect to SMS (p-value = 0.024). Such alterations can be associated with
difficulties in lips protrusion and lateralization [37].

Regarding the NS MA group, NNE values were closer to 0, especially for /I/ and
/u/ with respect to HS (p value < 0.001 and p value = 0.001, respectively), which might be
associated with the presence of an anterior glottis web [55] or a tendency to incur vocal fold
paralysis. However, since this work is mainly focused on acoustical analysis, it was not
possible to verify this statement through laryngostroboscopy for these patients. Figure 3c
shows vowel-area reduction and centralization. Significant differences in both VSA and
FCR were detected with respect to HS (p value < 0.001 and p value = 0.001, respectively).
F2 also showed significant differences: F2 mean /a/ with respect to DS (p value < 0.001),
F2 mean /I/ with respect to HS (p-value = 0.004), and F2 mean /u/ with respect to HS
(p-value = 0.028). Such alterations might depend on structural properties, such as choanal
atresia, supraglottic stenosis, soft palate laxity, and neurologic problems.

In PS SMS subjects, articulation measures and formants showed significant statistical
differences for F1 mean /u/ with respect to CS (p = 0.034), F2 mean /a/ with respect to
HS (p = 0.037), F2 mean /I/ with respect to HS (p = 0.015) and CS (p = 0.001), F ratioau
with respect to HS (p = 0.004), and FCR with respect to HS (p = 0.001). According to
Hidalgo et al. [12], neither F1 nor F2 could discriminate SMS individuals from the control
group. This difference could have resulted from the use of different acoustical analysis
software tools. First-formant alterations may be linked to velopharyngeal insufficiency,
which is an incomplete closure typical of SMS patients that causes a constant airflow leak
through nasal cavities, consequently altering resonant frequency along the vocal tract [38].

For the FA group diagnosed with SMS, significant differences were found for F2 mean
/a/ with respect to HS (p-value = 0.026), F2 mean /I/ with respect to NS (p-value = 0.024),
and F3 median /I/ with respect to NS (p-value = 0.001) and CS (p-value = 0.039). Hypotonia
and structural lip malformations [11], in addition to frontal lobe calcification and cortical
atrophy, could be the reasons for these anomalies.

For the MA SMS group, orofacial dysfunctions worsened by hypotonia, soft-palate
clefts, and posterior fossa anomalies might be responsible for articulation disabilities and
related to significant differences that were identified for F1 min /a/ and F2 max /u/ with
respect to HS (p value = 0.050 and p value = 0.009, respectively).

The shape and position of the vocalic triangles shown in Figure 3 show that age and
gender strongly influence F1 and F2 compared to the reference adult males (solid line with
diamond markers); the PS group; and, to a lesser extent, the FA group. Higher formant
values are associated with shorter and smaller sizes of the vocal folds and vocal tract. These
results underline the importance of conducting acoustical analysis considering age and
gender. Moreover, as shown in Figure 3c, a difference also exists between the healthy adult
male subjects considered in this study (simple solid line) and the reference adult males
(solid line with diamonds), possibly because of our limited sample size.

Table 6 shows an interesting result: HS is always correctly identified in the PS and
FA groups. As supported by statistical analysis, the voice quality of normophonic and
pathological subjects differs, for allowing an almost complete separation between these
two macroclasses.

In particular, the KNN classifier of the PS group achieved the highest mean accuracy
of 87%. Such a result was expected due to the larger size of the pediatric subject dataset.
The CS class showed a high precision (100%). However, the low recall value (50%), along
with its std, suggests that vocal properties might not be specific solely to this syndrome.
SMS and NS present a more stable outcome, with especially high specificity scores. How-
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ever, NS is characterized by a variable recall value (80 ± 42%), which may mean that the
NS vocal phenotype is not easy to define.

The SVM model of the FA group performed well on the CS and DS classes. Therefore,
these two syndromes seem to present specific voice characteristics, avoiding the other
pathologies being classified as NS and CS due to their 100% specificity values. The SMS
class showed poor performance, as some NS, CS, and DS observations were classified as
SMS, possibly because it was the most numerous class.

