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Abstract: Self-report measures partially explain consumers’ purchasing choices, which are inextrica-
bly linked to cognitive, affective processes and implicit drives. These aspects, which occur outside of
awareness and tacitly affect the way consumers make decisions, could be explored by exploiting neu-
roscientific technology. The study investigates implicit behavioural and neurovascular responses to
emotionally arousing and high-engagement advertisements (COVID-19 content). High-engagement
advertisements and control stimuli were shown in two experimental sessions that were counter-
balanced across participants. During each session, hemodynamic variations were recorded with
functional Near-Infrared Spectroscopy (fNIRS) of the prefrontal cortex (PFC), a neurophysiological
marker for emotional processing. The implicit association task (IAT) was administered to investigate
the implicit attitude. An increase in the concentration of oxygenated haemoglobin (O2Hb) was found
for the high-engagement advertising when this category of stimuli was seen first. Specular results
were found for deoxygenated haemoglobin (HHb) data. The IAT reported higher values for highly
engaging stimuli. Increased activity within the PFC suggests that highly engaging content may
be effective in generating emotional arousal and increasing attention when presented before other
stimuli, which is consistent with the higher IAT scores, indicating more favourable implicit attitudes.
This evidence suggests that the effectiveness of highly engaging advertising-related messages may be
constrained by the order of advertisement administration.

Keywords: consumer decision making; implicit measures; neural correlates of attitudes; fNIRS; IAT

1. Introduction

Every year, about 76% of newly launched products are taken off the market within
12 months from their launch, as stated in a report conducted by Nielsen in 2015 [1]. Such
daunting results do not spare products that were the target of prior market research.
However, it is perhaps not surprising to find such a gap between marketing forecasting
and actual product success, as traditional marketing techniques widely rely on surveys
and interviews.

Research has provided abundant evidence that self-report measures can be misleading
at times due to the discrepancy between explicit and implicit mental processes [2–4].
Questionnaires, surveys, focus groups, and interviews are well-suited instruments for
investigating consumers’ overt opinions, which can be easily expressed out loud, yet
this feature shrinks the field of the investigation to cognitive aspects that are consciously
processed. However, purchase choices are inextricably linked to affective processes and
implicit drives that should not be dismissed if the aim is to achieve a comprehensive
understanding of the consumer’s decision-making process [5].

Indeed, there are several reasons for which explicit responses may fail to reflect the
consumers’ deepest thoughts and resultant behaviours. Social desirability and social
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pressure are major issues, since consumers may be unwilling to disclose their genuine
opinion about a product (or advertising) when intimate or prejudice-prone themes are
investigated [6,7], or they may be ashamed of expressing their preference for products or
brands because of how the preference reflects onto their self-image [8]. In addition, when
compiling surveys after testing a commercial or a product, customers may simply not be
able to faithfully retrace in hindsight how they felt at different time-points of the experience,
introducing memory biases (such as primacy or recency effects).

Generally, numerous emotional, evaluative, and spontaneous processes occur outside
of awareness and tacitly affect the way consumers make decisions without them even
noticing [2,9,10]. Thus, in this sense, it is possible to assume that when people are en-
gaged in watching an advertisement, emotional stimuli might pass through the filter of
consciousness. At this point, a more direct analysis of implicit measures is noteworthy.

The latest evidence, however, challenges key elements of the theories of emotional
motivation, particularly the notion that emotional cues automatically cause behavioural
responses in the observer [11,12]. According to this new line of thought, specifically,
emotional facial expressions [13–16] and body postures [17] elicit a consistent and replicable
behavioural effect only when they are relevant to the participants’ goals. This is, therefore,
a context-dependent effect of emotions in which the response to emotional stimuli is linked
to conscious appraisal [18].

To date, novel approaches have been devised to offer more objective measures of
implicit processes and to overcome the limits of direct, introspective verbal assessments.
On one hand, cognitive-neuroscience-inspired methods (as Spence defines them) [19] have
been successfully employed to this end. Above all, the implicit association task (IAT) has
been deemed a reliable, powerful tool for assessing implicit associations between two target
categories (in this research field, usually a brand or product and the pleasant/unpleasant
evaluation) [20,21] under the assumption that the stronger the mental association, the faster
the behavioural response when the two categories share the same response key [22]. A
strong association between the target object and the positive evaluation pole represents a
positive implicit attitude towards the object. Numerous studies have shown that explicit
(questionnaire-based) and implicit (IAT-based) measures of the same association are fre-
quently poorly correlated or even incongruent [23], highlighting the fact that a consumer
may simultaneously hold two distinct evaluations of an object: one that is consciously
reasoned and one that remains excluded from the consumer’s awareness. Interestingly, in
these cases, implicit measures are generally better predictors of spontaneous behaviour
than explicit responses. Specifically, when the two measures are incongruent, people under
time pressure tend to select the implicitly preferred object (e.g., a brand) rather than the
brand they explicitly stated to prefer [2]. When the two measures are poorly correlated,
implicit responses increase the accuracy of the predictive model of consumer behaviour
compared to explicit measures alone, providing a significant contribution to the model
independently from the explicit measures [24].

