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Abstract: Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they
show remarkable stability and harbor molecular constituents that provide biochemical information
about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a
source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this
potential, none of the discovered biomarkers has entered the clinical practice so far, and novel
approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier
Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and
informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in
the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of
cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched
suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma
(HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically
significant differences in the integrated intensities of major mid-IR absorption bands, including the
carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching
band. Additionally, we used Principal Component Analysis combined with Linear Discriminant
Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of
specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers,
alone and combined, were evaluated using multivariate logistic regression followed by a Receiving
Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81–1.0).
Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the
classification ability of two widely used circulating HCC markers measured on the same groups
of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or
antagonist-II (PIVKA-II).

Keywords: extracellular vesicles; FTIR; liquid biopsy; cancer; hepatocellular carcinoma

1. Introduction

In many clinical situations, cancer diagnosis requires single or repeated tissue biopsies
of suspected cancerous regions. This procedure is invasive and sometimes associated
with pain, discomfort, and risk for the patients. Additionally, the tissue region that needs
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to be sampled can be hardly or completely inaccessible by interventional procedures,
and/or highly heterogeneous, thus leading to ambiguous conclusions. These drawbacks
might limit the frequency with which a region can be sampled to check for cancer, thus
hindering the possibility to perform an accurate diagnosis, especially in the early stages of
the pathology. In this regard, liquid biopsy offers a promising diagnostic alternative, as it
relies on the analysis of nonsolid biological tissues, such as blood. As such, it is noninvasive
or minimally invasive and can be done more frequently by taking multiple liquid biopsies
in a short period, being instrumental for diagnostic purposes and therapy monitoring [1].

Extracellular vesicles (EVs) are lipid-bound vesicles secreted by most cell types into
the extracellular space [2–7], they abound in bio-fluids and harbor molecular constituents
from their parent cells, including proteins, lipids, and genetic material. Due to their easy
accessibility and capability of representing their cells of origin, EVs are attracting growing
interest as cancer biomarkers in the field of liquid biopsy and personalized medicine.
Despite this potential, EVs have still not been widely applied in diagnostics and novel
approaches for their characterization are highly demanded.

In this regard, Fourier-transform infrared spectroscopy (FTIR), especially in the At-
tenuated Total Reflection (ATR) mode, is emerging as a promising tool for label-free
molecular profiling of EVs, with several papers published on the subject [4,8–20]. Most
of these works involve in vitro experiments aimed at assessing sample composition and
purity [15,16], distinguishing different EV classes [18] or EVs derived from cells under
different states/phenotypes/culture conditions [4,8,10,12,21–23]. So far, very few FTIR
papers have focused on EVs purified from biofluids of subjects enrolled in clinical studies.
These papers include Zlotogorski-Hurvitz et al., who studied salivary EVs of patients
diagnosed with oral cancer [11], and Yap et al., who characterized EVs purified from the
urine of prostate cancer patients [14,24]. To the best of our knowledge, the pioneering
paper of Martins et al. on EVs obtained from neurological patients is the only article
that uses serum as a biofluid of origin [19], and no studies have been yet published on
cancer. Therefore, more data are needed to confirm the capability of FTIR spectroscopy to
correctly classify EVs obtained from the serum of patients in different clinical conditions,
with emphasis on cancer patients, as well as to test classification algorithms suitable for the
high throughput analysis of FTIR spectra of EVs. The latter point is extremely important
as EV spectral data can be automatically analyzed with machine learning (ML) methods,
giving physicians a direct diagnosis instead of a biophysical parameter that needs further
interpretation [8,13,19,20].

This pilot study aims to support the evidence that ATR-FTIR can be used as a fast,
reproducible, and effective method for the classification of EV-enriched suspensions puri-
fied from sera of cancer patients. For this purpose, samples were extracted from a cohort
of 20 patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral etiology and
19 noncancer subjects. This choice is motivated by the large clinical and research interest
in serum biomarkers for HCC screening [25–30] and, also, by the growing number of
papers reporting potential EV-based HCC biomarkers [31,32]. Here, multivariate statistical
analysis and machine learning methods are used for the comparison of mid-IR spectra in
the two groups, as schematically represented in Figure 1. Our data highlight the presence of
statistically significant differences in the intensity and the shape of several mid-IR spectral
bands that could be used as sensitive spectral biomarkers of the pathology. To further
stress the relevance of the proposed approach for the development of novel liquid biopsy
techniques, we compared the classification performances of our spectral biomarkers with
those of serum alpha-fetoprotein (AFP), a glycoprotein produced in early fetal life by the
liver and by a variety of tumors, which is currently the most widely used circulating marker
in HCC with prognosis and risk of recurrence purposes. Additionally, we measured the
serum levels of the protein induced by the absence of vitamin K or antagonist-II (PIVKA-
II), a more sensitive circulating marker than AFP for differentiating HCC at all stages in
patients with cirrhosis or chronic hepatitis. Notably, a Receiving Operator Curve (ROC)
Analysis showed that our spectral biomarkers outperformed both AFP and PIVKA-II in



