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Abstract

Proper evaluation of the risk associated to a cyber attack is a crucial aspect for many
companies. There is an increasing need to plan for and implement effective ways to
address cyber security, data security, and privacy protection. Estimating the risk of a
successful cyber attack is an important issue, since this type of threat is proliferating and
thus poses increasing danger to companies and the customers who use their services.
While quantitative loss data are rarely available, it is possible to obtain a qualitative
evaluation on an ordinal scale of severity of cyber attacks from experts of the sector.
Hence, it is natural to apply order response models for the analysis of cyber risk. In
particular, we rely on cumulative link models. We explain the experts’ assessment of
the severity of a cyber attack as a function of a set of explanatory variables describing
the characteristics of the attack under consideration. A measure of diffusion of the
effects of the attacks obtained via the use of a network structure is also incorporated
into the set of explanatory variables of the model. Along with the description of the
methodology, we present a detailed analysis of a real data set that includes information
on serious cyber attacks occurred worldwide in the period 2017-2018.
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to business disruptions). In the following, when we refer to
cyber risk, we mean risk due to a cyber attack.

Cyber risk can be defined as “any risk emerging from the
use of Information and Communication Technologies sys-
tems (ICT) that compromises the Confidentiality, Integrity,
and Availability (CIA) of data or services”; see, for exam-
ple, Cebula and Young (2010), Edgar and Manz (2017), and
Kopp et al. (2017) for a more detailed description. It is an
operational risk! that arises from an external or internal
attacker compromising a computer database or network, or
from transactions on the internet (Mood, 2005). A cyber risk
can be associated both to an event with a criminal intent
(cyber attack) or without any criminal intent (i.e., IT out-
ages due to a software update, or weather events that can lead

! Operational risk has been defined, by the Basel Committee on Banking Supervision, as
“the risk of a monetary loss caused by human resources, ICT, by organization processes
or by external events.”

In an increasingly digitized world, where organizations
are affected by technological evolution, cyber attacks are
multiplying rapidly. They have an impact on every class
of business, and no industry can consider itself completely
immune to the rising number of cyber attacks. According
to World Economic Forum Global Risks Report (2019),
cyber risks are consolidating their position alongside
environmental risks in the high-impact/high-likelihood
quadrant of the Global Risks Landscape, and according
to the International Monetary Fund, they have become an
increasing concern for policy makers (Bouveret, 2018).

To ensure that the CIA triad is enforced for information
systems and that breaches are minimized, companies need to
identify the key vulnerable assets that are exposed to cyber
risk and to design, monitor, and improve information security.
Chief technology officers generally invest a portion of their
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budget in IT security (i.e., investment in perimeter security
elements, IT auditing, business continuity processes, and dis-
aster recovery) that would automate and accelerate the threat
defence (Kolfal et al., 2013).

Data are becoming more and more important in predicting
future risks and disruptions to global activities, and in assess-
ing vulnerabilities, see Choi and Lambert (2017). Institutions
should be encouraged to collect data on cyber incidents in
order to use statistical approaches to estimating the capi-
tal needed to cover losses due to the occurrence of cyber
attacks. These attacks spread more quickly than other crimes
and cause monetary losses, as well as impact the opportu-
nity cost, market capitalization, and brand image; see, for
example, Cavusoglu et al. (2004) and Hartwig and Wilkinson
(2014).

Cyber security is a field with a growing amount of research
in many contexts such as computer science, law, and busi-
ness management, as well as technology sectors that did not
originally involve the internet (e.g., smart grids and cars). We
refer to Ramirez and Choucri (2016) and related references
for a detailed cross-disciplinary review. Nevertheless, quanti-
tative models for cyber risk measurement are still limited and,
as discussed in Allodi & Massacci (2017), there is a lack of a
shared framework for the quantification of risk that makes the
adoption of comparable measures for risk mitigation very dif-
ficult. Relevant works include studies on the quantification of
the impact of an attack—see, for example, Davis et al. (2009),
Yayla and Hu (2011), and Romanosky (2016)—and measure-
ment of attack likelihood (see Allodi & Massacci, 2017, and
Cherdantseva et al., 2016, among others).

To our knowledge, there is a limited number of statistical
papers addressing the problem of cyber risk assessment; this
is due to the lack of quantitative data available, see, for exam-
ple, Afful-Dadzie and Allen (2017). Indeed, cyber loss data
are very difficult to obtain since these data are very sensitive.
It is unlikely that an institution is willing to disclose them,
since its reputation and, possibly, its security, may be at stake.
Available public and commercial data sets exist, but they are
incomplete, have different coverage, and use different def-
initions of cyber attacks, which makes the analysis of cyber
losses difficult. To encourage data disclosure, the information
is often collected on an ordinal scale, providing a classifica-
tion of cyber risk in terms of its severity level. These ordinal
measurements do not provide the actual magnitude of cyber
attacks, but can be used to identify which types of attacks are
the most dangerous.