On the other hand, the advent of consumer neuroscience has opened up the possibility
of investigating the neural correlates of consumer decision making, providing consumer
studies with methods, paradigms, and theoretical insights derived from neuroscience. In
recent years, numerous studies have adopted neuroimaging techniques to disentangle the
neural underpinning of affective and cognitive processes involved in the consumer experi-
ence that were impenetrable to classical methods [25]. It is interesting that several studies
have demonstrated that neural responses can be valid predictors of consumer preferences
and behaviour when compared to self-reports. For instance, an influential experiment by
Knutson and colleagues [26] showed that activity within the nucleus accumbens (NAcc),
the right insula, and the medial prefrontal cortex (mPFC), recorded via functional magnetic
resonance imaging (fMRI), could predict purchase choices more accurately than subjective
ratings alone in relation to product preference and willingness to pay. Indeed, the NAcc and
the insula are implied in anticipating gains and losses, respectively, while the mPFC is likely
responsible for integrating gains and losses and taking stock of the trade-off. However, this
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behavioural process of evaluating resources and choices turns out to also be linked to the
dopaminergic system. Indeed, it has been shown that dopaminergic signals implement this
mechanism by providing information to the PFC about the need to appropriately update
goal representations [27,28].

Additionally, a number of studies have also highlighted that neural responses to
marketing stimuli, collected from small experimental samples, can be generalized to the
population and predict commercial success. For instance, increased activity in the NAcc,
measured from a small sample of teenagers listening to newly released songs, could predict
the cultural popularity in terms of commercial sales of the songs within the following
three years, whereas subjective likeability evaluations could not [29]. Similarly, Boksen
and Smidts [30] noted that not only did beta oscillations within the mPFC predict in-
dividual preferences for movie trailers beyond explicitly stated preferences but gamma
oscillations in the frontal areas were also related to the commercial success of the movies,
as measured by box office results. Moreover, a remarkable fMRI study by Kühn and col-
leagues [31] adopted a composite neural measure that combined information from the most
relevant areas involved in purchase decision making (i.e., the NAcc, medial orbitofrontal
cortex, amygdala, hippocampus, inferior frontal gyrus (IFG), dorsomedial prefrontal cortex
(dmPFC), dorsolateral prefrontal cortex (DLPFC), and the insula) to assess the effectiveness
of six different advertisements. Notably, the composite neural measure demonstrated the
highest predictive validity as it forecasted the actual in-store product sale according to the
different advertisements with the highest accuracy. Conversely, explicit measures yielded
the lowest predictive power.

Regarding the involvement and activation of the PFC, it is interesting to note that it
also plays an important role in emotional contexts related to social touch [32,33]. Moreover,
social touch is connected not only with prefrontal activation but also with parietal patterns,
suggesting that the interaction between prefrontal systems regulating emotions and parietal,
mirror-like systems may be the source of the positive effects of social touch [34].

Although there is encouraging evidence for the future application of neurometrics to
the study of the consumer mind, a deeper understanding of the role of implicit processes
must be pursued nonetheless. Indeed, despite the undeniably relevant role of implicit
components, decision making generally takes the form of a complex reiterative process
that combines stages of both explicit and implicit reasoning [35,36]. Therefore, according
to this perspective, the effect of a given behaviour, which is the result of emotional and
cognitive processes that occur both while the object/task is the focus of conscious attention
and when attention is directed elsewhere, affect the mode and purpose of the subsequent
decision in turn. Therefore, it is a circular pathway.

In light of this evidence, the present study sought to understand the role of some
implicit measures (i.e., the IAT and Self-Assessment Manikin (SAM)) and relevant neuro-
physiological markers. Specifically, the study aimed to investigate the effect of different
emotional brand commercials on implicit attitudes towards the brand, assessed using the
IAT, their levels of valence and arousal, assessed using the SAM, and the neural correlates
of the advertising content elaboration, recorded via functional near-infrared spectroscopy
(fNIRS). One of the latest entries in consumer neuroscience studies [37,38], fNIRS is now
acknowledged as a valid, non-invasive, and portable instrument that is poorly sensitive
to motor artifacts and is suitable for measuring the functional activity of cortical brain
regions based on an assessment of oxygenated and deoxygenated cerebral haemoglobin
concentrations [39].

Neural activity from the PFC was recorded in light of the abundant evidence sug-
gesting its implication in attitude formation [40], consumer preference, and decision and
emotional processing [41,42]. However, it is worth noting that the emotional regulation
network does not consist of the PFC alone but also involves a cortical and a subcortical
system [43]. This network includes, for example, the amygdala, which is responsible for
monitoring the emotional value of stimuli and sending feedback to sensory pathways [42];
the ventral striatum, a region implicated in encoding the reward values of stimuli, learning,
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and predicting positive outcomes [44]; the anterior cingulate cortex, which is particularly
relevant to the cognitive control of emotions [45]; and the insula, which allows for the
representation of body states associated with emotions [43].

Indeed, in the current study, emotional commercials that could display content related
or unrelated to the COVID-19 pandemic were selected under the assumption that a world-
wide dramatic experience may evoke a more vivid and intense affect and higher engage-
ment [46,47] compared to commercials unrelated to the pandemic, and that this could have
a differential effect on the effectiveness of brand communications on implicit dimensions.

