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Abstract In this note we pursue the investigation initiated in Spera M (in: Nielsen, Barbaresco, (eds) Geometric Science of
Information. GSI 2023. Lecture Notes in Computer Science, Springer, Cham, 2023) by addressing geometric and topological issues
concerning the zero set of the wave function, provided it is a knot in 3-space. Since, the standard Madelung velocity breaks down
thereat, it is necessary to resort to the Clebsch geometry of the probability current shown in the above paper. This leads to considering
several tightly interknit symplectic manifolds.

1 Introduction

Vortex structures, while ubiquitous in various physical contexts, emerge, in particular, as nodal lines (zero sets) of the wave function
of a massive spinless particle ruled by the Schrödinger equation, where the probability density vanishes and the phase is totally
undetermined (see e.g. [2, 3]), thus giving rise to both physical and mathematical subtleties. The paper [1] investigated some
hydrodynamical aspects of the probability current in Schrödinger’s theory, starting from the observation that, outside the nodal
line, the latter shares the same (Bohm) trajectories with the Madelung velocity, while exhibiting a regular behaviour; the nodal line
motion was found to be closely related to the time derivative of the probability current and the nodal line itself – advected via the
hydrodynamical Schrödinger-Madelung equation – arose as a fibre of a Clebsch-type fibration. In the present contribution we further
analyse this Clebsch geometry, which turns out to be naturally related to several symplectic manifolds manufactured from wave
functions. In particular, we resort to the projective Hilbert space approach of [4, 5] and sketch a portrait akin to the one developed
in [6–9] for the Euler equation, ultimately conveyed in diagrammatic form (Theorem 2).

The paper is organised as follows: first, we briefly discuss the standard Madelung-Schrödinger picture, closely following, in
particular, the exposition given in [1]; then, we present a series of constructions based on [7–9] and [4, 5] which eventually merge
together in the Clebsch portrait of Theorem 2.

2 Preliminaries

Basic references for this section are [10] for quantum hydrodynamics and, specifically concerning geometric aspects, [1, 4, 5, 11–14].
See [15] and [16] as well.

2.1 Quantum hydrodynamics

Let us discuss, for simplicity, the motion of a spinless particle of mass m > 0 in 3-space. The quantum wave function depends on x
and t: ψ � ψ(x , t), with x ∈ R

3, t ∈ R and obeys the Schrödinger equation (set � � m � 1)

∂tψ � −i Ĥψ :� −i(−1

2
� + V )ψ (1)
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with � denoting the Laplace operator and V � V (x) a (“classical”) potential. Its polar decomposition (as soon as ρ > 0) reads

ψ � √
ρ ei S , ρ � |ψ |2. (2)

However, we shall, whenever expedient, stick to Schrödinger’s ψ-formalism, in order to bypass the limitations imposed by the latter.
The Schrödinger equation can be cast into the Madelung-Bohm hydrodynamical form [17–19] (setting u � ∇S)

⎧
⎨

⎩

∂u
∂t + (u · ∇)u � −∇(V + Vq )
∂ρ
∂t + div(ρ u) � 0

, (3)

where Vq � − 1
2

�
√

ρ√
ρ

is the so-called quantum potential, the first equation is an Euler equation for a compressible irrotational fluid
(divu � �S �� 0 in general) and the second one is the continuity equation, involving the probability current

j � ρ u � Im(ψ†∇ψ) � 1

2 i
(ψ†∇ψ − ψ∇ψ†) . (4)

We shall freely switch vector fields and differential 1-forms via the musical isomorphisms induced by the Euclidean metric in R
3,

so we write for instance j � ρ d S and so on. After setting

H :� 〈ψ |Ĥψ〉 �
∫

R3
ψ†

(

−1

2
� + V (x)

)

ψ d3x �
∫

R3

{
1

2
|∇ψ |2+V (x)|ψ |2

}

d3x , (5)

one can rephrase the above equations in a Hamiltonian fashion, following Bohm [17, 18]:

∂ρ

∂t
� δH

δS
,

∂S

∂t
� −δH

δρ
(6)

or, in complex terms, see [14]:

∂ψ

∂t
� −i

δH
δψ† ,

∂ψ†

∂t
� i

δH
δψ

. (7)

2.2 Symplectic geometric interpretation

The above discussion can be geometrically reformulated as follows, glossing over analytical subtleties (see [1, 14] for extra bibli-
ography and [20] for a general theory).

