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features of ST-DCs that reveal their roles

in immune tolerance and disease.
Inc.
ll

mailto:stefano.alivernini@unicatt.�it
mailto:mariola.kurowska-stolarska@glasgow.ac.�uk
mailto:mariola.kurowska-stolarska@glasgow.ac.�uk
https://doi.org/10.1016/j.immuni.2024.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2024.11.004&domain=pdf


OPEN ACCESS

ll
Article

Synovial tissue myeloid dendritic cell subsets
exhibit distinct tissue-niche localization
and function in health and rheumatoid arthritis
Lucy MacDonald,1,2,16 Aziza Elmesmari,1,2,16 Domenico Somma,1,2,16 Jack Frew,1,2,16 Clara Di Mario,3 Roopa Madhu,4,5,6

Audrey Paoletti,2 Theodoros Simakou,1,2 Olympia M. Hardy,1,2 Barbara Tolusso,3 Denise Campobasso,3

Simone Perniola,3,7 Marco Gessi,8 Maria Rita Gigante,9 Luca Petricca,9 Dario Bruno,1,3,7 Lavinia Agra Coletto,1,2,3

Roberta Benvenuto,8 John D. Isaacs,1,10,11 Andrew Filby,12 David McDonald,12 Jasmine P.X. Sim,1,10 Nigel Jamieson,13

Kevin Wei,4 Maria Antonietta D’Agostino,9 Neal L. Millar,1,2 Simon Milling,1,2 Charles McSharry,2,14 Elisa Gremese,1,3,7

Karen Affleck,15 Kenneth F. Baker,1,10,11 Iain B. McInnes,1,2 Thomas D. Otto,1,2 Ilya Korsunsky,4,5,6

Stefano Alivernini,1,2,3,9,16,* and Mariola Kurowska-Stolarska1,2,16,17,*
1Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
2School of Infection & Immunity, University of Glasgow, Glasgow, UK
3Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS,

Rome, Italy
4Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA

02115, USA
5Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
6Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
7Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
8Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
9Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
10Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
11Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals, Newcastle upon Tyne, UK
12Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
13School of Cancer Sciences, University of Glasgow, Glasgow, UK
14NHS Greater Glasgow and Clyde, Glasgow, UK
15Respiratory and Immunology Research Unit, GSK, Stevenage, UK
16These authors contributed equally
17Lead contact

*Correspondence: stefano.alivernini@unicatt.it (S.A.), mariola.kurowska-stolarska@glasgow.ac.uk (M.K.-S.)
https://doi.org/10.1016/j.immuni.2024.11.004
SUMMARY
Current rheumatoid arthritis (RA) treatments do not restore immune tolerance. Investigating dendritic cell
(DC) populations in human synovial tissue (ST) may reveal pathways to reinstate tolerance in RA. Using sin-
gle-cell and spatial transcriptomics of ST biopsies, as well as co-culture systems, we identified condition-
and niche-specific DC clusters with distinct functions. Healthy tissue contained tolerogenic AXL+ DC2s in
the lining niche. In active RA, the hyperplasic lining niche was populated with inflammatory DC3s that acti-
vated CCL5-positive effectormemory T cells, promoting synovitis. Lymphoid niches that emerged in the sub-
lining layer were enriched with CCR7+ DC2s, which interacted with naive T cells, potentially driving the local
expansion of new effector T cells. Remission saw the resolution of these pathogenic niches but lacked recov-
ery of tolerogenic DC2s and exhibited activation of blood precursors of ST-DC3 clusters prior to flare-ups.
Targeting pathogenic DC3s or restoring tolerogenic DC2smay help restore immune homeostasis in RA joints.
INTRODUCTION

Rheumatoidarthritis (RA) isan inflammatory joint diseasewithsys-

temic comorbidities, driven by the breach of immune tolerance.1

Advances in targeted therapies2 have transformed the manage-

ment of RA. However, 40%of RApatients still do not achieve last-

ing disease remission or a restored state of immunological ho-

meostasis.2–4 Drug-free remission is achieved in 10%–20% of
Immunity 57, 2843–2862, Decem
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RA patients, offering proof-of-concept that pathogenic innate-in-

flammatory and adaptive responses can be endogenously

restrained.3,5 However, even these patients exhibit persistence

of autoimmunity, highlighting theabsenceof immunological cure.6

Dendritic cells (DCs) can reset the adaptive immune response

and reinstate immune tolerance.7 Thus, identifying DC pheno-

types and their migration from peripheral blood (PB) to synovial

tissue (ST) could help delineate their roles in immune tolerance
ber 10, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 2843
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Figure 1. Single-cell omics identifies phenotypically distinct clusters of ST myeloid DC subsets

(A) Representative images showing immunofluorescence (IF) staining for myeloid DC markers, CLEC10A (green), CD68 (red), and nuclei DAPI (blue) in synovial

tissues (STs). The inserts show cells at 403magnification. Images are representative of ST from healthy donors (n = 5), active RA (n = 6), and remission RA (n = 5)

from 3 independent experiments. Scale bars, 50 mm. Minimum and maximum display values for CLEC10A were set to 60 and 225, respectively, using QuPath

(Version 0.4.2). DC, dendritic cell; STM, ST macrophage.

(B) Uniform manifold approximation and projection (UMAP) visualization of integrated CITE-seq (n = 7) and scRNA-seq (n = 35) data of myeloid DCs from ST and

blood (PB) from 9 independent experiments. Each dot represents an individual cell. ST was obtained from healthy donors (n = 7), active RA (n = 18), remission RA

(n = 9), and PB DCs from matched active RA (n = 3) and from healthy donors (n = 5).

(legend continued on next page)
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and pathology. PB DC populations include plasmacytoid DCs

(pDCs) and conventional DCs (cDCs).8–11 The cDCs include

DC1 (CD141posCLEC9Apos) and two subsets of myeloid

CLEC10Apos DCs that differ in their bone marrow progenitors

and their dominant transcription factors, now called DC2 and

DC3, respectively.8–10,12–15 PB DC2s are CD1chighCLEC10Apos

CD163negCD14neg, with a substantial proportion of cells express-

ing CD5 andB and T cell attenuator (BTLA), whereas PBDC3s are

CD5negBTLAnegCD1clow and contain different phenotypic clusters

that differ in the combination of CD163 and CD14 expression.9,10

DC3s characterized by high expression of CD163 and CD14,

show the greatest potential to activate Th2 and Th17 cells

in vitro,9,16 to support tumor cytotoxic CD8posCD103posCD69pos

tissue-resident memory T cells,10 and to drive CD4pos T cell im-

munity in experimental viral respiratory infections,13 and, in this

manuscript, they will be referred to as inflammatory DC3 (iDC3).

Functional DC atlases of diseased tissues9,10,16–20 provided

insight into the pathogenic role of discrete DC subsets and their

tissue phenotypic states. For example, studies in cancer21 led to

the fine description of CCR7posLAMP3pos mature DCs enriched

in immunoregulatory molecules (mReg DC) as a molecular state

(phenotype) acquired by both DC1 and DC2 subsets in tissue,

which is associated with the induction of an immunogenic, reg-

ulatory, and migratory gene program,21,22 depending on the sur-

rounding environment.

Indirect evidence supports the role of ST-DCs in RA pathogen-

esis.23–29 However, a comprehensive atlas of the functional di-

versity of ST-DCs is lacking. This study employed single-cell

RNA sequencing (scRNA-seq), spatial transcriptomics, and

ST-DC/T cell co-cultures to reveal the functional heterogeneity

of synovial DCs, highlighting their roles in tissue immune toler-

ance and disease.

RESULTS

ST contains distinct phenotypic clusters of myeloid DCs
Our previous omic studies30 revealed that, although healthy

synovium has relatively low cellularity, it contains a population
(C) Heatmap visualizing the average log fold change (logFC) of the top 5 marker g

usingMAST andwere considered significant if expressed inmore than 40%of cell

multiple comparison. Average logFC R 0.25.

(D) Table summarizing scRNA-seq markers of ST-DC subsets and their phenoty

(E) Average-expression heatmap visualizing scaled expression of DE genes from t

ST myeloid DC clusters that differ between joint conditions (expressed in >25%

correction).

(F) Heatmap visualizing pathway activity across selected ST-DC clusters as in

database.

(G) Proportion of ST-DC2, DC3, and iDC3 clusters that differ between healthy con

with a median and inter-quartile range. One-way ANOVA with Tukey correction

groups were compared were used, the exact p values on the graphs.

(H) Representative image showing IF staining for CD1c (green), AXL (red), and nuc

ST from healthy donors (n = 4) across 2 independent experiments. Scale bar, 50

(I) Difference in the proportion of ST AXLpos DC2 cluster within the ST-DC pool bet

presented as a boxplot with median and inter-quartile range. One-way ANOVA

ventional or biological disease-modifying anti-inflammatory drugs; D2T, difficult-

(J and K) Multiparameter fluorescence-activated cell sorting (FACS) phenotyping

Representative gating strategy for ST myeloid DC clusters from active RA and R

(I) Percentage of ST myeloid DC clusters in total ST myeloid cells in active (n = 15

boxplot with a median and inter-quartile range. Two-sided Mann-Whitney, the e

See also Figures S1–S4 and Tables S1, S2, and S3.
of myeloid CD1cposCLEC10Apos DCs. Using immunofluores-

cent staining, we localized these cells below the protective lin-

ing layer of CD68posTREM2pos ST macrophages (STMs).30,31

In active RA, the distorted and hyperplastic lining layer con-

tained an increased number of CLEC10Apos DCs compared

with healthy tissue. In remission, the structure of the lining layer

and the number of DCs returned to a state resembling that of

healthy individuals (Figure 1A; STAR Methods).

To identify DC subsets and their functional tissue phenotypes

(clusters) in healthy and in discrete disease states, we performed

scRNA-seq and cellular indexing of transcriptomes and protein

epitopes sequencing (CITE-seq) on all cells or CD45pos cells

from ST biopsies of healthy donors (n = 7), active RA (n = 18),

and RA in sustained disease remission (n = 9) (clinical data in

Table S1). To guide annotation of ST-DCs, this was integrated

with scRNA-seq frommatchedPBof activeRA (n=3) and healthy

donors (n = 5) (Figure S1A; Table S2), where myeloid DC popula-

tions are well annotated.9,12 This revealed ST-DCs that clustered

together with blood cDCs (DC1 or DC2/DC3), suggesting that

these are DCs that have just entered the tissue (infiltrating DCs)

(Figure S1B). To identify all ST myeloid DCs, including those

that acquire specific molecular states due to longer residency

and activation in tissue, we also retained any other cell cluster

that highly expressed HLADR and CD11c proteins, as well as

CLEC10A mRNA (marker of myeloid DCs) (Figures S1C–S1F).

This included three additional tissue clusters. The first, based

on top myeloid DC2/3 markers (CLEC10Apos, FCER1Apos,

HLADPB1pos, and CD1cpos), we temporarily called CLEC10Apos

NR4A3posCXCR4pos tissue DCs (Figure S1G). The other two

weresubsetsofSTMs, FOLR2highLYVE1pos,whichareperivascu-

lar macrophages30,32 and FOLR2highCLEC10Apos STMs, exhibit-

ing the strongest antigen-presenting cell transcriptomic profile

amongall STMsubsets.30 For the subsequent analysis, alongside

the tissue CLEC10AposNR4A3posCXCR4pos DCs and infiltrating

DCs, we retained the FOLR2highCLEC10Apos STMs and the

blood/tissue monocyte clusters to exclude contamination of

ST-DCs with any monocyte/macrophage cells. Re-clustering

of these populations clearly separated transcriptomic profiles of
enes of ST-DC clusters. Differentially expressed (DE) genes were determined

s in the appropriate cluster with adjusted p < 0.05 after Bonferroni correction for

pic clusters.

he KEGG_cytokine/cytokine receptor pathway and selected cluster markers in

of cells per cluster, with logFC > 0.5, and p < 0.05 in MAST with Bonferroni

(E). Pathway activity based on top 500 genes per pathway from PROGENy

trols, active RA, and remission RA (scRNA-seq). Data are presented as boxplot

s for multiple comparison, or two-sided Mann-Whitney (marked with *) if two

lei (DAPI, blue) in healthy ST at 403magnification. Images are representative of

mm.

ween healthy controls and different disease states of RA (scRNA-seq). Data are

with Tukey corrections, the exact p values on the graph. c/bDMARDs, con-

to-treat. Each dot represents one patient.

of ST myeloid DC clusters guided by CITE-seq/scRNA-seq deconvolution. (J)

A in remission.

) and remission RA (n = 8), across 10 independent experiments, presented as

xact p values on the graph.
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tissue CLEC10AposNR4A3posCXCR4pos DCs, infiltrating myeloid

DC clusters and DC1s from monocytes and FOLR2pos macro-

phages (Figures S1H and S1I). Subsequent unbiased re-clus-

tering of only ST-DCs led to the identification of SIGLEC6pos

pre-DC2s, DC1s, and 14 myeloid DC clusters across healthy,

active RA, and RA in remission synovium (Figures 1B–1D and

S1J; Table S3). Although DC1s were reported to be abundant in

RA synovial fluid,27 and pre-DC2s were observed to increase

during human skin inflammation,33 they both constituted very

small populations in ST andwere not the focus of further analysis.

To aid annotation of myeloid DC clusters and determine from

which PB DC subsets (DC2, DC3, and its iDC3 phenotype) each

cluster differentiates, we next performed cell trajectory analysis

(Figures S1K–S1M). RNA velocity, inferring trajectory from the di-

rection of increased ratio of unspliced to spliced RNA counts (Fig-

ure S1K), supported by partition-based graph abstraction (PAGA)

cell transition confidence evaluation (Figures S1L and S1M), iden-

tified 5, 5, and 4 distinct tissue phenotyping clusters maturing

from PB DC2s, DC3s, and iDC3s, respectively (Figures 1B–1D).

In summary, humanST contains a rich population ofmyeloid DCs.

Healthy ST contains the AXLpos DC2 cluster
The 14 myeloid phenotypic clusters of DC2s, DC3s, and iDC3s

(Figures 1B–1D) exhibited distinctive transcriptomes, character-

ized by differential expression of between 67 and 955 genes (Fig-

ure 1C; Tables S3 and S4). Identified clusters of the ST-DC2 sub-

set expressed high mRNA for CD1c, lack of CD163 and CD14,

and included (1) KLF4pos, (2) KLF4posATF3pos, (3) AXLpos, and

two CCR7-positive clusters: (4) MIR155pos and (5) LAMP3pos.