We hypothesized that COVID-19 advertisements could elicit greater emotional engage-
ment when compared to ads that were unrelated to COVID-19. For this reason, we expected
to find increased neural activity within the PFC during the COVID-19 commercials com-
pared to control advertisements as a neurophysiological marker for emotional processing
and motivational dispositions, which are known to recruit the PFC [40,41]. In addition, this
emotional engagement and impact were expected to be supported by the self-report SAM
measure, so it would be possible to assume greater arousal for COVID-19-related stimuli.
Furthermore, as participants in the study saw both COVID-19-related and unrelated adver-
tisements one after another, in a counterbalanced order, the study also intended to test the
order effect, namely, whether the exposure to the COVID-19 condition, which appeared
first in the order, could have a successive effect on brand evaluation, which could possibly
be echoed in the following non-COVID-19 condition. Indeed, under specific circumstances,
strong emotional content can have a longer-lasting effect on memory compared to mild
emotional stimuli [48].

Moreover, we expected that the COVID-19 ads might lead to more favourable implicit
attitudes toward the brand, as measured by the IAT. Indeed, prior studies have shown that
under certain conditions, emotionally negative stimuli may be beneficial to the effectiveness
of advertisements [49,50], perhaps by gaining consumers’ attention to a greater extent and
acting as an emotional lever that successfully tugs the consumers’ heartstrings [40,41].
Although other research studies have already assessed the neurophysiological response
to COVID-19 stimuli [46], the present study aimed to investigate the effect of COVID-19
stimuli in order to gain further insights from implicit behavioural data. Therefore, a more
direct comparison with new implicit measures was included in the present work.

Finally, we expected the neural markers of motivational dispositions to correlate with
the IAT indices. In fact, evidence regarding the neural correlates of implicit attitudes is
beginning to emerge in a variety of research areas [40,51–53], some of which have revealed
the involvement of the prefrontal cortex [40,51,53]. Hence, we expect positive (vs. negative)
implicit IAT evaluations (i.e., more positive scores indicate a more favourable attitude
toward the brand) to correlate with left (vs. right) PFC predominance [54].

2. Materials and Methods
2.1. Participants

Twenty Italian participants, aged 25.47 years old on average (a range of 20–30 years
old; Mage = 24.98; SDage = 2.02; 14 females), took part in the experiment. Any participant
reporting a neurological or psychopathological disorder, head injury, epilepsy, or who was
under psychopharmacological treatment was excluded from the study. Participants were
also screened for post-traumatic stress symptomatology related to the COVID-19 pandemic
via the COVID-19-PTSD questionnaire [55] to exclude the possibility of participants scoring
over the clinical cut-off. All participants included were right-handed and had normal-to-
corrected eyesight. The participants were mostly college students recruited within the
Catholic University of the Sacred Heart, Milan, Italy. They all provided written informed
consent prior to participating in the study, and no economic compensation was provided.
The research protocol followed the principles of the Declaration of Helsinki (1964) and
was approved by the Ethics Committee (Approval code: 2021 TD—for thesis dissertation;
approval date: 21–22) of the Catholic University of the Sacred Heart, Milan, Italy.
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2.2. Stimuli

Six video commercials were selected as stimuli for the present study. All commercials
were produced by Nike, a popular sportswear brand with an international reputation.
Nike’s communications are notoriously famed for their inspirational tone of voice, which
cleverly combines emotional and motivational elements in the advertising to promote
empowering messages while selling the brand image at the same time. For the purpose
of the study, three of the selected commercials (namely “Play for the World”, “You Can’t
Stop LA”, and “You Can’t Stop Us”—see Supplementary File for links to advertisements)
contained explicit visual references to COVID-19, playing with the analogy between athletes’
endeavours to overcome barriers to their victory and the societal fight against the pandemic.
Moreover, three additional commercials were selected (“What’s your motivation?”, “You
can’t be stopped”, and “Steps”—see Supplementary File for links to advertisements) as
control stimuli which displayed the typical elements of Nike’s communication without any
reference to the COVID-19 pandemic. The content of these commercials broadly urges the
audience to believe in the deepest motives to orient their efforts towards success, reminding
the listeners that commitment and dedication are values that can truly guide humanity
through difficulties and towards achievements. At the same time, however, these videos
were also made for commercial purposes, as they aimed to increase the public’s willingness
to buy sportswear during the pandemic, when sports had to be played at home. The stimuli,
which were validated in a prior exploratory study [45], had a frame rate of 24 fps and lasted
60 s each. A detailed description of each stimulus can be found in Balconi and colleagues’
study [45].

2.3. Behavioural Measure: Implicit Association Task (IAT)

The IAT [22] is a reaction-time-based computerized task that requires participants
to assign four categories of stimuli to the corresponding labels. Two categories represent
the target concept that needs to be evaluated (i.e., Nike) and a contrasting target concept
(i.e., other sportswear brands), while the other two categories represent two contrasting
attributes (i.e., pleasant vs. unpleasant words). In our task, stimuli were devised so that
the brand-related stimuli were pictures of sportswear items (e.g., a Nike hat vs. a Puma
hat). Conversely, the evaluative stimuli were displayed as a set of positively or negatively
qualified adjectives (e.g., “good” vs. “bad”). The stimuli appeared randomized (according
to the standardized procedures suggested for the standardized version of the IAT [56])
in the centre of the screen, and participants were asked to respond as fast as possible to
assign the stimulus to the correct label by pressing the assigned computer key. Specifically,
the names of brands were shown first: two brands were shown on the screen (one was
always Nike), one on the right and one on the left. Participants were required to press
a left/right button according to their preference (e.g., the “E” key on the keyboard for
left-side responses and the “I” key for right-side responses). Immediately after this choice,
two adjectives (“good” or “bad”) were shown, one on the right and one on the left, and
subjects had to press the corresponding button (e.g., the “E” key on the keyboard for the
left-side responses and the “I” key for the right-side responses). The IAT is based on the
assumption that when two concepts (one target and one evaluative concept) are mapped
onto the same response key, participants respond faster if the two concepts are implicitly
associated, whereas they respond slower if the two concepts are not. The strength of the
mental association between the target concept and the attribute is estimated according to
the response times (reaction times). D-scores were calculated according to the improved
scoring algorithm [56] such that more positive scores indicated a more favourable attitude
toward Nike. E-Prime 2.0 software was used to program the task, and it was run on a 15′’
computer notebook (Lenovo, MS Windows 7) with a QUERTY keyboard.

