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Simple Summary: Diffuse large B cell lymphoma is the most common type of B cell neoplasm, and
can be cured by traditional chemoimmunotherapy in 60–70% of cases. Relapsed/refractory patients
usually have a dismal prognosis and most of them finally succumb to lymphoma. In the last decade,
several new innovative therapies have been approved against DLBCL, targeting both surface antigens
and the intracellular pathways of neoplastic B cells. Compared to standard chemotherapy, new
monoclonal antibodies and engineered T cells have shown an increased response rate, progression-
free survival and overall survival, but, on the other side of the coin, patients have been experiencing
new kinds of toxicities, previously unknown, that clinicians have been learning to manage. Here, we
review new drugs that are already approved or under investigation for DLBCL and the corresponding
molecular target on lymphoma cells.

Abstract: Since the introduction of rituximab in the late 1990s, significant progress has been made in
advancing targeted therapies for B cell lymphomas, improving patients’ chance of being cured and
clinicians’ therapeutic armamentarium. A better understanding of disease biology and pathogenic
pathways, coupled with refinements in immunophenotypic and molecular diagnostics, have been
instrumental in these achievements. While traditional chemotherapy remains fundamental in most
cases, concerns surrounding chemorefractoriness and cumulative toxicities, particularly the deple-
tion of the hemopoietic reserve, underscore the imperative for personalized treatment approaches.
Integrating targeted agents, notably monoclonal antibodies, alongside chemotherapy has yielded
heightened response rates and prolonged survival. A notable paradigm shift is underway with
innovative-targeted therapies replacing cytotoxic drugs, challenging conventional salvage strategies
like stem cell transplantation. This review examines the landscape of emerging targets for lymphoma
cells and explores innovative therapies for diffuse large B cell lymphoma (DLBCL). From Chimeric
Antigen Receptor-T cells to more potent monoclonal antibodies, antibody–drug conjugates, bispecific
antibodies, checkpoint inhibitors, and small molecules targeting intracellular pathways, each modal-
ity offers promising avenues for therapeutic advancement. This review aims to furnish insights into
their potential implications for the future of DLBCL treatment strategies.

Keywords: diffuse large B cell lymphoma; chimeric antigen receptor-T cells; bispecific antibodies;
antibody–drug conjugates; BCL2-inhibitors; BTK-inhibitors; checkpoint inhibitors; XPO1-inhibitors
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1. Introduction

Diffuse large B cell lymphoma (DLBCL) is the most common subtype of mature B cell
lymphoma, accounting for about 30% of all lymphoma cases in Western countries, with
an estimated 150,000 new cases annually worldwide. The age-standardized incidence rate
for DLBCL was 7.2 per 100,000 in the US. Incidence rates are rising in areas of historically
low rates, such as Asia, while incidence rates in the Western hemisphere rose during the
20th century, but then appeared to plateau. DLBCL can arise de novo or as a transforma-
tion from a low-grade B cell lymphoma. The median age at diagnosis is in the mid-60s
and identified rick factors include family history, several genetic susceptibility loci, viral
infections (for instance EBV, HIV, HHV8, HBV, and HCV), solid-organ transplantation,
autoimmune disorders, immunodeficiency, increased body mass index, pesticides, and
ionizing radiation [1,2].

The cornerstone of treatment is the standard chemoimmunotherapy regimen R-CHOP,
achieving cure rates of up to 60% for DLBCL patients. However, a significant portion of
individuals experience relapsed or refractory disease, necessitating further interventions [1].
Historically, platinum-based regimens followed by autologous stem cell transplantation
(ASCT) have served as the standard second-line treatment for relapsed/refractory DLBCL.
Yet, in the post-rituximab era, this approach yields curative outcomes for only 20% of
patients [3]. Particularly dismal are the prospects for primary refractory patients and
those failing salvage chemotherapy or relapsing after ASCT, with median survival as
short as 6.3 months [4]. For years, relapsed/refractory DLBCL has posed a great chal-
lenge, with efforts to surpass R-CHOP and ASCT proving largely futile. However, recent
times have witnessed a notable shift, with the approval of several innovative therapies
for DLBCL advancing these therapies from later to earlier lines of treatment. This trans-
formation owes much to an enhanced understanding of the disease’s biology and patho-
genetic pathways, accompanied by the technological advances in molecular diagnostics
and immunophenotyping.

The evolving landscape of targeted therapies for DLBCL, particularly in the setting
of R/R DLBCL, will inevitably change the financial burden of the management of these
patients. A shift to an increase in pharmacy costs in the upcoming era of precision medicine
can be foreseen. While this expansion of treatment options holds promise, it underscores
the necessity for a more personalized approach to treatment. Such an approach seeks to
optimize patient response and survival while mitigating adverse effects and rationalizing
the escalating costs of medical care [5,6].

In this review, we explore the landscape of new drugs that are already approved or un-
der investigation for DLBCL, elucidating the corresponding molecular targets in lymphoma
cells. By tracing the trajectory from diagnostic processes to treatment selection, we aim to
provide clinicians with valuable insights to navigate this evolving therapeutic paradigm.

2. Diagnostics for Clinical Decision Making in DLBCL

Our understanding of DLBCL has evolved to recognize its inherent heterogeneity in
biology and drug sensitivity. In 2022, two updated classifications of mature B cell lym-
phomas were published: the 5th edition of the World Health Organization Classification
of Haematolymphoid Tumours (WHO-HAEM5) and the International Consensus Classi-
fication of Mature Lymphoid Neoplasms (ICC) [7,8]. Within the WHO-HAEM5, DLBCL
not otherwise specified (NOS) is classified in the family/class of large B cell lymphomas
(LBCL), encompassing a spectrum of tumors characterized by aggressive clinical behavior.
Differentiating DLBCL NOS from other LBCL types, particularly from DLBCL/high-grade
B cell lymphomas (HGBL) with MYC/BCL2 rearrangements (double hit), typically involves
morphological assessment, immunophenotyping, and fluorescence in situ hybridization
(FISH) for BCL2, BCL6, and MYC rearrangements [9].

However, DLBCL NOS includes several molecular subtypes with distinct clinical
outcomes and pathway dependencies. Gene expression profiling (GEP) in the early 2000s
identified three DLBCL subtypes according to the ‘cell-of-origin’ (COO): germinal center
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B cell-like (GCB), activated B cell-like (ABC), and an ‘unclassified’ group [10,11]. While
these subtypes exhibit differential responses to standard therapy and new drugs [12], the
COO classification has limitations in predicting prognosis and treatment response. The
nanostring approach, based on the expression of 20 genes, has emerged as a promising
tool for molecular classification, capable of reproducing GEP data and identifying specific
signatures, such as the double-hit signature (DHITsig), in FISH-negative cases [13,14].

Furthermore, genomic data integration has led to the identification of recurrent genetic
alterations and genetic subtypes with distinct clinical outcomes and pathway dependen-
cies [15,16]. The LymphGen algorithm was developed to determine the probability that a
patient’s lymphoma belongs to one of seven genetic subtypes based on its genetic features
and was able to classify 63.1% of DLBCL cases, while the remaining 36.9% were unclassified.
Each subtype exhibits a distinct prognosis with standard R-CHOP therapy and varying
sensitivity to different target therapies [17].

In the era of expanding immunotherapy strategies, the accurate immunophenotyping
of biopsy samples is paramount for the subclassification and identification of target antigen
expression, particularly in the relapse setting, where antigen downregulation may con-
tribute to drug resistance [18]. A flow cytometry analysis of disaggregated tissue samples,
alongside immunohistochemistry on formalin-fixed paraffin-embedded (FFPE) samples,
enhances diagnostic accuracy and expedites diagnostic times, especially when using a
limited material such as core needle biopsies [19].

3. CD19 as Target

CD19 is a type I transmembrane glycoprotein belonging to the immunoglobulin Ig
superfamily, known for its specificity to the B cell lineage. It is expressed throughout the
entire B cell maturation process and is typically lost in terminally differentiated plasma
cells. Functionally, CD19 plays crucial roles in immune response, participating in antigen-
independent B cell development and contributing to immunoglobulin-induced B cell
activation. Notably, CD19 expression persists across various B cell malignancies, ranging
from early B cell neoplasms like acute lymphoblastic leukemia to mature B cell lymphomas.
The experimental evidence suggests that CD19 may collaborate with c-Myc in promoting
lymphomagenesis, as demonstrated in Myc-transgenic mice [20,21]. Studies on CD19
antigen internalization upon antibody binding have generated conflicting results, and it is
unclear whether this was due to differences in antibodies, cell types, or the co-expression
of other molecules, such as CD21, on the surface of B cells [22].

3.1. Anti-CD19 Chimeric Antigen Receptor T Cells

Chimeric Antigen Receptor (CAR) T cell therapy targeting CD19 has demonstrated
remarkable efficacy in treating aggressive and indolent B cell lymphomas, leading to
FDA and EMA approval of three CD19-targeted CAR-T products for relapsed/refractory
aggressive B cell lymphomas: axicabtagene ciloleucel (axi-cel; KTE-C19), tisagenlecleu-
cel (tisa-cel; CTL019), and lisocabtagene maraleucel (liso-cel; JCAR017) [23–25]. These
second-generation CAR T cell products incorporate an antigen-binding domain, hinge and
transmembrane domains, a co-stimulatory domain (CD28 for axi-cel; 4-1BB for tisa-cel
and liso-cel), and a T cell activation domain (CD3ζ) [23–25]. Liso-cel stands out due to its
unique manufacturing methodology, which involves separately transducing isolated CD4
and CD8 T cell fractions from the apheresis product and sequentially infusing them in two
equal target doses of CD4+ and CD8+ CAR+ T cell subsets. Despite their effectiveness,
CAR T cell products are associated with class-specific adverse effects such as cytokine-
release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS),
hypogammaglobulinemia, and cytopenias, particularly B cell aplasia [26,27].

