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Abstract
Aspergillus flavus is the most frequently identified producer of aflatoxins.
Non-aflatoxigenic members of the A. flavus L strains are used in various
continents as active ingredients of bioprotectants directed at preventing
aflatoxin contamination by competitive displacement of aflatoxin producers.
The current research examined the genetic diversity of A. flavus L strain
across southern Europe to gain insights into the population structure and
evolution of this species and to evaluate the prevalence of genotypes
closely related to MUCL54911, the active ingredient of AF-X1. A total of
2173L strain isolates recovered from maize collected across Greece, Spain,
and Serbia in 2020 and 2021 were subjected to simple sequence repeat
(SSR) genotyping. The analysis revealed high diversity within and among
countries and dozens of haplotypes shared. Linkage disequilibrium analysis
indicated asexual reproduction and clonal evolution of A. flavus L strain resi-
dent in Europe. Moreover, haplotypes closely related to MUCL54911 were
found to belong to the same vegetative compatibility group (VCG) IT006
and were relatively common in all three countries. The results indicate that
IT006 is endemic to southern Europe and may be utilized as an aflatoxin
mitigation tool for maize across the region without concern for potential
adverse impacts associated with the introduction of an exotic
microorganism.

INTRODUCTION

Maize (Zea mays L.) is one of the world’s most impor-
tant crops in terms of production, international trade,
and provision of calories for livestock and humans, and
it contributes to the socio-economic balance in many
countries (Wu, 2015). However, maize is susceptible to
aflatoxin (AF) contamination from crop development
through consumption (Palumbo et al., 2020; Strosnider
et al., 2006). While aflatoxins frequently occur in tropi-
cal and subtropical regions, AF outbreaks were first

reported in Europe in 2003 (Piva et al., 2006). AF con-
tamination is currently a perennial problem in Europe
due to climate change, particularly in maize-growing
regions of southern Europe including Italy, Spain,
Greece, and Serbia (Battilani et al., 2016; Curtui
et al., 2004; Moretti et al., 2019). AF concentrations in
some years are sufficiently high to interfere with com-
mercial use of the crop (Dobolyi et al., 2013; Levic
et al., 2013; Udovicki et al., 2019). Aflatoxins (AFB1,
AFB2, AFG1, AFG2, and AFM1) are potent mutagenic
and carcinogenic mycotoxins that are naturally
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produced by several species in Aspergillus
section Flavi (Jani�c Hajnal et al., 2017; JECFA, 2017).
AFB1 is a highly potent liver carcinogen in humans and
several domestic animal species; it is also immunotoxic
and hepatotoxic and contributes to impaired productiv-
ity and reproductive efficiency in livestock (IARC, 2007;
Kollia et al., 2017; Valencia-Quintana et al., 2020).

Aspergillus flavus, the most commonly reported
aflatoxin-producer, is divided into two morphologically
distinct strains, the L and S, with the widely distributed
L strain fungi most frequently identified (Cotty, 1989;
Cotty et al., 2008). L strain fungi have varying abilities
to produce aflatoxins, with some genotypes unable to
produce aflatoxins, while S strain fungi are potent afla-
toxins producers typically found in hot, dry agroecosys-
tems in the United States (Singh et al 2020). Fungi
having similar morphology but belonging to different
species have been reported relatively recently in the
United States and various countries in sub-Saharan
Africa (Probst et al. 2012; 2014; Frisvad et al., 2019;
Singh et al 2020) but rarely in Europe (Giorni
et al., 2007; Perrone et al., 2014). In the current study,
the L strain will be the main subject of study and hereaf-
ter A. flavus will refer only to the L strain.

Aspergillus flavus is well known as an abundant
saprophyte and opportunistic pathogen and is ubiqui-
tous in warm environments (Grubisha & Cotty, 2009;
Horn, 2003; Klich, 2002). The life cycle of this predomi-
nantly asexual species is characterized by profuse pro-
duction of haploid conidia (Islam et al., 2018;
Papa, 1986). However, some studies have reported
that sexual recombination can occur between A. flavus
genotypes with different mating type loci (Horn
et al., 2009; Moore et al., 2009). When considering nat-
ural populations, those that are present in the agroeco-
system with no intentional modification by humans,
both mating types, MAT1-1 and MAT1-2, co-occur.
However, the frequency of sexual reproduction in natu-
ral populations is less clear (Geiser et al., 1998;
Grubisha & Cotty, 2009; Olarte et al., 2012; P�al
et al., 2007; Ramirez-prado et al., 2008).

Genetic diversity of A. flavus, considered both as a
species and within the L strain, is high (Islam
et al., 2018; Ortega-Beltran et al., 2020), with many dif-
ferent genotypes that can produce AF at varying levels
(Chang & Ehrlich, 2010). Populations of A. flavus are
complex and still not fully described (Grubisha &
Cotty, 2009). Isolates can be segregated into many
vegetative compatibility groups (VCGs) on the basis of
complementation between nitrate non-utilizing auxo-
trophs (Bayman & Cotty, 1991, 1993). Genetic informa-
tion can be exchanged within a VCG through an
asexual recombination process referred to as the para-
sexual cycle (Ehrlich et al., 2007; Grubisha &
Cotty, 2015; Leslie, 1993; Papa, 1986) that includes