2.4. Self-Report Measure: Self-Assessment Manikin (SAM) Scale

The SAM scale [57,58], which is a nonverbal pictorial rating technique that quantifies
the valence and arousal of an individual’s emotional response to a particular stimulus, was
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adopted for self-report data collection. Using a 5-point Likert scale represented by five
different pictures, the subject was asked to indicate the degree of emotional impact (1: low
impact; 5: high impact) and the level of negativity–positivity felt upon viewing the video
(1: negative; 5: positive).

2.5. Procedure and Experimental Design

A within-subjects experimental design was adopted in the present study. All partici-
pants took part in two experimental sessions, which were scheduled 15 days apart. In one
of the two sessions, the participants were administered the three COVID-19-related com-
mercials (COVID-19 condition), while in the other session, the three control stimuli were
displayed (control condition). The order of the two conditions was counterbalanced across
participants (COVID-19 first vs. COVID-19 after). During each session, participants sat
comfortably in a moderately darkened room at about 80 cm from the monitor screen. The
fNIRS setup was mounted on the participant’s head, and baseline hemodynamic activity
was recorded for 2 min while participants were required to keep their eyes open at rest.
The three videos were then presented on the screen in a randomized order while the hemo-
dynamic activity was continuously recorded. Following each video, a 5s inter-stimulus
interval was displayed, during which a fixation point at the centre of the computer screen
was presented prior to the next video. At the end of each experimental session, the IAT
was administered (Figure 1). Each experimental session lasted approximately 1 h.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
 

 

response times (reaction times). D-scores were calculated according to the improved scor-
ing algorithm [56] such that more positive scores indicated a more favourable attitude 
toward Nike. E-Prime 2.0 software was used to program the task, and it was run on a 15′’ 
computer notebook (Lenovo, MS Windows 7) with a QUERTY keyboard. 

2.4. Self-Report Measure: Self-Assessment Manikin (SAM) Scale 
The SAM scale [57,58], which is a nonverbal pictorial rating technique that quantifies 

the valence and arousal of an individual’s emotional response to a particular stimulus, 
was adopted for self-report data collection. Using a 5-point Likert scale represented by 
five different pictures, the subject was asked to indicate the degree of emotional impact 
(1: low impact; 5: high impact) and the level of negativity–positivity felt upon viewing the 
video (1: negative; 5: positive).  

2.5. Procedure and Experimental Design 
A within-subjects experimental design was adopted in the present study. All partic-

ipants took part in two experimental sessions, which were scheduled 15 days apart. In one 
of the two sessions, the participants were administered the three COVID-19-related com-
mercials (COVID-19 condition), while in the other session, the three control stimuli were 
displayed (control condition). The order of the two conditions was counterbalanced across 
participants (COVID-19 first vs. COVID-19 after). During each session, participants sat 
comfortably in a moderately darkened room at about 80 cm from the monitor screen. The 
fNIRS setup was mounted on the participant’s head, and baseline hemodynamic activity 
was recorded for 2 min while participants were required to keep their eyes open at rest. 
The three videos were then presented on the screen in a randomized order while the he-
modynamic activity was continuously recorded. Following each video, a 5s inter-stimulus 
interval was displayed, during which a fixation point at the centre of the computer screen 
was presented prior to the next video. At the end of each experimental session, the IAT 
was administered (Figure 1). Each experimental session lasted approximately 1 h.  

 
Figure 1. Experimental procedure. The figure exemplifies the timeline of the experiment when the 
“COVID-19 first” order was administered. During session 1, three COVID-19-related advertise-
ments were displayed. The second session took place 15 days after, and three advertisements unre-
lated to COVID-19 were shown. At the beginning of each experimental session, a 120 s baseline of 
neural activity at rest was recorded via fNIRS. Hemodynamic changes were recorded during the 
stimuli administration. Stimuli were presented in a randomized order within each experimental 
session. The stimuli lasted 60 s and were alternated with a 5 s inter-stimulus interval (ISI). At the 
end of both experimental sessions, the IAT was administered. 

Figure 1. Experimental procedure. The figure exemplifies the timeline of the experiment when the
“COVID-19 first” order was administered. During session 1, three COVID-19-related advertisements
were displayed. The second session took place 15 days after, and three advertisements unrelated to
COVID-19 were shown. At the beginning of each experimental session, a 120 s baseline of neural
activity at rest was recorded via fNIRS. Hemodynamic changes were recorded during the stimuli
administration. Stimuli were presented in a randomized order within each experimental session. The
stimuli lasted 60 s and were alternated with a 5 s inter-stimulus interval (ISI). At the end of both
experimental sessions, the IAT was administered.