Let ψ : R
3 	 x 
→ (ρ(x), S(x)) ≡ ψ(x) ∈ R

2 ∼� C be a smooth map (we may use polar coordinates whenever ρ > 0, so
S(x) ∈ R/2πZ � S1). The set M̃ of such maps becomes a symplectic manifold as soon as the target space is equipped with the
symplectic structure dρ ∧ d S (and we tacitly compactify R

3 to S3). The symplectic form � on M̃ reads

� �
∫

R3
δρ(x) ∧ δS(x)d3x (8)

or, in complex coordinates (Kähler structure),

� � −i
∫

R3
δψ†(x) ∧ δψ(x)d3x (9)

Let G denote the (connected component of the identity of the) group of volume preserving diffeomorphisms of R
3 which rapidly

approach the identity at infinity, with “Lie algebra” g consisting of divergence-free vector fields (divb � 0) rapidly vanishing at
infinity. The space R

3 is equipped with the standard Euclidean metric (allowing the customary identification of vector fields and
1-forms). The symplectic form � is G-invariant under the natural action of G on ψ ∈ M via

g(ψ)(x) � ψ(g−1(x)) (10)

(since, the Jacobian J (g) � 1).
Notice that the probability current can be viewed itself as the velocity field of a new fluid (again compressible), with vorticity

w � curl j � ∇ρ × ∇S, w � d j � dρ ∧ d S � −i dψ† ∧ dψ , (11)

see [1]. The Hamiltonian algebra (Rasetti-Regge (RR) current algebra, [6–9, 21, 22]) associated to the G-coadjoint orbit pertaining
to the divergence-free vector field w consists of functions λb - for any b divergence-free - defined as

λb �
∫

R3
j · b �

∫

R3
w · B, (12)

where curlB � b. One checks the Lie algebra structure of the RR-current algebra, namely

{λb, λc} � λ[b,c], (13)
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the vector field bracket being minus the usual one and reading, for divergence-free vector fields

[b, c] � curl (b × c) (14)

and, where the Poisson bracket is the one induced by the symplectic form. Explicitly:

{λb, λc} �
∫

R3
j · [b, c] �

∫

R3
j · curl(b × c) �

∫

R3
w · (b × c). (15)

One has the following result in [14], with slight and obvious notational changes.

Theorem 1 (i) The action of G on (M̃, �) gives rise to an equivariant moment map

j : M̃ → g∗
ψ 
→ j(ψ) � w � ∇ρ × ∇S � −i (∇ψ† × ∇ψ)

(ii) In terms of the ensuing Hamiltonian algebra (RR-current algebra), the Schrödinger equation can be written compactly in the
Hamiltonian form

λ̇b � {λb,H} (16)

Remark 1 The assignment g 	 b 
→ λb ∈ C∞(M̃) actually yields what is called a co-momentum map a standpoint to be adopted
in the sequel. Also, g ↪→ g∗, the dual of the “Lie algebra” g (naturally accommodating singular objects, as we shall see).

The above result underlines the special role played by the probability current and generalises the standard geometrical description
of Euler flows [6–9, 15, 16, 23, and 24]. There are other moment map interpretations of j, in conjunction with ρ, see [4, 5, 11, and
13]. As it was observed in [1], although the equations can be written in a geometric form, the ensuing evolution is not a coadjoint
motion since the Hamiltonian does not collectivize via j (in the sense of Guillemin and Sternberg, see e.g. [25]).