hyphal fusions between fungi with identical hetero-
karyon incompatibility alleles. Characterizing genetic
diversity within A. flavus allowed the identification of
VCGs containing exclusively non-aflatoxigenic strains
(Mehl et al., 2012). Naturally occurring, native non-
aflatoxigenic strains have been used for decades to
displace aflatoxin producers through a competitive
exclusion mechanism (Bayman & Cotty, 1993; Cotty
et al., 2007; Mehl et al., 2012), a form of biocontrol that
is highly effective at reducing aflatoxin contamination in
the United States, Africa, and Europe (Italy)
(Cotty, 1994a, 1994b; Dorner & Lamb, 2006; Mauro
et al., 2018; Moral et al., 2020; Ojiambo et al., 2018).
Non-aflatoxigenic genotypes of A. flavus are applied to
soil on a grain carrier that supports growth, sporulation,
and dispersal of the biocontrol fungus to the crop via
wind and insects, thereby displacing aflatoxin-
producing fungi (Bock et al., 2004; Mehl et al., 2012).
Though the grain carrier in the formulated product gives
biocontrol strains the advantage of a readily available
food source, the long-term efficacy of aflatoxin biocon-
trol relies on the ability of applied non-aflatoxigenic
genotype to competitively exclude aflatoxin producers
in soil and on crops. Assessment of genetic diversity in
A. flavus populations allows for identification of non-
aflatoxigenic A. flavus VCGs particularly well adapted
to target agroecosystems (Islam et al., 2020). Identifica-
tion of native non-aflatoxigenic VCGs with potential use
in aflatoxin biocontrol programs allows avoiding the
use of exotic strains, which may have potentially nega-
tive ecological effects if introduced into target agroeco-
systems (Mehl et al., 2012; Probst et al., 2011).

Aflatoxin contamination of crops is almost entirely
due to several species in Aspergillus section Flavi
(Frisvad et al., 2019; Houbraken et al., 2020), a taxo-
nomic subgroup of genus Aspergillus that includes over
30 species, with the most agriculturally important afla-
toxin producers being those most closely related to
A. flavus. In Europe, investigations into compositions of
Aspergillus section Flavi communities have provided
useful information on the relative role of key species in
the contamination process as well as the ability of spe-
cific fungi to produce sclerotia and AF (Giorni
et al., 2007). Work on distributions of A. flavus L strain
fungi in maize growing regions of Italy identified non-
aflatoxigenic A. flavus MUCL54911, an effective bio-
control active ingredient. In laboratory and fields trials,
a product utilizing MUCL54911 reduced aflatoxin con-
tamination by over 90% (Mauro et al., 2013, 2018). The
product utilizing MUCL54911 is currently commercial-
ized under the name AF-X1 (Anonymous, 2022a,
2022b).

Despite studies on diversity of A. flavus resident in
several countries, little information is available on
A. flavus L strain population structure in Europe (Gallo
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et al., 2012; Perrone et al., 2014). Prior studies devel-
oped culture-based and DNA-based methods useful to
study A. flavus diversity. These have been used
to determine the predominant causal agent of AF con-
tamination in various crops and to optimize selection of
non-aflatoxigenic genotypes in target agroecosystems
(Mehl et al., 2012; Alejandro Ortega-Beltran
et al., 2020; Vlajkov et al., 2021). Vegetative compatibil-
ity analysis (VCA), which uses pairs of complementary
nitrate non-utilizing auxotrophs to group A. flavus iso-
lates into specific VCGs, has been used to both charac-
terize populations of A. flavus (Bayman & Cotty, 1991)
and define non-aflatoxigenic A. flavus active ingredi-
ents of biocontrol products (Cotty, 1994a, 1994b;
Ehrlich & Cotty, 2004). Although accurate, VCA is time-
consuming and laborious (Das et al., 2008; Sweany
et al., 2011). Consequently, several molecular methods
have been developed to characterize A. flavus isolates
more rapidly. To identify non-aflatoxigenic isolates,
cluster amplification pattern markers are used to moni-
tor large deletions in the aflatoxin biosynthesis gene
cluster of A. flavus through multiplex PCR (Callicott &
Cotty, 2015; Vlajkov et al., 2021). In addition, to charac-
terize A. flavus populations on a finer scale, detect
diversity within VCGs, and contrast competitiveness
and adaptability among specific genotypes of interest,
many typing schemes using simple sequence repeats
(SSR) or inter simple sequence repeats (ISSRs) have
been developed (Grubisha & Cotty, 2010; Hadrich
et al., 2010; Hatti et al., 2010; Molo et al., 2022;
Sweany et al., 2011; Tran-Dinh & Carter, 2000; Wang
et al., 2012).

The current study examined the population structure
and genetic diversity of A. flavus resident in maize
growing areas in three European countries considered
hotspots for aflatoxin contamination: Greece, Spain,
and Serbia (Battilani et al., 2016; Koutsias et al., 2021;
Leggieri et al., 2021; Van der Fels-Klerx et al., 2019).
Seventeen SSR markers, developed by Grubisha and
Cotty (2009) and used to characterize A. flavus popula-
tions in Africa and North America (Grubisha &
Cotty, 2010; Islam et al., 2018, 2020; Ortega-Beltran
et al., 2016), were applied to European populations for
the first time in order to (I) study genetic diversity
among and within countries, (II) obtain insight into
divergence of A. flavus populations and distribution of
common haplotypes among the three countries, and
(III) investigate the frequency and distribution of iso-
lates belonging to the same VCG to which
MUCL54911, the active ingredient of AF-X1, belongs in
order to evaluate the potential extension of regulatory
approval for use of AF-X1 beyond Italy, the country
from which the active ingredient was initially isolated.
Large scale use of AF-X1 in the three target countries
can allow producing maize with reduced aflatoxin con-
tent for reduced densities of toxigenic fungi in the envi-
ronment, and health, trade, and economic benefits.