J. Pers. Med. 2022, 12, 949 3 of 18

distinguishing the two groups, a result that deserves further studies based on a larger
sample size.
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Figure 1. Schematic workflow of the presented EV-based liquid biopsy. Briefly, serum samples from
HCC patients and controls were collected. EVs were isolated from serum samples and ATR-FTIR
measurements were performed. Finally, automated classification of the two groups was achieved by
machine learning analysis of the acquired spectra.

2. Materials and Methods
2.1. Clinical and Laboratory

All the subjects enrolled in this study have given written informed consent. We selected
20 patients with a recent diagnosis of nonviral HCC, according to EASL guidelines [33].
The exclusion criteria were as follows: history of previous treatment (i.e., hepatic resection,
liver transplant, anti-angiogenic drugs, and radiofrequency); diagnosis of extra-hepatic
neoplasia; HCV or HBV infection; Child-Pugh B or C; obstructive jaundice; and estimated
creatinine clearance < 30 mL/min. The inclusion criteria were as follows: Hepatocellular
carcinoma at diagnosis; no pharmacological treatment; Child-Pugh A; age > 18. Age- and
gender-matched subjects were included in the control group. The exclusion criteria of
controls were as follows: evidence of neoplasia; HCV or HBV infection; the presence of
monoclonal components; anticoagulant therapy; presence of monoclonal component; and
negative inflammatory markers.

Serum samples and clinical data of subjects were processed anonymously. A wide
panel of biochemical parameters was measured on the collected blood samples, including
Glucose, Cholesterol, Total bilirubin, Albumin, Alanine aminotransferase (ALT), Asand
partate aminotransferase (AST), Alkaline phosphatase (ALP), and Gamma-Glutamyl Trans-
ferase (GGT). Patients’ sera were collected for quantitative measurement of AFP and
PIVKA-II, performed using Lumipulse® G (Fujirebio, Tokyo, Japan), based on Chemilu-
minescent Enzyme [25,33]. Vascular invasion, portal trunk, and/or main portal branches,
were diagnosed by MRI with hepato-specific contrast medium.

2.2. Sample Purification

The subjects enrolled in this study underwent peripheral blood sampling and then
serum samples were obtained and treated as reported in previous studies [8,13]. EVs were
isolated from serum by using the ExoQuick ULTRA precipitation kit (System Biosciences,
Palo Alto, CA, USA). The isolation was performed according to the ExoQuick ULTRA
manual and within 24 h of the serum sampling from patients. Briefly, blood cell debris
was removed from the samples by two sequential centrifugations (3000× g for 15 min and
12,000× g for 10 min, respectively) and the ExoQuick reagent (67 µL) was added to 250 µL
of each clarified biofluid. After 30 min of incubation, final centrifugation was performed
and the pellet, which contains precipitated EVs, was resuspended in the ExoQuick buffers
and finally purified using the provided columns. The samples were analyzed without
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any further manipulations. Regarding sample purity, a caveat was necessary. As reported
in [34,35], the described purification protocol is likely to introduce contaminants from
serum, such as lipoproteins. For this reason, our preparation is more adequately referred
to as EV-enriched suspension, rather than a pure EV sample. Due to the presence of
such contaminants, we decided not to assign the observed spectral signatures to specific
molecular species. Conversely, we preferred to use robust statistical methods to highlight
clinically relevant differences between the two groups that can be instrumental to develop
novel HCC diagnostic tools. A structural and morphological characterization of the samples
extracted with this method is reported in Figure S1.

