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Abstract: The S100B protein is abundant in the nervous system, mainly in astrocytes, and is also
present in other districts. Among these, the adipose tissue is a site of concentration for the protein.
In the light of consistent research showing some associations between S100B and adipose tissue
in the context of obesity, metabolic disorders, and diabetes, this review tunes the possible role of
S100B in the pathogenic processes of these disorders, which are known to involve the adipose tissue.
The reported data suggest a role for adipose S100B in obesity/diabetes processes, thus putatively
re-proposing the role played by astrocytic S100B in neuroinflammatory/neurodegenerative processes.

Keywords: S100B protein; adipose tissue; obesity; diabetes

1. Introduction

The S100B protein, which is known to be abundant in the nervous system, where it
is concentrated in astrocytes, is also present in other districts, and expressed by other cell
types, such as adipocytes, where, intriguingly, it is especially concentrated [1–3]. While the
possible role(s) of S100B in the nervous system has been widely addressed, the relationship
between S100B and adipose tissue has not been extensively studied, and the interaction
or involvement of the protein in standard physiological processes of this tissue is not
well-established. However, consistent research has shown interesting associations between
S100B and adipose tissue in the context of obesity, metabolic disorders, and diabetes.

Obesity is defined as abnormal or excessive fat accumulation that presents a health risk,
characterized by a body mass index (BMI) above 30 [4]. This condition is often associated
with metabolic disorders, such as hyperglycemia, dyslipidemia, and hypertension. It is also
characterized by chronic low-grade inflammation and insulin resistance, collectively known
as metabolic syndrome [5]. Together with overweight subjects (BMI > 25), the number
of obese subjects is continuously growing. According to the World Health Organization,
the prevalence of overweight or obese children and adolescents aged 5–19 years from
1975 to 2016 increased from 4% to 18%. Globally, obesity is regarded as a pathological
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condition, and its pathogenesis includes an interplay between environmental and genetic
factors, involving primarily, although not exclusively, the adipose tissue. In this context,
neurotransmitters and hormones also appear to affect food intake, fat metabolism, and
energy balance [6].

The term diabetes refers to different disorders of metabolism having multiple etiology
but characterized by disturbances of carbohydrate, fat, and protein metabolism associated
with chronic hyperglycemia resulting from defects in action or secretion of insulin [7–9].
The global diabetes prevalence in 2019 was estimated to be 9.3% (463 million people), rising
to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045 [10]. Obesity is regarded to
constitute an important risk factor for developing diabetes [11,12], especially type 2 diabetes,
which is considered to be the most frequent form of this disease, characterized by resistance
to insulin, so the term “diabesity” has also been used to include both syndromes [13].
This condition appears to be strongly associated with the pathophysiological changes in
the adipose tissue, where chronic inflammation, dysregulated glucose homeostasis, and
impaired adipogenesis lead to the accumulation of ectopic fat, and insulin resistance may
be observed [14,15].