2.6. fNIRS Data Analysis

The NIRScout System (NIRx Medical Technologies, LLC, Los Angeles, CA, USA) was
used to record the variations in the concentration levels of oxygenated haemoglobin (O2Hb)
and deoxygenated haemoglobin (HHb). A 6-channel array of optodes (4 emitters and
4 detectors) was used, encompassing the prefrontal region. An fNIRS Cup was used to
arrange the optodes according to the 10/5 international system [59]. Specifically, emitters
were placed at AF3–AF4 and F5–F6, whereas detectors were placed at AFF1–AFF2 and
F3-F4. The distance between the paired emitters and detectors was kept at 3 cm, and two
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infrared wavelengths were used (760 and 850 nm). The channels were arranged as follows:
Ch1 (AF3–F3), Ch2 (AF3–AFF1h), Ch3 (F5–F3), Ch4 (AF4–F4), Ch5 (AF4–AFF2h), and
Ch6 (F6–F4) [60,61]. The anatomical correspondence of each channel was identified with
the Automated Anatomical Labeling toolbox from fOLD software (version 2.2.1) (fNIRS
Optodes’ Location Decider) [62]. The following correspondences between channels and
Broadmann areas were identified: Ch1 and Ch4 overlap with the left and right DLPFC (BA
46); Ch2 and Ch5 overlap with the left and right frontopolar area (BA 10) and a portion
of the left and right DLPFC (BA 46); Ch3 and Ch6 overlap with the left and right pars
triangularis of Broca’s area (BA 45) (Figure 2).
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Figure 2. fNIRS setup. A matrix of 6 channels was displayed over the prefrontal areas to measure
O2Hb and HHb variations. The 4 emitters were positioned at AF3–AF4 and F5-F6 (red), and the
4 detectors were placed at AFF1h-AFF2h and F3-F4 (blue). The 6 resulting channels (purple) were
arranged as follows: Ch1 (AF3–F3), Ch2 (AF3–AFF1h), Ch3 (F5–F3), Ch4 (AF4–F4), Ch5 (AF4–FF2h),
and Ch6 (F6–F4). The software nirSite (version 2.0) (NIRx Medical Technologies LLC) was used to
create the 3D render.

NIRStar Acquisition Software (version 12.4) was used to continuously record changes
in the concentrations of oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin during
both the baseline and the experimental phases. Signals from the 6 NIRS channels were
acquired at a sampling rate of 6.25 Hz and were analysed and transformed using nirsLAB
software (v2014.05; NIRx Medical Technologies LLC, 15 Cherry Lane, Glen Head, NY,
USA) according to their wavelength and location. The procedure resulted in mmol·mm
values for changes in oxygenated and deoxygenated haemoglobin concentrations for each
channel. Then, each channel’s raw O2Hb and HHb data were digitally bandpass filtered at
0.01–0.3 Hz. The mean concentration of each channel was then computed by averaging the
data across trials for the two conditions. The effect size of each condition was calculated
based on the mean concentrations in the time series for each channel and subject. The
effect sizes (Cohen’s d) were computed as the difference between the concentration means
at the baseline (m1), collected for 120 s with eyes open at rest, and at trial (m2), which
was identified as the single period of viewing a single stimulus, divided by the baseline
standard deviation(s). The following formula was used: d = (m1–m2)/s. The effect sizes
computed from the six channels were then averaged to maximize the signal-to-noise ratio.
Indeed, although the raw fNIRS data were initially relative values that could not be directly
averaged across participants or channels, the normalized effect size data could be averaged
regardless of the unit because effect size is unaffected by differential pathlength factors
(DPF) [63].
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2.7. Statistical Data Analysis

Three sets of analyses were performed with respect to neurophysiological (O2Hb and
HHb mean values), implicit behavioural (IAT), and self-report (SAM) measures.

For neurophysiological measures, two ANOVAs were performed. First, a two-way
ANOVA with the order (2: COVID-19 first vs. COVID-19 after) as the between-subject
factor and the condition (2: COVID-19 vs. non-COVID-19) as the independent within-
subject factor was applied. Then, a three-way ANOVA with the order (2: COVID-19
first vs. COVID-19 after) as the between-subject factor and the condition (2: COVID-19
vs. non-COVID-19) and Channel (6: Ch1, Ch2, Ch3, Ch4, Ch5, Ch6) as the independent
within-subject factors was performed.

For IAT d’ values, a mixed repeated measures ANOVA was performed using the
condition (2: COVID-19 vs. non-COVID-19) as the independent within factor and the order
of the two conditions as an independent between factor (2: COVID-19 first vs. COVID-19
after). Pairwise comparisons were used to check simple effects for significant interactions.
For all the analyses performed on O2Hb, HHb, and IAT, pairwise comparisons were
adopted to assess simple effects for significant interactions, and the Bonferroni correction
was used to reduce biases in the repeated comparisons. For all ANOVAs, the degrees
of freedom were corrected where appropriate via the Greenhouse–Geisser epsilon. The
kurtosis and asymmetry indices were considered to determine the normality of the data
distribution, and the size of statistically significant effects was estimated by using partial
eta squared (η2) indices.

For SAM, arousal and valence subjective ratings were analysed with two separated
repeated measure ANOVAs, taking the order (2: COVID-19 first vs. COVID-19 after) as
the between-subject factor and the condition (2: COVID-19 vs. non-COVID-19) as the
independent within-subject factor.