Identified clusters of the ST-DC3 subset expressed CD163,

and CD1c mRNA at a lower level, and included (1) IFNAR1pos,

(2) ALDOApos, (3) TUBB4Bpos, and (4) ISG15pos. The ST-iDC3 ex-

pressed high mRNA for CD14 as compared with other DC3s and

included (1) CD36pos, (2) FABP5pos, (3) NR4A3pos, and (4)

FOLR2low clusters (Figures 1D and S2).

ST KLF4pos DC2, IFNAR1pos DC3, and CD36pos iDC3 repre-

sented an early tissue-infiltrating state of PB DC2s, DC3s, and

iDC3s, respectively (Figure 1B). They exhibited a higher expres-

sion of integrins compared with their PB counterparts, which

facilitate post-extravasation migration and maturation within

the tissue,34 including ITGA10, ITGA11, ITGA5, and ITGB8

(Table S4). In addition, the matched PB/ST approach identified

the EMP1pos cluster, whichmight represent a subsequent transi-

tional molecular state between infiltrating DCs and tissue-niche-

specific DC phenotypic clusters (Figure 1B). This state, in

contrast to other clusters, lacked the expression of cytokines

and cytokine receptors (Figure 1E) but instead was enriched in

the expression of genes encoding epithelial membrane proteins

(EMPs) (Figures 1C and S2D; Table S3) and showed the activa-

tion signature of their downstream phosphatidylinositol 3-kinase

(PI3K) pathway (Figure 1F), which is crucial for tumor cell inva-

siveness and tissue metastasis.35

Next,wedeconvoluted the frequencyofSTmyeloidDCpheno-

typic clusters indifferent disease states and foundsubstantial dif-

ferences in AXLpos DC2, EMP1pos transitional DC2 and DC3,

ALDOApos DC3, FABP5pos iDC3, LAMP3pos DC2 and KLF4pos

DC2 clusters between health, active RA, and RA in sustained

remission (Figure 1G). In health, AXLpos DC2s dominated, consti-

tuting approximately 40% of all DCs, whereas all other clusters
2846 Immunity 57, 2843–2862, December 10, 2024
each constituted less than 5%–10% (Figure 1G) and represented

the majority of DCs located under protective lining-layer

TREM2pos STMs (Figure 1H). The AXLpos DC2 cluster was signif-

icantly decreased in active RA, especially in difficult-to-treat RA

(Figure 1I), and was not reinstated in sustained remission. It ex-

hibited regulatory features that include molecules important for

local tissue homeostasis, such as AXL, an immune checkpoint

that limits adaptive immune response,28,36,37 amphiregulin

(AREG), which is critical for tissue repair,38 and inhibin beta A

(INHBA), which is known for promoting an immunosuppressive

environment.39 It also exhibited molecular signatures reflecting

activation of the tolerogenic WNT pathway40 (Figures 1E, 1F,

and S2E; Table S4). Cell trajectory analysis (Figure S1L;

Table S3) showed that this AXLposDC2 cluster likely developed

from infiltrating KLF4pos DC2s through an intermediate

KLF4posATF3pos stage.

Taken together, healthy ST is populated by a resident AXLpos

DC2 cluster that exhibits tolerogenic features likely crucial for

maintaining local immune tolerance.

ST from active RA is enriched in iDC3s
In active RA synovium, we observed an increase in ALDOApos

DC3 and FABP5pos iDC3 phenotypic clusters compared with

healthy tissue (Figure 1G). Cell trajectory analysis indicated

that they develop from infiltrating CD14pos DC3s (iDC3s) (Fig-

ure S1M). They together constitute more than 35% of RA ST-

DCs and both shared transcriptomic profiles suggesting activa-

tion (Figure 1E). We observed an increased expression of

C15orf48 (Figure S2E; Table S4), a metabolic switch in complex

I of the respiratory chain that we previously showed underlies the

production of pro-inflammatory mediators by myeloid cells.41

In addition, ALDOApos DC3s and FABP5pos iDC3s showed

cluster-specific activation pathways. ST ALDOApos DC3s were

distinguished by high expression of type I interferon (IFN) recep-

tor (IFNAR2) (Figure 1E) and activation of the JAK/STAT pathway

(Figure 1F).14 ST FABP5pos iDC3s had the highest expression of

the high-affinity interleukin (IL)-6 receptor (IL6R and IL6ST) and

tumor necrosis factor (TNF) receptor (TNFRSF1B), as well as

activation of the TNF and NF-kB pathways (Figures 1E and 1F).

We confirmed the presence of both DC3 and CD14pos iDC3 phe-

notypes in a recently published ST scRNA-seq dataset of active

RA42 (Figure S2F).

In the remissionST,weobserveda reduction inALDOAposDC3s

and FABP5pos iDC3s compared with active RA. However, we

noted a lack of restoration of the AXLpos DC2 cluster that charac-

terizes healthy tissue. Instead,weobservedan increase in thepro-

portion of its intermediate stages, namely infiltrating KLF4pos and

KLF4posATF3pos DC2 clusters (Figure 1G). Transcriptomics of

both suggest they progress toward regulatory function in remis-

sion tissue (Figures 1E, 1F, and S2E). For example, the infiltrating

KLF4pos cluster expressedDUSP1 (Figure S2E), a key activator of

IL-10,43 whereas the ATF3pos cluster expressed VSIG4, a PD-L1-

like immunecheckpoint that inhibits effector T cells44 (FigureS2E).

In addition, the ATF3pos DC2 cluster showed activation of the tol-

erogenic transforminggrowth factorb (TGF-b) pathway (Figure1F)

and high expression ofATF3 (Figure 1E),which are known for sup-

pressing cytokine gene expression.45 However, a lack of restora-

tion of the AXLpos phenotype potentially suggests an impaired tol-

erogenic state in remission synovium compared with health.
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Figure 2. ST mReg DCs differentiate from activated MIR155posCCR7pos intermediates in a process driven by MIR155

(A) UMAP visualization of integrated CITE-seq and scRNA-seq data of myeloid DCs from ST of healthy, active RA, and RA in disease remission as in Figure 1.

Lines indicate two most-highly CCR7-expressing clusters: MIR155pos and LAMP3pos. Density plots illustrate expression of CCR7, MIR155, LAMP3, and CD40.

(legend continued on next page)
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We next validated the frequency of ST-DC2 and DC3/iDC3

subsets by flow cytometry with additional synovial biopsies

(n = 23). We found that canonical PB myeloid DC subset

markers, such as CD5 or BTLA for DC2s, have limited expression

in ST-DCs (Figures S1H and S2F). Thus, the specific gating of

ST-DC subsets was guided by surface protein expression from

ST CITE-seq data and previously identified markers of STM30

(details in STAR Methods and Figures 1J and S3) and the accu-

racy confirmed with single-cell ST-DC index SORT-seq (Fig-

ure S4). This confirmed that remission tissues predominantly

contained ST-DC2s (Figure 1K), whereas active RA was signifi-

cantly enriched in cells of the CD14pos iDC3 phenotype of

DC3. Other DC3s were present in both, with a trend toward a

higher contribution to the DC pool in active RA, consistent with

our scRNA-seq data. Like our previous study,30 the relative

contribution of high-HLADR-expressing FOLR2posCLEC10Apos

STM macrophages to ST myeloid cells was comparable be-

tween active and remission tissues.

In summary, ST during RA pathology is enriched in iDC3

phenotypic clusters that resolve in remission RA.

ST from active RA is enriched in the LAMP3posCCR7pos

DC2 cluster
In active RA, although iDC3 clusters dominated the ST myeloid

DC pool, the ST-DC2 population remained but showed notable

changes compared with healthy individuals and those in remis-

sion. The AXLpos DC2 cluster was reduced, whereas CCR7pos

LAMP3pos DC2s were increased (Figure 1G). We identified two

CCR7-positive DC2 clusters co-expressing MIR155 and

LAMP3, with one cluster showing higher MIR155 expression

and the other higher LAMP3 expression (Figure 2A). Their high

CCR7 suggests the potential for migration into draining lymph

nodes (dLNs), where their high expression of the co-stimulatory

moleculeCD40would enable them to activate naive T cells. They

also shared high expression of nuclear factor (NF)-kB pathway

genes (e.g., REL, TRAF1, and NFKB1), suggesting an activated
(B) Heatmap visualizing scaled top 15 uniquemarker genes ofMIR155posCCR7pos

marker genes of these clusters (orange box) as compared with any other ST-DC c

and p < 0.05 MAST with Bonferroni correction.

(C) Gene-set module score of ST LAMP3posCCR7pos DC2 cluster (computed fro

MNPVerse dataset (Mulder et al.18).

(D) Heatmap showing distinct expression of mReg DC genes identified by Maier

different joint conditions.

(E) Single-cell RNA velocity-directed PAGA showing differentiation trajectory of ST

MIR155posCCR7pos ST-DC2 stage (active RA n = 17).

(F) Pseudotime analysis of data from (E) shows candidate genes responsible for th

ST-DC2. Cells are colored by cluster identity and ordered by pseudotime.

(G) The ratio of newly transcribed (unspliced) pre-mRNA to spliced mRNA of MIR

(H) Relative expression of MIR155 as compared with housekeeping microRNA (qP

patients with active disease (n = 16), and from ST of RA patients with active disea

with a median and inter-quartile range. One-way ANOVA with Tukey corrections

(I) Blood CD1chigh DC2s from active RA patients (n = 11, 10 independent experime

stimulated with LPS (100 ng/mL). Production of cytokines is presented as paired

exact p values on the graph.

(J) Heatmap showing log-normalized expression values of ST-DC2 LAMP3posCC

mouse CD11bposCD103pos myeloid DC2 cluster in lymph and mesenteric lymph

(DESeq2 with Bonferroni correction). Red arrows point to the mReg gene score.

(K) The percentage of CCR7-expressing murine DC2s (CD11bposCD8aneg) in mL

across 3 independent experiments. Data are presented as scatter dot plot with m

(L) The MFI of PD-L1 expression by DC2s (CD11bposCD8aneg) as in (K). Data are p

Whitney, p values on the graph.
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state (Figures 2A and 2B). MIR155 amplifies myeloid cell activa-

tion by inhibiting negative regulators of Toll-like receptor (TLR)/

cytokine receptor signaling.46 Consistent with this, high expres-

sion of pro-inflammatory mediators such as IL-1b and multiple

chemokines were observed in the CCR7posMIR155high DC2 clus-

ter (Figure 2B). In contrast, the LAMP3pos cluster exhibited IL-12,

IL-15, and IL-32, together with increased expression of regulato-

ry genes such as EBI3 (encoding a subunit of regulatory cyto-

kines IL-27 and IL-35) and the immunomodulatory enzyme

IDO1, the product of which is key for differentiation and activa-

tion of Treg cells (Figure 2B), thus resembling the recently iden-

tified mReg DC phenotype.21 To investigate this, we integrated

our ST single-cell dataset with a myeloid cell (MNP) single-cell

RNA compendium (MNPVerse)18 (Figure 2C; Table S4). Among

all MNPVerse myeloid cells, the ST CCR7posLAMP3pos DC2

signature scored highest with an MNPVerse mReg signature

(Figure 2C), confirming that ST CCR7posLAMP3pos DCs are

indeed mReg. mReg are characterized by a unique immuno-

genic, regulatory, and migratory gene program.21,47 Although

the immunogenic program was increased in the LAMP3pos

DC2 cluster in both active and remission RA compared with

health, the expression of some immunoregulatory genes, such

as immune checkpoints (PDL-1 [CD274], PDL-2 [PDCD1LG2],

and CD200), was increased in cells from remission tissue

compared with those with active RA (Figure 2D). This suggests

a distinct immunogenic versus regulatory program in active

and remission RA, respectively.

To explore the relationship between MIR155pos and mReg

clusters in ST, we performed cell trajectory analysis. RNA veloc-

ity, aided by PAGA cell transition confidence evaluation (Fig-

ure 2E; Table S3), indicated that the ST CCR7posMIR155pos

cluster may constitute an intermediate stage of mReg DC2 dif-

ferentiation from tissue-infiltrating KLF4pos DC2s.

Next, to explore molecular mechanisms underlying the differ-

entiation of the mReg DC2 from infiltrating KLF4pos DC2s, we

identified genes (Figures 2F and 2G) with a high ratio of unspliced
(blue box) and LAMP3posCCR7pos (red box) DC2 clusters and the top 15 shared

luster. Selection criteria: expressed >40% of cells in a cluster with logFC > 0.25

m their unique differentially expressed genes, STAR Methods) plotted across

et al.21 in ST MIR155posCCR7pos and LAMP3posCCR7pos DC clusters between

-DC2 LAMP3posCCR7pos from tissue-infiltrating DC2s through the intermediate

ematuration trajectory of ST-DC2 LAMP3posCCR7pos fromMIR155posCCR7pos

155 and CCR7 from KLF4pos DC2s toward LAMP3pos DC2s.

CR) in total CD1chigh DC2 population in PB of healthy donors (n = 12), PB of RA

se (n = 5) across 10 independent experiments. Data are presented as boxplot

, p values on the graph.

nts) transfected with miR-155 or control mimic (20 nM) and left unstimulated or

dot plot with mean bars; each dot represents one patient. A paired t test, the

R7pos cluster markers significantly upregulated in bulk RNA-seq data of the

nodes (mLNs) versus intestine tissue (n = 3 mice, 1 experiment) with p % 0.05

N of WT (miR-155+/+, n = 7) and miR-155 deficient mice (miR-155�/�, n = 7)

ean and SEM. Two-sided Mann-Whitney test, the exact p values on the graph.

resented as boxplot with a median and inter-quartile range. Two-sided Mann-
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Figure 3. Different myeloid DC clusters localize in distinct ST niches

(A) UMAP visualization of clustering of coarse cell types identified from single-cell spatial transcriptomic data (CosMx, 960 gene panel) of 127,199 cells from n = 69

fields-of-view (FOVs) from ST of active RA (n = 3) and RA in remission (n = 3) across 3 experimental slides.