2.3 Circulation quantization

The polar decomposition breaks down at the zeros of ψ : if ρ(x̃) � 0, S is undetermined. Set K :� ψ−1(0) (at t � 0) and assume
it is a knot in 3-space (or, better, in its compactification S3), and call it nodal line. Definiteness of the wave function then requires
quantization of circulation, see [3, 14]:

∫

C
d S � 2πn, n ∈ Z (17)

with C a closed loop encircling K . This can be interpreted geometrically as follows, via [14]: the flat (Maurer-Cartan) C
×-connection

(gauge field)

1

2π i
d log ψ � 1

2π i
(
1

2
d log ρ + id S) (18)

defines an element
[

1

2π i
d log ψ

]

�
[

d S

2π

]

∈ H1(S3 \ K ; Z) ∼� Z (19)

and, as such, has trivial holonomy. See [14] for gauge theoretic aspects of Schrödinger’s theory.
We also wish to point out the recent article [26], wherein circulation quantization together with a zero-helicity condition is

recovered within a general Gross-Pitaevskii setting.

2.4 Vortex line motion via probability current

The Madelung velocity ∇S is then singular on K , whereby a naive manipulation of the hydrodynamical equations can be misleading
and calls for recourse to “multivalued” fields, [2, 27], or, mathematically, to appropriate de Rham currents, [28]. However, in [1], a
different route has been pursued. First of all, a formula for the velocity field of the nodal line given in [29] (see also [1]) was related
to the time derivative of the probability current: indeed one finds

∂t j |K � −1

4
[(�ψ†)dψ + (�ψ)dψ†] (20)

which, up to a π/2-rotation and scaling, coincides with the formula given in [29].
Moreover, the time derivative of the vorticity w � d j � −i[dψ† ∧ dψ] reads, on K :

∂tw|K � −1

2
[dψ† ∧ d(�ψ) − d(�ψ†) ∧ dψ] . (21)
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2.5 On Berry’s problem and incompressibility

A general solution of the so-called “Berry’s problem” [30]: To construct a wave function ψ pertaining to the hydrogen atom (or to
a generic quantum system) having a prescribed nodal line K , was sketched in [31]. Then, the question was asked concerning the
possible time evolution of K . Let us briefly review the approach to the above problem outlined in [1] (see also [26] for an independent
related approach). View the wave function (at t � 0) as a map ψ : S3 → D ⊂ C ⊂ S2 (via stereographic projection, D a disc):
ψ � √

ρ0 · ei S . If ψ has a nodal line K , its phase can be adjusted so as to give the new wave function

ψK (x) � √
ρ0 · ei SK (22)

with SK the solid angle function attached to K (defined up to integral multiples of 4π), which is harmonic outside K . Then, in terms
of de Rham currents (distribution-valued forms)

d SK � BK , d BK � 2πδK (23)

with BK the magnetic field (or fluid velocity) generated by the “wire” (or vortex line) K (see e.g. [32–35] for a historical account and
Subsection 3.2 below for amplification). The level surfaces SK � c provide Seifert surfaces for K , i.e. they are oriented surfaces with
boundary K (a smooth extension thereof to K being possible). In particular, for c � 0 we get a canonical framing, the so-called solid
angle framing, see [32]. If ψK is taken as the initial wave function, its initial density ρ0 d3x (which vanishes exactly on K) evolves
via the Schrödinger-Madelung equation (advection) according to [11], and so does the nodal line. Explicitly, closely following [11]
up to inessential notational changes:

ρ(x , t) � η∗ρ0 :�
∫

ρ0(y)δ(x − η(y, t))d3 y (24)

(Eulerian density), where η ∈ Diff(R3) – with velocity vector field u � η̇ ◦ η−1 – and η∗ denotes push-forward (advection) via η.
The curves t 
→ η(y, t) are the Bohmian trajectories of the quantum fluid.