2.3. FTIR Measurements and Data Analysis

The EV-enriched suspensions isolated from sera were analyzed using a Bruker ALPHA
II compact FTIR Spectrometer, equipped with an attenuated total reflection (ATR) module
(Eco-ATR). According to several papers investigating the spectral characteristics of EVs
using ATR-FTIR, sample solution droplets were deposited on the ATR crystal and a thin
film was obtained by slow evaporation of the solvent under ambient conditions. Specifically
for each measurement, 5 µL of the EV solution was air-dried for at least 10–15 min on a
high-throughput ZnSe crystal [4,8–20]. This step was repeated three times, resulting in a
total volume of 15 µL of dried solution. All IR spectra were acquired in the wavelength
range included from 4000 to 650 cm−1 and, for each spectrum 54 scans, at a resolution of
2 cm−1 was averaged. The background was acquired before the measurements and then
subtracted from each sample spectra. The spectra were registered and preprocessed using
the commercial OPUS 8.5 SP1 software, dedicated to the analysis of IR spectral data. Data
were then exported and further analyzed with the programming software R. Spectra were
normalized after linear baseline subtraction. Average Spectra were computed together
with the corresponding 95% confidence intervals. Data were visualized with the ggplot2
software package. Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) of spectra were carried out after subtracting a linear baseline from the analyzed
absorption band. This analysis protocol was chosen as PCA alone, as well as PCA-LDA
in combination, were successfully exploited in similar papers for discriminating EVs of
different origins according to their vibrational fingerprints [8–16]. Additionally, PCA-
LDA has been widely employed in other FTIR-based classification problems in different
fields, including diagnostics and forensic sciences [17–21]. More specifically, PCA is an
unsupervised statistical learning technique and was used here to find a low-dimensional
representation of spectra that retains as much as possible of the variation in the original
dataset [22]. Mathematically, this is achieved by computing the covariance matrix of the
whole dataset and finding the matrix eigenvalues with the corresponding eigenvectors. The
supervised LDA statistical learning algorithm was then used to maximize the separation
between the two groups, a task that is performed by solving an eigenvalue problem similar
to PCA but starting from the matrix obtained by dividing the between- and the within-class
scatter matrices.

Differences between the two groups were assessed using a Wilcoxon non-parametric
test for independent samples. Sensitivity and Specificity values were computed from
the confusion matrix and validated using the Leave-One-Out-Cross-Validation (LOOCV)
method. In this procedure, the database with the 39 samples is divided into 39 groups.
At each algorithm iteration, one subset is selected as the testing set, while the remaining
ones are used as the training set. The model is verified by the testing set, thus obtaining
a classification rate. The mean of 39 classification rates is calculated and used as a robust
statistical estimator [20].
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3. Results
3.1. The Ratio of Different Molecular Classes within EVs Are Different in Cancer Patients
and Controls

In this study, we compare the mid-IR spectral response of EV-enriched suspensions
obtained from sera of HCC patients and noncancer subjects to search for novel spectral
circulating biomarkers. The demographic, clinical, biochemical, and spectral characteristics
of the recruited subjects are summarized in Table 1. In Figure 2A,B, two mid-IR absorbance
spectra measured on the two groups of subjects are reported. Spectra are computed
by averaging the data acquired on EV-enriched suspensions obtained from each of the
recruited subjects, separately. For this purpose, absorbance was first normalized after linear
baseline subtraction (see Material and Methods), 95% confidence bands (shaded area) are
superimposed on the average curves (continuous lines).

Table 1. Demographical, clinical, biochemical, and spectral characteristics of the recruited subjects.

Characteristic CTRL, N = 19 1 HCC, N = 20 1 p-Value 2

Age (years) 65.8 (4.8) 68.7 (5.9) 0.14

Gender 0.7

F 26% 20%

M 74% 80%

Cholesterol (mg/dL) 180 (19) 170 (46) 0.5

Triglycerides (mg/dL) 122 (38) 101 (30) 0.023

GPT-ALT (UI/L) 15 (3) 45 (23) <0.001

GOT-AST (UI/L) 20 (5) 47 (21) <0.001

AST/ALT 1.43 (0.53) 3.86 (11.37) 0.3

GGT (UI/L) 31 (5) 179 (147) <0.001

ALP (UI/L) 171 (17) 272 (137) 0.049

Hb (mmol/L) 14.32 (0.96) 12.78 (2.78) 0.15

Creatinine (mg/dL) 0.79 (0.18) 1.42 (1.29) 0.071

Azotemia (mg/dL) 15 (3) 21 (10) 0.067

Bilirubin (mg/dL) 0.69 (0.23) 1.63 (1.04) <0.001

Area (1470–1700 cm−1) 12.0 (3.1) 9.7 (3.6) 0.033

Area (1000–1200 cm−1) 4.16 (1.22) 3.32 (0.99) 0.033

Area (2800–3000 cm−1) 0.023 (0.006) 0.030 (0.008) 0.006

Area (1720–1760 cm−1) 0.0012 (0.0007) 0.0017 (0.0008) 0.041

LD1 (1470–1700 cm−1) −0.54 (0.77) 0.52 (1.18) 0.002

LD1 (2800–3000 cm−1) −0.48 (1.24) 0.46 (0.70) 0.0075

LD1 (1720–1760 cm−1) −0.77 (1.10) 0.73 (0.90) <0.001

PIVKA 14 (4) 3205 (9987) <0.001

AFP 2 (1) 193 (417) 0.001
1 Mean (SD); %. 2 Wilcoxon rank–sum test; Fisher’s exact test.