(legend continued on next page)
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transcripts and differentially expressed (DE) along the pseudo-

time of cell progression through the trajectory identified in Fig-

ure 2E. This highlighted MIR155 as (1) a potential driver of the

highly pro-inflammatory state of the MIR155pos cluster and (2)

a candidate regulator of the migratory program of LAMP3pos

mReg.MIR155 expression was increased in the RAST-DC2 cells

as compared with PB counterparts (Figure 2H), suggesting its

primary role in the local tissue maturation of infiltrating DC2s

into an inflammatory MIR155pos state. In vitro overexpression

of MIR155 in PB DC2s from active RA significantly increased

their production of IL-6 and IL-23 (Figure 2I), suggesting that

MIR155 might govern the stimulatory functions of the

CCR7posMIR155pos intermediate cluster in the synovium of pa-

tients with active RA.

Access to lymph and LNDCs in humans is challenging. To vali-

date the migratory properties of the mReg and MIR155pos clus-

ters as closely as possible, we took advantage of a well-charac-

terized mouse gut lymphatic cannulation model.48 Using this

model, we found that the mReg/MIR155pos signature, including

high expression of Ccr7, mir155, Cd40, and NF-kB pathway

(Traf1), were significantly increased inmouse DC2s (CD11bposC-

D8aneg) sorted from lymph and dLNs as compared with the

matched tissue, confirming the LN migratory properties of these

clusters (Figure 2J).

Along themReg differentiation trajectory, highMIR155 expres-

sion occurred before CCR7 and other markers of the mReg DC2

(Figures 2F and 2G), indicating its role in themRegmigratory pro-

gram. We found a significant decrease (�80%) in the proportion

of CCR7pos DC2 in the mesenteric LN of MIR155-deficient mice

as compared with wild-type (WT) littermates (Figure 2K). These

MIR155-deficient DC2 cells also had significantly less expres-

sion of another marker of mReg, PD-L1 (Figure 2L), confirming

a key role of MIR155 in the regulation of mReg DC phenotype.

Taken together, these data suggest that active RA synovium

contains an immunogenic mReg DC cluster, which differenti-

ates from infiltrating DC2s through a highly activated CCR7pos

MIR155pos intermediate stage.

Different myeloid DCs localize in distinct ST niches
To elucidate the function of distinct myeloid DC subsets/clusters

in tissue, we next mapped their localization in ST niches and eval-

uated their interactionswith specific T cell clusters.Weperformed

single-cell spatial transcriptomics on ST biopsies from patients
(B) Illustration of tissue single-cell segmentation and coarse cell-type annotation

(C) UMAP visualization of Louvain clustering of tiles from Voronoi tessellation of the

segmentation that are annotated based on coarse cell-type composition and dif

(D) Illustration of niche annotation of representative FOVs from active RA and rem

(E) Boxplots with a median and inter-quartile range showing the proportion of tota

and in remission RA (n = 16 FOVs, n = 3 patients). Two-sided Mann-Whitney, the

(F) Absolute number of myeloid DC clusters among all spatially mapped cells in a

Data are presented as boxplot with a median and inter-quartile range. Two-sided

(G) Distribution of ST myeloid DC clusters, DC1 and CLEC10Apos STMs in diffe

presented as the proportion of myeloid DCs per niche (bar plots with SEM).

(H) Heatmap summarizing the proportion of each myeloid DC cluster, DC1 and C

(I) Proportion of selected myeloid DC clusters per niche (bar plots with SEM). *p

rections for multiple comparisons).

(J) Illustration of distinct distribution of ST-DC2 and DC3 and iDC3 clusters in ly

proportion of all myeloid DC clusters in those niches.

See also Figures S5 and S6 and Tables S2 and S3.
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with active, treatment-naive RA and RA in disease remission (Fig-

ure S5A). To accurately identify cells within tissue, we used the

Mesmer49 and Baysor50 methods, which estimate cellular edges

based on nuclear staining and transcript densities, respectively.

To deconvolute cell phenotype, we integrated spatial data with

our reference single-cell omics datasets of those tissues

(Figures 3A and 3B). A top marker gene correlation and confusion

matrix confirmed accuratemapping of ST-DCs to the subset level

(DC1, DC2, DC3, and iDC3 phenotypes) and the CCR7pos DC2

(MIR155pos/mReg) cluster level (Figures S5B and S5C).

First, we identified 8 distinct ST neighborhoods (niches) using

Voronoi tessellation (STAR Methods; Figures 3C and 3D), each

characterized by a distinct distribution of cell types and tran-

scriptional signature (Figure S6; Table S3). These comprised

two lining-layer niches: (1) PRG4pos niche, dominated by

PRG4-expressing lining-layer fibroblasts (FLS), and (2) the

myeloid-rich lining, dominated bymacrophages. Three structural

sublining niches were identified and included: (1) FLS/myeloid

sublining niche, enriched in interstitial macrophages and FLS;

(2) adipocyte-cell-rich niche; and (3) perivascular niche, enriched

in endothelial cells and pericytes. Three immune niches were

identified: (1) enriched in T and B cells (lymphoid niche), which

represent previously described RA synovium ectopic germinal

centres1,51; (2) plasma-cell-rich niche; and (3) a niche enriched

in regulatory TGF-b-expressing myeloid cells (TGF-b-positive

myeloid rich). Active RA contained a larger myeloid-rich lining

niche, lymphoid niche, and plasma-rich niche compared with

remission. Conversely, remission exhibited a larger adipocyte-

rich niche compared with active RA (Figure 3E).

Next, we investigated the distribution of different DC subsets

within these niches. We mapped 8,887 DCs in active RA, with

a median of 213 DCs per field of view (FOV). Due to the relative

low cellularity of remission FOVs, we were only able to map

698 DCs across all remission FOVs, with a median number of

24 per FOV (Figure 3F). Therefore, in further analysis, we focused

solely on the distribution of DC subsets within active RA niches.

We found that DCs were particularly enriched in myeloid-rich lin-

ing, TGF-bpos myeloid-rich sublining, myeloid/FLS sublining, and

lymphoid niches (Figure 3G) and showed subtype-specific distri-

bution (Figure 3H). CCR7pos DC2s (mReg/MIR155pos) were

significantly enriched in the lymphoid niche, whereas the remain-

ing DC2 (CCR7-negative) were in the TGF-bpos myeloid-rich sub-

lining niche. DC3 and its iDC3 phenotype were significantly
of representative FOVs from active RA and remission RA synovium.

tissue (details STARMethods). Clusters represent regions (niches) from tissue

ferential gene expression.

ission RA synovium.

l cells in each FOV per identified niche in active RA (n = 36 FOVs, n = 3 patients)

exact p values on the graph.

ctive RA (n = 36) and Remission (n = 16) FOVs. Each dot represents one FOV.

Mann-Whitney, the exact p values on the graph.

rent niches of active RA synovium. Each dot represents one FOV. Data are

LEC10Apos STM per niche.

< 0.01 compared with any other niche (one-way ANOVA with Dunnett’s cor-

mphoid and lining myeloid-rich niches. The stack bar on the side shows the
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Figure 4. Distribution of CD4pos T cell clusters in ST across different joint conditions

(A) UMAP visualization of integrated ST and PB CD4pos T cell scRNA-seq data from ST of healthy (n = 3), active RA (n = 12), and RA in remission (n = 5) and from

matched PB of active RA (n = 3) across 6 independent experiments.

(legend continued on next page)
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enriched in the myeloid-rich lining niche (Figures 3I and 3J). In

summary, ST-DC subsets exhibit tissue-niche-specific distribu-

tion, suggesting distinct local functions in regulating adaptive

immunity.

Integrating DC and T cell subsets’ biology in RA ST
To infer the function of mapped DC subsets in active RA tissue,

we next mapped specific CD4pos T cell synovial clusters. First,

we deconvoluted ST T cell clusters across different disease

stages, spanning from naive-to-treatment RA to difficult-to-treat

RAandRA in disease remission using single-cell omics (Figure 4).

Integration of these data with a dataset from matched blood

aided allocation of naive versus memory status to the T cells.

We identified twelve distinct CD4pos T cell clusters: two naive

T cell clusters and ten memory T cells, including two central

memory (Tcm), six T effector memory (Tem), and Treg cell clus-

ters. As expected, ST was enriched in memory cells with a small

contribution of naive T cells, constituting less than 5% of the ST

CD4pos T cell pool. We integrated the ST part of this dataset with

single-cell spatial transcriptomic data as in Figure 3 to accurately

identify T cell clusters within the tissue (Figures S5D and S5E). As

expected, active RA synovium was enriched in T cells (6,153

T cells, median of 137 per FOV) compared with remission (294

T cells, median of 12 per FOV) (Figure 5A).

Prior to investigating ST-DC subset interactions with T cell

clusters in the tissue, we sought to uncover CD4pos T cell pheno-

types across the RA disease trajectory in our ST scRNA-seq da-

taset (Figures 4A–4E), providing deeper resolution to previously

identified ST T cell clusters in RA.42,52,53 Thus, we identified an

additional phenotype of T peripheral helper (Tph) cell54 that ex-

hibits higher expression of Tph activation markers, such as

PD-1, LAG3, and PRDM1, and high expression of CCL5, a po-

tential key chemokine initiating joint flares,53,55 in addition to

the hallmark Tph cell cytokine CXCL13. The Tph cell phenotype

characterized by CCL5 expression dominated in early naive-to-

treatment RA, whereas the classical CXCL13posCCL5-negative

Tph cells dominated in patients with persistent treatment-resis-

tant synovitis (Figures 4F and 4G), suggesting potential evolution

from acute CCL5-positive to classical Tph phenotype during dis-

ease progression. Another two large clusters of Tem cells in the

active RA synovium included (1) cells expressing TNFSF13B, en-

coding B cell activating factor (BAFF) (RORAposTNFSF13Bpos

cluster), which is a key survival factor for B cells.56 (2) The second

Tem cell cluster (CCL5posGZMApos) was distinguished by high

expression of CCL5 (Figure 4E) and granzyme A (GZMA) (Fig-

ure 4C), a trigger of inflammatory mediators from tissue fibro-

blasts,57 as well as IFN-g, a driver of co-stimulatory molecule

expression. This cluster was also characterized by high expres-
(B) Split UMAP visualizing data from PB versus ST.

(C) Heatmap illustrating ST T cell cluster markers (expressed in >40%of cells in a c

differentially expressed marker genes annotated based on greatest average logF

(D) Heatmap visualizing scaled differentially expressed genes from the KEGG c

clusters (criteria: expressed in >25% of cells per T cell cluster, with logFC > 0.5,

(E) Expression of Tph cell and CCL5pos Tem cell markers across ST CD4pos T ce

(F) Bar plots (mean ± SEM) showing relative proportion of naive T cells and two Tp

Whitney, the exact p values on the graph. Each dot represents healthy donor/pa

(G) Bar plots (mean ± SEM) showing relative proportion of two Tph cell clusters in

Dunn’s correction, exact p values on the graphs. c/bDMARDs, conventional or b

See also Figure S7 and Tables S2 and S3.
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sion of PD-1 and CD69 (Figure 4E), altogether suggesting a

highly activated pro-inflammatory Th1 cell state.

Next, neighborhood analysis inferred the T cell stimulatory

functions of distinct ST-DC subsets by identifying which T cell

phenotypes (clusters), described above, they interact with in tis-

sue (see STARMethods). The overall assessment of DC/T cell in-

teractions in the synovium revealed a higher number of direct in-

teractions (up to a distance of 40 mm, the diameter of a cell)

between myeloid ST-DCs and CD4pos T cells in active RA

compared with remission RA tissues (Figure 5B). In active RA,

we explored the interactions between specific ST-DC subsets

and CD4pos T cell clusters (Figures 5C and S6G) at two maximal

distances: 40 mm to capture the initial DC-driven T cell pheno-

types and 80 mm to capture potential daughter T cell phenotypes

resulting from this interaction. This revealed that each ST-DC

subset exhibited a distinct pattern of interactions with T cell

clusters, implying varied T cell stimulatory functions. Overall,

CCR7pos DC2s (encompassing mReg and its MIR155pos inter-

mediate stage) and iDC3s showed the highest statistically signif-

icant associations with T cells, potentially indicating the most

robust T cell stimulatory functions.

mReg DC2s interact with naive T cells in the ST
lymphoid niche
OnlymReg/MIR155pos showedstatistically significant interactions

with naive T cells—and the most significant interactions with Treg

cells among all DC subsets. Moreover, they exhibited the stron-

gest interactions with BAFF-producing T cells (TNFSF13Bpos)

and with CXCL13posCCL5neg Tph cells, suggesting a role in the

ectopic germinal center response in the synovium (Figure5C).His-

tograms showing the number of interactions of CCR7pos DC2s

(mReg/MIR155pos) with distinct T cell clusters at progressing dis-

tances confirmed the strongest interactions with naive T cells,

Treg cells, and classical CXCL13pos Tph in the lymphoid niche

that represents ectopic germinal center (Figures 5D and 5E).

Representative staining for mReg marker LAMP3 and spatial

transcriptomic images of the lymphoid niche illustrated high fre-

quency of mReg DCs in this niche and their close interactions

with naive T cells, Treg cells, and classical CXCL13pos Tph cells

(Figures 5F–5H).

In summary, CCR7pos (mReg/MIR155pos) DCs, but not other

DC subsets, interact with naive T cells in the lymphoid niche.

Although these T cells constitute less than 5% of the total

T cell population in the synovium, they are entirely located in

this niche. The highly mature state of mReg/MIR155pos DCs in

this geographical location is likely responsible for driving naive

T cells toward effector pathogenic function; for example,

CXCL13pos Tph cells in situ. Additionally, the regulatory gene
luster, with logFC > 0.25, and p < 0.05,MASTwith Bonferroni correction). Top 5

C per cluster.

ytokines and cytokine receptors pathway between different ST CD4pos T cell

and p < 0.05, MAST with Bonferroni correction).

ll clusters.

h cell clusters in PB and ST CD4pos T cell pool in active RA. Two-sided Mann-

tient.

ST CD4pos T cell pool across different joint conditions. One-way ANOVA with

iological disease-modifying anti-inflammatory drugs; D2T, difficult-to-treat.
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Figure 5. ST-DC subsets exhibit a different pattern of interactions with T cells in synovium

(A) Absolute number of ST CD4pos T cells in all spatially mapped cells per FOV in active RA (n = 36 FOVs) and RA in remission (n = 16 FOVs) tissues as in Figure 3.

Data are presented as a boxplot with median and inter-quartile range. Two-sided Mann-Whitney, the exact p values on the graph.