Therefore, the Schrödinger-Madelung evolution via diffeomorphisms ηt (where ηt (y) � η(y, t) – a Lagrangian path, see [11])
produces knots Kt together with their Seifert surfaces �t .

If, as observed in [1], we require that, at each instant t, via a U(1)-gauge (connection), the phase of the wave function equals the
solid angle SKt , then the ensuing velocity uK :� ∇SKt (which is singular on Kt ) is divergence-free as SKt is harmonic. In detail, if

ψ̃ :� g(x , t)ψ(x , t) ≡ √
ρ(x , t) ei SKt (x), (25)

a short calculation then shows that ψ̃ obeys a new “gauged” Schrödinger equation

i∂t ψ̃ � H̃ ψ̃ (26)

with time dependent Hamiltonian

H̃ � g−1∂t g + g−1 H g. (27)

As it was observed in [1], this is in accordance with Brylinski’s theorem ( [23], Theorem 3.7.4) stating that, if Y denotes the space of
oriented knots in a 3-fold, then its connected components coincide with the orbits of the connected component G0 of the group G of
volume preserving diffeomorphisms of Y and, moreover, any component C of Y is a homogeneous space G0/G0

C for any C ∈ C (G0
C

being the isotropy group of C). The above discussion serves as a concrete illustration of the above theorem. One may thus conclude
as in [1] that, so long as the nodal line is concerned, its (compressible) Madelung evolution can be traded for an incompressible one.
This will be further elaborated on in what follows.

3 The Clebsch picture

The variables ρ and S are of Clebsch type, [1, 14]: the level surfaces ρ � c1 and S � c2 (c1 and c2 ∈ R) – i.e. the level surfaces of
ψ – give rise, generically, to one-dimensional fibres S1 ⊂ S3 everywhere tangent to the vorticity field

w � ∇ρ × ∇S � −i (∇ψ† × ∇ψ). (28)

In particular, if ρ � 0, S is undetermined but we still obtain ψ−1(0) ≈ S1, namely, the nodal line becomes a fibre of the Clebsch
fibration, see [1, 8, 24, 36, and 37].

The probability current j may be rendered divergence-free by adding a suitable gradient ∇θ upon solving an appropriate Poisson
equation: indeed, from

j̃ :� j + ∇θ , div j̃ � 0 (29)
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we get,

�θ � −div j, θ � −�−1div j. (30)

This does not affect (globally) the vortex lines, since w̃ :� curl j̃ � w, albeit changing the single Bohmian trajectories. Also, the
RR currents do not change.

In order to bypass the polar decomposition, we rephrase the above in terms of ψ (and freely using differential forms), in particular,
the vorticity also reads

ω � −idψ† ∧ dψ � d j � d j̃ . (31)

We shall establish our Clebsch portrait in a series of steps.

3.1 The Fubini-Study Kähler form

Let us now turn to the projective version (call it M) of our initial manifold M̃ by taking norm one ψ’s up to a phase – using the
notation of [4, 5]; specifically, M � P(H), with H be a Hilbert-Sobolev space of wave functions (however using an L2-inner product
thereon, as in the quoted references). Then let ψ̇ be a tangent vector at [ψ]: as such, it is determined up to a summand ic ψ , c ∈ R,
which vanishes upon restriction to ψ−1(0) � K ⊂ R

3; this can be quickly ascertained as follows: from the requirement 〈ψ + εψ̇ ,
ψ + εψ̇〉 � 1 at first order in ε, we get

�〈ψ , ψ̇〉 � 0 (32)

and this condition persists via alteration of vectors by a phase factor and upon replacement of ψ̇ by ψ̇ + ic ψ . The manifold M
comes equipped with the Fubini-Study (FS) symplectic Kähler form

�F S
M [ψ] (ψ̇1, ψ̇2) :� �

∫

R3
ψ̇1 ψ̇2 d3x . (33)

The G-equivariant moment map j induces an analogous map on M, in view of (global) phase invariance of the vorticity.