2. The S100B Protein

The term S100B refers to a protein identified in the mid-sixties of the last century from
brain extracts where, using procedures available at that time (essentially chromatography
and starch gel electrophoresis), it was originally regarded to be specific for that tissue. The
isolated protein was also shown to be soluble in a 100% saturated solution with ammonium
sulfate. This characteristic was at the basis of its denomination, which originally was
simply S100 protein. At present, the S100 protein family comprises more than 20 calcium-
binding proteins, mostly homodimers, exhibiting structural similarities, located in different
tissues, where they modulate the activity of many targets, sometimes peculiar to the cell
type where they are located. They constitute the largest subgroup within the EF-hand
protein superfamily, which is characterized by a calcium-binding loop forming a conserved
pentagonal arrangement around the calcium ion (EF-hand motif). Interestingly, some
members of the S100 protein family may bind zinc and/or copper, thus suggesting the
possibility that these metals might participate in the regulation of their biological activity.
S100B is an acidic homodimer (2 beta subunits) of 9–14 kDa per monomer and constitutes
the bulk of the protein fraction, which was isolated originally from brain extracts, and
during approximately two decades, as above indicated, S100B, which at that time was
named merely S100, has been regarded to be specific for this tissue. Interestingly, the
amino acidic composition and conformation of S100B, as for other proteins of the S100
family, is highly conserved in different species, suggesting that it may have a crucially
preserved biological role(s). Interestingly, in this respect, an S100-like protein has even
been immunologically detected in planarians. In the nervous system, S100B is concentrated
in astrocytes and is also expressed in other glial cell types, such as oligodendrocytes,
Schwann cells, ependymal cells, retinal Müller cells, and enteric glial cells, and has been
located even in specific neuronal subpopulations in the brainstem and in some ganglionic
peripheral cells. However, it has also been demonstrated that the protein is not restricted to
nervous tissue. After the original finding in human skin, where the protein was located
in melanocytes and Langerhans cells, S100B has also been detected in definite non-neural
cell types: chondrocytes, dendritic cells of lymphoid organs, some lymphocyte cell types,
adrenal medulla satellite cells, skeletal muscle satellite cells, tubular kidney cells, non-
nervous structures of the eye, Leydig cells, and, in particular, adipocytes, which intriguingly
constitute a site of concentration for the protein comparable to astrocytes. While neural
S100B has been extensively studied, its properties in non-neural locations have received
poor attention, although they would reasonably deserve analogous consideration during
physiological and/or pathological conditions [1–3]. Indeed, the cell distribution of this
protein does not offer conclusive clues to its functional role(s). In general, S100B, as a
calcium-sensor protein, appears to regulate a variety of intracellular activities, transferring
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signals from second messengers and interacting with different molecules in different cell
types. But, at present, the different functions attributed to the protein (e.g., cell proliferation,
survival and differentiation, participation in the regulation of cellular calcium homeostasis
and enzyme activities, and interaction with cytoskeleton) do not appear to delineate a clear
univocal intracellular role for S100B. In contrast, after the first demonstration of S100B in
the extracellular compartment in the late seventies of the last century, when elevated levels
of the protein were detected in the cerebrospinal fluid of multiple sclerosis patients in the
acute phase, whereas lower levels were found in the stationary phase of the disease [16],
growing evidence indicates an increasingly clearer role for S100B when secreted in the
extracellular compartment. Extracellular S100B is regarded to interact with target cells
mainly, but not only, through the multi-ligand transmembrane Receptor for Advanced
Glycation End-products (RAGE) initiating intracellular signaling cascades, which may
result in physiological regulation at low nanomolar concentrations (“Jekyll side”), or
various pathological conditions, acting as a Danger/Damage Associated Molecular Pattern
(DAMP) protein, at higher micromolar concentrations (“Hyde side”) [2,3,17]. Interestingly,
some characteristics of S100B, such as its binding with RAGE, its non-canonical secretion
modality that bypasses the classical Golgi route, and its ability to stimulate microglial
migration, are shared with DAMPs [18,19].

3. The S100B Protein in Adipose Tissue

Adipose tissue is especially rich in the S100B protein and its mRNA [20,21].
Traditionally, adipose tissue is considered a homogeneous entity with a primary