(B) Neighborhood analysis (see STAR Methods) showing direct (40 mm) and proximal (80 mm) interactions of myeloid DCs with CD4pos T cells in active RA as

compared with remission RA tissues. Number of FOVs as in (A).

(legend continued on next page)
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program of mReg DCs likely underlies their strong interactions

with Treg cells as part of an immune-response-induced negative

feedback mechanism.

ST-iDC3s activate CCL5pos Tem and CCL5pos Tph cells
in the synovial hyperplastic lining layer
The myeloid-rich hyperplastic lining layer is a unique feature of

active RA synovium and a dominant niche for DC3s and their

iDC3 phenotype (Figures 3I and 3J). Although at lower frequency

than in lymphoid niches, the myeloid-rich lining-layer niche con-

tained T cells, including highly activated CCL5pos Tph and

CCL5pos Tem of Th1 cells (expressing INF-g, PD-1, and CD69)

(Figures 6A and 6B). Neighborhood analysis across all niches

indicated that iDC3s preferentially interact directly (within

40 mm) with CCL5pos Tem cells compared with any other DC

cluster (Figure 5C). Such interactions extend to CCL5pos Tph

cells and, to a lesser extent, to other T cell clusters when exam-

ined over a wider 80-mm area, specifically in the myeloid-rich lin-

ing layer (Figures 5C, 6C, and 6D). Independent ligand-receptor

analysis of our synovial scRNA-seq datasets confirmed statisti-

cally significant cellular interactions between ST-iDC3s and both

CCL5pos Tem and CCL5pos Tph cells (Figure 6E) and identified

the potential modes of communication between these subsets

(Figure S7). The interactions of other DC3 phenotypes were

limited to Tcm cells (Figure 4C), suggesting that these DC3s

may maintain the reservoir of these long-lived cells in ST,

whereas their iDC3 phenotype might play a prominent role in

the activation of pathogenic CCL5pos Tem and CCL5pos Tph

cell clusters.

To test whether ST-iDC3 drives the activation of CCL5pos

T cells in active RA synovium, we established micro co-culture

systems of synovial-biopsy-sorted DCs with autologous mem-

ory PB CD4pos T cells. We chose memory T cells because path-

ogenic memory CD4pos T cells appear in RA years before clinical

symptoms, and their localization in the joints contributes to syno-

vitis.1 We included anti-CD3 antibody stimulation to mimic anti-

gen-induced TCR engagement and assessed T cell activation

using first scRNA-seq (Figures 6F–6H and S7A–S7C) and then

flow cytometry (Figures 6I and 6J). We compared the T cell-stim-

ulatory potential of patient-matched biopsy-sorted ST-iDC3s

(CLEC10AposCD1clow/neg) to ST-DC2s (CLEC10AposCD1chigh).

To accurately annotate the phenotypes of T cells that emerged

from the co-cultures, we integrated the co-culture’s scRNA-

seq data with a reference ST memory CD4pos T cell’s scRNA-

seq dataset (Figure S7D). A local inverse Simpson’s index
(C) Neighborhood analysis of interactions between specific ST myeloid DC clust

direct (40 mm) and proximal (80 mm) interactions with CD4pos T cells that have sign

are marked with gray (n = 36 FOVs in active RA).

(D) Coarse cell-type annotation in the lymphoid niche in representative FOVs fro

(E) Histograms illustrating the distances between CD1cposCCR7pos DC2s and CD

(F) Representative images of the lymphoid niche from active RA tissue showing

myeloid DC and T cell interactions, with specific T cell clusters identified by sp

(green), LAMP3 (red), and nuclei DAPI (blue) showing mReg DC in the lymphoid

independent experiments). Scale bar, 20 mm.

(G) Representative image showing interactions of CD1cposCCR7posDC2 cells with

Tph cells in active RA ST based on spatial transcriptomic deconvolution.

(H) Proportion of T cell clusters that showed interactions with CD1cposCCR7pos DC

way ANOVA with Dunnett’s corrections, the exact p values on the graph.

See also Figures S5 and S6.
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(LISI) score of 1.82, where 1 indicates no mixing and 2 indicates

optimal mixing of in vitro and in vivo T cells, suggests a good de-

gree of integration between co-cultured and tissue T cells (Fig-

ure S7F). Comparison of the T cell frequency between distinct

co-culture conditions revealed a significant increase in the rela-

tive frequency of CCL5pos Tem cells in co-cultures with ST-

iDC3s compared with those with patient’s biopsy-matched ST-

DC2s (Figures 6H and S7G). This increase was accompanied

by enhanced expression of the activation marker ICOS in

CCL5pos Tem cells (Figure S7H), whereas the expression of the

proliferation marker PCNA and TCF7 was comparable across

different co-culture conditions (Figures S7I and S7J). These find-

ings indicate that ST-iDC3s were more effective in activating

CCL5pos Tem cells compared with ST-DC2s.

In synovial biopsies with sufficient ST-DCs, we used a rigorous

CITE-seq-based and index-plate-sequencing-validated gating

strategy to sort specific ST-DC subsets (Figures 1J, S3, and

S4) and expanded our analysis of co-cultured T cells to include

protein expression. PB memory CD4pos T cells were co-cultured

with patient-matched ST-DC2s or ST-iDC3s in the presence of

anti-CD3 antibody and IL-15 to provide an additional survival

signal for memory T cells. Intracellular cytokine staining of

T cells was used as a phenotypic readout for Tem (CCL5 and

IFN-g) and Tph (CCL5 and CXCL13) cells’ activation at the end

of the co-cultures. Both ST-DC2s and ST-DC3s enhanced

anti-CD3-driven T cell activation, as evidenced by intracellular

cytokine staining. However, ST-iDC3s were significantly more

effective than biopsy-matched ST-DC2s in inducing CCL5,

CXCL13, and IFN-g production by PD1pos memory T cells

(Figures 6I, 6J, and S7K). Additionally, CCL5-producing T cells

co-cultured with ST-iDC3s showed higher expression of the acti-

vation marker CD69 and PD-1 compared with those co-cultured

with ST-DC2s (Figure S7L), reminiscent of the CCL5pos Tem/Tph

cell phenotypes found in tissue (Figure 4E). Taken together,

these findings confirmed our tissue spatial transcriptomics and

initial co-cultures, indicating that ST-iDC3s activate memory

CCL5pos Tem and CCL5pos Tph cells.

To dissect the relationship between two CCL5pos T cell clus-

ters driven by ST iDC3s, we conducted RNA velocity-based cell

trajectory analysis on all ST CD4pos T cell clusters (Figure 6K).

These data inferred that CCL5posCXCL13posTph cells can orig-

inate from CCL5pos Tem cells, providing an explanation for the

colocalization of these two CCL5-positive T cell clusters with

iDC3s in tissue and their synchronized increase in co-cultures

with ST-iDC3s. This analysis also inferred the subsequent
ers, DC1 and CLEC10Apos STMs, and CD4pos T cells in active RA tissue. The

ificant Z scores are labeled with yellow-red colors, whereas insignificant ones

m active RA synovium.

4pos T cell clusters in all niches or specifically in the lymphoid niche.

anti-CD3 immunofluorescence staining (green), followed by deconvolution of

atial transcriptomics (CosMx). Representative images of IF staining for CD1c

niche of synovium. This image is representative of ST from active RA (n = 6, 3

FOXP3pos Treg cells, CD55posPDE4Bpos naive T cells, and CXCL13posMAFpos

2 cells in the lymphoid niche. Data are presented as a bar plot with SEM. One-
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Figure 6. Synovial tissue iDC3s support CCL5pos Tem/CCL5pos Tph cells’ activation

(A) Representative image of the myeloid-rich lining niche from active RA tissue identified by spatial transcriptomics, followed by the image of IF staining with anti-

CD3 (green) in this niche as in Figure 3. Scale bar, 100 mm.

(legend continued on next page)
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progression of CCL5pos CXCL13pos Tph to classical CXCL13pos

Tph cells, reflecting the progression in memory Tph phenotypes

observed during the RA trajectory from early RA to chronic, diffi-

cult-to-treat disease (Figure 4G). Another notable develop-

mental trajectory of CXCL13pos Tph cells in the synovium is in-

ferred from naive T cells. This accounts for the colocalization

of naive T and CXCL13pos Tph cells with mReg DC2s in the

lymphoid niche. Together, these data indicate that ST-iDC3s

are responsible for the activation of CCL5pos Tem cells and their

potential differentiation into CCL5pos Tph cells in the hyper-

plastic, myeloid-rich synovial niche.

An inflammatory signature of PB iDC3s predicts disease
flare in remission RA
To assess the contributions of distinct ST-DC subsets to the

initiation of joint pathology, we examined the phenotypes of

their blood predecessors in a human model of disease flare

following treatment withdrawal (the BioRRA cohort58,59) (Fig-

ure 7A). In RA patients (n = 12) who achieved disease remission,

we investigated the frequency and transcriptomic signature of

PB DC1s, DC2s, and DC3s9,10 at baseline (the time of treatment

withdrawal) and at a second follow-up time point. This second

time point was either at the occurrence of disease flare during

the 6-month patient follow-up period (flare endpoint) or at the

end of 6 months if the patient maintained drug-free remission

(drug-free remission endpoint). The blood myeloid cell subsets

and their phenotypes were deconvoluted with a 399-immune-

gene panel in scRNA-seq (Figures 7B and 7C). Among the 12

patients investigated, 8 flared whereas 4 remained in drug-

free remission after treatment withdrawal. The outcomes of flare

or remission informed a categorical analysis of myeloid DC sub-

sets at baseline and follow-up time points. We did not observe

statistically significant differences in the frequencies of different

PB DC subsets at baseline or at the time of disease flare

(Table S4). However, comparison of their transcriptomic profiles

at baseline revealed a pro-inflammatory gene signature (upre-

gulation of expression of 33 genes) that distinguished patients

who subsequently flared from those who would have remained
(B) Distribution of CD4pos T cell clusters in themyeloid-rich lining layer niche. Each

of specific T cell clusters per this niche (bar plots with SEM). One-way ANOVA w

(C) Histograms illustrating the distances between ST-iDC3s andCD4pos T cell clus

of active RA FOVs as in Figure 5). Star represents interactions with significant Z

(D) Representative images showing interactions of ST-iDC3s with CCL5posGZMAp

transcriptomic deconvolution.

(E) Heatmap showing the absolute number of predicted significant (p < 0.05) cellu

Figure 1B (CellPhoneBD).

(F) DC2s and iDC3s were sorted from ST biopsies of patients with active RA (4 inde

T cells for 5 days (details in STAR Methods).

(G) UMAP visualizing T cell phenotypes from the co-cultures with ST-DCs after in

(H) Violin plot, displaying the median, depicts the percentage of CCL5posGZMAp

DC2s and ST-iDC3s. Data from 4 active RA synovial biopsies where both DC su

sequenced co-culture T cells ranged from 101 to 1,698.

(I) An example of surface PD-1 and intracellular CCL5 and CXCL13 protein express

iDC3s (sorted as in Figure S4) in the presence of anti-CD3 antibody (0.25 mg/mL) an

15 (20 ng/mL) only.

(J) Dot plot summarizing induction of cytokine production by PD-1pos T cells co-cu

value on the graph.

(K) Single-cell trajectory of ST CD4pos T cells with RNA velocity analysis visualize

spliced versus unspliced RNA counts.

See also Figure S7 and Table S3.
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in remission. The upregulated expression of 24 of these pre-

flare genes persisted in those patients predicted to flare to the

onset of flare (Figure 7D). This gene panel include increased

expression of integrins that facilitate migration into tissue

(e.g., ITGAM and ITGB2), pattern recognition receptors (e.g.,

TLR2 and CLEC4E), and alarmins (e.g., S100A12, S100A9,

and LGALS3), suggesting an increased activation (Figure 7E).

This pre-flare gene module was mostly confined to the PB

iDC3 population (Figure 7F) and the ST-iDC3 clusters that

mature from them in tissue (Figure 7G). This suggests that the

activation of blood predecessors of ST-iDC3 clusters precedes

pathology in the joint and supports their role in the initiation of

synovitis, e.g., by driving the activation of CCL5-producing

Tem/Tph cells in tissues.

In addition, receiver-operating characteristic curve (AUC-

ROC) analysis of the pre-flare iDC3 gene module exhibited

high sensitivity and specificity in stratifying these two remission

outcome groups at baseline (Figure 7H). To verify this in an inde-

pendent dataset, we investigated the expression of genes from

the DC-flare-associated gene module across the weeks leading

to flare and during flare in the longitudinal disease flare

PRIMEcell study.60 This dataset encompasses over 364 time

points, both preceding and during eight flares, spanning a

period of 4 years. We observed a fluctuating increase in the

expression of the genes in our module starting 4 weeks before

flare and persisting throughout the flare (Figure 7I), confirming

the biomarker potential of the iDC3 signature in predicting dis-

ease flares.

DISCUSSION

This study delineated the heterogeneity and distinct functions of

ST myeloid DCs, providing insights into mechanisms that might

maintain tissue tolerance in health, drive autoimmunity in RA, or

mediate flares during sustained remission.

We discovered that healthy ST contained, beneath the lining

layer of TREM2pos STM, a tissue-resident AXLpos DC2 cluster

with tolerogenic phenotype that likely differentiated from
dot represents one FOV (n= 36 active RA). Data are presented as the proportion

ith Dunnett’s corrections, the p values on the graph.

ters in all niches or specifically in themyeloid-rich lining niche (neighbor analysis

score, as depicted in Figure 5C.
os Tem cells and CCL5posCXCR6pos Tph cells in active RA ST, based on spatial

lar interactions between T cell and DC subsets based on scRNA-seq data from

pendent experiments) and co-cultured with autologous bloodmemory CD4pos

tegration of the co-culture scRNA-seq data with the ST T cell scRNA-seq data.
os Tem cells in co-cultures with synovial-biopsy-derived patient-matched ST-

bsets were present. t test, p value on the graph. The number of successfully

ion by CD4pos memory PB T cells co-cultured with autologous ST-DC2s or ST-

d IL-15 (20 ng/mL) or in the presence of anti-CD3 antibody (0.25 mg/mL) and IL-

lturedwith patient-matched ST-DC2s and DC3/iDC3s (n= 4RA). Paired t test, p

d on UMAP. The direction of arrows infers the path of cell trajectory based on
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Figure 7. Transcriptomic profile of PB iDC3s

of RA in remission is predictive of flare

(A) The layout of The Biomarkers of Remission in RA

study (the BioRRA study). cDMARDs, conventional

disease-modifying anti-rheumatic drugs.