EXPERIMENTAL PROCEDURES

Maize sample collections

Grain samples were collected in areas known to have
periodic A. flavus contamination across Greece
(n = 128), Spain (n = 153), and Serbia (n = 165)
(Figure 1). The grain was sampled either from the com-
bine at harvest or upon receipt at an elevator before the
drying process. Grain collection was initiated in late
August 2020 and early September 2021. Each sample
consisted of 30 sub-samples (about 100 g of kernels,
3 kg total). After drying, samples were stored at 0–5�C
and shipped to Italy within 3 days. Grain samples were
ground, mixed to homogenize, partitioned into 2 aliquots
of �100 g, and stored at 5�C until processing for myco-
toxin analysis and fungal isolation.

Mycotoxins analysis

For each sample, 5 g flour was mixed with 20 mL acetoni-
trile/water/formic acid solution (59:20:1), vortexed for 30 min
at 2500 rpm, and passed through a FPTE 0.20 μm filter.
Mycotoxins were separated by loading 7 μL of the extract
into an Ultimate HPLC machine (Thermo Scientific, Milford,
MA, USA). Mycotoxins were identified with a calibrated Liq-
uid Chromatography-Mass Spectrometer (LC–MS) coupled
with a Q Exactive Focus Orbitrap (Thermo Scientific). Afla-
toxin concentrations were reported as the sum of AFB1,
AFB2, AFG1, and AFG2. The limits of detection and quanti-
fication were 0.9 and 2.71 μg/kg, respectively.

Aspergillus flavus isolation

Maize flour was serially diluted and plated on modi-
fied Rose Bengal agar (3 g sucrose, 3 g NaNO3,
0.75 g KH2PO4, 0.25 g K2HPO4, 0.5 g MgSO4�7H2O,
0.5 g KCl, 10 g NaCl, 1 mL of micronutrients,
0.025 g Rose Bengal, 0.05 g chloramphenicol,
0.05 g streptomycin, 0.01 g dichloran, 20 g Bacto
agar, 1 L water) (Cotty, 1994a, 1994b). After 3–
5 days of incubation at 35�C in the dark
(Cotty, 1994a, 1994b), colony forming units (CFU)
were counted, both for A. flavus and for other fungal
species. Plates with less than 10 colonies were
selected to recover A. flavus isolates, with no more
than three isolates taken from any plate and up to
15 isolates per sample/field. Serial dilution was
repeated to get a suitable number of isolates per
plate. Selected isolates were transferred to 5/2 Agar
(5% V8 juice and 2% agar, pH 6.0) and incubated for
5–7 days at 31�C (Jaime-garcia & Cotty, 2004). Sin-
gle spore isolation was done on the total set of 2173
isolates of A. flavus recovered from Greece, Spain,
and Serbia; all monosporic isolates were saved in
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water vials for further use (Mauro et al., 2013;
Ortega-Beltran & Cotty, 2018).

DNA extraction

All single spore isolates were grown on 5/2 agar and
incubated for 7 days at 31�C. Spores were harvested
from colonies by swab, after which DNA was extracted
following the protocol of Callicott and Cotty (2015). In
brief, spores were lysed in a buffer containing detergent
and EDTA using a combination of heat and agitation.
DNA was then extracted using a standard ethanol-
ammonium acetate precipitation. DNA concentration
was determined with a NanoDrop 2.0 spectrophotome-
ter (ThermoFisher, Wilmington, DE, USA) and diluted
to adjust the concentration to 5 ng/μL.

SSR genotyping

Seventeen SSR loci, previously characterized by Gru-
bisha and Cotty (2009), were examined in this study
(AF28, AF13, AF43, AF22, AF31, AF53, AF34, AF42,
AF8, AF16, AF54, AF17, AF11, AF66, AF64, AF63 and
AF55). SSR analyses followed the protocol described
by Islam et al. (2018). SSR amplicons were free of
PCR artefacts and had single peaks in the expected
size range per locus based on Grubisha and Cotty
(2009). Amplifications were performed by USDA-ARS
in Tucson, AZ, amplified markers were separated on an

ABI 3730 at the University of Arizona’s Arizona Genet-
ics Core in Tucson, and fragment sizes estimated using
GeneMarker 2.6.4 (SoftGenetics LLC, State College,
PA) at USDA-ARS.

Population genetic analyses

Two Italian isolates (MUCL54911 and MPVP A2321)
were included in the SSR analyses as references. The
non-aflatoxigenic strain MUCL54911 belongs to VCG
IT006 (Mauro et al., 2013) and possesses the MAT1-1
mating idiomorph. MPVP A2321 is non-aflatoxigenic
and has the MAT1-2 idiomorph (Mauro et al., 2018).

For population analyses, incomplete SSR genotypes
were excluded. The remaining SSR data from 2011 iso-
lates out of 2173 and the two reference isolates
(MUCL54911 and MPVP A2321) were processed with
GENODIVE 3.06 (Meirmans, 2020). The R package
poppr (Kamvar et al., 2014, 2015) was used to generate
a minimum spanning network from clone-corrected data
using Bruvo distances (Bruvo et al., 2004). SplitsTree
4.8 (Huson & Bryant, 2006) was used to generate neigh-
bour net trees using the Cavalli-Sforza chord distance
matrix generated by GENODIVE, following the protocol
described by Ortega-Beltran et al. (2020). GENODIVE
3.06 was also used to identify both shared and closely
related multilocus genotypes among the three countries
using a selected threshold among genetic distances.
Haplotypes closely related to reference isolates were
identified.