At the level of the whole mid-IR range, the average curves look qualitatively resem-
blant, showing similar spectral signatures. A more in-depth analysis of Figure 2 shows the
presence of changes in the spectral shape and in the relative intensity of several absorption
bands, namely the carbohydrates and nucleic acids band at 1000–1200 cm−1 [16,19], the pro-
tein Amide I and II bands [13,36,37], the lipid C-H stretching band at 2800–3000 cm−1 [23,38],
and the C=O stretching at approximately 1735 cm−1, which has been assigned to purine
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base and ester groups of lipids in EV samples [9,36,37]. These bands are highlighted in
green and red color in controls and patients, respectively, and are considered a major
source of spectral biomarkers in EV research [4,8–20,23]. To investigate more in-depth the
difference between the two groups, an enlarged detail of the four mentioned IR bands
for controls (green) and oncologic patients (red) is reported in Figure 3. Linear baseline
subtraction, followed by area normalization, was performed before averaging curves.
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A box-plot analysis of the computed areas is reported in Figure 4 for the amide I and
II bands at 1470–1700 cm−1 (A), the lipid CH stretching band at 2800–3000 cm−1 (B), the
carbohydrates and nucleic acids band at 1000–1200 cm−1 (C), and the C=O stretching peak
at 1720–1740 cm−1 (D). The result of a Wilcoxon rank–sum test for independent samples
was superimposed on each plot. Data are summarized in Table 1. Statistically significant
differences in the computed areas were detected for all the studied bands, with emphasis
on the CH stretching band that displays a remarkably low p-value. Interestingly, highly
significant differences are detected by computing the ratios between the CH-stretching
band at 2800–3000 cm−1 and the Amide I-II bands at 1470–1700 cm−1 (Figure 4E), which
is known as the spectral Lipid-to-Protein Ratio (LPR) [8,18], and provide a quantitative
index correlated to the relative amount of lipids and proteins in the analyzed samples.
Remarkable differences are also observed in Figure 4F that reports the ratio between the
CH-stretching band and the absorption peak at 1000–1200 cm−1, which can be defined—in
analogy to Figure 4E—as the spectral Lipid-to-Nucleic acids Ratio (LNR). Taken together,
Figure 4E,F hint at the occurrence of an alteration in the ratio between different molecular
classes in EVs obtained from cancer patients compared to controls.
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integrated area computed in panels B and A (E) and B and C (F).

3.2. Machine Learning-Assisted Classification of HCC Patients and Controls

Aside from intensity values, differences in the average line shape between the two
groups can be observed for all the IR bands reported in Figure 3, except for the carbo-
hydrates and nucleic acid band. In Figure 5A–I, we investigate the possibility to use
multivariate statistical and Machine Learning methods to automatically classify patients
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according to their group membership based on the spectral shape of the analyzed bands.
For this purpose, we show the projections of the spectral data in the plane of the two
principal components (PC1 and PC2) for the amide I–II region (A), the CH-stretching band
of lipids (D), and the CO stretching peak at 1720–1760 cm−1 (G). We then used Linear
Discriminant Analysis (LDA) to point out the direction (LD1) that maximizes the sepa-
ration between the two groups, which is represented as a continuous black line together
with the corresponding datapoints projection. The LD1 discriminant scores for the three
analyzed bands are reported in Figure 5B,E,H (lower panels), respectively. A sufficient
degree of clustering among data points belonging to the two groups can be observed, as
confirmed by the corresponding box-plot analysis (upper panels), which points out the
presence of statistically significant differences. In this context, remarkably low p-values
are measured for the IR band analyzed in Figure 5H (p = 4.9 × 10−5). The PCA-LDA
classification performances were tested with the leave-one-out-cross validation method
(LOOCV) and the results are visualized in Figure 5C,F,I, respectively. These results are
extremely interesting if compared with those obtained on conventional HCC circulating
markers, such as AFP, which shows a sensitivity of 0.61 (95% CI 0.60–0.62) and a specificity
of 0.86 (95% CI 0.85–0.87) in the 20–100 ng/mL concentration range, as demonstrated by a
recent metanalysis [28].
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between controls (green points) and HCC patients (red points). (B) LD1 discriminant scores from
the region enclosed between 1470 and 1700 cm−1 are reported in the lower panel. The presence of
statistically significant difference between the LD1 scores of the two groups is supported by a box-plot
analysis (upper panel). (C) The PCA-LDA (1470–1700 cm−1) classification performances are reported
in terms of sensitivity, sensibility, and accuracy. (D–F) The same analyses were performed for the
region enclosed between 2800–3000 cm−1 and (G–I) the region enclosed between 1720–1760 cm−1.