Considerations similar to those of the FA group can be applied to the male cohort.
High performance characterized CS and DS class recognition as well. It is important to note
that the HS were not all correctly identified in the MA group, and some observations were
misclassified as DS. The overall accuracy is similar to that of the PS group (84%), but this
result must be taken cautiously, as the MA cohort was the smallest in our study. Therefore,
in the future, it will be important to understand whether the same performance can be
achieved by increasing the sample size and reducing the number of parameters.

These preliminary results are promising in terms of defining a phonatory profile for
genetic diseases. However, we remark that this outcome was obtained with a limited
dataset, so more voice samples must be collected. Another limitation is the choice to use all
available recordings for some of the patients in the case of extremely rare diseases; although
precautions were taken, the results might be biased due to the lack of totally independent
data. By applying the proposed procedure to a larger dataset, it will be possible to carry
out reliable comparisons to validate and possibly find new acoustical features that could
reliably describe genetic syndromes. Indeed, with a large amount of data, new models
could be developed to determine whether the same differences in the acoustical parameters
between syndromes found in this work can be confirmed and whether any improvements in
classification results are feasible. For this exploratory analysis, we used acoustical features
of the sustained /a/, /I/, and /u/ vowels to obtain results comparable with those reported
in previous works. Moreover, these vowels were the most numerous vocal tasks in our
small dataset. The small number of subjects analyzed in this first study did not allow
for investigation of feature selection or feature engineering techniques to obtain better
classifiers. Such methods will be implemented once a more extensive database is available.

6. Conclusions

In the present work, acoustical voice analysis of patients affected by genetic syndromes
was performed according to a new procedure that can be easily applied in clinical and
domestic environments, as it does not require any special equipment. These guidelines
allowed us to obtain reliable acoustical parameters and assess voice properties not only
by comparing healthy and pathological subjects but also by looking for acoustical differ-
ences among the four genetic syndromes considered herein, i.e., Costello, Down, Noonan,
and Smith–Magenis syndromes, and with respect to healthy subjects. Acoustical param-
eters represent an important phenotypical aspect that can be measured non-invasively
and, in addition to somatic traits analyzed by dysmorphologists, can help address further
medical examinations for diagnosis when genetic screenings are not available or when
the syndrome’s genome is still under evaluation. We analyzed these four syndromes
considering the results in the literature that demonstrated the presence of neurological
and structural problems associated with organs involved in voice production that alter
phonation and articulation. The aim of the present paper was to develop an easy, robust,
and efficient procedure for analyzing and classifying vocal traits specific to a number of
genetic syndromes that can be used to set up and organize a large database. This will help
extend existing results, comparing voice production between pathological and healthy
subjects to highlight differences and find the best parameters for each syndrome. Through
this procedure, we also aim to perform more detailed statistical analyses and implement
new artificial intelligence approaches. A larger dataset will allow for further studies to
identify which morphological anomalies are linked to altered voice properties and to verify
the existence of possible vocal phenotype variability within single syndromes.
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Appendix A

Figure A1 displays the results of post hoc analysis for the PS group. Black boxes
highlight significant differences between groups.

Figure A1. Black boxes refer to significant differences between syndromes and with respect to healthy
subjects. DS = Down syndrome; CS = Costello syndrome; NS: Noonan syndrome; SMS = Smith–Magenis
syndrome; HS = healthy subjects; VSA = vowel space area; FCR = formant centralization ratio.
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Appendix B

Figure A2 displays the results of post hoc analysis for the FA group. Black boxes
highlight significant differences between groups.

Figure A2. Black boxes refer to significant differences between syndromes and with respect to
healthy subjects. DS = Down syndrome; CS = Costello syndrome; NS: Noonan syndrome; SMS
= Smith–Magenis syndrome; HS = healthy subjects; VSA = Vowel space area; FCR = formant
centralization ratio.
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Appendix C

Figure A3 displays the results of post hoc analysis for the MA group. Black boxes
highlight significant differences between groups.

Figure A3. Black boxes refer to significant differences between syndromes and with respect to
healthy subjects. DS = Down syndrome; CS = Costello syndrome; NS: Noonan syndrome; SMS =
Smith–Magenis syndrome; HS = healthy subjects; VSA = vowel space area; FCR = formant centraliza-
tion ratio.
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