F I GURE 1 Geographical distribution of collection sites for samples from Greece (128), Spain (153) and Serbia (165) during maize harvest in
either 2020 or 2021.
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All isolates of A. flavus were sorted by province
and country. Where sample size was less than
10 individuals, two or more adjacent provinces were
combined to produce more reliable estimates of
genetic diversity. GenAlEx version 6.5 (Peakall and
Smouse, 2006) was used to evaluate number of
alleles, number of private alleles and haploid genetic
diversity (H), and to produce a principal coordinate
analysis (PCoA) based on a pairwise genetic dis-
tance matrix (Peakall & Smouse, 2012).

Haplotype-analysis version 1.05 (Eliades &
Eliades, 2009) was used to identify multilocus SSR
haplotypes (genotypes), their frequency within and
among the populations, the number of private haplo-
types (Ph), the number of different haplotypes observed
(Nh, individual population contribution to genetic diver-
sity within populations (HS(j)), and individual population
contribution to the total diversity among populations
(DST(j)) (Finkeldey & Murillo, 1999).

To determine the genetic relationships among
countries, DAPC was generated by the adegenet
package (Jombart, 2008; Jombart & Ahmed, 2011) in
R software. This clustering analysis method was used
for performing the first PCA, followed by a discriminant
analysis on the PCA scores. The function find. clusters
in R was used to determine the right number of
retained principle components for the DAPC analysis
(Jombart & Sébastien Devillard, 2010). G’ST
(Hedrick, 2005) was used to determine the standar-
dised genetic differentiation among alleles and was
obtained from mmod package (Winter, 2012) in R. The
poppr package (Kamvar et al., 2014) in R was used to
evaluate the evenness of genotype frequency within
groups based on the E5 calculation (Grünwald
et al., 2003).

Linkage disequilibrium analysis was used to esti-
mate the degree of clonality within populations. Multilo-
cus genotypic LD within each country was calculated
after clone correction by the poppr package using the
unbiased estimator r̄d (Agapow & Burt, 2001). Analysis
of Molecular Variance (AMOVA; Excoffier et al., 2005)
using poppr was performed to estimate population
differentiation.

Vegetative compatibility analysis (VCA)

Haplotypes from Greece, Spain, and Serbia that were
closely related to MUCL54911, as revealed by the
neighbour net tree analysis, were evaluated for mem-
bership in VCG IT006. To determine whether a haplo-
type belongs to VCG IT006, isolates from the selected
haplotype were subjected to VCA using previously
generated IT006 tester pair mutants (cnx and niaD),
following the protocol described previously (Das
et al., 2008).

RESULTS

Aflatoxin contamination, fungal densities,
and number of isolates recovered

The respective percentages of grain samples positive
for aflatoxin (AF) for 2020 and 2021 was 5% and 6% in
Greece, 0% and 2% in Spain, and 0% and 35%
in Serbia. In Greece, the maximum contamination was
52.6 μg/kg (mean 15.4 μg/kg in samples with detect-
able AF). In Serbia, one sample from 2021 contained
1148 μg/kg total AF. However, the mean AF concentra-
tion in samples with detectable aflatoxins in Serbia was
109.5 μg/kg. Only one sample from Spain was positive
for AF with 2.64 μg/kg. In addition, the mean A. flavus
CFU/g was similar in the three countries: 4.3 � 103 in
Greece, 1.6 � 103 in Spain, and 7.8 � 103 in Serbia. A
total of 800 (Greece), 627 (Spain), and 758 (Serbia)
A. flavus isolates were recovered from samples across
these three countries (Figure 1) and used for analyses.
Because some samples yielded too few A. flavus iso-
lates to allow for robust analysis of population structure,
samples that were collected from within approximately
10 km were pooled to represent ‘a priori populations’.

Allelic and haplotypic diversity

SSR loci were found to be highly variable in amplicon
size, with individual loci having between eight and
47 unique alleles (Table 1). High genetic diversity was
detected among the 2011 isolates from the three coun-
tries. Haploid diversity (H) per locus ranged from 0.190
to 0.723. Evenness, which describes how similar in fre-
quency the alleles for each SSR marker were, ranged
from 0.40 to 0.79. Additionally, G’ST of each marker var-
ied between 0.134 and 0.666 (Table 1).

High haplotypic diversity was seen in Greece,
Spain, and Serbia, with 363, 134, and 209 haplotypes
(i.e., haploid multi-locus genotypes) observed from
766, 574, and 671 isolates, respectively (Table 2).
When the three countries were analysed together,
645 haplotypes overall were detected, illustrating the
large number of haplotypes (61) present in more than
one country (Figure 2). Evenness values, computed on
haplotypes within each country (Table 2; Grünwald
et al., 2003), were 0.440, 0.412, and 0.483 for Greece,
Spain, and Serbia, respectively.

Clone correction by population illustrates the extent
of haplotype diversity, with the number of haplotypes
equating to 71%, 51%, and 59% of the clone corrected
samples for Greece, Spain, and Serbia, respectively.
The Spanish population had the most haplotypes
shared among populations, and population-based
clone correction resulted in elimination of 55% of the
original isolates. Similar corrections resulted in
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TAB LE 1 Characteristics of 17 SSR markers from 2011 isolates of A. flavus recovered from maize sampled in Greece, Spain, and Serbia.