3.3. A Combined Spectral Biomarker for HCC Diagnosis

In Figure 6, we evaluate the classification performance of each of the spectral biomark-
ers highlighted in Figures 4 and 5 using receiving operator characteristics (ROC) curves and
computing the corresponding Areas Under the Curve (AUC). The same analysis is carried
out for two widely studied HCC circulating markers, namely AFP and PIVKA-II. The
corresponding AUC values are summarized in Table 2, together with the corresponding
confidence intervals. Interestingly enough, all the measured AUCs are statistically different
from the random classifier (AUC = 0.5), which is represented by the continuous black line
in Figure 6A. In Figure 6B, we investigate the possibility to use biomarkers in combination
to improve the accuracy of the classification. For this purpose, we performed a multivariate
logistic regression including all the markers in Table 2, followed by a stepwise logistic
regression aimed at selecting the most informative set of parameters. This procedure selects
two spectral biomarkers that can be used in combination, namely the integrated area of the
CH stretching band at 2800–3000 cm−1 and the LD1 coefficients computed for the spectral
signature at 1720–1760 cm−1. The result of the logistic regression performed on the step-
wise model shows that the two selected markers possess statistically significant regression
coefficients. The ROC curve of the stepwise model is reported in red in Figure 6B, showing
a very large area under the curve (0.91, 95% CI: 0.8–1), which confirms the diagnostic
potential of the combined spectral biomarker. Youden’s method was used to compute the
sensitivity and specificity starting from the combined ROC curve and obtaining 1.00 and
0.76, respectively. ROC curves obtained on the same groups of subjects for AFP (gold curve)
and PIVKA (violet curve) are reported for comparison in Figure 6B, obtaining lower—albeit
comparable—AUC values, namely 0.81 and 0.86, respectively discussed.

Table 2. ROC-AUC Table analysis of the significant spectral biomarkers highlighted in Figures 4 and 5.
Conventional HCC circulating biomarkers—namely AFP and PIVKA-II—are also included in the
analysis together with the results of a stepwise combined model selecting the most informative
biomarkers for the classification of the two groups.

Variable AUC 95% CI

Area (1470–1700 cm−1) 0.700 0.524–0.876
Area (1000–1200 cm−1) 0.700 0.534–0.866
Area (2800–3000 cm−1) 0.755 0.596–0.915
Area (1720–1760 cm−1) 0.692 0.518–0.866
LD1 (1470–1700 cm−1) 0.776 0.627–0.926
LD1 (2800–3000 cm−1) 0.708 0.534–0.881
LD1 (1720–1760 cm−1) 0.826 0.694–0.959

PIVKA–II 0.805 0.649–0.961
AFP 0.862 0.728–0.996

Stepwise model * 0.910 0.803–1

* LD1 (1720–1760 cm−1) + Area (2800–3000 cm−1).
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4. Discussion

In this paper, we discuss the proof of concept of a novel liquid biopsy approach for
cancer diagnosis. Our method is based on the molecular profiling of EVs with FTIR spec-
troscopy. For this purpose, EV-enriched suspensions were obtained from the serum of
patients diagnosed with HCC of nonviral origin and noncancer subjects. We have chosen
to investigate EVs because of their crucial role in the emerging liquid biopsies for cancer
diagnosis [39–43]. Such a pivotal role is due to their large availability in biofluids and
specific molecular content, which reflects the state of the cells of origin. Additionally,
EV-specific molecular cargoes change during cancer evolution, thus being also instrumental
for disease staging [44]. As far as HCC is concerned, EVs play a particularly relevant role in
the disease progression, as cancer cells are capable of influencing many biological pathways
through the release of extracellular vesicles in the tumor microenvironment [32]. These
effects include a local regulation of the Epithelial to Mesenchymal Transition (EMT) [45],
and the activation of the inflammatory microenvironment to increase cancer cell invasive-
ness, converting fibroblasts and macrophages to CAFs and TAMs [32,46,47]. Moreover,
HCC-related EVs are believed to regulate the functions of immune and endothelial cells,
inducing immune escape and angiogenesis [48,49].