The pivotal trials investigating the efficacy of these CAR T cell products in patients
with relapsed or refractory (R/R) large B cell lymphomas (LBCL) after two or more lines of
therapy reported promising results (Table 1) [23–25].
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Table 1. The main studies on the use of CAR-T product in relapsed/refractory LBCL after two or
more lines of therapy.

ZUMA-1 JULIET TRASCEND

Type of CAR-T Axi-cel Tisa-cel Liso-cel

Number of patients 101/111 treated 115/167 treated 269/344 treated

Histologies included DLBCL, PMBCL, tFL, DLBCL, HGBCL, tFL, DLBCL, PMBCL, HGBCL, tFL;
FL G3B

Age, years ≥18 ≥18 18–75

CAR-T cells infused 2 × 106/kg 0.1 × 108 to 6 × 108 100 × 106/kg

Type of conditioning Cy-Flu Cy-Flu Cy-Flu

Median time from registration
to CAR T infusion NR 54 days NR

Bridging therapy
(% patients) not allowed (only steroids) allowed (90%) allowed (59%)

CNS involvement excluded excluded eligible

Best ORR/CR 83%/58% 53%/40% 73%/53%

EFS 38% (2 years) - -

PFS - 31% (3 years) 41% (2 years)

OS 43% (5 years) 36% (3 years) 50% (2 years)

Any grade CRS/ICANS (%) CRS 93%
ICANS 64%

CRS 58%
ICANS 21%

CRS 42%
ICANS 30%

Grade ≥ 3 CRS/ICANS (%) CRS 13%
ICANS 28%

CRS 24%
ICANS 14%

CRS 2%
ICANS 10%

Abbreviations. CAR-T: chimeric antigen receptor T cells; DLBCL: diffuse large B cell lymphoma; t-FL: transformed
follicular lymphoma; HGBCL: high-grade B cell lymphoma; PMBCL: primary mediastinal B cell lymphoma; FL
G3B: follicular lymphoma grade 3B; Cy-Flu: cyclophosphamide-fludarabine; NR: not reported; CNS: central
nervous system; ORR: overall response rate; CR: complete remission; EFS: event-free survival; PFS: progression-
free survival; OS: overall survival; CRS: cytokine release syndrome; ICANS: immune effector cell-associated
neurotoxicity syndrome.

Long-term follow-up data from these trials confirmed durable remissions, especially
in patients achieving a CR [27–29]. With a median follow-up of 63.1 months, responses in
the ZUMA1 trial were ongoing in 31% of patients, and the estimated 5-year OS rate was
42.6%, increasing to 64.4% in those patients who achieved a CR [28].

Real-world data, such as the retrospective French DESCAR-T registry study, have
provided indirect evidence for differences in efficacy and toxicity between CAR-T products,
aiding in treatment selection. Using propensity score matching (n = 418), the DESCAR-T
investigators demonstrated the higher efficacy as well as greater toxicity of axi-cel compared
to tisa-cel, with the best ORR/CR 80%/60% versus 66%/42%, 1-year OS/PFS 63.5%/46.6%
versus 48.8%/33.2%, all-grade CRS 86.1% versus 75.6%, and all-grade ICANS 48.8% versus
22%, respectively [30].

In this context, liso-cel’s favorable safety profile, with a notably reduced incidence
of severe CRS and ICANS, implies its potential suitability for a wider patient population.
This may encompass individuals with characteristics such as renal dysfunction, mild
left ventricular dysfunction, secondary CNS involvement, and advanced age who were
included in the pivotal TRANSCEND trial [25].

Prospective randomized controlled trials (ZUMA-7, BELINDA, TRANSFORM) have
further compared CAR T cell therapy to standard-of-care (SOC) high-dose chemotherapy
with autologous stem cell transplant (ASCT) in refractory LBCL patients or those who
relapsed within 12 months after first-line chemoimmunotherapy (Table 2) [31–33].
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Table 2. Randomized trials comparing CD19-CAR T versus ASCT in patients with DLBCL who were
refractory to a precedent chemotherapy regimen or experienced disease progression within one year
after the end of the first-line therapy.

ZUMA-7 TRANSFORM BELINDA

Type of CAR-T Axi-cel Liso-cel Tisa-cel

Number of patients 359 184 322

Histologies included DLBCL NOS, t-FL, HGBCL
DLBCL NOS, t-IL, HGBCL,
Leg-type DLBCL, FL G3B,

PMBCL

DLBCL NOS, t-IL, HGBCL, FL
G3B, PMBCL

Age, years ≥18 ≥18 18–75

CAR-T cells infused 2 × 106 cells/kg 1 × 108 cells 0.6–6 × 108 cells

Median time from registration
to CAR-T infusion 29 days 34 days 52 days

Bridging therapy
(% patients) Only steroids Salvage chemotherapy (63%) Salvage chemotherapy (97%)

Patients proceeding to CAR-T
or ASCT 94% vs. 36% 97% vs. 47% 96% vs. 32%

CR (CAR-T vs. ASCT) 65% vs. 32% 74% vs. 43% 28% vs. 28%

EFS (CAR-T vs. ASCT) 8.3 vs. 2 months n.r. vs. 2.4 months 3 vs. 3 months

PFS (CAR-T vs. ASCT) 14.7 vs. 3.7 months n.r. vs. 6.2 months n.a.

OS (months) n.r. vs. 35.1 months n.r. vs. 29.9 months 16.9 vs. 15.3 months

Any grade CRS/ICANS 92%/60% 49%/11% 61%/10%

Grade ≥ 3 CRS/ICANS 6%/21% 1%/4% 5%/2%

Abbreviations. CAR-T: chimeric antigen receptor-T cells; DLBCL NOS: diffuse large B cell lymphoma not otherwise
specified; t-FL: transformed follicular lymphoma; HGBCL: high-grade B cell lymphoma; t-IL: transformed
indolent lymphoma; PMBCL: primary mediastinal B cell lymphoma; FL G3B: follicular lymphoma grade 3B;
ASCT: autologous stem cell transplantation; CR: complete remission; EFS: event-free survival; PFS: progression-
free survival; OS: overall survival; CRS: cytokine release syndrome; ICANS: immune effector cell-associated
neurotoxicity syndrome; n.r.: not reached; n.a. not available.

Of these trials, ZUMA-7 using axi-cel and TRANSFORM using liso-cel demonstrated
the superior efficacy of CAR T cell therapy in terms of event-free survival (EFS), ORR, and
CR rates compared to SOC [31,33], while the BELINDA trial using tisa-cel failed to meet its
primary endpoint [32].

The exploration of CAR-T cell therapy in difficult-to-treat patient groups, such as those
ineligible for ASCT, has shown promising results in open-label phase 2 trials (ALYCANTE
and PILOT) using axi-cel and liso-cel, respectively. These trials reported high response
rates (best CR 79% for axi-cel and 54% for liso-cel, with median PFS of 11.8 months and
9.3 months, respectively) and manageable toxicity profiles (grade > 3 CRS and ICANS
occurred in 8.1% and 14.5% of axi-cel-treated patients, and 2% and 5% of liso-cel-treated
patients [34,35].

Currently, CAR-T cell therapy has become the standard treatment for patients with
relapsed/refractory DLBCL/HGBCL after two or more lines of treatment (axi-cel, tisa-cel,
and liso-cel), as well as for patients with primary refractory or relapsed disease within
12 months after first-line therapy (only axi-cel and liso-cel) [36,37]. Nonetheless, several
challenges persist, including CAR-T resistance mediated by CD19 downregulation, the
diminished function of engineered lymphocytes due to prior treatments, and limited
efficacy against the high disease tumor burden, and in the context of a heightened systemic
inflammatory state, patients’ comorbidities and poor performance status, and logistical
complexities. These logistical hurdles include the referral of patients to CAR-T centers,
which can impact their socioeconomic status, and the extended manufacturing times, which
are incompatible with rapidly progressive disease [18,26,27,38].
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3.2. Anti-CD19 Antibody Tafasitamab

Tafasitamab, a humanized anti-CD19 monoclonal antibody, is augmented with an Fc
domain designed to enhance its binding affinity to natural killer (NK) cells and macrophages,
thereby facilitating antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent
cellular phagocytosis (ADCP), alongside direct cytotoxicity [39]. Its efficacy is further
potentiated by lenalidomide, which enhances ADCC, as evidenced by the predictive role
of the number of circulating NK cells in response to this combination. Tafasitamab, in
combination with lenalidomide, gained approval in the USA (July 2020) and Europe
(August 2021) for treating adult patients with relapsed/refractory (R/R) diffuse large B cell
lymphoma (DLBCL) who were ineligible for autologous stem cell transplant (ASCT) [40].