Locus
name

Repeat motif and scaffold (Grubisha &
Cotty, 2009) Allelesa

Size
range (bp)b

Diversity
(H)c Evennessd G’ST

e

AF8 (AAG)16/2911 35 147–267 0.722 0.64 0.664

AF11 (AAG)12/2504 38 103–281 0.683 0.54 0.486

AF13 (CTT)9/1866 23 115–200 0.669 0.67 0.627

AF16 (TTG)10/2541 22 161–393 0.437 0.54 0.450

AF17 (AGA)4 (AGG)10/1918 18 330–405 0.690 0.79 0.561

AF22 (TTTA)8/2911 12 144–208 0.537 0.63 0.487

AF28 (TTG)11/2504 15 110–161 0.455 0.63 0.460

AF31 (TTC)31/2634 32 290–415 0.588 0.41 0.478

AF34 (GTC)4 (GTT)8/2911 22 290–425 0.561 0.67 0.476

AF42 (TTC)16/2634 34 139–336 0.666 0.61 0.583

AF43 (GAG)13/2634 30 365–451 0.723 0.65 0.666

AF53 (TCT)8/1918 17 126–182 0.523 0.54 0.468

AF54 (ACAT)8/1918 9 145–192 0.190 0.40 0.267

AF55 (GT)10/1739 23 159–212 0.702 0.76 0.589

AF63 (AT)7/2856 8 121–137 0.217 0.40 0.134

AF64 (AC)16/2856 47 153–271 0.682 0.46 0.602

AF66 (AT)12/1569 14 198–279 0.589 0.78 0.543

aNumber of Alleles at the SSR locus.
bRange of SSR size based on the variation at SSR repeat numbers across the isolates included in this study.
cPer locus haploid genetic diversity (H) generated from the program GenAlEx6.5 (Peakall & Smouse, 2012).
dEvenness obtained from the poppr package in R.
eStandardised genetic differentiation (G’ST; Hedrick, 2005) obtained from mmod package in R.

TAB LE 2 Overview of the genetic diversity of A. flavus recovered from Greece, Spain, and Serbia during the 2020 and 2021 growing
seasons.

Country N A priori populations Ncc Nh Ph HS H0 E5 rD

Greece 766 23 511 363 304 0.906 1.29 0.440 0.229 (p = 0.001)

Spain 574 15 261 134 98 0.872 1.33 0.412 0.311 (p = 0.001)

Serbia 671 23 355 209 154 0.857 0.98 0.483 0.27 (p = 0.001)

Three countries 2011 61 1127 645 504 0.880 1.18 0.364

Note: N, the total number of isolates; Ncc, number of isolates after clone correction by using poppr package in R (Kamvar et al., 2014); Nh, number of haplotypes;
Ph, number of private haplotypes; HS, within population genetic diversity from HAPLOTYPE-ANALYSIS V1.04; H0 (Shannon, 1948), the Shannon information index
calculated by GenAlex 6.503; E5 (Grünwald et al., 2003), evenness calculated using the poppr package in R; rD, index of association.

F I GURE 2 Distribution of the most frequent haplotypes shared among countries (G-Pop, Greece; Sp-Pop, Spain and Sb-Pop, Serbia).
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elimination of 33% for Greece and 47% for Serbia. After
clone correction, gene diversity (HS) among countries
ranged from 0.857 to 0.906, with Greece being the
most diverse (Table 2). At the country level, estimation
of the Shannon-Wiener diversity index H (Table 2)
among populations reflects high haplotypic diversity for
all three countries (Greece = 1.29, Spain = 1.33 and
Serbia = 0.98), with no dominance by any haplotype.
Despite the number of isolates typed here, none of the
countries have approached saturation based on a hap-
lotype accumulation curve (Figure S1). Nevertheless,
any remaining un-sampled haplotypes are likely to be
at very low frequency, and the following analyses of
population structure should be approximately correct.

Population structure, reproduction and
evolution

Genetic variation overlapped extensively among the
three countries, as shown by discriminant analysis of
principal components (DAPC; Figure 3) and principal
coordinate analysis (PCoA, Figure S2). DAPC also
revealed different central tendencies for each country,
indicating significant genetic differentiation even if

these populations remain closely related. This genetic
divergence can also be seen in an AMOVA performed
on the entire dataset using countries and populations
within countries as additional strata (Table 3;
Figure S3).

The results of linkage disequilibrium (LD) obtained
after clone correction (Table 2, Figure S4), showed the
unbiased indices of association, r̄d, are significantly
(p < 0.01) greater than what is expected under sexual
recombination in Greece, Spain, and Serbia (0.229,
0.311, and 0.270, respectively) and supportive of muta-
tion driven divergence among lineages utilizing pre-
dominantly asexual reproduction.

Genotype distribution and genetic
differentiation

Although DAPC shows some differences among coun-
tries, many haplotypes were detected in more than one
country (Figure 2). H-588, H-321, H-358, H-54, H-76,
H-83, H-177, H-233, and H-180 are the most frequent
haplotypes, in decreasing order, found in more than
one country and collectively represent more than 70%
of all isolates before clone correction. Among the