HCC diagnosis is currently carried out by combining different types of information,
which include the levels of selected circulating markers, medical imaging (US/MRI/CT),
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and histopathological biopsies [25,33,50]. Unfortunately, all these methods present some
limitations, which negatively affect patient prognosis. Circulating markers, AFP included,
have usually low sensitivity and specificity, although improved performance can be ob-
tained through the combination of multiple markers [25–27,29,33]. Despite a remarkable
specificity, medical imaging has a poor capability of detecting small tumors, being plagued
by a large number of false negatives (FNs) and, consequently, a poor sensitivity. Histopatho-
logical biopsies also present several problems such as their invasiveness and a large number
of FNs, which are partly due to the intrinsic variability of the bioptic tissue that compli-
cates the sampling of the suspected region [25,32,33,51,52]. EV-based liquid biopsy can
contribute to overcoming some of these shortcomings, as it is non- or minimally inva-
sive and can provide a homogeneous sampling. Here, we used multivariate statistical
analyses and Machine Learning (ML) methods to search for IR spectral biomarkers of the
disease. We highlighted relevant differences in, both, the integrated intensity (Figure 4)
and the line shape (Figure 5) of major mid-IR absorption bands of biomolecules within
EVs. Specifically, HCC patients presented with a decreased intensity of the amide I and
II bands (1470–1700 cm−1) and the nucleic acid and carbohydrate band (1000–1200 cm−1)
compared to the controls, together with an increased intensity of the lipid CH stretching
band (2800–3000 cm−1). These findings hint at a difference in the ratio of molecular classes
within EVs in the two groups, as confirmed by the measured spectral Lipid to Protein ratio
(LPR, Figure 4E) and the Lipid to carbohydrates and Nucleic acid Ratio (Figure 4F). This
point deserves a more in-depth discussion as it helps point out the complementarity of FTIR
with respect to conventional omics techniques for the biochemical characterization of EVs.
Genomics, proteomics, and lipidomics, indeed, provide detailed quantitative information
on the EV molecular cargos but involve complex sampling procedures that can alter the
ratio among different molecular classes. On the contrary, FTIR spectroscopy appears to be
perfectly suited to provide semiquantitative information on the relative amount of lipids,
proteins, DNA, and RNA in EVs, also highlighting possible biochemical changes that de-
pend on the clinical conditions of patients [8,9]. Investigating quantitative parameters, such
as the shape or intensity of spectra, is a reasonable approach, as long as each sample has
been uniformly processed. With this idea in mind, several works applied ML algorithms
for the analysis of several circulating biomarkers and the development of novel cancer
detection methods [11,53–58]

In this context, the same LPR here exploited has been also used in the pioneering
paper of Mihàly et al. for discriminating among different classes of EVs [18] and in Romanò
et al. to classify EVs obtained from cancer cells in different stages of the epithelial to
mesenchymal transition [8].

Aside from the relative bands’ intensity, we found statistically significant differences in
the shape of three specific mid-IR bands encompassing the spectral ranges 1470–1700 cm−1

(Figure 5A), 1720–1760 cm−1 (Figure 5B), and 2800–3000 cm−1 (Figure 5C). These dif-
ferences were pointed out using ML, thus allowing us to automatically classify patients
according to their clinical conditions. We believe that this approach is highly interesting in
a clinical setting as it is designed to provide physicians with a direct diagnostic response
instead of a set of spectral parameters that need to be interpreted by specialized personnel.
Additionally, compared to IR peak assignment, the use of ML for spectral classification has
the potential to reduce the detrimental effects due to the presence of non-EV contaminants
in purified samples, a well-known problem for vibrational spectroscopy of EV samples
and associated with the lack of a reproducible gold standard purification method to isolate
EVs from serum with high yield and purity [4,59–61]. For instance, Lee et al. investigated
SERS spectra from EVs purified with several isolation techniques and concluded that com-
mercial kit reagents had a strong affinity to EVs leading to relevant coprecipitation [62].
Accordingly, Pereira et al. showed that a significant portion of the IR spectral signals of
EVs isolated from cell culture media is ascribed to kit reagents [10]. Therefore, coprecipi-
tants from the isolation kits along with serum proteins, such as albumin, lipoproteins, or
immunoglobulins, are potential contaminants that may affect the downstream analyses of
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EVs. In such a complex condition, the IR peak assignment is extremely challenging and
potentially misleading, while the results of an ML-based classification are likely to be more
robust, as the interaction between EV and contaminants, which may lead to coprecipitation,
may be different in different types of samples. This is especially true if one considers recent
findings demonstrating the formation of a protein corona around extracellular vesicles
dissolved in complex media [63].