3.2 The map K

Let us now introduce the map

K : M 	 [ψ] 
→ K � ψ−1(0) ≡ ωK ∈ OωK , (34)

where ωK is the (singular) Poincaré dual of K , see [38], i.e. a de Rham current -corresponding to a δ-like vorticity concentrated on
K , previously denoted by δK in (23): in vector terms wK (x) � ∫

K δ3(x − y(s)) dy(s) ∈ g∗, and OωK is the coadjoint orbit pertaining
to it.

Let us then “localize” on K by pulling back wave functions to K and by replacing
∫

R3 by
∫

K throughout, in particular in evaluating
the Fubini-Study form.

The crucial observation is the following: let K be parametrized by its arc-length s and (t, n, b) be the standard Frénet trihedron
(assuming absence of inflection points in K ; in any case, the latter yield measure zero sets); then posit

ψ̇ � �ψ̇ + i �ψ̇ ≡ ψ̇n + i ψ̇b , (35)

abutting at the vector field on K

aψ̇ (s) :� ψ̇n(s)n(s) + ψ̇b(s)b(s) . (36)

Therefore, we may set up the identification

ψ̇ |K ≡ aψ̇ (37)

and, given ψ̇1, ψ̇2, we get (obvious notation)
∫

K
t · (aψ̇1

× aψ̇2
) ds � �ωK (aψ̇1

, aψ̇2
) � �̃F SM(ψ̇1|K , ψ̇2|K ) ≡ �

∫

K
ψ̇1|K ψ̇2|K . (38)

(after an appropriate integral replacement in the FS-form, signalled bỹ ). The formally integrable complex structure of OωK , see
[23], and is then compatible with the standard complex structure ofM. The mapK becomes, with the above proviso, a G-equivariant
moment map (see below, Subsection 3.5).

123



  697 Page 6 of 8 Eur. Phys. J. Plus         (2024) 139:697 

Remark 2 The “Marsden-Weinstein-Meyer quotient”

K −1(K )/GωK
∼� {K }. (39)

Indeed, one considers wave functions having the same zero set K ; then, the GωK -action just reparametrizes K and it is quite arbitrary
elsewhere (see also below). These functions give rise to the same integral cohomology class [ 1

2π i d log ψ] ∈ H1(S3\K ; Z).

3.3 Localising to K

We have another “localization” map � which is, at least formally, consistently defined in view of the analysis carried out in [9] (and
one has � ◦ j � K ); it is given explicitly as follows (“·” denoting coadjoint action)

� : Oω 	 g · ω 
→ g · ωK ∈ OωK (40)

which is well-defined, since for the respective vorticity isotropy groups one has

Gω ⊂ GωK (41)

upon remembering that, at the Lie algebra level:

gω � {u ∈ g | [u,w] � 0}, (42)

see [8]. Concretely, one has a “migration” from a diffuse to a string-like vorticity (ω → ωK in g∗), reflected in the corresponding
RR-currents λb, see Subsection 3.5 for details.

The same will hold for the other localization map �̂ which will be shortly introduced.

3.4 The n-field representation

According to [8] (see also [36, 38]) smooth maps n : S3 � R
3 ∪ {∞} → S2 (in a fixed homotopy class and such that n(∞) � n∞,

fixed once for all) give rise to a symplectic Kähler manifold Ñ (Clebsch manifold) and any such map determines a Hopf number
(helicity)

H (n) �
∫

j̃ ∧ d j̃ ∈ Z. (43)

representing the linking number of two generic fibres (diffeomorphic to S1).
In detail, let

n � (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) ∈ S2 (44)

(with ϑ and ϕ denoting, as usual, colatitude and longitude, the latter counted from the x-axis). Set

ψ � tan
ϑ

2
eiϕ � √

ρ ei S , (45)