The pivotal study, L-MIND, a phase 2 trial, enrolled patients with R/R DLBCL ineli-
gible for ASCT, including those with transformed indolent lymphomas with a limitation
of no more than three prior lines of therapy [39]. Notably, patients with high-grade B
cell lymphoma (HGBCL), prior exposure to anti-CD19 therapy or immunomodulatory
drugs, central nervous system (CNS) involvement, or primary refractory disease were
excluded. The treatment schedule and results are reported in Table 3. Neutropenia was
the most common adverse event, occurring as grade ≥3 in 48% of patients. At 5-year
follow-up, median DOR, PFS, and OS were 43.9 months, 11.6 months, and 33.5 months,
respectively [41].

Data from tafasitamab–vlenalidomide-treated patients included in the L-MIND trial
were compared to observational retrospective matched cohorts of patients treated in the
real word with other systemic treatments approved for R/R DLBCL. In the RE-MIND study,
tafasitamab + lenalidomide was superior to lenalidomide monotherapy in terms of ORR,
CR, PFS, and OS [42]. Using propensity score-based 1:1 nearest-neighbor matching, the
RE-MIND2 study showed improved an OS, PFS, DOR, ORR, and CR with tafasitamab–
lenalidomide when compared to systemic pooled therapy, bendamustine + rituximab
(BR), and rituximab + gemcitabine + oxaliplatin (R-GemOx) [43]. Similarly, a second
comparative analysis in the RE-MIND2 study matched L-MIND patients with retrospective
cohorts of patients treated with polatuzumab–vedotin + bendamustine + rituximab (Pola-
BR), rituximab + lenalidomide (R2), and CAR-T therapies: in this analysis, tafasitamab–
lenalidomide showed improved overall survival when compared to Pola-BR and R2 and
comparable OS to CAR-T [44].

However, it is crucial to interpret these findings cautiously, considering the exclusion
criteria of the L-MIND trial, which did not include primary refractory patients, those with
a high cytogenetic risk, those refractory to more than four lines of therapy, or those with
an Eastern Cooperative Oncology Group (ECOG) performance status >2. A real-world
retrospective analysis of 178 R/R DLBCL patients treated with tafasitamab–lenalidomide
demonstrated substantially different outcomes, highlighting the importance of patient
selection for optimal therapeutic outcomes [45]. Ongoing investigations, such as the FIRST
MIND phase 1b study in treatment-naïve DLBCL patients and the double-blind phase
3 Front-MIND (NCT04824092) study, aim to further elucidate the role of tafasitamab in
DLBCL management [46].
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Table 3. New monoclonal antibodies approved for treatment of DLBCL.

Name Type of mAb Target Schedule of
Treatment

Patients’
Population

Line of
Treatment Efficacy Data Ref.

Tafasitamab Fc-modified CD19

Tafasitamab i.v.
12 mg/kg on day
1,8,15,22 for cycle
1–3 (28 days each)

and on day 1 and 15
from cycle 4 until

PD, in combination
with lenalidomide

25 mg/day on days
1–21 of each 28-day
cycle per 12 cycles

R/R DLBCL
(including t-IL)

ineligible or
relapsed after

ASCT
ECOG 0–2
Excluded:

DH/TH HGBCL
and primary

refractoy disease

2nd–4th
lines of
therapy

ORR 57.5%
CR 41.3%

mDOR not
reached
mPFS

11.6 months
mOS

33.5 months

[39,41]

Loncastuximab-
teserine ADC CD19

Loncastuximab i.v.
150 µg/kg on day 1
of 21-day cycle, for

two cycles, then
75 µg/kg thereafter,
for up to 1 year or

until disease relapse
or progression,

unacceptable toxicity,
or death

R/R DLBCL,
DH/TH HGBCL,

PMBCL,
ECOG 0–2

Excluded bulky
disease and t-IL

3rd line or
more

ORR 48.3%
CR 24.1%

mDOR
10.3 months

mPFS
4.9 months

mOS
9.9 months

[47,48]

Glofitamab BsAb CD20/CD3
(2:1)

Obinutuzumab i.v.
1000 mg on day 1 of
cycle 1, Glofitamab
i.v. 2.5 mg on day 8,

and 10 mg on day 15
of cycle 1, followed

by 30 mg on day 1 of
cycles 2 through 12

(cycles lasted
21 days)

R/R DLBCL,
t-FL, HGBCL,

PMBCL.
ECOG 0–1

3rd line or
more

ORR 52%
CR 39%
mDOR

18.4 months
mPFS

4.9 months
mOS

11.5 months

[49]

Epcoritamab BsAb CD20/CD3

Epcoritamab was
administered

subcutaneously
weekly in cycles 1–3,
once every 2 weeks
during cycles 4–9

(days 1 and 15), and
once every 4 weeks

from cycle 10. Cycles
lasted 28 days.

Step-up dosing for
0.16 mg on day 1,

0.8 mg on day 8, and
subsequent full

48 mg doses once on
day 15 and beyond

until disease
progression or
unacceptable

toxicity.

R/R DLBCL, FL
G3B, HGBCL,

PMBCL.
ECOG 0–2

3rd line or
more

ORR 63.1%
CR 38.9%

mDOR
12 months

mPFS
4.4 months
mOS not
reached

[50]
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Table 3. Cont.

Name Type of mAb Target Schedule of
Treatment

Patients’
Population

Line of
Treatment Efficacy Data Ref.

Polatuzimab-
vedotin

(PV)
ADC CD79b

PV i.v. 1.8 mg/mq +
BR every 21 days for

6 cycles

R/R DLBCL
(excluded t-FL)

ECOG 0–2

2nd line or
more

ORR 41.5%
CR 38.7%

mDOR
9.5 months

mPFS
6.6 months

mOS
12.5 months

[51–53]

PV i.v. 1.8 mg/mq +
R-CHP every

21 days for 8 cycles
(cycles 7 and 8 only

PV + R)
(double-blinded

phase 3 trial,
comparator arm

R-CHOP)

DLBCL
IPI 2–5

ECOG 0–2
1st line

ORR 85.5%
CR 78%

2y PFS 76.7%
2y OS 88.7%

[54]

Abbreviations. mAb; monoclonal antibody; ADC: antibody–drug conjugate; PD: progression disease; R/R:
relapsed/refractory; DLBCL: diffuse large B cell lymphoma; ASCT: autologous stem cell transplantation; t-FL:
transformed follicular lymphoma; HGBCL: high-grade B cell lymphoma; DH/TH: double hit/triple hit; t-IL:
transformed indolent lymphoma; PMBCL: primary mediastinal B cell lymphoma; FL G3B: follicular lymphoma
grade 3B; ASCT: autologous stem cell transplantation; ORR: overall response rate; CR: complete remission;
mDOR: median duration of response; mPFS: median progression-free survival; mOS: median overall survival; IPI:
international prognostic index.

3.3. Anti-CD19 Antibody–Drug Conjugate Loncastuximab-Teserine

Loncastuximab–tesirine is an anti-CD19 antibody–drug conjugated through a cleav-
able linker to a potent pyrrolobenzodiazepine (PBD) dimer alkylating cytotoxin, SG3199.
Upon binding to the CD19 antigen, Loncastuximab is internalized, the linker is cleaved,
and PBD dimers are rapidly released. The PBD dimer forms persistent DNA crosslinks
in the DNA minor groove, leading to tumor cell apoptosis [55]. LOTIS-2 was the pivotal
study leading to FDA approval in April 2021, and EMA, in December 2022, conducted
a multicenter phase 2 study for patients affected by DLBCL, HGBCL, and primary me-
diastinal B cell lymphoma (PMBCL), who relapsed or were refractory after two or more
lines of treatment [47,56]. The results of LOTIS-2 are reported in Table 3. The median
time to response was 41 days. Neutropenia (26%), thrombocytopenia (18%), and increased
gamma-glutamyltransferase (GGT) 17% were the most common adverse events. Treatment-
emergent adverse effects (TEAEs), likely related to the PDB, included oedema or effusion
(31% cases), adverse events related to skin or nails (43%), and liver enzyme abnormalities
(51%). All these events were generally mild to moderate in severity [47,48].

LOTIS-3 investigated Loncastuximab plus ibrutinib in R/R DLBCL and mantle cell
lymphoma (MCL), achieving a CR rate of 34.3% and an ORR of 57.1% in DLBCL pa-
tients [57]. Ongoing trials (LOTIS-5, LOTIS-7) explore Loncastuximab combinations in R/R
DLBCL [58,59].

4. Anti-CD20 Bispecific T Cell-Engaging Antibodies

The anti-CD20 antibody rituximab was the pioneering monoclonal antibody approved
for the treatment of B cell malignancies. Its combination with standard chemotherapy has
markedly enhanced outcomes for DLBCL patients, showing improvements in ORR, CR
rate, PFS, and OS [60,61]. Despite the emergence of newer, humanized, and more potent
antibodies such as ofatumumab and obinutuzumab, they have not surpassed the efficacy
achieved by rituximab in combination with chemotherapy for DLBCL [62,63]. However,
CD20 remains an appealing target for the development of advanced treatments against
mature B cell malignancies.
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CD20, a 33–37 kDa non-glycosylated transmembrane protein, belongs to the MS4A
(membrane-spanning 4-domain family A) protein family. It serves as a B cell-specific marker,
expressed from late pre-B lymphocytes onwards, with its expression lost in terminally
differentiated plasma cells. In B cell malignancies, the expression level of CD20 varies
widely based on the specific neoplasm, with DLBCL exhibiting the highest cell-surface
expression. CD20 interacts with various other surface proteins on B cells, participating in
microenvironment interactions and BCR-signaling [64].