(B) UMAP visualization of ten PB myeloid cell

clusters identified in scRNA-seq analysis using an

immune panel (399 genes).

(C) Heatmap illustrating the average logFC for

genes identified as cluster markers (expressed in

>40% of cells per cluster, with logFC > 0.25, and

p < 0.05, MAST with Bonferroni correction). Top 5

differentially expressed marker genes annotated

based on greatest average logFC per cluster.

(D) Schematic detailing flare-associated gene se-

lection in myeloid dendritic cells (DC2, DC3, and its

iDC3 phenotype) for preparation of DC-flare-asso-

ciated gene module score. Venn diagram illustrates

differentially expressed genes shared between

baselineandend-point conditions (with logFC>0.25,

p < 0.05, Wilcoxon rank sum test with Bonferroni

correction).

(E)Heatmapvisualizingaveragescaledexpressionof

24 genes from theDC-flare-associated genemodule

score by sample and condition time points.

(F) UMAP visualization of the expression of PB

myeloid DC-flare-associated gene module score by

distinct PB DC subsets indicates the highest

expression in PB iDC3s.

(G) UMAP visualization of the expression of PB

myeloid DC-flare-associated gene module by ST

myeloid DCs indicates the highest expression in ST-

iDC3 clusters.

(H) Receiver-operating characteristic curves (ROC-

AUCs) illustrate the performance of the average

flare-associated module score at predicting flare

upon treatment withdrawal at baseline in PB iDC3s.

(I) Heatmap visualizingmeanscaledbatch-corrected

expression of genes from BioRRA flare-associated

gene set across weeks relative to flare and during

flare in the PRIME-cell dataset of disease flare (Or-

ange et al.60). Data are generated from an index pa-

tient over 364 time points, both preceding andduring

eight flares, spanning a period of 4 years.

See also Tables S1 and S3.
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infiltrating KLF4pos DC2s. Together with inflammation-resolving

TREM2pos STMs,30,31 they may comprise a myeloid innate sys-

tem responsible for maintenance of ST immune homeostasis.

In the pathogenic tissue niches of active RA, a different pheno-

typic cluster of DC2s matured and iDC3s emerged. Infiltrating

KLF4pos DC2s differentiated into mReg DCs with a strong immu-

nogenicanddLNmigratoryprogram,aprocessdrivenbyMIR155.

mReg DC2s and their highly activated CCR7posMIR155pos inter-

mediate stage localizedwithin the ectopic lymphoid niches devel-

oping in the synovial sublining layer, where they likely induce the

differentiation of naive T cells, specifically homing to this niche,

into CXCL13pos Tph cells, fueling the germinal center response

in active RA synovitis. These interactions resemble those recently

observed between mReg DCs and CXCL13pos Tph cells in liver

and lung tumor niches.54,61 In addition, the hyperplastic aberrant

lining layer that develops from inflammatory subsets of

MerTKneg macrophages and replaces the protective TREM2pos
STM30,62 became the niche for a highly activated tissue

FABP5pos phenotype of the iDC3 cluster. The iDC3s activated

infiltrating memory CCL5pos Tem cells and induced their differen-

tiation into CCL5posCXCL13pos Tph cells that characterize early

synovitis and are predicted to differentiate into the classical

CXCL13pos cells that dominate in later disease stages. Study of

drug-free remission RA demonstrated that a pro-inflammatory

gene module characterizing tissue iDC3s appeared in a PB iDC3

cluster prior to flare onset. This finding, together with a recent

report showing an increase in CCL5pos Tem cells (GZMApos) at

the onset of flare,59 supports the potential role of the iDC3-

CCL5pos Tem/Tph cell axis as a critical initiating step in localizing

immune responses in joints. This suggests that iDC3-memory

CCL5pos Tph might drive early synovitis and mediate progression

from amyeloid to a lymphoid pathotype1,63 with ectopic germinal

centers homing autoreactive naive T cells, leading to in situ devel-

opment of Tph cells driven by mReg/MIR155pos DC2s. Studies
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with longitudinal ST biopsies, spanning from pre-clinical RA to

onset of arthritis, are needed to validate this hypothesis.

In sustained disease remission, RA ST exhibited the resolution

of the hyperplastic myeloid-rich lining, as well as lymphoid

niches in the sublining, and showed the restoration of a protec-

tive TREM2-positive STM lining layer.62 This was accompanied

by a decrease in the frequency of iDC3s and restoration of

DC2s beneath the lining layer, resembling the structure of

healthy synovium. However, these cells did not fully acquire

the AXLpos DC2 tolerogenic program characteristic of healthy tis-

sue. Instead, they stalled at a predicted intermediate stage,

KLF4posATF3pos DC2s, showing the restoration of only some,

but not all, of the tolerogenic potential characteristic of healthy

tissue DC2s. This suggests a latent potential for disease flare

in the joints of patients in remission. Plausible mechanisms pre-

venting the acquisition of the AXLpos tolerogenic DC2 phenotype

in remission tissue remain to be investigated and may include

epigenetic changes in their bone marrow precursors and/or the

tissue niches, both as a result of prior chronic inflammation.

In summary, our data suggest that therapeutic strategies to

block the pathogenic functions of ST-iDC3s and reinstate the tol-

erogenic functions of the ST AXLpos DC2 cluster might be the

necessary step-change for resolution of synovitis and transition

from remission into self-maintained immune homeostasis.

Limitations of the study
The main limitation of this study is the lack of functional insight

into how ST-DC subsets regulate RA autoantigen-specific naive

T cells, compounded by the extremely low frequency of such

T cells in the PB of RA patients.64
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5. Smolen, J.S., Landewé, R.B.M., Bergstra, S.A., Kerschbaumer, A.,

Sepriano, A., Aletaha, D., Caporali, R., Edwards, C.J., Hyrich, K.L.,

Pope, J.E., et al. (2023). EULAR recommendations for the management

of rheumatoid arthritis with synthetic and biological disease-modifying

antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 82, 3–18. https://

doi.org/10.1136/ard-2022-223356.

6. de Moel, E.C., Derksen, V.F.A.M., Trouw, L.A., Bang, H., Goekoop-

Ruiterman, Y.P.M., Steup-Beekman, G.M., Huizinga, T.W.J., Allaart,

C.F., Toes, R.E.M., and van der Woude, D. (2018). In RA, becoming sero-

negative over the first year of treatment does not translate to better chan-

ces of drug-free remission. Ann. Rheum. Dis. 77, 1836–1838. https://doi.

org/10.1136/annrheumdis-2018-213823.

7. Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control

of immunity. Nature 392, 245–252. https://doi.org/10.1038/32588.

8. Villani, A.C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher,

J., Griesbeck, M., Butler, A., Zheng, S., Lazo, S., et al. (2017). Single-cell

RNA-seq reveals new types of human blood dendritic cells, monocytes,

and progenitors. Science 356, eaah4573. https://doi.org/10.1126/sci-

ence.aah4573.

9. Dutertre, C.A., Becht, E., Irac, S.E., Khalilnezhad, A., Narang, V.,

Khalilnezhad, S., Ng, P.Y., van den Hoogen, L.L., Leong, J.Y., Lee, B.,

et al. (2019). Single-cell analysis of human mononuclear phagocytes re-

veals subset-definingmarkers and identifies circulating inflammatory den-

dritic cells. Immunity 51, 573–589.e8. https://doi.org/10.1016/j.immuni.

2019.08.008.

10. Bourdely, P., Anselmi, G., Vaivode, K., Ramos, R.N., Missolo-Koussou, Y.,
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TotalSeq�-A0255 anti-human Hashtag 5 BioLegend Cat# 394609, RRID:AB_2750019

TotalSeq�-A0256 anti-human Hashtag 6 BioLegend Cat# 394611, RRID:AB_2750020

Purified anti-human CD3 BioLegend Cat# 300401

Biological samples

Ultrasound-guided RA synovial

biopsy & RA peripheral blood

SYNGem, Fondazione Policlinico

Universitario A. Gemelli IRCCS

28485/18, 30973/19 and 14996/20

Normal synovium attending arthroscopy

for meniscal tear or cruciate ligament damage

NHS Greater Glasgow & Clyde West of Scotland Research

Ethics Committee (19/WS/0111)

Healthy donor peripheral blood University of Glasgow West of Scotland Research

Ethics Committee (19/WS/0111)

Peripheral blood RA remission patients BIORRA, University of Newcastle National Health Service Health

Research Authority (14/NE/1042)
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Chemicals, peptides, and recombinant proteins

Human serum Sigma Cat# H3667-20ML

X-VIVO 15 Serum-free Cell Medium Lonza Cat# LZBE02-060F

Human IL-15 Recombinant Protein PeproTech Cat# 200-15

Fixable Viability Dye eFluor 780 eBiosciences Cat# 65-0865-14

Liberase� TM Research Grade Roche Cat# 5401127001R

Accutase BioLegend Cat# 423201

CryoStor CS10 StemCel Stem cell technologies Cat# 100-1061

Bambanker Nippon Genetics Cat# BB02

RPMI 1640 Medium Gibco Cat# 11875093

eBioscience� Foxp3 / Transcription

Factor Staining Buffer Set

eBioscience Cat# 00-5523-00

Histopaque�-1077 Sigma-Aldrich Cat# 10771

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat# 15140122

eBioscience� Cell Stimulation Cocktail

(plus protein transport inhibitors) (500X)

eBioscience Cat# 00-4975-93

Fetal Bovine Serum Sigma-Aldrich Cat# F9665

L-Glutamine Sigma-Aldrich Cat# G7513

DPBS 1X W-OUT Calcium ThermoFisher Cat# 14190094

Ethylenediaminetetraacetic acid

disodium salt solution

Sigma-Aldrich Cat# E7889

LPS Sigma-Aldrich Cat# L6529

Collagenase-D Roche Cat# 11088866001

Heparin sodium Wockhardt UK Cat# FP1079

Critical commercial assays

Chromium Next GEM Single Cell 3’

GEM, Library & Gel Bead Kit v3.1

10X Genomics Cat# PN-1000121

Chromium Next GEM Chip G Single Cell Kit 10X Genomics Cat# PN-1000120

Single Index Kit T Set A 10X Genomics Cat# PN-1000213

BD Rhapsody Cartridge Reagent Kit BD Bioscience Cat# 633731

BD Rhapsody cDNA Kit BD Bioscience Cat# 633773

BD Tag library preparation kit BD Bioscience Cat# 633774

BD Rhapsody Immune Response Panel BD Bioscience Cat# 633750

BD Rhapsody WTA BD Bioscience Cat# 633801

BD Human Single-Cell Sample Multiplexing Kit BD Bioscience Cat# 633781

SORT-seq Single cell discoveries N/A

EasySep� Human Memory CD4+

T Cell Enrichment Kit

Stem cell technologies Cat# 19157

miRNeasy Micro Kit Qiagen Cat# 217084

miScript SybR Green PCR kit Qiagen Cat# 1046470

miScript Reverse transcription kit II Qiagen Cat# 218161

miScript pre-AMP PCR kit Qiagen Cat# 331451

Deposited data

scRNAseq/CITEseq of healthy, RA

and remission RA synovial tissue

This paper Array Express E-MTAB-14213

Spatial transcriptomics of active RA

and remission RA synovial tissue

This paper BioStudies S-BSST1483

SORT-seq data of synovial tissue myeloid DC This paper Array Express E-MTAB-14198

ScRNAseq of paired peripheral

blood and synovial tissue

This paper Array Express E-MTAB-14192
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scRNAseq of ST-DC and autologous

CD4 memory T cell coculture

This paper Array Express E-MTAB-14191

scRNAseq of remission RA BioRRA cohort This paper Array Express E-MTAB-14169

SMARTseq2 single cell transcriptome

data of human blood and tissue MNP

Mulder et al.18 GEO GSE178209

scRNAseq of healthy, active RA and

remission RA synovial tissue

Alivernini et al.30 Array Express E-MTAB-8322

PRIME cell bulk RNA seq blood RA flare data Orange et al.60 10.1056/NEJMoa2004114

Bulk RNA seq of murine

CD11bposCD103pos myeloid DC2

K€astele et al.65 GEO GSE160156

Validation of ST-DC Cluster Markers in

independent ST scRNAseq dataset

Zhang et al.42 https://doi.org/10.1038/

s41586-023-06708-y

IF staining raw data This paper Bioimage Archive S-BIAD1388

Experimental models: Organisms/strains

C57BL/6J (WT) Jackson laboratories Strain #:000664

B6.Cg-Mir155tm1Rsky/J (miR-155 deficient) Jackson laboratories Strain #:007745

Oligonucleotides

10x Genomics SI-PCR primer: 5’AATGATACG

GCGACCACCGAGATCTACACTCTTTCCCTACA

CGACGC*T*C; * indicates a phosphorothioate bond

Eurofins Genomics N/A

ADT cDNA PCR additive primer:

5’CCTTGGCACCCGAGAATT*C*C;

* indicates a phosphorothioate bond

Eurofins Genomics N/A

HTO cDNA PCR additive primer v2:

5’GTGACTGGAGTTCAGACGTGTGCTCTTCC

GAT*C*T; * indicates a phosphorothioate bond

Eurofins Genomics N/A

Illumina Small RNA RPI1 primer:

5’CAAGCAGAAGACGGCATACGAGATCGT

GATGTGACTGGAGTTCCTTGGCACCCGAGA

ATTC*C*A; * indicates a phosphorothioate bond

Eurofins Genomics N/A

Illumina TruSeq D701_LONG primer:

5’CAAGCAGAAGACGGCATACGAGATCGAG

TAATGTGACTGGAGTTCAGACGTGTGCTCTTC

CGAT*C*T; * indicates a phosphorothioate bond

Eurofins Genomics N/A

MIMAT0000646/hsa-miR-155-5p Qiagen Cat# MS00031486

Hs_RNU6-2_11 Qiagen Cat# MS00033740

Dharmafect 3 transfection system Dharmacon Cat# T-2003-02

hsa-miR-155 mimic Dharmacon Cat# C300647-05-305

negative control miRNA mimic Dharmacon Cat# CN-001000-01-05

negative control labelled with 20nM

Dy547 fluorochrome

Dharmacon Cat# CP-004500-01-05

Software and algorithms

FlowJo (10.8.2) BD Bioscience https://www.flowjo.com/

Cell Ranger (7.0.0) 10x Genomics https://www.10xgenomics.com/

products/chromium-analysis#cell-ranger

BD Genomics Rhapsody Analysis CWL (1.9.1) SevenBridges https://www.sevenbridges.com/