3. Results
3.1. fNIRS

The ANOVA performed on the oxygenated haemogloblin (O2Hb) D scores yielded
the following results.

A significant interaction effect of order× condition was found (F(1, 18) = 7.65, p = 0.01,
η2 = 0.459). Indeed, under the COVID-19 condition, participants that followed the “COVID-
19 first” order showed overall significantly higher levels of O2Hb concentration when
compared to the non-COVID-19 condition. Conversely, no significant difference was found
for participants that were administered the “COVID-19 after” order (Figure 3a). Moreover, a
significant three-way interaction, order× condition× channel, was revealed (F(4, 27) = 5.67,
p = 0.01, η2 = 0.432). Specifically, for participants that followed the “COVID-19 first” order,
Ch2 (AF3–AFF1h) and Ch5 (AF4–AFF2h) displayed significantly higher mean concentration
values under the COVID-19 condition with respect to the non-COVID-19 condition. No
significant interactions were found for participants that followed the “COVID-19 after”
order (Figure 3b).

The ANOVA performed on HHb D scores yielded the following results. A significant
interaction effect of order × condition was found (F(1, 18) = 8.09, p = 0.01, η2 = 0.589).
Indeed, under the COVID-19 condition, participants that followed the “COVID-19 first”
order showed overall significantly lower concentration levels of HHb when compared to
the non-COVID-19 condition. In addition, for the participants that were administered the
“COVID-19 after” order, the HHb mean values significantly increased under the COVID-19
condition when compared to the non-COVID-19 condition (Figure 4).

3.2. IAT

The ANOVA carried out on the IAT d’ values highlighted a significant interaction effect
of order × condition (F(1, 18) = 8.98, p = 0.01, η2 = 0.598). Indeed, when the “COVID-19
first” order was administered, participants scored higher d’ values when following the
COVID-19 condition than following the non-COVID-19 condition. Conversely, when the
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the “COVID-19 after” order order was administered, participants scored higher d’ values
following the non-COVID-19 condition than following the COVID-19 condition (Figure 5).
Higher and positive d’ scores indicate a more favourable attitude toward the brand Nike.
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Figure 4. Deoxygenated haemogloblin (HHb) variations. The interaction effect of order × vondition
was significant (F(1, 18) = 8.09, p = 0.01) for the mean concentration of HHb, suggesting that,
when the “COVID-19 first” order was administered, the HHb concentration levels decreased under
the COVID-19 condition when compared to the non-COVID-19 condition. Conversely, when the
“COVID-19 after” order was administered, the HHb mean values significantly increased under
the COVID-19 condition when compared to non-COVID-19 condition. All data are represented as
mean ± SE; all * statistically significant differences, with p ≤ 0.05.

As a result of the specific aim and objectives of this study, the results reported refer
only to the participants’ preferences toward the Nike brand.

3.3. SAM

The ANOVA carried out for arousal ratings reported a significant main effect in the
within-subject factor condition (F(1, 18) = 11.469, p = 0.003, η2 = 0.389). Post-hoc pairwise
comparisons revealed higher arousal ratings for the COVID-19 condition compared to the
non-COVID-19 condition (p = 0.003). No other main or interaction effect was significant.
The ANOVA carried out for the valence ratings did not highlight significant main or
interaction effects.
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p ≤ 0.05.

4. Discussion

The present study sought to investigate the implicit responses to COVID-19 emotional
advertising. The results suggest that COVID-19 ads can be effective, but their effect is also
constrained to the order effect. At the same time, this research, specifically the results of the
SAM self-report data, suggest that arousal and not the valence of advertisements appear to
impact behavioural and neural outcomes.

Indeed, when first considering the results from the “COVID-19 first” order, partic-
ipants showed an increase in concentrations of oxygenate haemoglobin (O2Hb) under
the COVID-19 condition—which was the first to be displayed—with respect to the non-
COVID-19 condition. Specular results from the deoxygenate haemoglobin data (HHb)
provide further support to this effect. Indeed, participants that were administered the
“COVID-19 first” order showed a significant decrease in HHb values under the COVID-19
condition when compared to the following non-COVID-19 condition. Since a decrease in
deoxygenate haemoglobin indicates heightened neural activity, the two neural markers
combined together suggest a significant increase in prefrontal neural activity when the
COVID-19 contents are displayed first, followed by a reduction in neural activity when
the COVID-19-unrelated themes are presented thereafter. Such results are consistent with
previous studies, suggesting a role of the PFC in emotional processing [64–66], which
was expected to be recruited to a higher extent during the exposure to highly arousing
COVID-19 stimuli compared to neutral stimuli.

At the same time, it might be useful to highlight the role of the PFC in emotional
resonance and embodiment, which are identifiable as two key aspects of emotional arousal.
From the different definitions of emotional resonance, it can be defined as the ability to
(i) know what another person is feeling [67], (ii) have the intention to respond compas-
sionately to another person’s distress, and (iii) mimic what another person is feeling by
responding with similar emotional behaviour [68]. Studies have demonstrated that pre-
frontal activations related to emotional resonance are amplified when people see the same
emotionally significant events occur to psychologically similar models (humans, animals,
and robots) [69–71]. Ionta and colleagues, for instance, pointed out how seeing pain in
humans (who are psychologically closer to the participants) prompts higher activity in
the precentral gyrus than viewing pain in animals and robots (who are psychologically
farther from the participants) [72]. Similarly, when people see emotionally salient events
happening to people closer to them, such as friends, the emotional resonance activity in the
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prefrontal cortex is stronger with respect to observing emotional circumstances involving
distant people, such as strangers [73].