T cell-engaging bispecific antibodies (BsAbs) targeting CD3 on T cells and CD20
on lymphoma B cells are emerging as a novel and promising immunotherapy for B cell
lymphomas. These agents bind both target B cells and cytotoxic T cells, forming an
immunological synapse that releases perforin and granzymes, leading to B cell destruction
through lysis and cell death. BsAbs have demonstrated profound and enduring responses
in relapsed/refractory (R/R) B cell lymphomas, with a favorable toxicity profile compared
to CAR-T therapy.

Glofitamab, engineered with a novel 2:1 configuration of anti-CD20/CD3, has received
approval for the treatment of adult patients with R/R DLBCL NOS, t-FL or primary
mediastinal B cell lymphoma (PMBCL) who have received two or more lines of systemic
therapy and are ineligible for, or have already received, CAR-T therapy [65]. In addition to
inducing the expansion of pre-existing, intra-tumor, resident T cell populations, a preclinical
study has shown that glofitamab promotes the recruitment of peripheral blood T cells [66].
The incidence of CRS in the phase 1 trial in R/R NHL was 50.3% (grade 3 or 4: 3.5%) and
1.2% of patients experienced grade 3 transient ICANS [67]. The phase 2 study enrolled
155 patients with relapsed R/R DLBCL who had received at least two previous lines of
treatment. The results are shown in Table 3 and were consistent among the 52 patients
who had previously received CAR-T therapy (35% of whom had a CR) [49]. The clinical
development of Glofitamab as a monotherapy or in combination with standard therapies is
ongoing in the setting of both R/R and treatment-naïve patients.

Epcoritamab, an IgG1-bispecific, T cell-engaging antibody, is administered subcu-
taneously in 28-day cycles until disease progression or unacceptable toxicity for adult
patients with R/R DLBCL NOS, including DLBCL arising from indolent lymphoma, and
high-grade B cell lymphoma after ≥2 lines of systemic therapy [68]. The step-up dosage
was set up in a phase 1/2 study in R/R NHL [69]. The dose-expansion cohort of the phase
I/II study included 157 adults with R/R large B cell lymphoma and reported promising
ORR and CR rates (Table 3), with manageable adverse events including CRS (grade 3 2.5%)
and pyrexia. ICANS occurred in 6.4% of patients, with one fatal event. Similar responses
were also observed in patients with primary efractory disease and in patients who received
prior CAR T cell therapy [50].

Odronextamab, a hinge-stabilized, fully human, IgG4-based, CD20 × CD3-bispecific
antibody, has demonstrated efficacy in R/R CD20-positive B cell malignancies with man-
ageable CRS and ICANS. The phase 1 ELM-1 and phase 2 ELM-2 trials have shown notable
ORR and CR rates, with consistent results across different dosing schedules [70,71]. The
recommended step-up doses were 0.7/4/20 mg on days 1, 8, and 15 during cycle 1, fol-
lowed by 160 mg on days 1, 8, and 15 of cycles 2–4. After C4, odronextamab maintenance
treatment continued at 320 mg every 2 weeks until disease progression or unacceptable
toxicity. At the final analysis of the phase 2 study including 141 patients, ORR and CR
were 52% and 31%, respectively, and were consistent across high-risk subgroups. Safety
was generally consistent with previous reports [71]. Odronextamab does not yet have
marketing authorization in DLBCL.

While no comparative trials have been conducted among different anti-CD20/CD3
BsAbs, all have shown promising results in R/R DLBCL, including patients who relapsed
after CAR-T therapy. They vary in treatment schedules, the routes of administration
(intravenous vs. subcutaneous), and the duration of treatment (fixed vs. unlimited until
disease progression or unacceptable toxicity). Epcoritamab and glofitamab have received
FDA and EMA approval for R/R DLBCL after at least two lines of treatment, offering
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effective and accessible treatment options, which are particularly beneficial for patients with
rapidly progressive disease where CAR-T therapy might not be feasible due to logistical
challenges and the necessity of referral to specialized centers.

5. Anti-CD79b Antibody–Drug Conjugate Polatuzumab

The B cell receptor (BCR) is a complex comprising immunoglobulin (Ig) and a het-
erodimeric complex of two non-covalently associated proteins, Igα and Igβ, designated
as CD79a and CD79b, respectively [72]. These proteins are pivotal for signal transduction
via the BCR, a crucial pathway for B cell activation. Activation of this cascade leads to
internalization of the CD79b-containing complex and its trafficking to late endosomes,
thereby contributing to antigen presentation [73]. CD79b is expressed throughout B cell
development, first appearing on the cell surface at the pre-B cell stage alongside the Ig
heavy chain, but it is undetectable in terminally differentiated plasma cells [74]. The
expression of CD79b varies among B cell neoplasms, being virtually absent in B-acute
lymphoblastic leukemia (B-ALL) but widely expressed in mature B cell neoplasms, except
for chronic lymphocytic leukemia (CLL) [75–77]. While CD79a’s expression in DLBCL is
well-established, data on CD79b expression in diffuse large B cell lymphoma (DLBCL) are
more limited and heterogeneous [77]. The near-exclusive expression of CD79b on B cells
and B cell lymphomas, coupled with its internalization upon antibody binding, makes it an
intriguing target for antibody–drug conjugates (ADCs) [78].

Polatuzumab vedotin (PV) is an ADC comprising an IgG1 monoclonal antibody target-
ing CD79b, covalently conjugated to the anti-mitotic cytotoxic agent monomethyl auristatin
E (MMAE) via a cleavable linker. Upon binding to CD79b on the B cell surface, PV is
internalized and MMAE is released into the cell, inhibiting division and inducing apopto-
sis [79]. PV has demonstrated activity against most DLBCL cell lines in vitro, irrespective
of cell-of-origin subtype or CD79B mutation status [80]. In clinical trials, PV, alone or in
combination with other therapies, showed an acceptable tolerability profile in DLBCL
patients, with peripheral sensory neuropathy being the most common treatment-emergent
adverse event leading to discontinuation, while the most serious TEAEs were diarrhea,
lung infection, and lung disorder [51–53].

In 2019, the US FDA granted accelerated approval to PV, administered via intravenous
infusion at a dosage of 1.8 mg/kg every 21 days for 6 cycles, in combination with ben-
damustine plus rituximab (PolaBR), for adults with R/R DLBCL who are ineligible for
transplantation. The PolaBR combination significantly increased the CR rate (40.0%) com-
pared to rituximab–bendamustine (BR) aloe (17.5%), with a reduced risk of death observed
in clinical trials (Table 3). In the extension cohort, higher response rates and a longer median
PFS and OS were observed in patients who received Pola-BR in second line of treatment,
in patients who were not refractory to prior therapies, and in patients without primary
refractory disease [52,53].

A subsequent analysis of the Polarix study (NCT03274492) suggests that adding
Polatuzumab to standard first-line immunochemotherapy may improve PFS in DLBCL
patients, particularly for those at high risk with an International Prognostic Index (IPI) of
3–5 and ABC cell of the origin subtype [54].

In a recent phase Ib trial (NCT02611323) involving patients heavily pre-treated with
R/R NHL, a subset of DLBCL patients achieved complete or partial responses with ac-
ceptable safety when treated with PV in combination with venetoclax and anti-CD20
antibody [81]. Further trials are underway, evaluating PV in combination with various
immunochemotherapy regimens in previously untreated DLBCL patients.

6. Anti-ROR1 Antibody–Drug Conjugate Zilovertamab–Vedotin

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a transmembrane recep-
tor belonging to the tyrosine kinase family (RTK). It comprises three distinct extracellu-
lar regions: an immunoglobulin (Ig)-like domain, a cysteine-rich domain (CRD), and a
kringle domain (KNG). Intracellularly, it possesses a tyrosine kinase domain along with
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two serine/threonine-rich and proline-rich motifs [82,83]. Initially identified as an oncofetal
protein expressed during embryogenesis, ROR1 mediates signaling from its ligand, Wnt5a,
to drive embryonic stem cell proliferation in the development of various tissues, but its
expression diminishes in normal adult tissues. However, ROR1 is selectively overexpressed
in several human solid and hematological malignancies, potentially acting as a survival
factor for tumor cells [82–84].

In hematological diseases, the strong expression of ROR1 has been described in CLL
and mantle cell lymphoma (MCL), while moderate and heterogeneous expression has been
noted in marginal zone lymphoma, DLBCL, and follicular lymphoma [85–87]. Immuno-
histochemical studies have associated ROR1 expression in DLBCL with poor prognosis
subgroups, such as primary refractory DLBCL and Richter’s syndrome, while its expres-
sion is less frequent in de novo non-relapsed DLBCL [88]. The selective expression of
ROR1 on malignant cells presents an attractive target for novel cancer immunotherapy,
including monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors,
with a potentially lower rate of side effects [82,89].

Zilovertamab vedotin (ZV, MK-2140) is an antibody–drug conjugate targeting ROR1,
conjugated to the anti-microtubule agent monomethyl auristatin E (MMAE) via a cathepsin-
cleavable linker. Similar to other MMAE-containing antibody–drug conjugates, ZV binds to
ROR1, leading to rapid internalization, trafficking to lysosomes, cleavage of the antibody–
drug conjugate, and the release of MMAE, which inhibits cell division by blocking tubulin
polymerization [90,91].