EV-based HCC biomarkers were reviewed in the excellent papers of Wang and col-
leagues [32] and Szabo & Momen-Heravi [64], which showed that microRNAs, long non-
coding RNAs (lncRNAs), mRNAs, circular RNAs, and proteins within EVs are promising
sources of HCC biomarkers for diagnosis and staging. MicroRNAs are highly abundant
in EVs and difficult to be degraded, thus being an ideal biomarker candidate. Altered
microRNA levels in HCC patients have been measured for EV miR-9-3p[65], miR-21[66],
miR-93[67], miR-92b [68], miR-718 [69,70], miR-122 [71,72], miR-638 [73–75], and miR-
125b [76], to mention a few. Altered EV lncRNA (LINC00161[77], lncRNA-HEIH [78,79],
ENSG00000258332.1, and LINC000635[80], lncRNA-ATB[81]), mRNA (mRNA-hnRNPH1),
circular RNA (circPTGR1[82], and circDB [83]) levels were also detected in HCC patients
compared to controls. EV proteins are also important markers in the diagnosis of HCC and
alterations in the levels of several proteins have been detected including, G3BP, PIGR [84],
hepcidin [85], and SMAD3 protein[86]. Despite the promising diagnostic role of the men-
tioned RNA and protein structures, clinical trials have pointed out that a single biomarker
at a time display low sensitivity and specificity. Comprehensive detection and evaluation
using multiple molecules in combination may be more effective in diagnostics [25,32,33].
In this context, the spectral differences highlighted in the intensity of the nucleic acid and
carbohydrates band and the shape and intensity of the amide I and II bands are highly
interesting, as the former is associated with nucleic acids [19,87], while the latter with the
vibrational modes of proteins, but also with the in-plane vibrations of nitrogenous bases
of RNA [9,18,88,89]. Therefore, an alteration in the levels of the mentioned protein and
RNA markers is likely to affect the shape and the intensities of the analyzed mid-IR bands,
producing detectable spectral changes (Figure 5). Additionally, we found highly significant
differences in the shape of the lipid-ester peak at about 1730 cm−1 and in the lipid stretch-
ing band at 2800–3000 cm−1. This is an interesting finding and confirms that—aside from
RNA and protein markers—the EV lipid content is an effective source of HCC markers, as
supported by the fact that HCC development and progression have been linked to fatty acid
metabolism dysregulation, in which aberrant activation of oncogenic signaling pathways
alters the expression and activity of lipid-metabolizing enzymes [90].

Finally, in Figures 5 and 6, we evaluated the classification performances of our spectral
biomarkers alone and in combination using the LOOCV method and a ROC curve analysis
followed by AUC calculation. The obtained results are interesting if compared with those
obtained on conventional HCC circulating markers, i.e., AFP and PIVKA-II, in the same
groups of subjects (Figure 6B,C). Despite that AFP is currently the most widely used serum
HCC biomarker, its sensitivity at low cut-off values (less than 20 ng/mL) is approximately
60%, and the specificity is still inadequate [91,92]. Furthermore, serum AFP levels remain
normal in 15–30% of advanced HCC [93], as, in our case, stressing the importance of
finding other circulating markers capable of detecting AFP-negative cancer patients. In this
context, PIVKA-II, Protein Induced by Vitamin K deficiency or antagonist-II (PIVKA-II), is
believed to be a favorable biomarker to detect AFP-negative HCC [27,29,94,95]. Figure 6B,C
show that our combined spectral biomarker possesses a larger, albeit comparable, AUC
value than AFP and PIVKA-II measured on the same subjects. Very interestingly, if the
sensitivity is computed from the ROC curves using the Youden’s method, we obtained a
70% sensitivity for AFP, 85% for PIVKA-II and 100% for our combined spectral biomarker. A
similar outcome was obtained with the “closest top-left” method for computing sensitivity.
Additionally, since no significant correlation was found between spectral markers and the
levels of PIVKA-II and AFP (data not shown), it would be interesting to investigate whether
the formers can contribute to the detection of HCC-negative cancer patients.