Seurat (4.0.3) Stuart et al.66 https://satijalab.org/seurat/

SoupX (1.6.2) Young and Behjati67 https://github.com/

constantAmateur/SoupX

DoubletFinder (2.0.3) McGinnis et al.68 https://github.com/chris-mcginnis-

ucsf/DoubletFinder

cellhashR (1.0.3) Boggy et al.69 https://github.com/BimberLab/cellhashR
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Souporcell (2.5) Heaton et al.70 https://github.com/wheaton5/souporcell

SeuratWrappers (0.3.0) Seurat https://github.com/satijalab/

seurat-wrappers/

Harmony (1.2.0) Korsunsky et al.71 https://github.com/immunogenomics/

harmony

PROGENy (1.24.0) Schubert et al.72 https://github.com/saezlab/progeny

pheatmap (1.0.12) https://github.com/

raivokolde/pheatmap

N/A

Velocyto (0.17) La Manno et al.73 https://github.com/velocyto-team/

velocyto.py

SeuratDisk (0.0.0.9019) https://github.com/

mojaveazure/seurat-disk

N/A

scanpy (1.9.3) Wolf et al.74 https://github.com/scverse/scanpy

scvelo (0.3.1) Bergen et al.75 https://github.com/theislab/scvelo

AnnData (0.9.1) https://github.com/

scverse/anndata

N/A

PAGA (1.3.3) Wolf et al.76 https://github.com/theislab/paga

CellphoneDB (5.0) Troulé et al.77 https://github.com/ventolab/

CellphoneDB

Python (3.8) Python Software Foundation https://www.python.org/

R (4.2.2) The R Foundation https://www.r-project.org/

ktplots (2.3.0) Troulé et al.77 https://github.com/zktuong/ktplots

Mesmer (DeepCell) Greenwald et al.49 https://github.com/vanvalenlab/

deepcell-tf/blob/master/notebooks/

applications/Mesmer-Application.ipynb
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IgA- Rheumatoid Factor ELISA Assay Orgentec Diagnostika,

Bouty-UK

Cat# ORG522A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANTS

Human participants
Patients recruitment and management

To study ST-DCs and their interactions with T cells, 86 patients fulfilling the EULAR classification criteria revised criteria for RA84 were

enrolled and underwent ultrasound-guided ST biopsy of the knee or the wrist as a part of ongoing recruitment to the SYNGem

cohort30,85,86 (Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS – Università Cattolica del Sacro

Cuore, Rome). RA patients were stratified into treatment-naı̈ve, treatment-resistant RA (inadequate responders to conventional or

biological Disease Modifying Anti-Rheumatic Drugs, c/b DMARDs), difficult-to-treat RA (inadequate responders to two or more

bDMARDs)87 and patients in sustained (>9 months) clinical and ultrasound steroid-free remission maintained by stable conventional

and/or biologic-DMARDs.86 Healthy donors (n=12) attending arthroscopy for meniscal tear or cruciate ligament damage, with normal

synovium (macroscopically and by MRI) were included as a control group (University of Glasgow). The criteria for RA patients in sus-

tained clinical remission included (i) DAS44 (disease activity score in 44 joints)<1.6 or DAS28<2.6 at 3 sequential assessments (each

3months apart), and (ii) ultrasound remission (Power Doppler negativity byUS assessment at 3 sequential evaluations, each 3months

apart).30,86,88 The clinical and laboratory evaluation of each RA patient enrolled included DAS based on the number of tender and

swollen joints of 44 or 26 examined, plus the erythrocyte sedimentation rate (ESR) and plasma C-reactive protein (CRP). Peripheral

blood samples were tested for IgA-RF and IgM-RF (Orgentec Diagnostika, Bouty-UK), and ACPA (Menarini Diagnostics-Italy) using

commercial Enzyme-Linked Immunosorbent Assay (ELISA) and ChemiLuminescence Immunoassay (CLIA) respectively. Peripheral

blood from additional 12 healthy donors matched by age and sex to the RA patients was collected.

To study the peripheral blood predecessors of ST dendritic cell clusters we used the BioRRA RA disease remission cohort.58,59

Patients fulfilling the American College of Rheumatology (ACR) / European Alliance of Associations for Rheumatology (EULAR)

2010 or ACR 1987 classification criteria for RA84,89 and in remission (DAS28-CRP< 2.4 and no Power Doppler signal on a 7-joint ul-

trasound examination) on cDMARDs (methotrexate, sulfasalazine and/or hydroxychloroquine therapy) stopped all DMARD therapy

without tapering. Other medications, including non-steroidal anti-inflammatory drugs were continued if required. Study reviews were

scheduled atmonths 1, 3 and 6, with additional study visits if requested by the patient. During each review, themaintenance of remis-

sion or the emergence of disease flare (defined as DAS28-CRP R 2.4) was recorded.

The study protocols were approved by the Ethics Committee of the Università Cattolica del Sacro Cuore (28485/18, 30973/19 and

14996/20 for the SYNGem cohort), by the Northeast Tyne &Wear South Research Ethics Committee (National Health Service Health

Research Authority, reference 14/NE/1042 for the BioRRA cohort) and by the West of Scotland Research Ethics Committee (19/WS/

0111 for healthy donors). Use of BioRRA samples was authorised by the Newcastle Biobank Committee under the approval of the

Northeast – Newcastle &North Tyneside 1 Research Ethics Committee (17/NE/0361). All subjects provided signed informed consent.

The exact number of patients constituting different data set and patients’ demographic, and clinical information are provided in

Table S1.

Animals
C57BL/6J (WT) and Cg-Mir155tm1Rsky/J were purchased from Jackson laboratories) and bred and maintained in groups of 1-5 an-

imals per cage. Males aged 8 to 12 weeks were used for experimentation, as described in the method details section, in accordance

with the approved protocols by the UK Home Office animal licenses.

METHOD DETAILS

Semiquantitative histological assessment of synovitis degree
Synovial tissue specimens were fixed in 10% neutral-buffered formalin and embedded in paraffin. Briefly, paraffin-embedded ST

specimens were sectioned at 3mm. Sections were stained for Haematoxylin and Eosin as follows: sections were deparaffinized in

xylene and rehydrated in a series of graded ethanol, stained in haematoxylin and counterstained in Eosin/Phloxine. Finally, sections

were dehydrated, cleared in xylene and mounted with Bio Mount (Bio-Optica). Slides were examined using a light microscope (Leica
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DM 2000). The severity of synovitis was graded according to the three synovial membrane features (synovial lining cell layer, stromal

cell density and inflammatory infiltrate), each ranked on a scale from none (0), slight (1), moderate (2), and strong (3). The values of the

parameters were summed and interpreted as follows: 0–1 no synovitis, 2–4 low-grade synovitis, and 5–9 high-grade synovitis.85

Sample preparation for single cell RNAseq and CITEseq of peripheral blood and ST
To investigate STmyeloid DC and T cell heterogeneity in RA, we sequenced the transcriptomic profile of 143,851 cells fromperipheral

bloodmononuclear cells (PBMC) (n=8, including 3matchedwith STs) and ST (ST) biopsies (n=34). The latter includes ST from healthy

donors (n=7), patients with active RA (n=18) and patients in sustained remission (n=9). Synovial biopsies were taken using 14G Pre-

cisa Needle (HS Hospital Service, Italy) in ultrasound-guided protocol,30,90 and digested as described previously.30,42,52 All live cells

or CD45pos immune cells, were FACS sorted, after exclusion of dead cells with Fixable Viability Dye eFluor� 780 (eBiosciences).

Maximum 20,000 immune cells from blood or tissue cells were sorted into Protein LoBind 1.5 ml Eppendorf tube containing

300 ml of RPMI media with 10% of FCS. Cells were loaded onto a Chromium Controller (10X Genomics) for single-cell partitioning,

followed by library preparation using Single-Cell 3’ Reagent Kits v3.1. For 3 healthy ST and 4 ST from active RA (Figure S1), Totalseq

Hashtag were used (Biolegend #394601, #394603, #394605, #394607, #394609) to combine 2 samples per run, and TotalSeq�-A

Human Universal Cocktail (V1.0) was used to collect protein expression (CITE-seq) data together with transcriptome data. Single-cell

libraries were sequenced on the Illumina HiSeq 4000 sysTem to a minimum depth of 50k reads/cell.

ST-DC index SORT-seq, flow cytometry evaluation of ST-DC subsets’ frequency and sorting for the co-cultures with
autologous T cells
CITEseq (Figure S3) and our previous data on ST myeloid cells30 provided surface markers for the gating strategy to evaluate ST-DC

subset frequency and sort them for co-cultures with T cells, which was validated in ST-DC index SORT-seq (Figure S4). ST cell sus-

pensions were stained with Fixable Viability Dye eFluor� 780 (eBiosciences) and a CITEseq-guided antibody panel (Biolegend) to

identify distinct DC subsets. The gating strategy was based on fluorescence minus one (FMO) and/or unstained controls. Catalogue

numbers and fluorochromes of antibodies are provided in the key resources table. Briefly, live cells and then CD45pos cells were

gated. In the next step, lineage-positive cells expressing CD3 (T cells), CD19/20 (B-cells), CD15 (neutrophils), CD117 (mast cells),

and CD56 (NK/NKT cells) were excluded. Subsequently, cells expressing high levels of HLA-DR or HLA-DR and CD11c were gated.

This was followed by gating cells negative for the ST macrophage markers, FOLR2&MerTK. Cells expressing FOLR2 and CLEC10A

are CLEC10Apos STM. Gating on FOLR2&MERTK-negative, CLEC10A and CD39&32-positive cells captures all clusters of DC2, DC3

and its iDC3 phenotype, and exclude CD14posCD16pos tissue monocytes and TNFposICAM1pos STMs because they lack or show low

expression of CLEC10A and CD32&39. Both DC3 and its iDC3 phenotypes as well as SPP1pos STM clusters express CD9 but

SPP1pos STM cluster can be excluded from DCs by the lack of CLEC10A. CLEC10A-positive CD32&39-positive DCs were gated

into different subtypes based on the combination of CD1c and CD14 expression: DC2 by high CD1c, iDC3 by low CD1c and high

CD14 expression, DC3 by low CD1 and lack of CD14.

To validate this sorting strategy, ST-DC2, DC3 and its DC3 phenotypes, as well as SPP1pos and CLEC10Apos STMs to serve as

negative controls, were sorted using Sony MA900 directly into two 384-well plates to perform ST-DC index SORT-seq (a modified

version of CEL-Seq2) (Figures S4A and S4B). Library generation and sequencing were provided by Single Cell Discoveries (Utrecht,

Netherlands). Read alignment and generation of count matrices from raw data were performed using STAR (v 2.7.11a) pipeline

against the Human Genome (GRCh38-3.0.0) and performed UMI counting. The ST-DC index SORT-seq confirmed the accuracy

of the ST-DC subset gating strategy (Figure S4C). This gating strategy was used for the co-cultures of ST-DC subsets with PB mem-

ory CD4pos T cells, in which T cell phenotypes were evaluated by intracellular cytokine production, and expression of surface cos-

timulatory molecules (Co-culture-2 below). The same gating strategy was also used to evaluate the frequency of ST-DC subsets in

synovial biopsies from patients with active RA and RA in disease remission (Figures 1J and 1K). For the initial ST-DC subset/T cell co-

culture experiment (Co-culture-1), we used a smaller panel that included markers for the exclusion of lineage-positive cells as above

(dump-channel). The STMs were excluded by high surface expression of CD14 that similarly to studies by Cytlak et al.12 showed at

least 1 log higher expression of CD14 compared to ST-iDC3. The accuracy of this initial panel was further confirmed through back

validation using ST-DC index SORT-seq (Figure S4D), which shows that inclusion of low and intermediate CD14 expression capture

majority of DC3/iDC3 and excludes majority of STMs. To ensure the specific capture of all ST-DCs, CLEC10A positive cells were

gated and ST-DC2 were identified by high CD1c expression while DC3/iDC3 were identified by high CLEC10A and low/neg CD1c

expression (Figures S7A and S7B).

ST-DC/T cells Co-cultures
Co-culture-1: scRNAseq of T cells. Autologousmemory CD4pos T cells were FACS-sorted fromPBMCs based on their co-expression

of CD3, CD4 and CD45RO. Details of the antibodies used are provided in key resources table. We used CD3 activating antibody to

mimic TCR engagement (BioLegend, #300438 clone UCHT1). ST-DC subsets and T cells were sorted into FACS tubes containing

complete RPMI1640 medium (10% FCS, penicillin/streptomycin 100U/mL, and 2mM Glutamax). Co-culture was set up when syno-

vial biopsy yielded enough cells at least in one ST-DC subset (minimal 200 cells). Cells were co-cultured at a 1:5 ratio for each DC

subset (200-1000 cells) plusmemory T cell (1000-4000 cells) in 200ml of X-VIVO 15 Serum-free Cell Medium (BE02-060F, Lonza) sup-

plemented with 2% human serum (H3667, Sigma) or in complete RPMI1640 in a 96-well round-bottom cell-culture plate (3799 – SLS,

Corning). After 5 days in culture, the changes in T cell phenotype were investigated using scRNAseq (BD Rhapsody Immune
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Response Panel, described in the section below). Data from all co-cultures were used to build a Seurat object of T cells. Subse-

quently, only those that yielded results from both matched ST-DC subsets (DC2 and DC3/iDC3) were used in the statistical compar-

ison. Co-culture-2: Intracellular cytokine staining of T cells. Guided by the data from the first co-cultures, we modified culture

conditions to better support T cell responses. Briefly, autologous memory CD4pos T cells were enriched via negative selection

from PB of RA patients with active disease using the EasySep� Human Memory CD4+ T Cell Enrichment Kit (STemCELL,

#19157), which minimises T cell stress as compared to FACS sorting. Cells were co-cultured with synovial ST-DC subsets sorted

according to optimised CITEseq-guided strategy (Figures S3 and S4) in 96-well round-bottom cell-culture plates (3799 – SLS,

Corning) in the presence of anti-CD3 at 0.25 mg/ml (to mimic antigen stimulation) (BioLegend, #300438, clone UCHT1) and IL-15

at 20 ng/ml (PEPROTECH, #200-15) to provide a survival signal, at a ratio of 1:5 for 5 days in complete RPMI1640 medium. After

5 days in culture, changes in T cell phenotype were investigated by evaluating the expression of a set of extracellular and intracellular

receptors/cytokines and transcription factors by flow cytometry. Details of antibodies are provided in key resources table.