Initial results have shown that ZV has a tolerable safety profile and promising antitu-
mor activity in patients with relapsed/refractory (R/R) NHL. In the first-in-human safety
trial, phase 1 dose-escalation study waveLINE-001, 32 heavily pretreated NHL patients
received ZV every 3 weeks until progression or unacceptable toxicity. Notably, three of the
five DLBCL patients that were enrolled showed an objective tumor response (one partial
and two complete responses). Adverse events included acute neutropenia and cumulative
neuropathy, leading to a recommended ZV dose of 2.5 mg/kg every 3 weeks [91]. In the
subsequent single-arm, open-label, phase 2 study, waveLINE-004 (NCT05144841), evaluat-
ing ZV monotherapy in 40 R/R DLBCL patients, preliminary results at a median follow-up
of 6.0 months showed an ORR of 30% (10% CR, 20% PR) [92].

Currently, a phase 2/3 multicenter, open-label, randomized, active-control study
of ZV in combination with standard of care (R-GemOX or BR) in R/R DLBCL patients
(waveLINE-003) is underway [93]. Additionally, another multicenter, open-label, phase 2
dose escalation and confirmation, and efficacy expansion study (MK-2140-007) of ZV in
combination with R-CHP in first-line DLBCL patients is ongoing [94].

ZV does not yet have yet marketing authorization in DLBCL.

7. Anti-CD30 Antibody–Drug Conjugate Brentuximab–Vedotin

CD30, a member of the tumor necrosis factor receptor superfamily, is expressed on a
small subset of activated T CD4+ and CD8+ cells, as well as B lymphocytes [95]. It is notably
overexpressed in various lymphoid neoplasms, with the highest expression observed in
classical Hodgkin lymphoma (cHL), anaplastic large-cell lymphoma, and EBV-driven clonal
lymphoproliferative disorders [96]. In the context of DLBCL, CD30 expression, typically
evaluated by immunohistochemistry (IHC), varies in percentage and intensity.

For de novo EBV-negative DLBCL NOS, CD30 positivity, defined by a cut-off of
20% stained lymphoma cells, ranges from 10% to 21% across different studies, with a
suggested trend toward better prognosis, especially in the GCB subgroup [97–100]. Con-
versely, utilizing a threshold of 5%, CD30 positivity is documented in up to 90% of cases
of EBV-positive non-GC DLBCL, correlating with worse outcomes in this subset [101,102].
Additionally, CD30 is overexpressed in up to 80% of primary mediastinal large B cell
lymphomas (PMBCL), 70% of post-transplant lymphoproliferative disorders (PTLD), and
primary effusion lymphomas (PEL), suggesting a potential role for targeted therapy in
these settings [103–105].
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Early clinical trials with “naked” anti-CD30 antibodies yielded disappointing re-
sults [106]. Conversely, the ADC brentuximab vedotin (BV), comprising a humanized IgG1
anti-CD30 monoclonal antibody conjugated to the antimitotic agent MMAE via a cleavable
linker, demonstrated significant efficacy in CD30-positive lymphomas [107]. Upon binding
to CD30-positive cells, BV is internalized, leading to MMAE release within lysosomes,
inhibiting tubulin formation and inducing cell apoptosis [107]. However, the correlation
between CD30 expression levels and response rates is complex, with factors such as low
expression or false-negative cases, “bystander killing,” and potential off-target immune
modulatory effects influencing responses [108–111].

Several clinical studies have explored the role of BV in DLBCL treatment. BV in
combination with Rituximab and CHP has shown promising activity as a first-line regimen
for CD30+ DLBCL, including PMBCL and grey-zone lymphoma, with an impressive ORR of
100% (86% CR) in a phase I/II trial [112]. In a phase 2 study, single-agent BV demonstrated
an ORR of 44%, with 16% CR and a median duration of response of 16.6 months in R/R
CD30+ DLBCL [113]. Notably, there was no significant correlation between response and
CD30 level, although all responding patients had quantifiable CD30 expression. BV has
also shown efficacy in patients designated as CD30-negative by conventional IHC, with an
ORR of 31% and CR rate of 12% [109]. With computer-assisted digital image analysis, 11 of
16 responders were designated as low-level positive (CD30 > 1%).

In a phase II trial of BV in patients with R/R EBV-positive, CD30-positive, mature T,
NK, or B cell lymphoma, ORR was 48% and median PFS and OS were 6.2 and 15.7 months,
respectively [114]. In a phase 1/dose expansion trial, Ward et al. evaluated the combination
of BV 1.2 mg/kg every 21 days and the immunomodulatory drug Lenalidomide 20 mg
administered continuously for a maximum of 16 cycles in 37 patients with R/R DLBCL. The
ORR was 57% with a 35% CR. Median DOR was 13.1 months, median PFS was 10.2 months,
and median OS was 14.3 months. Response rates were highest in 15 patients with CD30+
DLBCL (ORR 73% vs. 45%, CR 40 vs. 32%). The combination has a favorable safety profile,
with the major side effect being neutropenia in 59%, requiring G-CSF in most cases [115].
The combination of BV with lenalidomide is being further explored in ECHELON-3, a
phase 3 study comparing BV plus lenalidomide and rituximab versus placebo in R/R
DLBCL patients, with PFS as a primary endpoint [116]. Additionally, in the CheckMate
436 study, the combination of BV and the checkpoint inhibitor Nivolumab demonstrated
high antitumor activity, with an ORR of 70% and a CR of 43, as well as an acceptable safety
profile in R/R PMBCL, as discussed in more detail in the next chapter [117].

BV does not yet have marketing authorization in DLBCL.

8. Checkpoint Inhibitors

T cell priming and activation are tightly regulated by central and peripheral check-
points to modulate immune responses and prevent autoimmunity [118]. The peripheral
checkpoint involves inhibitory programmed cell death protein 1 (PD-1), expressed on T
cells, and its ligands, programmed cell death ligands 1 and 2 (PD-L1 and PD-L2), expressed
on target cells, including cancer cells. Upon ligand binding, PD-1 recruits the protein
tyrosine phosphatase SHP2 to the immunoreceptor complex, leading to the dephospho-
rylation of TCR-associated signaling molecules and attenuation of signaling, resulting
in T cell exhaustion, decreased cytotoxicity, and the protection of target tissues against
immune-mediated damage [119].

Cancer cells, including B cell lymphomas, can evade or suppress T cell-mediated
cytotoxicity by exploiting this immune checkpoint [120]. However, there is considerable
variability in PD-L1 expression measurements among studies. For example, using a cutoff
of ≥30%, PD-L1 positivity ranges from 11% to 31% in B cell lymphomas, with over 90%
positivity in cases of T cell/histiocyte-rich large B cell lymphoma (THRLBCL) [121,122].
PD-L1 expression has been associated with the ABC-type DLBCL subtype and inferior
OS [123]. Moreover, PD-L1 is expressed in the tumor microenvironment of DLBCL, mainly
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on macrophages, and increased PD-1 levels in the peripheral blood of DLBCL patients have
been linked to poorer prognosis [124].

About 10% of Primary Central Nervous System (PCNS) lymphomas and 36% to 100%
of PMBCL are PD-L1-positive. Additionally, PD-L2 is highly expressed in up to 72% of
PMBCL samples using an IHC cutoff of 20% [125]. Copy number gains in the 9p24.1 region
containing the PD-L1/2 genes are rare in DLBCL but occur in 50% of PMBCL, primary
testicular lymphoma (PTL), and PCNSL patients, leading to the increased expression of
these proteins [126,127].

The PD-1/PD-L1 axis is particularly important for immune evasion in B cell lym-
phomas with a viral etiology, such as EBV- and HIV-associated lymphomas. For instance,
PD-L1 positivity was reported in 100% of EBV + DLBCL cases and in 76% of EBV + THRL-
BCL cases [121,128].

Several monoclonal antibodies have been developed to block the proteins involved
in downregulating immune responses, aiming to stimulate T cell-dependent cytotoxicity
against tumors by reversing peripheral tolerance and T cell exhaustion [129]. Nivolumab
and Pembrolizumab are humanized anti-PD1 IgG4 monoclonal antibodies that block the
binding of PD-L1/PD-L2 to PD-1 due to their high affinity and specificity.

Nivolumab and pembrolizumab have acceptable safety profiles, with low rates of
discontinuation resulting from adverse events, although close monitoring is warranted,
especially for patients with a history of acute graft-versus-host-disease. Serious immune-
mediated adverse events included pneumonitis, neutropenia, thrombocytopenia, hepatitis,
rash, dyspnea, anemia, colitis, and others.

While the use of PD-1/PD-L1 inhibitors as single agents has shown disappointing
efficacy in R/R DLBCL, with CR rates ranging from 0% to 9% [130,131], or as a consoli-
dation therapy following ASCT or CAR-T [132–134], they have shown promise in combi-
nation therapies. For instance, the combination of pembrolizumab with R-CHOP in un-
treated DLBCL patients yielded encouraging long-term outcomes [135,136]. In their study,
Ho et al. [135] provided a long-term follow-up of a clinical trial involving pembrolizumab
in combination with R-CHOP in 30 adults with untreated DLBCL. They found that at
a median follow-up of 4.8 years, the 5-year PFS was 71% and the 5-year OS was 83%.
Interestingly, immune-related adverse events occurred in 23% of patients, with 10% being
grade 3/4. Notably, none of the patients with any PD-L1 expression experienced relapse,
while two out of the four patients without PD-L1 expression did relapse. Similarly, Smith
et al. [136] also reported a high rate of CR at 77% and a 2-year PFS of 83% among 30 patients
with previously untreated DLBCL. They observed toxicity levels comparable to standard
R-CHOP, with only two grade ≥3 immune-related adverse events. PD-L1 expression was
associated with the non-GCB subtype and correlated with improved PFS and survival,
suggesting that PD-L1 could serve as a biomarker to identify DLBCL patients who might
benefit from this first-line treatment strategy.