J. Pers. Med. 2022, 12, 949 13 of 18

A limitation of this study is the reduced sample size, which is a common bottleneck
affecting the vast majority of the published FTIR study on this subject. Therefore, the results
here presented need to be validated on a larger sample size, which could serve also as a
platform to test other machine learning algorithm than PCA-LDA, such as PLS-DA, which
have been shown to outperform PCA-LDA on large datasets [96,97].

5. Conclusions

In this work, we present, for the first time in the literature, the proof-of-concept of
a liquid biopsy approach for cancer diagnosis based on the molecular profiling of serum
EVs with FTIR spectroscopy. A cohort of HCC patients of nonviral etiology was selected
as a model system and compared to a cohort of noncancer subjects. As deeper argued in
the discussion section, the alteration of the molecular content in EVs isolated from HCC
patients has been reported by several excellent works. While the study of these biochemical
changes at the single-molecule level is needed to have a better understanding of tumor
biology, the combination of multiple circulating markers is highly demanded to improve
diagnostic performances in a clinical setting. In this context, FTIR spectroscopy appears to
be extremely promising as it can provide a label-free comprehensive molecular fingerprint
of EVs through the analysis of specific mid-IR absorption bands. Here, we analyze the
FTIR spectra of serum EVs by applying multivariate statistics and Machine Learning to
highlight clinically relevant variations between the two groups. Our data point out the
presence of statistically significant differences in the integrated intensities of major mid-IR
absorption bands, including the carbohydrate and nucleic acids band, the protein amide I
and II bands, and the lipid CH stretching band. These findings are efficiently captured by
the lipid-to-protein spectral ratio (LPR, Figure 4E) and the Lipid-to-Nucleic Acids spectral
ratio (LNR, Figure 4F), which show that HCC-derived EVs have an altered balance among
the levels of different molecular classes compared to the controls. Additionally, we used
PCA-LDA for the automated classification of spectral data according to the line shape
of the mentioned mid-IR spectral bands. This analysis identified three potential spectral
biomarkers for HCC diagnosis, namely the shape of the Amide I and II bands, the lipid CH
stretching band, and the lipid-ester peak at about 1740 cm−1. The diagnostic performances
of all the proposed spectral biomarkers, alone and in combination, were evaluated by ROC
curve analysis. A stepwise multivariate logistic regression allowed us to select the most
informative subset of spectral biomarkers suitable for patient classification. The combined
biomarker displayed good classification potential (Figure 6), as confirmed by a large AUC
value (0.91) and a sensitivity and specificity of 1 and 0.76, respectively. Very interestingly,
our combined spectral biomarker appears to outperform the classification performance
of two widely used circulating HCC markers—namely, AFP and PIVKA-II—measured
on the same group of subjects, a result that deserves a dedicated study based on a larger
sample size.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/jpm12060949/s1. Figure S1: (A) microscopic characterization of
a representative purified sample performed with atomic force microscopy. The image is acquired
on an EV-enriched suspension extracted from a pool of sera of 5 out of 19 controls recruited in the
study. Several similar images were acquired, showing reproducible features. The image shows a
large number of rounded particles with the expected size distribution for an EV sample measured
with AFM on mica. Particles also display the typical cup shape morphology as shown by the selected
(B) line profile. Additionally, smaller and partly aggregated particles can be observed, which could
be due to the presence of contaminants, such as lipoproteins or albumin. (C) An Intensity-weighted
diameter distribution measured with DLS. Measurements are acquired on 5 out of the 19 EV-enriched
suspensions obtained from control subjects. Measures are reported as mean together with the 95%
confidence bands. Two peaks can be observed, one cantered at approximately 32 nm and the other at
approximately 190 nm. The first peak is compatible with the average size observed in the AFM image.
Moreover, one can observe that microscopic images do not show particles with sizes comparable to the
larger peak. This was expected as DLS Intensity data are weighted with the six power of the particle

https://www.mdpi.com/article/10.3390/jpm12060949/s1
https://www.mdpi.com/article/10.3390/jpm12060949/s1
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radius, which im-plies that approximately one over 60.000 particle is as great as 200 nm. Similar
size comparison can be detected in the (D) TEM image (scale bar = 200 nm). TEM measurements
were not acquired on the same samples recruited in the study, but they were purified using the same
protocol, thus providing a further confirmation that despite contaminants, the kit allows a substantial
enrichment in EVs.
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