Regarding embodiment, which is defined as the feeling of being inside one’s physical
body, it is important to emphasize that it represents a source of information in judgment
and choice processes [74] and requires specific brain mechanisms [75]. Specifically, several
studies have shown how the manipulation of facial expressions and postures can influ-
ence emotional reactions to stimuli, affecting physiological and cognitive responses, as
represented by the activation of the prefrontal cortex [76–78]. For instance, it has been
demonstrated that participants perceive a virtual bodies as being a part of their bodies
after receiving synchronous visual–tactile stimulation (embodiment), and the prefrontal
cortex (also recognized as the premotor cortex) is activated during emotionally significant
vicarious somatosensation [79].From the findings regarding emotional resonance and em-
bodiment, it could be assumed that the activation of the PFC found in this study may reflect
an increase in the participants’ perceived psychological closeness to COVID-19-related
content and somatosensory vicariousness for the human bodies shown in the videos with
increased emotional arousal. This perspective may then offer further evidence as to why
PFC activation was significantly greater for the “COVID-19 first” condition.

Moreover, it should be noted that for the “COVID-19 first” order, O2Hb concentration
levels increased under the COVID-19 condition, specifically at Ch2 and Ch5, which were
identified with the left and right frontopolar regions (BA 10) and a portion of DLPFC
(BA 46). In this regard, the activity found at BA 46 is consistent with our hypothesis that
COVID-19-related stimuli may have triggered a more extensive emotional engagement.
Indeed, a wide evidence base supports the relevant role of DLPFC in emotional regulation—
with specific reference to the regulation of negative affect [64]—and its mediating role in
orienting attention towards emotionally salient stimuli, which eventually results in an
increased efficiency of salient emotional stimuli processing [42].

Interestingly, as far as the activation found in BA 10 is concerned, this rostral portion
of the prefrontal cortex was recently proposed as a crucial area serving as a “gateway”
which deploys cognitive and attentional resources between internal mental representations
elicited in response to environmental stimuli, mostly sensory-related stimuli, and mental
representations that occur independently from the environment [80]. A possible explana-
tion for the reported activity at BA 10 is that the pandemic stimuli may have triggered
an additional metacognitive effort, perhaps generating a conflict regarding the need to
orient the resources toward the advertising stimuli or toward the internal independent
representations (i.e., thoughts) that are likely to be prompted in the first place by the ref-
erence to a world-wide dramatic experience that has been shared by virtually the whole
of humankind.

On the other hand, when the “COVID-19 after” order was administered, the O2Hb
results did not differ under the two experimental conditions. However, the HHb mean
concentrations did. Indeed, higher HHb values were found under the COVID-19 condition
when it was presented following the non-COVID-19 condition, highlighting an overall
diminished neural activity within the PFC. Taking together the findings from the haemody-
namic variations in the “COVID-19 first” order and two, it is possible to hypothesize that a
sort of carry-over effect may have occurred, which could explain the differential response
to COVID-19 stimuli when the stimuli were administered in different orders. Indeed,
when COVID-19 stimuli were presented following the stimuli unrelated to COVID-19, the
prefrontal activity did not appear to engage in the attentional and emotional processing of
COVID-related information as extensively as what occurred when the pandemic stimuli
were presented in the first place. A possible explanation for such an effect is that the
previous presentation of non-COVID-related stimuli may have flattened the perception
of the emotional components of pandemic-themed advertisings. The extant literature has
provided abundant evidence that repeated exposure to advertising may undermine the
effectiveness of the advertisement [81–83], outlining an inverted U-shaped curve of the
effect of repetition on advertisement effectiveness [84]. Although the debate regarding
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the factors responsible for this effect is still ongoing, there is some solid evidence that
the repetition effect is closely related to the level of arousal evoked by the advertisement,
suggesting that multiple repetitions may lower the perceived arousal. Lower arousal and
emotional activation could then reflect a diminished capacity to elicit liking responses and
favourable attitudes towards the ad [85]. Thus, in the present study, although the COVID-19
ads resulted in effective emotional engagement when presented in the first session, they
may have lost their efficacy when they were preceded by the repetition of other advertis-
ing stimuli of the same brand. In fact, excessive repetition may result in redundancy or
boredom, which are deemed to negatively affect advertisements’ effectiveness [86].

Notably, in the “COVID-19 after” order, the effect was not specifically localized at
BA 10 and 46, which might perhaps suggest that although the COVID-19 unrelated adver-
tisements may have triggered emotional processing to a greater extent when compared
to the following presented COVID-19 commercials, they did not recruit particularly pro-
nounced metacognitive conflicts for attentional resources [87]. The activation during non-
COVID-19 commercials was indeed extended to the overall PFC. However, the reasons for
such a differential localization of the neural activation pattern should be further explored.