The efficacy of PD-1 inhibition in DLBCL appears to vary depending on the specific
disease subtypes. For instance, it may be more effective in certain subtypes such as PMBCL
and primary large B cell of immune privileged sites (PLBLIPS) [137]. However, there are
controversial results regarding the efficacy of nivolumab in primary central nervous system
lymphoma (PCNSL). The CheckMate 647 study enrolled patients with relapsed/refractory
(R/R) PCNSL and showed low objective response rates (ORR) of 6.4%. Similarly, for
patients with primary testicular lymphoma (PTL), the ORR was 26.4%, and the responses
were of very short duration [138].

In contrast, pembrolizumab showed promising results in PMBCL. In the phase 1b
KEYNOTE-013 study, patients treated with pembrolizumab achieved an ORR of 41%, with a
median duration of response (DOR) not reached after 11.3 months of follow-up [139]. In the
phase 2, single-arm, KEYNOTE-170 study, PMBCL patients treated with pembrolizumab
had an ORR of 41.5% and a CR rate of 20.8%. The median DOR was not reached, and
the median PFS was 4.3 months, with a median OS of 22.3 months. Notably, none of the
patients who achieved a CR progressed at the data cutoff. The median time to CR was
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2.7 months, so pembrolizumab is not recommended for the treatment of patients with
PMBCL who require urgent cytoreductive therapy [140].

As previously mentioned, the combination of nivolumab and brentuximab vedotin
showed high antitumor activity in the phase 2 CheckMate 436 study in patients with
R/R PMBCL patients after ASCT or after two lines of therapy who were not eligible
for ASCT [117]. Thirty patients received nivolumab at a dose of 240 mg intravenously
and BV at a dose of 1.8 mg/kg intravenously every 3 weeks until disease progression
or unacceptable toxicity. At a median follow-up of 11.1 months, the ORR was 73%, the
CMR rate was 43% and median DOR, PFS, and OS were not reached. Eleven responders
underwent consolidation with transplant, including five autologous and six allogeneic
transplants. However, the treatment was associated with some grade 3 to 4 treatment-
related adverse events, observed in 53% of cases. The most common adverse events were
neutropenia, thrombocytopenia, and peripheral neuropathy. However, these adverse
events were manageable within the study protocol [117].

Pembrolizumab and Nivolumab have not yet achieved marketing authorization in
DLBCL, while, in 2018, Pembrolizumab received FDA approval for the treatment of
R/R PMBCL.

9. BCL-2 Inhibitors

Antiapoptotic B cell lymphoma-2 (BCL-2) family proteins play crucial roles in reg-
ulating the apoptotic process, contributing to the survival of cancer cells and enhancing
tumor cell viability. BCL-2 homology domain 3 (BH3) mimetics, which act as inhibitors
of antiapoptotic BCL-2 family proteins, have emerged as promising targeted therapies for
various cancers. In diffuse large B cell lymphoma (DLBCL), BCL-2 is a key antiapoptotic
molecule that is often overexpressed [141]. This overexpression is primarily attributed to
the t(14;18) (q32;q21)/BCL2-IgH translocation in germinal center B cell (GCB) DLBCL and
BCL2 locus amplification in the activated B cell (ABC) subtype [142,143].

Venetoclax, an orally administered BH3 mimetic, has garnered significant attention
as a selective antagonist of the antiapoptotic protein BCL-2. Its therapeutic efficacy has
been particularly notable in hematological malignancies [144]. While other small-molecule
BCL-2 inhibitors are under investigation, venetoclax stands out due to its well-established
safety profile and demonstrated efficacy in clinical studies [145].

In a pivotal phase 2 trial known as CAVALLI, the therapeutic efficacy and safety of
combining venetoclax with R-CHOP chemotherapy were assessed in 206 patients diagnosed
with diffuse large B cell lymphoma (DLBCL) and an international prognostic index (IPI)
of 2–5 [146]. Patients received venetoclax orally at a dose of 800 mg on a noncontinuous
schedule—days 4 to 10 of cycle 1 and days 1 to 10 of cycles 2 to 8—with each cycle lasting
21 days. The ORR was 83%, with 69% achieving a CR. The 2-year PFS rate stood at 80%,
indicating promising outcomes. Adverse events (AEs) were manageable, although there
was an increase in hematologic and infectious complications. Grade 3/4 AEs included
cytopenias (neutropenia 68%, anemia 24%, thrombocytopenia 22%), febrile neutropenia
(31%), and infections (23%) [146]. These findings suggest that the addition of venetoclax to
R-CHOP does not compromise dose intensity but may heighten hematologic and infectious
adverse effects. Notably, there was a suggestion of enhanced efficacy, particularly among
patients with BCL2 overexpression observed via immunohistochemistry, underscoring the
need for further investigation in randomized trials, which are currently underway [147].

Moreover, a recent phase I study explored the safety and preliminary efficacy of adding
venetoclax to six cycles of dose-adjusted-R-EPOCH chemotherapy in 30 treatment-naive
patients with aggressive B cell lymphoid neoplasms, including 30% with DLBCL [148].
While unacceptable dose-limiting toxicities were not observed at the maximum dose
level of 800 mg for 10 days per cycle, the investigators identified 600 mg for 5 days
as the recommended phase II dose when combined with R-EPOCH due to the improved
overall tolerability and reduced duration of cytopenias, which facilitated the maintenance
of chemotherapy dose intensity. Grade 3/4 hematologic complications were common,
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with neutropenia affecting 83% of patients, thrombocytopenia 70%, and anemia 60%.
Additionally, 63% of patients experienced febrile neutropenia, highlighting the significant
hematologic toxicity associated with this combination regimen [148].

Several ongoing clinical trials are assessing the efficacy of venetoclax in R/R DLBCL,
either as a monotherapy or in combination with other agents. Initial studies indicate that
venetoclax monotherapy demonstrates limited efficacy in R/R DLBCL. In a phase I study
involving 34 patients, the ORR was 18%, with a rate CR rate of 12%, and a median PFS of
1 month [149].

Subsequent investigations explored the combination of venetoclax with bendamustine–
rituximab (BR) in a phase 1b study comprising 22 patients with R/R DLBCL [150]. The
combination demonstrated an ORR of 41%, a CRR of 14%, and a median PFS of 4 months.
Patients received oral venetoclax at doses ranging from 50 to 1200 mg for 3, 7, or 28 con-
secutive days of each 28-day cycle, for up to six cycles. The recommended phase II dose
for the venetoclax–BR combination was established as 800 mg daily continuously. Notably,
83% of patients experienced grade 3/4 adverse events, with neutropenia (60%) and febrile
neutropenia (8%) being the most common. Additionally, venetoclax was investigated in
combination with polatuzumab vedotin (PV) and rituximab in a phase Ib/II trial involving
57 patients with relapsed/refractory DLBCL [151]. A preliminary analysis revealed an
ORR of 65%, including a CR in 38% of patients. With a median follow-up of 7 months, the
median duration of response (DOR), PFS, and OS were 6, 4, and 11 months, respectively.
Notably, 37% of patients experienced serious adverse events, and 79% experienced grade
3–4 adverse events.

Ongoing clinical trials continue to explore venetoclax in combination with other
agents for R/R DLBCL, including obinutuzumab plus lenalidomide (NCT02992522), R-ICE
chemotherapy (rituximab, ifosfamide, carboplatin, etoposide; NCT03064867), and Loncas-
tuzumab (NCT05053659) [152–154]. These trials aim to further elucidate the efficacy and
safety profile of additional venetoclax combinations in this challenging patient population.

Venetoclax does not have marketing authorization in DLBCL.

10. BTK Inhibitors

Bruton’s tyrosine kinase (BTK) is a critical player in the activation, proliferation, and
survival of B lymphocytes, making it a significant target for drug development in B cell
malignancies. Over the past decade, several BTK inhibitors (BTKi) have been developed,
classified into covalent (e.g., Ibrutinib, Acalabrutinib, Zanubrutinib) and non-covalent
inhibitors (e.g., Pirtobrutinib) based on their mechanisms of action and chemical structures.
BTK expression has been detected in a significant number of cases of DLBCL, particularly in
the ABC subtype [155]. Higher BTK expression has been associated with a more adverse IPI
and poorer treatment outcomes. However, BTK inhibitors have shown limited single-agent
activity in DLBCL.

In the context of first-line therapy, the phase 3 PHOENIX study assessed the efficacy
of ibrutinib in combination with R-CHOP in non-GCB DLBCL [156]. The study included
838 patients randomized to receive either ibrutinib plus R-CHOP or placebo plus R-CHOP.
The ORR and CR rate were similar in both arms, with an 89% ORR and 71.2% CR rate
observed in the ibrutinib arm. Of particular note, in patients under 60 years of age, the
addition of ibrutinib improved event-free survival (EFS), PFS, and OS. However, no such
benefit was observed in older patients. This lack of clinical benefit in patients aged 60 years
or older may be attributed to the significantly higher incidence of SAEs observed in the
ibrutinib plus R-CHOP arm compared to the placebo plus R-CHOP arm (63.4% vs. 38.2%).
Additionally, patients receiving ibrutinib plus R-CHOP were less likely to complete six
cycles of R-CHOP, further contributing to the absence of clinical benefit in this age group.
These findings underscore the importance of age-related considerations and potential
toxicities when incorporating BTK inhibitors into first-line treatment regimens for DLBCL.