function as a storage site for excess energy. However, this tissue is regarded to consist of
various depots located throughout the body with distinct characteristics. White Adipose
Tissue (WAT) is the predominant type, mainly responsible for energy storage, and it
is associated with the production of pro-inflammatory adipokines and can contribute to
chronic low-grade inflammation and metabolic dysregulation. Brown Adipose Tissue (BAT),
primarily involved in energy expenditure and thermogenesis, shows a higher density of
mitochondria, is rich in blood vessels and nerves, and has been suggested to be implicated
in immune modulation [22]. Subcutaneous Adipose Tissue (SAT), although it is the most
abundant depot in the body, has a lower association with obesity-related complications,
whereas Visceral Adipose Tissue (VAT), which surrounds internal organs, is metabolically
more active and releases a higher amount of pro-inflammatory adipokines compared
to SAT. VAT is strongly associated with metabolic syndrome, insulin resistance, and an
increased risk of cardiovascular diseases [23,24]. Adipose tissue produces and releases
various signaling molecules, collectively known as adipokines, such as adiponectin, leptin,
and resistin [25–28]. These adipokines can have pro-inflammatory or anti-inflammatory
effects, depending on their types and concentrations, and can impact immune function
and inflammation. Interestingly, these different components of the adipose tissue are also
regarded to form, at least in mice and humans, a large unitary structure, fulfilling the
requirements to be considered a true adipose organ [29]. The immune system is closely
intertwined with adipose tissue, and immune cells are present within the adipose tissue
environment and can secrete cytokines and chemokines, influencing local inflammation and
immune responses [30–32]. In obesity, immune cells infiltrate into adipose tissue, leading
to an altered immune response and increased inflammation [33–36]. It has also been
demonstrated that specific adipose tissues can represent the source of immune response in
multifactorial immune-related disorders, as demonstrated by epicardial adipose tissue and
myocardial infarction [30,37]. These data corroborate the idea that the interaction between
adipose tissue and the immune system is complex and bidirectional and can contribute
to the development of metabolic disorders, insulin resistance, and other obesity-related
complications. Understanding the mechanisms underlying this relationship is essential for
developing strategies to manage obesity-related disorders. To this purpose, identifying
specific molecular targets and pathways that can be modulated to regulate inflammation
and improve metabolic health in individuals with obesity may be especially useful.
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The adipose tissue constitutes a site of concentration for S100B comparable to the
nervous tissue and is also regarded to release the protein [38]. In particular, the S100B
protein was found in white adipocytes and warm acclimatized pauci- or unilocular inactive
brown adipocytes [39], whereas a role for the protein in adaptive adipocyte-dependent
thermogenetic mechanisms has also been hypothesized [40]. The secretion of adipose
S100B has also been proposed to stimulate thermogenesis via activation of sympathetic
innervation [41].

In experimental animals and tissues, S100B is released from adipose tissue under
hormonal control since the eighties of last century (Table 1). In rat epidydimal fat pads
and isolated adipocytes in vitro, S100B was shown to be released under epinephrine or
adrenocorticotropin (ACTH) stimulation [42]. The intracellular behavior of S100B during
lipolysis processes was also followed by immunoelectron microscopy in epidydimal fat
pads from Wistar rats, where it was found in numerous macrovesicles frequently fusing
with the plasma membrane and opening into the interstitium [43]. Also in vivo, the amount
of S100B was significantly reduced in the epididymal adipose tissue of Wistar rats after
serial (inducing reduction of more than 50%) or a single injection of catecholamines [44].
The release of S100B induced by epinephrine, ACTH, or isoproterenol in rat epidydimal fat
pads was reduced by approximately 50% in the presence of insulin, possibly by a cyclic
AMP-mediated mechanism; similar results were obtained in fat pads of insulin-injected
rats. In contrast, in the fat pads obtained from diabetic or long-term starved rats, the S100B
protein release was greatly enhanced, showing several-fold higher levels of basal release in
the absence of hormones, and S100B protein contents in the epididymal adipose tissues of
these rats were significantly lower than those of the control: these results suggested that
the S100B protein content in adipocytes may be regulated by insulin as well as lipolytic
hormones [45]. The final aim of this review is a possible stimulation of research addressing
the disregarded topic of adipose S100B.

Table 1. S100B modulation in adipose tissue in different experimental models.

Experimental Model Treatment S100B
Behavior Reference

Rat epidydimal fat pads or
Isolated adipocytes

Administration of
epinephrine or ACTH Release Suzuki et al., 1984 [42]

Rat epidydimal adipose tissue Cathecolamine injection Reduced content Suzuki et al., 1984 [44]

Rat epidydimal fat pads
Administration of insulin
induced by epinephrine,
ACTH, or isoproterenol

reduction in release Suzuki and Kato 1985 [45]

Epidydimal fat pads from
diabetic or starved rats Untreated Increased release and

reduced content Suzuki and Kato 1985 [45]

In addition, the overexpression of the S100B receptor RAGE in 3T3-L1 preadipocytes
using adenoviral gene transfer accelerated adipocyte hypertrophy, associated with at-
tenuated insulin-stimulated glucose uptake, and insulin-stimulated signaling, whereas
inhibitions of RAGE by small interfering RNA significantly decreased adipocyte hyper-
trophy. Interestingly, the knockdown of S100B, associated with the knockdown of high
mobility group box-1, both of which are DAMPs and RAGE ligands, canceled RAGE-
induced adipocyte hypertrophy, implicating a fundamental role of the interaction of RAGE
with ligands in the phenomenon [46].