F I GURE 3 Scatter plot of three countries based on discriminant analysis of principal components (DAPC) on Aspergillus flavus isolates
recovered from maize grain collected at harvest from locations (Figure 1) dispersed across three countries: Greece (red, G-Pop = 766 isolates),
Spain (Green, Sp-Pop = 574 isolates) and Serbia (Blue, Sb-Pop = 671 isolates).
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645 haplotypes detected, 13 (2%) were detected in all
three countries, and 35 (5%) haplotypes were detected
in two of three countries. The remaining 597 (93%) hap-
lotypes were detected in only one country. Number of
haplotypes detected per country was higher in Greece
(A = 363) and Serbia (A = 209) than in Spain
(A = 134), reflecting the extensive clone correction for
that country (Table 2). The two haplotypes detected in
most samples were H76 (18 samples, with 7 in Greece
and 11 in Spain) and H588 (17 samples, with 1 in
Greece and 16 in Spain). Haplotypes detected in only a
single population (private haplotypes) composed 78%
of the 645 haplotypes detected among the 2011 iso-
lates, 73% of those in Spain, 74% of those in Serbia,
and 84% of those in Greece (Table 2). The analysis of
molecular variance (AMOVA) results (Table 3) show
both the separation among the three countries and the
overwhelming diversity found within populations, repre-
senting over 95% of the total variation in the dataset.
The variation among countries (1.92%) and among
populations within countries (2.96%) are minute by

comparison. These small levels of variation in higher
levels of organization are still significant: Φ (calculated
by AMOVA) increased at higher strata, ranging from
0.01 within populations to 0.03 among populations
within countries to 0.04 among the countries them-
selves (Table 3). Increasing Φ indicates increasing coa-
lescent times among or within populations with
increasing genetic distance.

Assignment of Aspergillus flavus
haplotypes into VCG of MUCL54911

VCA revealed that isolates of 13 of the 14 haplotypes
are most closely related to that of MUCL54911, the
active ingredient of aflatoxin biocontrol product AF-X1,
belong to VCG IT006. A minimum spanning network
(MSN) (Figure 4) and Nearest-Neighbour networks
(Figure S5) were used to display variation among hap-
lotypes and to identify haplotypes closely related to the
haplotype of isolate MUCL54911. All members of IT006
belong to a single branch of the MSN and are the only
haplotypes along that branch. Although the frequency
of IT006 was highest in Spain (8.9%), it was still well
represented in Greece (2%) and Serbia (1.6%)
(Table 4). In addition, the VCA revealed that an isolate
with haplotype H-373, differing from MUCL 54911 at
2 loci, does not belong to VCG IT006. As with
MUCL54911, several haplotypes closely related to the
haplotype of MPVP A2321, which is another Italian
non-aflatoxigenic haplotypes, were also found in multi-
ple countries (data not shown).

DISCUSSION

When aflatoxin biocontrol products containing native
non-aflatoxigenic fungi as active ingredients are applied
in the field using the correct dosage and at the right
crop phenological stage, there is displacement of and
reduced infection rates by aflatoxin producers (Mehl
et al., 2012). This results in reduced aflatoxin contami-
nation in the harvested crop. However, careful deploy-
ment of a non-aflatoxigenic strain of A. flavus as a

TAB LE 3 Analysis of molecular variance (AMOVA) of Aspergillus flavus isolates recovered from maize across Greece, Spain and Serbia.

Source of variation dfa Sum sqb
Variance
components

Percentage of
variation Φc

p-
valued

Among countries 2 785.1572 0.234 1.92 0.04 0.001

Among a priori populations within
countries

58 3015.116 0.367 2.96 0.03 0.001

Within a priori populations 1950 20601.32 11.81 95.11 0.01 0.001

aDegree of freedom;
bSum of squares;
cA measure of population divergence.
dSignificance was based on 10,200 permutations.

F I GURE 4 Minimum spanning network of clone-corrected data
for Greece, Serbia, Spain. The two Italian haplotypes were included
for reference. Network created using the ‘poppr’ package in
R. Haplotypes are coloured by where they were found (red = Greece,
blue = Serbia, purple = Spain, and green = Italy). The size of circles
is proportional to the number of times the haplotype was observed.
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biocontrol agent for aflatoxin mitigation requires knowl-
edge of the population structure of A. flavus including
establishing that the non-aflatoxigenic strain is endemic
in the target country. Aflatoxin-producing and non-
producing genotypes naturally occur in each country
examined in the current study and are already resident
in fields where aflatoxin control is needed. Use of native
genotypes which are well adapted to the target agroe-
cosystem should allow for more effective competition
with aflatoxin producers and thus greater reductions in
aflatoxin concentration in the target crop (Abbas
et al., 2011; Cotty & Mellon, 2006; Moral et al., 2020;
Peles et al., 2021). The reason for using native geno-
types is twofold: first, native haplotypes have already
shown they can survive under the local conditions, and
second, using native haplotypes prevents the introduc-
tion of novel genetic types to the country and simplifies
the process for gaining regulatory approval for biocon-
trol products. The present work provides new insights
on populations of A. flavus resident in a large area
spanning the European regions most susceptible to
aflatoxin contamination (Spain, Greece, and Serbia;
Figure 1). At the same time, this study describes the
distribution of the genotype which comprises the active
ingredient of the biocontrol product AF-X1 belonging to
VCG IT006, in southern Europe, providing a rationale
for expanding the use of AF-X1 throughout the region.

The current study had three major findings. First,
the genotypic diversity of A. flavus within these coun-
tries across southern Europe is very high, as indicated
by the haplotype accumulation curve (Figure S1). At
the same time, these populations consisted of both
locally restricted and widely dispersed common haplo-
types among samples and among countries. Second,
complete LD was observed in all countries (Table 2,
Figure S4), supporting clonal evolution of A. flavus
populations in southern Europe, as seen in other stud-
ies of natural populations of A. flavus (Grubisha &
Cotty, 2015; Hadrich et al., 2013; Islam et al., 2018,
2020; Ortega-Beltran et al., 2020; Picot et al., 2018).
Finally, members of the VCG to which MUCL54911
belongs occur in all the sampled regions (Table 4),
revealing a natural distribution of this biocontrol agent
across southern Europe and opening the potential for
use of MUCL54911 in the mitigation of aflatoxin con-
tamination throughout this region. While the frequency
of haplotypes belonging to IT006 are not high, even
haplotypes observed at low frequency can be consid-
ered successful due to the very high variability found
within fields and countries. The frequency observed
here is similar to what has been seen for other biocon-
trol VCGs or SSR haplotypes prior to commercial appli-
cation (Islam et al., 2020; Ortega-Beltran et al., 2016).