In a single-arm, phase 2, prospective study conducted at a single center, patients
with newly diagnosed non-GCB DLBCL with extranodal involvement were treated with
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Zanubrutinib in combination with R-CHOP for six cycles, followed by two cycles of
maintenance treatment with rituximab and zanubrutinib [157]. The ORR was 91.3%, with
a CR rate of 82.6%. With a median follow-up of 16.7 months, the 1-year PFS and OS
rates were reported to be 80.8% and 88.5%, respectively. Hematological AEs of grade
3 or higher included neutropenia (50%), thrombocytopenia (23.1%), and anemia (7.7%).
Non-hematological AEs of grade 3 or higher included pulmonary infection (19.2%).

The SMART study investigated the efficacy of combining BTKi with lenalidomide
and rituximab as a 21-day regimen for elderly patients with newly diagnosed DLBCL, ad-
ministered for 6–8 cycles [158]. Alternatively, for patients unable to tolerate chemotherapy
initially, a modified approach called SMART-START was employed, where BTKi combined
with lenalidomide and rituximab was administered for the first 2–3 cycles, followed by
the addition of chemotherapy [158]. A total of 31 patients were included. The ORR in the
SMART group was 87.5%, with 62.5% achieving CR, while in the SMART-START group,
the ORR was 92.3%, with a CR rate of 61.5%. With a median follow-up of 15.4 months,
median PFS and OS were not reached. The 1-year PFS was 81% in the SMART group and
84% in the SMART-START group, while the 1-year OS was 89% in the SMART group and
91% in the SMART-START group. The most common grade 3–4 AE was neutropenia (8/31).
Six patients experienced infections, including two cases of pneumonia, one of which was
pulmonary fungal infection, two cases of febrile neutropenia, and one each of urinary tract
infection and herpes zoster. Skin rash occurred in 11 patients, with three cases being grade
3–4, leading to lenalidomide interruption or dose reduction in two patients.

BTKi also demonstrates promising results in the setting of R/R DLBCL. A chemotherapy-
free regimen was investigated in a phase 1b trial combining the BTKi ibrutinib with lenalido-
mide and rituximab [159]. The ORR was 44%, with a CR rate of 28%. Median PFS and
overall OS were 6 and 10 months, respectively. The most commonly reported AEs included
gastrointestinal events, myelosuppression, fatigue, hypokalemia, peripheral edema, and
maculopapular rash. Serious AEs were observed in 56% of patients, including 24% with
treatment-related serious AEs, with febrile neutropenia, atrial fibrillation, and dehydration
being the most frequent.

Zanubrutinib was evaluated as monotherapy in a phase 2 study involving 41 patients
with relapsed/refractory non-GCB DLBCL after a median of two prior treatment lines [160].
At a median follow-up of 6.8 months, the ORR was 29.3% with a CR rate of 17.1%. Median
PFS and OS were 2.8 and 8.4 months, respectively. The most common treatment-emergent
grade ≥3 AEs included neutropenia, pneumonia, abdominal issues, and death of unknown
cause. Notably, there were no occurrences of atrial fibrillation, major hemorrhage, or tumor
lysis syndrome.

In a multicenter, open-label, phase Ib study, acalabrutinib was investigated as a
monotherapy in patients with relapsed/refractory non-GCB DLBCL [161]. The ORR was
24%, while in patients with the ABC subtype defined by the NanoString methodology,
the ORR was 33%, with 22% achieving CR. Median PFS and OS were 1.9 months and
15.5 months, respectively. Treatment-emergent AEs occurred in 95% of patients, most
commonly diarrhea and fatigue, with 29% experiencing grade 3/4 AEs.

Ongoing clinical trials are evaluating acalabrutinib (de novo DLBCL: NCT04546620,
NCT02112526; R/R DLBCL: NCT03736616, NCT04189952) [162–165], Zanubrutinib (de
novo DLBCL: NCT05189197; R/R DLBCL: NCT06033820, NCT03145064) [166–168], and
Pirtobrutinib (R/R DLBCL: NCT03740529) [169].

BTKi has not yet obtained marketing authorization in DLBCL.

11. XPO1 Inhibitor Selinexor

Exportin 1 (XPO1) is a pivotal nucleo-cytoplasmic shuttling protein that orchestrates
the export of proteins from the nucleus to the cytoplasm. In cancer, particularly in DLBCL,
XPO1 plays a multifaceted role in tumorigenesis and therapy resistance. It mediates the
functional inactivation of various tumor-suppressor proteins, including p53, p73, IkBκ,
and FOXO, while also promoting the translation of oncoproteins such as c-Myc, Bcl-XL,
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Bcl2, Bcl6, survivin, and cyclin D1. By exporting oncoprotein mRNA complexes with
eukaryotic translation initiation factor 4E (eIF4e) out of the nucleus, XPO1 contributes to
the elevation of oncoprotein levels, fostering tumor growth and survival. Additionally,
XPO1 enhances the resistance of lymphoma cells to chemotherapy by upregulating the
translation of DNA repair proteins. Targeting XPO1 offers a promising therapeutic strategy
by retaining multiple tumor suppressor proteins in the nucleus, preventing the transla-
tion of oncoproteins, inducing transient cell-cycle arrest, suppressing tumor growth, and
promoting apoptosis. Importantly, XPO1 blockade has been shown to restore sensitivity
to chemotherapy, presenting a potential avenue for overcoming treatment resistance in
DLBCL [170–172]. Moreover, XPO1 is frequently overexpressed in DLBCL and correlates
with poor prognosis, highlighting its significance as a therapeutic target in this aggressive
lymphoma subtype [173].

Selinexor, an oral selective inhibitor of XPO1-mediated nuclear export, received FDA
approval in June 2020 as single agent for treatment of R/R DLBCL patients who have
undergone at least two lines of systemic therapy [174].

In the phase 2b SADAL study, a multicenter, multinational, open-label trial, heavily
pretreated R/R DLBCL patients received 60 mg of selinexor orally on days 1 and 3 weekly
until disease progression or unacceptable toxicity. Of the 127 evaluable patients, the ORR
was 28%, with a CR rate of 12%. The median DOR was 9.3 months (23 months for CR and
4.4 months for PR), median PFS was 2.6 months, and median OS was 9.1 months. The
most common grade 3–4 AE included thrombocytopenia (56%), neutropenia (25%), anemia
(23%), fatigue (11%), hyponatremia (8%), and nausea (6%). Pyrexia (7%), pneumonia (5%),
and sepsis (5%) were the most frequent serious AE [175].

A post-hoc analysis of the SADAL study by DLBCL subtypes revealed a higher ORR
and longer median OS in DLBCL patients with normal c-MYC/BCL2 expression levels
compared to those with c-MYC and BCL2 overexpression (46.2% vs. 14.8% and 13.7 vs.
5.1 months, respectively) [176].

Given its potential to overcome lymphoma chemoresistance, ongoing trials are in-
vestigating combinations of selinexor with other anticancer agents, aiming to enhance
therapeutic outcomes in DLBCL patients.

Selinexor received marketing authorization in DLBCL from the FDA but not by EMA.

12. Future Developments in DLBCL

In addition to the previously described drugs that are approved or currently under
investigation, many new, innovative therapeutic strategies are under development.

The evolution of CAR T cell therapy is ongoing and includes several new approaches
to overcome the limits of conventional products, namely excessive toxicity and limited
efficacy. Preliminary clinical data based on small and heterogenic patient samples have
shown highly variable results and are insufficient to draw conclusions at present. Large-
scale clinical trials are required [177]. Third-generation CAR-T cells carry two costimulatory
domains, most frequently combining CD28 and 4-1BB, which may lead to the quicker
expansion of T cells and more rapid elimination of tumor cells, but also causes CAR-T cells
to remain longer in the host [177].

Dual-targeting CAR-T cells, which target two different antigens on lymphoma cells,
such as CD19-CD20 or CD19-CD22, are showing promising results and can improve
patients’ outcome by reducing relapses due to antigen loss [177]. Additionally, CAR-T
products targeting antigens different from CD19, such as CD79 or ROR1, offer new valid
targets and have shown robust antitumor activity in preclinical studies [178,179].

Armored CAR-T cells utilize several mechanisms to modulate the immune checkpoint
and circumvent the inhibitory effect of the tumor microenvironment. These mainly include
the following: (1) extracellular PD-1 fused to the intracellular CD28-activating domain,
thus transforming PDL1—PD1 binding into an activating signal and increasing anti-tumor
efficacy; (2) secretion of the PD-1 Fc fusion protein by CAR-T cells, which then binds to PD-
L1, preventing its suppressive effects on T cells; (3) downregulation of inhibitory checkpoint
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molecules, such as the PD1 and ITIM (immunoreceptor tyrosine-based inhibitory motif)
domains (TIGIT) or Hematopoietic Progenitor Kinase 1 (HPK1) [177].