Noticeable reviews addressing the possible role(s) of S100 proteins, including S100B,
in adipose tissue, have also been published at different times [38,47]. This review tunes the
possible role of S100B in pathogenic processes of obesity/diabetes interpreting together
recent and less recent data, the latter having been probably disregarded and received
inadequate attention in recent times.
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4. S100B Protein in Obesity/Diabetes and Related Conditions

A preliminary consideration necessarily points out that most of the reported data indi-
cate more of a correlation than a causation between S100B and obesity/diabetes. Having
the above consideration in mind, whereas S100B levels in different biological fluids (cere-
brospinal fluid, blood, urine, amniotic fluid, and saliva) are considered a reliable biomarker
to detect and/or monitor disorders of the nervous system (and also melanoma) [48], data
regarding the use of S100B as a biomarker in human biological fluids, namely, blood,
concerning glucose metabolism and body mass have also been obtained in the first two
decades of this century (Table 2); high levels of S100B in the blood have been shown to be
elevated in individuals with obesity in different conditions and have also been shown to
be positively correlated with abdominal obesity, serum levels of triglyceride, and insulin
resistance [49–51]. Interesting observations concerning human blood levels of S100B and
their correlations with conditions of the adipose tissue or glucose metabolism have been
shown. In this respect, blood levels of the protein have been shown to decrease in chronic
starvation, whereas they are normalized with weight gain [52]. Blood S100B levels have
also been shown to be related to insulin release. In particular, during oral glucose tolerance
tests, they correlated inversely with the insulin response [53]. In addition, subjects with
metabolic syndrome have been shown to have significantly higher blood levels of S100B
than healthy subjects [50]. In schizophrenic patients, where blood S100B levels are known
to be elevated, they have been shown to be related to insulin resistance and, also, to visceral
obesity [51,54].

In addition to the above indicated data in human blood, converging evidence, obtained
in tissues from experimental models, potentially attributes a putative role to S100B in
obesity and diabetes pathogenic processes. In this respect, S100B might contribute to
low-grade inflammation in adipose tissue and promote the development of obesity-related
complications.

Indirect evidence regarding S100B points to the involvement of RAGE, the primary
receptor of S100B, in the pathophysiology of adipose tissue, essentially indicating that
RAGE-mediated adipose tissue inflammation and insulin-signaling are potentially impor-
tant mechanisms that contribute to the development of obesity-associated insulin resis-
tance [55–57]. As above indicated, overexpression of RAGE in 3T3-L1 preadipocytes has
been shown to induce adipocyte hypertrophy, together with attenuated insulin-stimulated
glucose uptake, whereas inhibitions of RAGE significantly decreased adipocyte hypertro-
phy. In addition, Toll-like receptor (Tlr2) mRNA, a receptor that is believed to be involved
in inflammatory processes of different tissues, including the adipose tissue [58,59], was
upregulated by RAGE overexpression, and inhibition of Tlr2 abrogated RAGE-mediated
adipocyte hypertrophy. Finally, RAGE knockout mice, which are unable to synthesize
RAGE, exhibited significantly reduced body weight, epididymal fat weight, epididymal
adipocyte size, and higher insulin sensitivity as compared with wild-type mice, whereas
RAGE deficiency was also associated with suppression of Tlr2 mRNA expression in adipose
tissues [46].