Multiple measures of genetic diversity (Table 2)
reflect a dataset comprised of a very large number of
haplotypes, most of which occur at very low frequency
(Figure 1). The number of haplotypes equals 57% of

the total number of clone-corrected isolates within the
entire dataset, and private haplotypes (those seen in
only one population) were 78% of all haplotypes. This
variation in the dataset is reflected in haplotypic rich-
ness and diversity, and the large number of singleton
haplotypes is reflected in Shannon’s index and the
evenness (Table 2). While most haplotypes were
somewhat closely related, there is a small number of
much more divergent haplotypes (Figure S2, S3). The
importance of these divergent lineages to aflatoxin con-
tamination in Europe is unknown. Considering the level
of variation found among individuals, it is no surprise to
find a great deal of variation among populations and
countries. Gene diversity is quite high for each country
individually and the dataset as a whole, and the
skewed frequency distribution of haplotypes is again
reflected in evenness and Shannon’s index (Table 2).
This pattern of diversity mirrors that seen in earlier pop-
ulation studies using VCA (e.g., Bayman & Cotty, 1993;
Mauro et al., 2013) and also later studies using SSRs
(e.g., Islam et al., 2018; Ortega-Beltran & Cotty, 2018).

In the examined European A. flavus populations,
nearly all genetic variation is found within
populations, as shown by AMOVA (Table 3). There is
low but significant diversity among populations and
countries: the 3% of variation among populations within
countries, and 2% of variation among countries are low
relative to the amount of variation within populations.
Nevertheless, there is significant population structure at
all levels of the AMOVA, as indicated by Φ (Table 3;
Figure S3). These results suggest local, mutation-
driven, clonal evolution as seen with the DAPC scatter-
plot. The data further suggests dispersal of both com-
mon and rare haplotypes across the sampled region of
southern Europe (Figure 2). The very high haplotype
diversity detected in each sampled country reduced the
ability of this study to fully describe the distributions of
many haplotypes. As a result, even with the large sam-
ple size of over 1100 clone-corrected isolates, only a
small minority (9%) of the 645 haplotypes were
detected in more than one of the 61 a priori popula-
tions. However, the geographic range over which hap-
lotypes detected in multiple populations were dispersed
included the entire area sampled. Although diversity
was so great that most (78%) haplotypes were detected
only in one sample, dispersal of the haplotypes
detected in multiple populations supports the three
sampled countries having in common a single highly
diverse community of A. flavus clonal lineages. Both
rare (detected in only 2 of the 61 a priori populations)
and relatively common A. flavus haplotypes were found
dispersed across the southern portion of the European
continent at various frequencies. This wide distribution
suggests that non-aflatoxigenic haplotypes found any-
where in Europe might be used as active ingredients in
biocontrol products for use across the continent without
concern about introducing a novel haplotype into a
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vulnerable habitat with detrimental impact (Islam
et al., 2020; Probst et al., 2011).

Non-aflatoxigenic A. flavus active ingredients of bio-
control products have traditionally been defined by
VCG. VCA is used to track the active ingredients on
crops, in the environment, and over seasons and to
verify identity during manufacture (Atehnkeng
et al., 2016; Cotty, 1994a, 1994b; Cotty et al., 2007;
Ouadhene et al., 2023). Aspergillus flavus L strain
populations are complex, with individual agricultural
fields typically containing hundreds of VCGs (Barros
et al., 2005; Bayman & Cotty, 1993). These VCGs
diverged over millennia and during those periods muta-
tion caused variability that can be detected at SSR loci
both within and among VCGs (Grubisha & Cotty, 2010,
2015; Ortega-Beltran & Cotty, 2018). Such mutations
were detected in IT006, resulting in several closely
related haplotypes belonging to that VCG (Table 4).
VCGs used for biocontrol are selected so that all mem-
bers of the VCG are atoxigenic. During evolution of
these non-aflatoxigenic VCGs, mutations accumulate
in the 70 kb aflatoxin biosynthesis gene cluster causing
multiple lesions that independently may result in loss of
the ability to produce aflatoxins (Adhikari et al., 2016).
The result of these aflatoxin gene cluster mutations is a
highly stable non-aflatoxigenic phenotype within the
biocontrol VCGs (Adhikari et al., 2016). Parasexual
recombination within VCGs increases the diversity of
SSR haplotypes and contributes to the great diversity
detected within A. flavus populations (Grubisha &
Cotty, 2010; Leslie, 1993; Mehl et al., 2012;
Papa, 1986). The diverse population structure of South-
ern European A. flavus populations is reflected in the
high allelic diversity (Table 1) and high haplotypic diver-
sity within the three studied countries (Table 2), similar
to the diversity found in other reports utilizing these
SSR markers to study A. flavus populations in the
United States (Grubisha & Cotty, 2010) and Kenya
(Islam et al., 2018). The high frequency of haplotypes
belonging to VCG IT006 suggests that the biocontrol
product AF-X1 can be safely applied in Southern
Europe without introducing an A. flavus VCG that is not
naturally occurring. It also suggests that AF-X1 is a
readily available, ecologically safe tool for providing
highly effective aflatoxin mitigation (Mauro et al., 2013,
2015, 2018).