T cells redirected for universal cytokine-mediated killing (TRUCKs) are next-generation
CAR-T cells engineered to express and secrete certain cytokines (e.g., IL7 and CCL9). Fol-
lowing antigen recognition, in addition to cytotoxic activity, the engineered cells release
selected cytokines, which promote the proliferation and survival of CAR-T cells and act as
chemoattractants and enhancers of antitumor activity [177].

Switchable CAR-T cells incorporate several suicide mechanisms to deplete activated
cells in case of treatment-associated toxicities, such as CRS and neurotoxicity. The surface
antigen safety-switch strategy relies on surface proteins (e.g., EGFRt, HER2, RQR8) ex-
pressed by CAR-T cells, which can be targeted by a specific antibody to remove activated
CAR-T cells via antibody-dependent cytotoxicity or complement-dependent cytotoxicity.
The iCasp9 safety-switch approach induces the ablation of iCasp9-transduced CAR-T cells
via the administration of AP1903, which leads to caspase-9 dimerization and activation
of the apoptotic pathway. CAR-T cells carrying the Herpes simplex virus thymidine kinase
(HSV-TK) Mut 2 gene may be targeted by the prodrug ganciclovir, which is converted to
ganciclovir–triphosphate, a competitive inhibitor of deoxyguanosine’s incorporation into
DNA, and causes cell death by disrupting the replication process [177]

Universal allogenic “off-the-shelf” CAR-T and CAR-NK cells can solve the limitations
of conventional CAR-T therapies, including the long manufacturing time, difficulties in
mobilizing the appropriate quantity of T cells, and reduced T cell quality in heavily treated
patients. Universal allogenic CAR-T can be obtained by removing major histocompatibility
complex (MHC) and T cell receptor (TCR) molecules from donor-derived cells by genome-
editing tools such as CRISPR/Cas9 or transcription activator-like (TAL) effector nuclease
(TALEN) [177].

CAR-NK cells offer potential solutions to the challenges faced by CAR-T cell therapy
because they identify target cells without MHC restrictions, do not cause graft-versus-host
disease (GVHD), can be obtained from different sources, such as allogeneic pluripotent
stem cells or umbilical cord blood, and do not induce CRS or ICANS. Like CAR-T cells,
CAR-NK cells undergo genetic modification to express CARs designed to recognize specific
antigens present on target cells, including costimulatory domains [180].

Among the new immunotherapies under investigation, there is a new category of
BsAbs that engage NK cells. Some preclinical results targeting CD16 and CDp46 in NK
cells and CD19 in tumor cells have already been reported [181].

The development of new ADC is not limited to new targets, but also explores new
mechanisms of cytotoxic action for the payload. Microtubule-disrupting agents and DNA-
targeting agents are currently the classes of payloads that are most widely used in ADC
design. Targeted agents such as BCL2 inhibitors, spliceosome inhibitors, and transcription
inhibitors targeting RNA polymerase II are among the payloads with different mechanisms
of action [182]. Several new ADCs have shown promising results in monotherapy or in
combination with rituximab against R/R DLBCL (Table 4).

Table 4. New ADCs against DLBCL.

ADC Target Antigen Cytotoxic Payload Clinical Data in DLBCL Ref.

Coltuximab ravtansine
(SAR3419) CD19 maytansinoid DM4 In monotherapy, ORR 43.9% and CR

14.6% in R/R DLBCL [183]

Denintuzumab Mafodotin
(SGN-19A or SGN-CD19A) CD19 MMAF In monotherapy, ORR 33% and CR

23% in R/R DLBCL [184]

Pinatuzumab Vedotin
(DCDT2980S, RG-7593) CD22 MMAF In combination with rituximab, ORR

60% and CR 26% in R/R DLBCL [185]



Cancers 2024, 16, 2243 19 of 28

Table 4. Cont.

ADC Target Antigen Cytotoxic Payload Clinical Data in DLBCL Ref.

Naratuximab Emtansine
(IMGN529) CD37 maytansinoid DM1 In combination with rituximab, ORR

44.7% and CR 31.6% in R/R DLBCL [186]

Abbreviations. MMAF: Monomethyl Auristatin F.

Several new small molecules targeting intracellular pathways are currently under de-
velopment for DLBCL. Cereblon E3–ubiquitin ligase modulators, termed CELMoDs, have
anti-lymphoma activity via the degradation of the transcription factors Ikaros and Aiolos
and upregulation of interferon stimulated genes, inducing tumor cell apoptosis and T/NK
cell activation. Lenalidomide is already widely used in monotherapy or in combination
against DLBCL. Several next-generation CELMoDs with an increased affinity for cereblon
and specificity for Ikaros and Aiolos are in development, including avadomide, iberdo-
mide, and golcadomide [187]. Other new interesting classes of drugs under investigation
against DLBCL include mucosa-associated lymphoid tissue lymphoma translocation pro-
tein 1 (MALT1) inhibitors (e.g., safimaltib and ABBV-525), interleukin-1 receptor-associated
kinase 4 (IRAK4) inhibitors (e.g., emavusertib) and macrophage checkpoint inhibitors
(e.g., magrolimab, lemzoparlimab, and evorpacept) [187].

13. Conclusions

The treatment landscape of DLBCL is undergoing a significant transformation with
the emergence of new therapies, prompting the publication of several recommendations
and algorithms for their sequential incorporation into treatment regimens [188–190]. No-
table advancements have been achieved in the relapsed/refractory setting, where CAR-T
products (such as axi-cel and liso-cel) have begun to replace ASCT, particularly in patients
that relapse early (within <12 months following the end of first-line therapy). CAR-T
therapies, including tisa-cel, are considered the preferred option after two or more lines of
treatment. Anti-CD20 bispecific antibodies (BsAbs) like epcoritamab and glofitamab offer
“off-the-shelf” alternatives to CAR-T therapy after two lines of treatment, with reduced
rates of grade 3 or more CRS and ICANS, and are more accessible, especially in peripheral
centers. Loncastuximab–teserine and BsAbs are also commonly used after CAR-T failure or
in patients ineligible for CAR-T therapy. Pola-BR (polatuzumab vedotin plus bendamustine
and rituximab) and tafasitamab–lenalidomide have shown efficacy in R/R DLBCL patients
ineligible for ASCT or CAR-T therapy, with better results observed when used in the second
line of treatment rather than in more advanced lines and in relapsed disease rather than
refractory disease.

Many of these new therapies have demonstrated promising results, particularly when
used in combination regimens and in specific DLBCL subtypes. However, most evidence
comes from phase 2 clinical trials, emphasizing the need for future development to pri-
oritize phase 3 randomized clinical trials and incorporate a thorough biologic lymphoma
characterization and diagnostic accuracy to ensure the delivery of effective, safe, and
personalized treatments to each patient.
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54. Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai,
S.; et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 351–363.
[CrossRef] [PubMed]

55. Furqan, F.; Hamadani, M. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma: A review of clinical
data. Ther. Adv. Hematol. 2022, 13, 20406207221087511. [CrossRef] [PubMed]

56. Lee, A. Loncastuximab Tesirine: First Approval. Drugs 2021, 81, 1229–1233. [CrossRef] [PubMed]
57. Carlo-Stella, C.; Zinzani, P.L.; Janakiram, M.; Dia, V.; He, X.; Ervin-Haynes, A.; Dapaus, J. Planned Interim Analysis of a Phase 2

Study of Loncastuximab Tesirine Plus Ibrutinib in Patients with Advanced Diffuse Large B-Cell Lymphoma (LOTIS-3). Blood
2021, 138 (Suppl. S1), 54. [CrossRef]

58. ClinicalTrials.gov. Study to Evaluate Loncastuximab Tesirine with Rituximab versus Immunochemotherapy in Participants with
Relapsed or Refractory Diffuse Large B-Cell Lymphoma (LOTIS 5). NCT04384484. Available online: https://clinicaltrials.gov/
study/NCT04384484 (accessed on 5 June 2024).

59. ClinicalTrials.gov. A Study to Evaluate the Safety and Anti-Cancer Activity of Loncastuximab Tesirine in Combination with
Other Anti-Cancer Agents in Participants with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma (LOTIS-7). NCT04970901.
Available online: https://clinicaltrials.gov/study/NCT04970901 (accessed on 5 June 2024).

60. Feugier, P.; Van Hoof, A.; Sebban, C.; Solal-Celigny, P.; Bouabdallah, R.; Fermé, C.; Christian, B.; Lepage, E.; Tilly, H.; Morschhauser,
F.; et al. B Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: A
study by the Groupe d’Etude des Lymphomes de l’Adulte. J. Clin. Oncol. 2005, 23, 4117–4126. [CrossRef]

61. Pfreundschuh, M.; Trümper, L.; Osterborg, A.; Pettengell, R.; Trneny, M.; Imrie, K.; Ma, D.; Gill, D.; Walewski, J.; Zinzani, P.L.;
et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis
diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol.
2006, 7, 379–391. [CrossRef] [PubMed]

62. van Imhoff, G.W.; McMillan, A.; Matasar, M.J.; Radford, J.; Ardeshna, K.M.; Kuliczkowski, K.; Kim, W.; Hong, X.; Goerloev, J.S.;
Davies, A.; et al. Ofatumumab Versus Rituximab Salvage Chemoimmunotherapy in Relapsed or Refractory Diffuse Large B-Cell
Lymphoma: The ORCHARRD Study. J. Clin. Oncol. 2017, 35, 544–551. [CrossRef]
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