Other data are regarded directly as S100B (Table 2). Both S100B expression in white
adipose tissue and S100B plasma levels were significantly increased in diet-induced obese
mice [60], and tissue S100B increase was reversed following weight loss, in indirect ac-
cordance with results obtained in human sera [49]. Taken together, the bulk of data may
suggest that S100B might play a role as an inflammatory adipokine in the interaction
between adipocytes and macrophages to establish a vicious paracrine loop (Figure 1),
possibly as a part of the adipocyte/macrophage cross-talk, which has been described in
obesity [61], thus reflecting the putative role played by astrocytic S100B, via microglial
cells, in neuroinflammatory/neurodegenerative disorders [18]. Indeed, inflammatory pro-
cesses involving DAMPs, as S100B is considered [2,3], are widely regarded to be active in
obesity/diabetes [62]. In this respect, recombinant S100B was shown to upregulate tumor
necrosis factor-α (TNF-α) and M1 (mainly involved in proinflammatory responses) proin-
flammatory markers in murine RAW264.7 macrophages. In turn, TNF-α stimulated S100B
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secretion from 3T3 L1 adipocytes, whereas conditioned media from these cells stimulated
TNF-α secretion from macrophages, and macrophage conditioned media increased S100B
secretion from adipocytes [63]. This may be especially relevant in light of the key role that
macrophages are believed to play in the adipose tissue as mediators of inflammation and
insulin resistance during processes leading to obesity [64].

Table 2. Behavior of S100B in obesity, diabetes, and related conditions.

Human Blood or
Experimental Model Condition S100B Behavior Reference

Human blood Overweight, visceral obesity,
insulin resistance Elevated levels Steiner et al., 2010 [49]

Human blood Metabolic syndrome Elevated levels Kheirouri et al., 2018 [50]

Human blood High or low body mass
index Elevated or reduced Steiner et al., 2010 [51]

Human blood Chronic starvation Reduced levels normalizing with
weight gain Holtkamp et al., 2008 [52]

Human blood Oral glucose tolerance test Inverse correlation with insulin
secretion Steiner et al., 2014 [53]

Human blood Insulin resistance Elevated levels Steiner et al., 2010 [51]
Mouse blood and white
adipose tissue Diet-induced obesity Elevated levels normalizing with

weight loss Buckman et al., 2014 [60]

3T3-L1 adipocytes

Stimulation by TNF-a or
murine RAW264.7

macrophage-conditioned
media

Increased secretion Fujiya et al., 2014 [63]

Murine RAW264.7
macrophages Wild-type Induction of upregulation of TNF-a

and M1 proinflammatory markers Fujiya et al., 2014 [63]

Diabetic OLETF rat Wild-type Expression with RAGE in Islet cells Lee et al., 2010 [65]
INS-1 cells and rat, pig,
and human islets (b cells) Wild-type Induction of apoptosis Lee et al., 2010 [65]

S100B knockout mice Untreated Induction of resistance
streptozotocin-derived diabetes

Mohammadzadeh et al.,
2018 [66]

It may also be relevant that S100B and its receptor RAGE were found to be expressed
in islet cells of 28-week-old diabetic OLETF rats, a recognized model of type 2 diabetes,
and that S100B induced apoptotic cell death of pancreatic β-cells via oxidative stress.
These data have been regarded to indicate that the S100B/RAGE interaction participates
in the progressive β-cell loss in type 2 diabetes [65]. S100B also induced reactive oxygen
species-dependent and RAGE-dependent apoptosis in pancreatic β-cells derived from
wild-type mice. In addition, S100B knockout mice, unable to synthesize S100B, are resistant
to diabetes induced by streptozotocin, exhibiting enhanced insulin sensitivity, glucose
tolerance, prevention of β cell destruction, and lower urine volume, food, and water intake
compared to wild-type mice. Thus, S100B has been proposed as a potential therapeutic
target for diabetic processes, although the peculiarities of the experimental model used
should be taken into account. In particular, the consideration that streptozotocin merely
kills beta cells might restrict the importance of the observation [66].
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the role of gut microbiota in diabetes, and increasing evidence has demonstrated that fecal 
microbiota transplantation and probiotic capsules are useful strategies in preventing the 
disease, indicating gut microbiota as an appropriate therapeutic target in diabetes pro-
cesses. Indeed, lower microbial biodiversity is a hallmark of these patients [68]. Interest-
ingly, the possible interactions of S100B with microbiota have been recently investigated. 
First, based on the microbiota composition, proteins putatively interacting with S100B do-
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values), and the correlation was significantly reduced after treatment with the S100B in-
hibitor pentamidine [70], indicating that the correlation was influenced by the modulation 
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Figure 1. Schematic representation of the paracrine loop involving S100B between adipocytes and
macrophages in the development of fatty tissue dysfunction. During obesity processes, adipocytes
might release S100B, which acts in a paracrine manner, as an adipokine. In a RAGE-mediated manner,
S100B upregulates in macrophages inflammatory cytokines, which, in turn, can stimulate S100B
release from adipocytes thus sustaining inflammation via macrophage stimulation.