Aspergillus flavus is a ubiquitous anamorphic fungal
species that produces abundant asexual conidia on
many organic substrates including material associated
with several crops that are also susceptible to aflatoxin
contamination (Klich, 2002; Ojiambo et al., 2018). How-
ever, several experimental studies suggest frequent
sexual reproduction and its concomitant recombination
(Horn et al., 2009, 2016; Moore et al., 2013). Recently
Molo et al. (2019) and Molo et al. (2022) reported
genetic exchange and sexual recombination when bio-
control strains of opposite mating types are used in the

same formulation. They also reported possible sexual
recombination in microplot trials with the two biocontrol
products registered for use in the United States, AF36
and Afla-Guard. In contrast, the data presented here
show complete LD across the three countries
(Figure S4). This indicates natural population structures
in Greece, Spain and Serbia result predominantly from
asexual reproduction. The inability to observe sexual
recombination on the population level may be due to
the rate at which the asexual conidia are produced
(tens of thousands per day after colonization) versus
the sexual ascospores, which according to Horn et al.
(2009) number in the hundreds after months of devel-
opment after sexual reproduction. Against the scope of
natural variation seen in A. flavus populations, any sex-
ual recombinants may be impossible to observe.

This clonal population structure has previously been
reported for A. flavus populations in Kenya and Mexico
where similar LD was measured (Islam et al., 2018;
Ortega-Beltran et al., 2020). Likewise, LD analyses
showed no evidence of genetic exchange with other
VCGs or sexual recombination for the VCG containing
AF36, the first non-aflatoxigenic A. flavus active ingre-
dient used in the United States (Grubisha &
Cotty, 2015). The VCG of AF36 is naturally distributed
across North America (Ortega-Beltran et al., 2016) in a
manner similar to what is reported in the current study
for IT006 with respect to the three countries reported
here. AF36 has been widely utilized as a biocontrol
agent in commercial agriculture in the United States
since 1996 (Cotty et al., 2007) with no health or envi-
ronmental ill effects, suggesting that widespread adop-
tion of AF-X1 to control aflatoxins across Southern
Europe should also be safe and appropriate.

Two specific haplotypes, H76 and H588, had the
greatest distribution across southern Europe but were
only detected in Spain and Greece. High frequency of
certain haplotypes can come about through two possi-
bilities. First, the haplotype could be highly adapted to
the environmental conditions found in the crop sam-
pled. VCGs often contain significant haplotypic diversity
(Grubisha & Cotty, 2010, 2015; Islam et al., 2021;
Ortega-Beltran et al., 2020), and any adaptive traits
should be shared across all haplotypes within their
respective VCGs due to parasexual recombination. In
that scenario, many closely related haplotypes should
be observed at high frequency, reflecting this shared
adaptive success. The second possibility is that the
observed high frequency of these two haplotypes could
be due to rapid transient shifts in composition of
A. flavus communities across a broad portion of south-
ern Europe initiated by founder events (Ortega-Beltran
et al., 2020; Ortega-Beltran & Cotty, 2018). Two such
events have been described in North America in asso-
ciation with maize production in Sonora, Mexico and
Louisiana, USA (Ortega-Beltran & Cotty, 2018; Sweany
et al., 2011). Although the founder events in Mexico
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were initially described using VCA, the population shift
in Mexico was later shown to be caused by a single
haplotype similar to what was observed in the current
study with both H76 and H588 (Ortega-Beltran
et al., 2020).

Grain contamination with aflatoxins was detected in
all three of the countries from which corn was collected.
However, contamination was only detected in one of
2 years in both Spain and Serbia even though, among
the three countries, corn produced in Serbia had the
highest frequency and severity of contamination
detected during the current study. These observations
support prior work indicating production of corn with
unacceptable aflatoxin concentrations in Southern
Europe (Battilani et al., 2016; Gallo et al., 2012). Afla-
toxin contamination varies widely between years and
among fields and regions even within an individual
country (Cotty et al., 2008). Like other plant disease
problems, aflatoxin contamination requires in addition
to the causal agent both a susceptible host and a con-
ducive environment. Thus, it is difficult to relate popula-
tions of aflatoxin producers to frequencies of aflatoxin
contamination without careful analysis of other predis-
posing factors (Cotty & Jaime-Garcia, 2007; Giorni
et al., 2016). The emphasis of the current study was on
comparisons of populations of aflatoxin-producing and
closely related fungi. The samplings were not designed
to compare aflatoxin contamination among countries
and to identify possible mitigating factors. Future stud-
ies emphasizing comprehensive sampling and analysis
of crops in Southern Europe tied with environmental
analyses might provide insight on when and where
investments in aflatoxin mitigation would be most
profitable.

While the exact haplotype of MUCL54911, the strain
which is the active ingredient in the biocontrol product
AF-X1, was not observed in any country studied here,
close relatives were detected in each of the three coun-
tries (Figure S5). Testing of these related haplotypes
using VCA showed that like MUCL54911, isolates with
these closely related haplotypes belong to VCG IT006
(Table 4; Mauro et al., 2018). Since members of VCGs
are clonally related (Atehnkeng et al., 2016; Grubisha &
Cotty, 2010, 2015; Leslie, 1993), the presence of VCG
IT006 in all three countries suggests it is endemic and
well adapted to environments across this region. Com-
bined, these observations suggest that AF-X1 is an
environmentally safe product that will likely be effective
throughout Southern Europe.
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