Mapping DC subsets in STs using immunofluorescent staining
Formalin-fixed paraffin-embedded 5mm-thick ST sections were stained with antibodies directed against markers LAMP3 or AXL or

CD1c or CD68 or CLEC10A or in combination, or with appropriate isotope control antibodies following previously published proto-

col.30 Details of the primary and secondary antibodies used are provided key resources table. The sections were visualised with a

Zeiss LSM 880 confocal microscope, using either a water immersion LD C-Apochromat340/aperture1aperture1.3, or an oil immer-

sion Plan-Apochromat 363/1.4 objectives, and images acquired using Zen Black software (Zeiss). All images were processed

(brightness/contrast adjustment and background subtraction) using the same software.

The in vivo model of disease flare in remission RA
Patient recruitment criteria and the study design of the BioRRA study58,59 are described briefly in the ‘‘patient recruitment and man-

agement’’ section. PBMCs isolated from anticoagulated peripheral blood from n=12 RA patients in sustained disease remission at

baseline (at which treatment was withdrawn without tapering) and at the follow-up time point (disease flare or drug-free remission)

were isolated by density centrifugation and collected into foetal calf serum (FCS) with 10%DMSOand stored at -150�C.On the day of

myeloid cell isolation, PBMCs were carefully defrosted and all live PB myeloid cells were FACS-sorted based on their expression of

HLADR and the absence of markers of T-, B- and NK-cells. Details of the antibodies are provided in key resources table. Cells from

individual patients were tagged and processed into single-cell libraries using BD Rhapsody sysTem as described in the

BD_Rhapsody scRNASeq section.

Sample Preparation for BD Rhapsody scRNAseq of DC-T Co-Culture_1 and BioRRA Cohort and PB DCs
Cells were labelled with unique sample identifier tags (Sample Tag 1-12) using the BD Human Single-Cell Sample Multiplexing Kit

(633781/BD Bioscience) according to the manufacturer’s protocol. Cells were then loaded onto the scRNA-seq BD Rhapsody Car-

tridge using the BD Rhapsody Cartridge Reagent Kit (633731) according to the manufacturer’s protocol. Single-cell cDNA was pre-

pared using the BD Rhapsody cDNA Kit (633773). This was followed by single-cell Tag library preparation kit (633774) and mRNA

library preparation either for the BD Rhapsody Immune Response Panel (633750) (ST-DC/ T cell co-culture / BioRRA Cohort Exper-

iments) or for the BDRhapsodyWTA (633801) (PB DCs). Libraries were sequenced using Illumina NextSeq 500 (GlasgowPolyomics).

Analysis of all Single Cell RNA Sequencing Data
Raw data analysis. Read alignment and generation of count matrices from raw scRNAseq data of 10x Genomics platform was per-

formed using the Cell Ranger (v7.0.0, with parameter ‘‘include-introns=false’’) pipeline. The ‘‘cellranger count’’ tool was used to map

the reads against the HumanGenome (GRCh38-3.0.0) and performedUMI counting. For analysis of data fromBDRhapsody platform,

the sequencing reads were processed with BD Genomics Rhapsody Analysis Pipeline CWL (BioRRA cohort and synovial organoid

data processed with v.1.0 and DC-T co-culture cohort with v.1.9.1). In some runs of the co-culture cohort where the read2 was too

short for the pipeline; two random base-pairs were added. Reads were either mapped against the BD Rhapsody Immune Response

Panel reference (BioRRA and Co-culture-1, or against GRCh38.p12 human genome reference (Organoid cohort). For the co-culture

cohort, the expected cell number was defined with the ‘‘cellNum’’ parameter as defined in Table S3. The Seurat package (4.0.3) in R

was used to create Seurat objects for each dataset (CreateSeuratObject) either from CellRanger output containing the matrix.mtx,

genes.tsv (or features.tsv), and barcodes.tsv files from 10XGenomics data or from the RSEC_MolsPerCell.csv file for BDRhapsody

data. Ambient RNA was removed using SoupX67 (1.6.2) from 10XGenomics data. Cells of all datasets were filtered for number genes

and UMIs, and those with whole transcriptome for % mitochondrial genes within three median absolute deviation (MAD) around the

median population.91,92 The data was normalized (NormalizeData) and the top 2000 variable genes were identified for all samples

(FindVariableFeatures). Cell doublets were marked using DoubletFinder68 (2.0.3) on single objects, and clusters >25% doublets

were removed after integration. Protein level information derived from antibody-derived tags (ADT) were added and normalized using

centred log ratio transformation (CLR). Deconvolution of the hashtag/sample information was performed using cellhashR (1.0.3) and

Souporcell (2.5) was used to improve the deconvolution using SNPs information. General data integration and clustering. Prior to

integration all relevant samples were merged based on common features and re-processed as one Seurat object. The data was re-

normalized, adjusting the scale factor to the median number of counts, as provided in Table S2. Principle component analysis (PCA)

was performed on identified variable features across all samples (FindVariableFeatures). Cell embeddings from the selected (as given
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in Table S2) principal components (PCs) were used in UMAP generation (RunUMAP) to allow for visual inspection of batch separation

prior to integration. Integration was then performed using the Seurat wrapper function (RunHarmony, SeuratWrappers, 0.3.0) for Har-

mony71 integration (specific versions of harmony used for each integration given in Table S2). Batch variables to be removed by inte-

gration and theta values were specified (group.by.vars, theta parameters), as given in Table S2. The resulting harmony-corrected

PCA embeddings were then used for UMAP generation, and the selected principal components (harmony-corrected PCs) were visu-

alized (RunUMAP). The same PCs were used to determine the k-nearest neighbours for each cell during SNN graph construction

before clustering at the chosen resolution of (FindNeighbors, FindClusters) as in Table S2. Clusters were identified their expression

of canonical marker genes (FeaturePlot) and identification of cluster-markers (FindAllMarkers, test.use=MAST). Such cluster markers

were identified as genes with significant adjusted p-value of <0.05 (Bonferroni andmultiple test correction) and expressed by greater

than 40%of cells in the cluster (‘min.pct’ parameter 0.4). Isolation and Identification of PB andSTmyeloid DC. The raw scRNAseq

data from PB and STwith 10XGenomics platformwere integrated with our previously publishedmyeloid cell data set30 and a scRNA-

seq dataset of 10K healthy PBMCs from 10x Genomics. All previously published data were reprocessed using the same methods

described above. Coarse cell types were identified as shown in Figure S1A before all myeloid cell populations (CD14pos monocyte,

CD16pos monocyte, broadly annotated ST macrophage and DC) were isolated from integrated PB and ST dataset. Selected cells (n=

70,471) were re-processed with pipeline described above and values supplied in Table S2. Myeloid cell clusters were identified

based on previously described nomenclature30 and clusters found in analyses of PB alone. Next, we investigated which cells cluster

with PB DCs and expressed classical myeloid DCmarkers, including the proteins CD11c andMHC-II as well as genes CLEC10A and

CD1c. Clusters with high expression included CD1cpos DCs, CCR7pos DCs, and SDSposNR4A3posCXCR4pos tissue DC cluster as well

as a population of FOLR2highCLEC10Apos STM. These populations and their potential PB predecessors were highlighted and isolated

for further analysis. Selected cells (n= 37,725) were re-processed with same pipeline and re-visualization and clustering of these data

identified additional intermediate clusters. We excluded macrophages by high expression of FOLR2 and C1QA RNA. The remaining

cells were then isolated (n= 7869) and reanalysed with same methods described above and visualized in Figure 1. Cells were anno-

tated based on trajectory analysis and well annotated DC2, DC3 and iDC3 markers. The exact flow of analysis is described in result

section and illustrated in Figure S1. Isolation and Identification of ST CD4pos T cells. CD4 T cell, CD8 T cell, and NK populations were

isolated from integrated PB and ST dataset. Isolated cells were re-processed with pipeline described above. Contaminant cells were

removed based on identified differentially expressed marker genes and samples with fewer than 42 remaining cells were excluded.

Preprocessing, integration and clustering was repeated after removal of contaminants. CD4, CD8, and NK clusters were annotated

based on differentially expressed marker genes and those annotated as NK or CD8pos T cells were excluded, CD4pos T cells were re-

processed and clustered using given parameters (Table S2). Clusters were annotated based on differentially expressed marker

genes, as described above, and guided by published ST T cells data sets.42,52 Reference annotation. scRNAseq data of CD4pos

T cell from ST-DC co-culture were integrated with the appropriate reference data (ST CD4pos T cells) for annotation of clusters.

The appropriate datasets were merged based on common features and integrated using method described above, adjusting the

scale factor for normalization (Table S2) to account for read depth differences between platforms/experiments. Integrated clusters

were annotated based on reference (ST) dataset clustering, by generating heatmaps of gene expression correlation matrix as well as

a confusion matrix, illustrating the proportion of cells from original ST reference clusters within each of the new integrated clusters.

Pathway Analysis. Pathway activity was inferred across selected ST-DC clusters using PROGENy (v1.24.0) as recommended in

package scRNAseq vignette. Briefly, a progeny assay was created in the Seurat object using the progeny function, specifying the

top 500 footprint genes per pathway, alongside num_perm=1, and scale=FALSE. The progeny assay scores were scaled using

the Seurat ScaleData function. Mean scaled pathway activity was calculated by ST-DC cluster and visualised using the pheatmap

package (v1.0.12). Cytokine and Cytokine receptor interaction were investigated in selected DC andCD4pos T cell clusters by looking

at genes from the KEGG_Cytokines and cytokine receptors pathway (hsa 04060). Genes from this pathway were specified in the ‘fea-

tures’ parameter within the FindAllMarkers function of Seurat (5.0.1). For both DC and CD4pos T cell cytokine pathway analysis, min-

imum logFC was specified as 0.5, DE genes were to be expressed in minimum 25% of cells in the cluster alongside being positively

upregulated in the cluster, and p<0.05 based on MAST with Bonferroni correction for multiple comparison. The same parameters

were applied where an individual clusters profile was assessed by synovial disease state. Cell Trajectory Analysis. Single-cell trajec-

tory analysis (RNA velocity75) of ST myeloid DC and active RA CD4 T cells clusters, and their potential peripheral blood precursors,

was performed by estimation of spliced and unspliced counts using the velocyto command line interface (velocyto run10x). Gener-

ated.loom files for each sample, containing transcript splicing information, were incorporated into our analysed Seurat object by split-

ting the object by sample, loading each.loom file using the (ReadVelocity, SeuratWrappers (0.3.0)) and creating a new assay for

spliced, unspliced and ambiguous counts before merging our samples back together again, recreating our integrated Seurat object.

This Seurat object was then converted for application in python (SaveH5Seurat, Convert) using SeuratDisk (0.0.0.9019) package. The

converted.h5ad file can then be read into python using the scanpy74 (1.9.3) package, which creates an AnnData (0.9.1) object

(sc.read). The spliced and unspliced count data was normalized and pre-processed as recommended by scvelo75 (0.3.1) before

running RNA velocity analysis. A PAGA76 graph was constructed (scv.tl.paga, scv.pl.paga) to illustrate cluster connectivities and

RNA velocity is used to infer direction of identified PAGA cluster transitions. Velocity pseudotime was estimated and genes were

ranked by velocity to identify top differentially expressed unspliced genes for each cluster (rank_velocity_genes). Ligand-receptor

interaction analysis. Inference of cellular communication was computed using the CellphoneDB77 package (v.5.0) using the

cpdb_statistical_analysis_method ran in Python (v.3.8). The analysis was run using the following constraints; returned ligand/receptor

genes must be expressed in at least 10% of all cells in a given cluster, with significant interactions being defined at a p-value of <0.05
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after mean expression values of interacting clusters are subject to permutation. All other parameters were run as recommended. Pre-

dicted interactions were generated for all cell type clusters in the scRNA-seq dataset followed by a refined analysis limited to co-lo-

calised cell types of interest as reported in the spatial analysis. Significant interactions were visualised using the R (v.4.2.2) imple-

mentation of ktplots (v2.3.0) and additional custom visualisation scripts. Predictive Module Score Analysis (BioRRA Cohort).

Annotation of clusters in BioRRA cohort (targeted immune gene panel) was guided by integration with whole transcriptome PB

data. Differentially expressed genes upregulated in DC2, DC3, and iDC3 clusters at baseline of patients who go on to flare upon treat-

ment withdrawal were identified using the FindMarkers function (only.pos = TRUE, logfc.threshold = 0.25). This process was

repeated for genes upregulated at endpoint flare versus endpoint sustained remission. Shared genes between these two tests

were identified for generation of our DC flare-associated module score. To generate this score, the AddModuleScore function

from the Seurat R package was utilised with parameters (features=list(DC Flare Associated Genes), ctrl=10, name=‘DC Flare Module

Score’, pool=TRUE). This module score was calculated for DC2, DC3, and iDC3 clusters, andmean expression of themodule scores

by patient and timepoint were utilised in AUC-ROC analyses.

MNP-Verse analysis
We utilized the AddModuleScore function from the Seurat R package to compute module scores for feature expression programs in

single cells. The genes belonging to each cluster were selected using the FindAllMarkers function (with parameters ‘‘min.pct = 0.4,

logfc.threshold = 0.7, test.use = ‘‘MAST’’, only.pos = T’’). Subsequently, the score for each cluster was computed and integrated into

the MNPverse Seurat object, and scores for the ST-DC2 LAMP3posCCR7pos were visualised. Harmony (1.2.0) integration of our

myeloid cell dataset from RA PB and ST with MNPverse dataset was performed. Common features between the two datasets

were selected, and we used the median number of counts for scaling factor for normalization. We corrected for batch variables

including sample donor, experimental differences, and tissue variations within the dataset (group.by.vars=c("Unique_ID","Experi-

ment","Tissue"), theta=c(0,10,0)).