Another participant in obesity/diabetes (diabesity) processes, putatively involving
S100B, is the gut microbiome [67]. This consists of millions of microorganisms present in
the human intestinal apparatus, playing a key role in food digestion, immune and neural
control, antitumor responses, and synthesis of beneficial compounds. It is also regarded to
play an important role in obesity and diabetes processes: metabolites and bacterial compo-
nents of gut microbiota are regarded to the initiation and progression of type 2 diabetes
by regulating inflammation, immunity, and metabolism. Many studies have investigated
the role of gut microbiota in diabetes, and increasing evidence has demonstrated that fecal
microbiota transplantation and probiotic capsules are useful strategies in preventing the
disease, indicating gut microbiota as an appropriate therapeutic target in diabetes processes.
Indeed, lower microbial biodiversity is a hallmark of these patients [68]. Interestingly, the
possible interactions of S100B with microbiota have been recently investigated. First, based
on the microbiota composition, proteins putatively interacting with S100B domains were
found in silico, both in healthy subjects and inflammatory bowel disease patients, in a
reduced number in the latter samples, also exhibiting differences in interacting domain
occurrences between the two groups. These results offered the conceptual framework
to investigate the role of S100B as a candidate signaling molecule in the microbiota/gut
communication machinery [69]. These in silico inferences were experimentally confirmed
in mice, where S100B levels correlated with microbiota biodiversity (Shannon values),
and the correlation was significantly reduced after treatment with the S100B inhibitor
pentamidine [70], indicating that the correlation was influenced by the modulation of S100B
activity. Thus, the protein is a constituent of enteroglial cells [71], which correspond to
astrocytes in the enteric nervous system. S100B reasonably is also released by these cells
and might mediate the regulation of the intestinal microbiota, potentially participating in
microbiota-dependent processes. It may be also relevant, in this respect, that S100B may
also be taken with food, being a natural constituent of mammalian milk [72,73]. Of course,
the above information at present does not suggest any therapy based on S100B through
food.
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Finally, the exploration of a possible role in obesity/diabetes processes of a protein,
such as the S100B, concentrated both in the nervous and adipose tissue, induces a consid-
eration of the possible intriguing relationships linking diabetes to a devastating and still
largely unknown pathological condition of the central nervous system, such as Alzheimer’s
disease (AD), which has been identified as the most common type of dementia, being the
sixth leading cause of death in the United States and the fifth leading cause of mortality in
people 65 and older [74]. First, higher rates of dementia have been reported among sub-
jects with diabetes [75,76]. Data have also been reported indicating that insulin resistance,
which is known to be a hallmark of the most diffuse form of diabetes (type 2), as above
indicated, is also frequently associated with AD dementia, which thus has also sometimes
been regarded as type 3 diabetes, essentially related to peculiarities of glucose metabolism
within the brain [77–79]. In this respect, the observed relationship linking S100B levels to
insulin resistance in psychiatric patients may be intriguing [54], although experimental
data correlating S100B to the putative connection between diabetes and AD dementia at
present are lacking, thus deserving further investigation.

5. Conclusions

In conclusion, taken together, the above data suggest a role for adipose S100B in
obesity/diabetes processes and for non-neurological metabolic diseases in general terms
(Figure 2), re-proposing the putative role played by astrocytic S100B in neuroinflamma-
tory/neurodegenerative processes. Necessarily, additional in vivo studies will be needed
to offer a solid basis for this possibility. Hopefully, this review will constitute a stimulation
towards studies addressing the putative role of S100B protein in obesity/diabetes processes.
In any case, once more, S100B appears to be putatively at the crossroads of different patho-
logical conditions, even involving different tissues and body districts. As a consequence,
the protein might even be proposed as a putative multifaceted therapeutic target for differ-
ent disorders displaying different origins and symptoms, but sharing pathogenic processes
involving S100B, reasonably attributable to inflammatory processes.
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