Finally, the implicit behavioural results gained through the IAT were revealed to be
consistent with the neurophysiological data. Indeed, considering the “COVID-19 first”
order, participants showed more favourable attitudes toward the brand following the
administration of COVID-19 stimuli shown first when compared to the non-COVID-19
stimuli displayed thereafter. Conversely, in the “COVID-19 after” order, participants
showed more favourable attitudes toward the brand following the vision of non-COVID-
1-related commercials when they were first exhibited compared to COVID-19 stimuli
presented thereafter. Hence, the carry-over effect may also extend to the behavioural
findings. Although further research is needed to reach a better understanding of the factors
that may have prompted such an effect, the present results suggest the activity of the
prefrontal cortex may represent a valid neural marker for the emotional and attentional
processes that are likely to support the development of favourable implicit attitudes.

However, as pointed out in the Section 1, it is necessary to keep in mind that recent
studies have shown that the response to emotional stimuli is closely linked to conscious
appraisal [18]. Therefore, in this sense, since the effect of emotions may be due to processing
by the neurophysiological network employed to activate appraisal process, it is essential to
also evaluate this aspect and not only the implicit appraisal response.

Considering these two approaches, it is therefore possible to interpret the results
obtained from the abovementioned perspectives. Indeed, advertisements, on one hand,
might automatically attract the attention of the audience as they are deemed more exciting
than faces or body postures. However, on the other hand, people’s attention could be
unconsciously captured by the contextual frame of the advertisement, other than faces or
body postures.

Therefore, beginning from this dual perspective, future research could better explore
this issue by developing research protocols that manipulate the variables involved, such as,
mimicry, posture, faces, etc., with respect to the advertising.

Some limitations should be considered in the present study. For instance, only the
implicit dimension of the attitudes toward the brand was investigated (through IAT), and
explicit judgements were not addressed. However, the literature has widely proven the
existence of a significant gap between implicit and explicit attitudes [2]. Future research
could include explicit measurements in order to better understand how explicit and im-
plicit attitudes interplay in the consumer decision-making process. Additionally, emotional
responses were analysed solely through neurophysiological markers. However, because
of the multicomponent nature of emotion, future research could benefit from a multilevel
approach encompassing an explicit assessment of the perceived emotional components
and extending the recording of emotion-related neural processes to a wider neural network
of areas which are known to contribute to the processing of emotions in decision-making
beyond the PFC [5,88]. Furthermore, because emotions and emotion regulation are con-
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sidered processes that unfold with specific temporal dynamics [89], additional insights
could be gained by combing fNIRS with electroencephalography, which has been recently
adopted to investigate neural patterns engaged in emotion processes with enhanced tempo-
ral resolution [90,91]. To comprehensively understand implicit processes and offer insight
into the cognitive resources required for processing visual stimuli and their emotional
impact on the audience, it might be desirable to conduct research using an eye-tracker. In
fact, recording of patterns of fixations and saccades related to people’s eye movements
in response to a visual stimulus can help researchers better understand how advertising
affects users’ emotional excitement, visual attention, and cognitive workload [92,93]. In the
meantime, these systems can be used to analyse programming techniques such as LINQ
and algorithms or for the development of innovative software tools, providing, for example,
tools for cognitive load or source code analysis or for describing readability evaluation
algorithms. Along the same line of thinking, it might be interesting to implement research
protocols that also include the use of immersive virtual reality to support vision screening
while providing more emotional and interactive engagement [94]. Indeed, several studies
showed how the use of these virtual immersive systems is a valuable tool for implementing
a sense of self-confidence or self-efficacy [95,96]. Finally, future research should also better
explore the valence effect related to COVID-19 and no-COVID-19 stimuli. Indeed, a possible
interpretation of the present results could be supported by a more positive coping attitude
induced by the sportswear stimuli, which induce a more “normal” post-crisis situation.

Combining the current experimental multi-method protocol with future affective-
focused assessments and interventions represents a possible potential future development
of this study in both cognitive neuroscience and neuropsychology and in the clinical field.
The first utilization of these research data certainly concerns the field of marketing, in
which it is possible to implement the sale of a particular product and its recall by adopting
high-impact advertising. In the meantime, since the results of this study revealed that
stimuli with high emotional arousal are able to cognitively and emotionally engage the
audience, it might be useful to use this type of communication in clinical and healthcare
settings as well to increase, for example, patient engagement and disseminate correct
prevention and treatment information. Moreover, another possible application could be
inherent in the educational setting, where high-impact stimuli could be used to raise
awareness and involvement on certain topics In conclusion, the present study was aimed
at investigating implicit behavioural and neurovascular responses to emotionally arousing
brand commercials that leveraged the COVID-19 pandemic. Our findings suggest that
when initially presented, COVID-19-themed advertisements recruit the PFC to a greater
extent than COVID-19-unrelated communications, in particular, recruiting the prefrontal
cortices implied in emotion regulation and attentional resources allocation, presumably
according to emotional salience. However, the results also highlight that the effectiveness of
COVID-19 emotional stimuli may vanish when brand commercials (unrelated to COVID-19)
are repeatedly shown prior to the COVID-19 advertisements, pointing out the role of
presentation order. The behavioural results from the IAT point to the same conclusions
since the IAT scores are consistent with the neurophysiological responses. Although further
research is needed, the present findings may provide initial evidence in support of the role
of prefrontal activity as a neural marker of implicit attitudes. Also, as emotional processing
is not only subserved by the PFC, assessing the contribution of other cortical sites may
prove constructive to achieve a deeper understanding.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23094332/s1, Table S1, Summary of links to video advertisements
shown during this study.
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