Mapping of ST myeloid DC in situ with CosMx single cell spatial transcriptomics
We used the Nanostring CosMx Spatial Molecular Imaging platform to measure expression of 960 genes discriminating transcrip-

tional profiles and spatial localization of 127,199 cells (69 fields-of-view (FOV)) in paraffin-embedded synovial biopsies from 3 active

naive to treatment and 3 RA patients in sustained clinical and imaging remission (�11 FOV per donor). Demographic, clinical and

immunological characteristics of enrolled patients as well as synovitis degree of corresponding STs are described in Table S1.

Cell segmentation. Initial image segmentation was performed with Mesmer49 with the following parameters: mesmer_mode =

‘‘both’’, scale = pixel size of the images. We used the cell boundaries estimated by Mesmer as a prior for refinement of the segmen-

tation with Baysor50 based on transcript densities, using the R wrapper (https://github.com/korsunskylab/baysorrr). Following suc-

cessful cell assignment, we generated a gene-cell expression matrix and performed quality control, removing any cells with less than

30 counts and/or expression of less than 20 genes. Additionally, cells with radius less than 2 mm were also removed. Cells which

passed QC filtering were then annotated using pipeline for cell type labelling described in Chen et al.93Coarse cell type annotation.

Briefly, read counts were normalized and log-transformed to median total counts of all cells remaining after filtering. PCA was per-

formed and embeddings were corrected by integration with Harmony71 (0.1.0), specifying sigma value of 0.25 and theta values of

0 for both, sample run and FOV batch variables. Harmony corrected PC-embeddings were used to generate two-dimensional

UMAP94 (uwot 0.1.16) and cell clusters were identified by shared nearest neighbour (SNN) modularity clustering. Clusters of coarse

cell types were annotated based on marker genes identified by differential expression analysis performed using presto wrapper

(1.0.0, https://github.com/immunogenomics/presto/tree/glmm/) for Generalised Linear Mixed Model (GLMM) estimation with lme4

(1.1-34) as described in Chen et al.93 Genes were considered significant when adjusted p value was less than 0.01 and an average

logFC more than 0.5. Preparation of scRNAseq for reference annotation of spatial data. Following coarse cell type annotation,

CosMx data were integrated with our ST scRNAseq dataset for reference annotation of subclusters. In preparation for this, our ST

scRNAseq dataset was refined by removing genes that are not present in the CosMx SMI gene (n=922) panel. The data were then re-

filtered to remove cells that now have low number of counts/features due to reduced gene panel. Variable features were identified,

and the data was renormalized, adjusting the scale factor to account for reduced number of counts (median = 1255). We then fol-

lowed standard pipeline for Seurat pre-processing and clustering of scRNAseq data, as described above, for coarse cell type anno-

tation. Coarse cell type populations of interest were isolated, and as before, data was re-integrated, a new UMAP generated, and re-

clustered with reduced gene panel. Any clusters that were indistinguishable with CosMx gene panel were removed. Relevant genes

for population of interest arranged by z-score (presto, 1.0.0) and we ran sensitivity analysis by running the pipeline for integration and

clustering using from 50–900 genes top variable genes and selecting the minimum number of genes necessary to distinguish our

described DC and T cell subsets. We then harmonized and clustered with minimum relevant genes selected from sensitivity analysis

and annotated clusters based on correlation of gene expression with original annotations. Cells with clashing labels were removed

and the number of cells per cluster was down sampled tomedian number cells per cluster.Reference annotation of CosMx spatial

data with refined scRNAseq data. Each population of interest (Myeloid, Stromal, Endothelial and T Lymphocyte) from the spatial

data was isolated based on coarse cell type annotation for integration with the appropriate scRNAseq reference. CosMx data was

reduced to genes selected from sensitivity analysis in preparation of scRNAseq reference for that cell type. This allowed us to mini-

mize noise and focus only onminimumgenes necessary to define clusters. The data was thenmerged and renormalized adjusting the

scale factor to account for reduced number of counts between both CosMx and scRNAseq dataset before following standard
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harmony pipeline for integration across modalities, accounting for source of the data (spatial/scRNAseq, theta=2) and sample ID

(donor/sequencing run, theta=0) as batch variables. The integrated dataset was then re-clustered and new integrated clusters

were identified. To do so, a heatmap of correlation matrix comparing the marker genes of new clusters with marker genes of the orig-

inal single cell clusters was visualized. We also generated a confusion matrix – a heatmap illustrating the frequency of cells from orig-

inal single cell reference clusters within each of the new integrated clusters. In the case that the new integrated cross-modality clus-

ters contained multiple of scRNAseq reference clusters we performed subclustering and revisualization of gene correlation matrix

and confusion matrix. Fractions of cells of each cluster from different sources was also visualized as stacked bar plot to identify

any populations unique to CosMx spatial technology. The new integrated clusters were automatically reference annotated using

the gene correlation matrix, annotating new clusters with the name scRNAseq reference cluster with the highest correlation of

gene expression. This reference annotation was also performedmanually, and results compared to finalize annotations before trans-

ferring new cell labels. Once all coarse cell populations of interest in spatial transcriptomic were isolated, integrated with scRNAseq

reference, re-clustered and annotated, the new fine type cell annotations were transferred to the original CosMx spatial dataset con-

taining all cell types. Spatial localization of coarse and fine type cell annotations were plotted using ggplot2 (geom_sf) allowing for

visualization of cell geometries identified from segmentation (described above) manipulated using sf package (1.0.16).

Niche and colocalization analysis of CosMx spatial transcriptomic data
To do spatial segmentation we first identify low-quality regions within the tissue, performing the following steps: (1) FOV region anno-

tation and gridding, (2) spatial smoothing, and (3) dimensional reduction and clustering. FOV region annotation and gridding. We

gridded the cellular region of each FOV by performing Voronoi tessellation on the cell centroids with the FOV boundary as the bound-

ing box. Voronoi tessellation divides the space such that:

Distance ðPVk;Ci = kÞ%DistanceðPVk;Ci; is kÞ
where PVk is any point P(x,y) in the Voronoi region Vk, and Ci is the centroid of the Voronoi region Vi. Because Voronoi tessellation

grids the whole FOV irrespective of empty spaces within the tissue, we chose to perform Voronoi tessellation only between cells that

are less than 50 mm apart from at least one other cell. Cells that are over 50mm apart from other cells are included in the analysis but

with their original cell polygons instead of Voronoi regions. For most of the FOVs, we observed a gap between the last layer of cells

and the FOV boundary. This led to edge effects where the cells closer to the edges had elongated shapes. To correct this, we

changed the shapes of Voronoi regions of the edge cells to an intersection between a circular buffer of 15mm from the cell centroid

of the boundary cells and the corresponding Voronoi region. This marked the end of gridding of the cellular region of the tissue. We

merged all the Voronoi regions in each FOV and annotated it as ‘‘tissue’’. We determined ‘‘glass’’ regions in each FOV by finding the

non-intersecting region between the bounding box of the FOV and a 30mm buffered tissue region of the FOV. We buffered the tissue

region to ensure we didn’t capture probes in the boundary regions between glass and tissue. Our rationale behind ignoring boundary

transcripts is that these probes could belong to cells but were not assigned to cells due to segmentation errors. Grouping these into

‘‘glass’’ regions could skew our background identification. We then tiled the glass region of the FOV into 4-sided polygons that

contain the same number of transcripts as the mean number of transcripts per Voronoi region in that FOV. Spatial smoothing.

To construct the gene expression matrix of the tissue region, we mapped only the transcripts (both positive and negative probes)

assigned to cells during segmentation to Voronoi regions. Because negative probes are excluded during cell segmentation, we as-

signed negative probes to cells by assigning a cell ID to a negative probe if it was within a cell boundary and 0 otherwise. To construct

the glass region’s gene expression matrix, we used the ‘‘st_intersect’’ function to map transcripts to the glass tiles. We then com-

bined both expression matrices to build a gene-polygon matrix for each FOV. From this point on, we will refer to both the Voronoi

regions and the glass tiles as ‘‘polygons’’ and original cell shapes as ‘‘cell polygons’’. To perform spatial smoothing, we ensured

each cell captures a fraction of its neighbors (in addition to all transcripts from itself) in a diffusion-based method controlling for

how aggressively we borrow transcripts (l) from our neighbors and how many degrees of neighbors we want to borrow transcripts

from (k). The first step of spatial smoothing is to construct an adjacency matrix. We did that by constructing an unweighted Delaunay

graph on the polygon centroids and pruning the edges between tissue and glass polygons. Pruning is important because our goal

was to identify regions in the tissue that have similar gene expression profiles as glass, and borrowing transcripts from glass would

make some tissue regions look like glass because of smoothing and not because they are low quality. After calculating the adjacency

matrix, we smoothed it by diffusion process where the smoothed matrix M is calculated as:

M = ðI+lAÞk

Where I is the Identity matrix, l is the rate of diffusion, A is the adjacency matrix, and k is the number of steps of diffusion. We row-

normalized the smoothed matrix and built the smoothed gene expression matrix (G) as:

G = Graw � tðMÞ

Dimension reduction and clustering
We then performed log-normalization, scaling, weighted-PCA, Harmony to correct for batch effects (sigma = 0.2, batch variables =

SampleID, SampleFOV, nPCs = 20), UMAP, and clustering as described in the cell type labeling section to identify the tissue regions

clustering with glass regions. These regions were labeled ‘‘low-quality’’ regions and removed from the analysis. Region annotation.
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To identify regions, we perform spatial smoothing, dimension reduction and clustering as described above on high-quality tissue re-

gions. Clusters are annotated based on their cell composition. Furthermore, we performed colocalization analysis to define organi-

zation of cell subsets within the described tissue niches. Applying a permutation approach, as in Chen et al.,93 we identified nearest

neighbours and then randomized the positions of cells surrounding the defined cell type of interest and determinedwhether or not the

colocalization of two subsets was not expected by chance. Significant colocalizations (adjusted p value < 0.05) were plotted as

Z-score.

PRIME cells data set analysis
The PRIME cell data set60 encompasses over 364 time points, both preceding and during eight flares, spanning a period of 4 years.

Samples from this dataset which had conflicting metadata information or did not have information denoting weeks to flare were

excluded. Raw readcounts were loaded and analysed using DESeq2 (1.40.2), transformed with VST, batch effects were evaluated

using PCAtools (2.12.0) and readcounts were adjusted to remove batch of sequencing and occurrence of flare timepoint batch effect

using Combat/SVA (3.48.0).

MIR155 expression and experimental overexpression of MIR155 in ex-vivo peripheral blood (PB) DC2 cells
MIR155 expression. DC2 from healthy and active RA PB, and ST from active RA were sorted based on negative expression of cell

lineagemarkers (CD3, CD19/20, CD56, CD15 andCD117) and high expression of CD1c into tubeswithmicroRNA preservation buffer

from miRNeasy micro-Kit (217084, Qiagen). Clinical information for these patients is in Table S1. To evaluate MIR155 and house-

keeping control, RNU6 expression, RNA was transcribed into cDNA and amplified with miScript Reverse Transcription Kit II

(218161, Qiagen) and miScript PreAMP PCR Kit (331451, Qiagen), respectively. The miScript primer assays (Qiagen) were used

for semi-quantitative determination of expression of U6B snRNA (MS00033740) andMIR155 (MS00031486) in combination withmiS-

cript SybR Green PCR kit (1046470, Qiagen). The expression of genes of interest was presented as a relative value 2-DCT, where DCt

is the Ct (Cycle threshold) for RNU6 (housekeeping genes) minus the Ct for the gene of interest. Ex-vivo MIR155 overexpression.

DC2 (CD1chigh) from PB of active RA patients (n=12) were FACS-sorted into tubes with complete RPMI1640media and seeded over-

night in flat bottom 96-wells plates at a density of 103103 cells/well. The next day, cells were transfected using the Dharmafect 3

transfection sysTem (T-2003-02, lot 00662107, Dharmacon) with either hsa-miR-155 mimic (C300647-05-305, lot 180510, Dharma-

con), negative control miRNA mimic (CN-001000-01-05, lot 2145003, Dharmacon), or negative control labelled with 20nM Dy547

fluorochrome (CP-004500-01-05, lot 2054853, Dharmacon). After 4h, cells were either left unstimulated as controls, or were stimu-

lated with LPS (100ng/mL, L6529, Sigma) for 48h. Culture supernatants were collected for soluble mediator analysis. Transfection

efficiency was estimated based on the proportion of cells that were successfully transfected with the Dy547 mimic, and experiments

where the transfection efficiency was below 60%were discarded. Cytokine concentrations in the culture supernatants of the RADC2

were quantified using a predesigned high-sensitivity Luminex 100TM Multiplex Kit (Millipore UK) on a Bio-Plex sysTem (Bio-Rad).

Phenotyping DCs in mesenteric lymph nodes (mLN) in wild type and miR-155 gene deficient mice
The mesenteric lymph nodes (mLN) from 8–12-week-old C57BL/6J (WT) and congenic Cg-Mir155tm1Rsky/J (miR-155 deficient)

were harvested and digested with 1mg/mL of Collagenase D for 40 min in a 37�C shaking incubator at 150 RPM speed. After neu-

tralisation of collagenase with complete media, cells were incubated with antibodies indicated in key resources table for 30min at 4�C
and acquired by FACS AriaIII. Data was analysed using FlowJo (Version 10.7.1).

Isolation and analysis of mouse DC2 from gut, lymph and draining lymph nodes
To obtain thoracic duct lymph, mesenteric lymphadenectomy was performed on 6-week-old male C57/Bl6 mice by blunt dissection

at laparotomy. The thoracic lymph duct was cannulated with a polyurethane cannula (2Fr). Lymph was collected in PBS / 20 U/mL of

heparin sodium on ice, overnight as we described previously.65,95 Matched small intestine was isolated and digested as described

previously.65,95 Lymph DC2s were identified as MHC IIhi CD11c+ B220- CD11b+. In the mLN and intestine, cDC2s were identified as

F4/80lo MHC IIhi CD11c+ CD11b+. DC2 from different compartments were sorted (>100,000 cells). Information on antibodies used is

provided in key resources table. RNA was isolated using RNAeasy kit (217084, Qiagen). BulkRNAseq on cells isolated from lymph,

intestine, and mesenteric lymph node was carried out as described previously and available under GSE160156.65

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism 10 (GraphPad Software). Statistical significance was evaluated by T test/Mann-Whit-

ney or One-way ANOVA/Kruskal-Wallis with correction for multiple. The exact details on statistical methods are provided in each

Figure legend and in the scRNAseq method sections above.
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