Notice, that upon a phase change ψ 
→ eiα ψ , the vorticity ω does not change and n rotates around the polar axis by an angle α,
whence we get a map

I : M 	 [ψ] 
→ [n] ∈ N ≡ Ñ/S1. (46)

Let us define the new vorticity (also phase-invariant)

ω̂ � −i
dψ† ∧ dψ

(1 + |ψ |2)2 , (47)

pointwise proportional to ω and, in particular, coinciding with it on K : ω|K � ω̂|K , and tangent to it. Then it is easily checked that

ω̂ � 1

2π
n∗σ (48)

with σ the normalised area form on S2. Correspondingly, we have the G-equivariant moment map

ν : ψ 
→ ω̂ (49)

introduced in [8], yielding a map (same notation)

ν : N ⊃ I (O[ψ]) → Oω̂ (50)

(O[ψ] being the G-orbit of [ψ] in M). One has

d ĵ � ω̂ (51)
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for some ĵ , determined up to an exact 1-form, as the cohomology group H2(S3) � 0; thus one has a G-equivariant moment map ĵ

analogous to the above j. The symplectic Kähler structure of Ñ and N reads, for generic smooth vector fields b and c, [8, 9]:

�N
n (Xb, Xc) ≡

∫

R3
n(x) · (b·∇ n(x) × c·∇ n(x)) d3x �

∫

R3
σn(x)(b·∇ n(x), c·∇ n(x)) d3x . (52)

The Hopf number
∫

ĵ ∧ ω̂ equals the former one (the Clebsch fibres being the same).
As anticipated, we also have another obvious localization map

�̂ : Oω̂ → OωK (53)

enjoying the same properties as the previous one.

3.5 RR-picture

As anticipated, we have the following (co-momentum) description in terms of RR-currents.
First

ψ 
→ {b 
→ λK
b :�

∫

K
B � λ

OωK
b }, K � ψ−1(0), (54)

(again b � curlB). Moreover, localization via � yields

λ
Oω

b �
∫

w · B →
∫

K
B � λ

OωK
b (55)

and, similarly, for �̂,

λ
Oω̂

b �
∫

ŵ · B → λ
OωK
b (56)

3.6 The main result

We collect the previous findings in a theorem, whose proof immediately follows from the above preparations.

Theorem 2 (Clebsch portrait).

(i) With the above notation, we have a commutative diagram:

where all maps other than I are G-equivariant moment maps and K , �, �̂ all “localize” to K.
(ii) The overall diagram is compatible with the dynamics, provided we replace the Schrödinger Hamiltonian H by the time dependent

Hamiltonian H̃ , thus switching to a perfect fluid flow induced by the gradient of the solid angle function, thereby keeping track
of the vortex line evolution only (“slow variable” motion).

(iii) The complex structures on M, N , OωK are compatible, at fixed time.

Remark 3 The use of two different vorticities ω and ω̂ was motivated by the fact that here the Clebsch variables (ρ and S) are
dictated by the quantum mechanical context and the ensuing n-field representation is ancillary. In the papers [6, 8, and 36], the latter
was the primary object, whereby vorticities arose.

4 Conclusions and outlook

In this paper we delved into a Clebsch picture for the Schrödinger equation, pursuing the investigation in [1], focussing on evolution
of the zero set of a wave function, assuming it is a knot in 3-space (vortex line). Its Schrödinger motion can be traded for its Euler
evolution via the (divergence-free) current probability field j̃ , which, unlike the Madelung velocity, is regular on K , though sharing
the same trajectories with the latter outside K . A somewhat intricate but vivid network of symplectic manifolds arose. The upshot
is that the standard quantum mechanical complex formalism, complemented by the projective geometry of the pure state space,
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naturally bypasses the limitations of the polar decomposition of the wave function. The emerging concept of helicity of the latter may
yield further insights in quantum mechanical issues. In particular, establishment of a direct connection with the approach outlined
in [26] would be desirable.
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