Currently, there is no internationally recognized standard
classification of cyber attack severity levels. It varies accord-
ing to whom it is providing the classification. Usually, the
victim of a cyber attack tends to minimize its gravity, in order
to avoid pecuniary compensations and penalties or losses in
terms of reputation. Customers of the affected company usu-
ally tend to exaggerate in order to get a higher compensation.
Finally, national authorities tend to be quite conservative, due
to political or social reasons. Here, we consider a classifi-
cation of cyber attack severity levels provided by a pool of
experts of the principal Italian authority in the field of cyber

security (Clusit®). They introduce an ordinal classification of
cyber risk severity based on available information regarding
the attack and their expertise.

Focusing on the quantification of cyber attack impact in
terms of its severity level, we propose to model cyber risk via
an ordered response model (a regression-type model with an
ordinal response variable). In particular, we rely on cumu-
lative link models that allow us to express the cumulative
probabilities associated with the different severity levels as a
nonlinear function of a suitable set of explanatory variables.
In the analysis, we pay particular attention to the interpreta-
tion of the effect of each explanatory variable on the severity
level of cyber attacks. For a review on how to interpret effects
in cumulative link models, see Agresti and Tarantola (2018).
We apply our model to a real data set that includes infor-
mation on serious cyber attacks occurred worldwide in the
last years.

The plan of the article is as follows. Section 2 contains
the description of the examined cyber risk data. Specifically,
in Section 2.1, the definition of the ordinal variable Severity
is provided. This variable describes the severity levels of the
examined cyber attack, and it will be used as a response vari-
able in the examined cumulative link model. In Section 2.2,
we describe the variables that will be used as explanatory
ones in our model. In particular, in Section 2.2.1, we focus
on the set of qualitative features of the examined attacks
that may influence their severity. We further integrate this set
of explanatory variables with a quantitative indicator of the
level of systemic risk (variable Closeness). The definition,
construction, and interpretation of the variable Closeness are
provided in Section 2.2.2. The cumulative link model in its
general formulation is presented in Section 3, while its for-
mulation for the cyber risk data is described in Section 4
together with a discussion of the obtained results. The last
section contains some concluding remarks.

2 | CYBER RISK DATA

We consider a data set collected by the researchers of the
Hackmanac society’ and described by Clusit in its Report on
ICT Security in Italy of 2019 (first semester; Antonielli et al.,
2019). Clusit is the largest and most respected Italian asso-
ciation in the field of cyber security. It was created in 2000
at the University of Milan, and it includes important compa-
nies in different fields such as banking and insurance, public
administration, health, telecommunications, and informatics,
among others. Since 2012, Clusit publishes on biannual basis
a report on “serious” cyber attacks that occurred worldwide
in the previous year; in the period 2011-2018, it registered
8417 attacks.

2 Associazione Italiana per la Sicurezza Informatica (https://clusit.it).

3 Hackmanac is a society based in Dubai that monitors the evolution of real global cyber
threat by the analysis and classification of several open sources. It collaborates with
Clusit performing the analysis for their half-yearly report. More details can be found at
the webpage https://hackmanac.com/.
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FIGURE 1 Number of “serious” attacks for years 2014-2018.

The classification criteria used by experts to identify cyber
attack as “serious” have evolved during the years. For exam-
ple, attacks that were considered “serious” in 2011-2013 are
nowadays considered ordinary problems (i.e., the “deface-
ments” of websites). According to the 2019 report, an attack
is defined as “serious” if it had a significant impact on the
victims in terms of economic losses, damages to reputation,
and/or dissemination of sensitive data. This report shows that
in the last few years, the number of cyber attacks has surged:
1552 attacks occurred in 2018, 1127 in 2017, 1050 in 2016,
1012 in 2015, and 873 in 2014, with a growth of approxi-
mately 45% between 2014 and 2018, as shown in Figure 1.
The data examined in the report may represent only a partial
situation that is less critical than the actual one, since many
attacks may not be disclosed, or may be disclosed at a much
later date.

In 2017, the experts of the Hackmanac developed for
Clusit an ordinal classification of cyber risk assessment in
terms of attack severity levels (medium, high, critical) on
the base of their expertise. In the following, we refer to this
ordinal classification as Severity variable. Since an ordinal
classification of the severity level of each cyber attack has
been introduced only in 2017, for our analysis, we focus
on a sample of n = 2679 attacks occurred in the period
2017-2018.

The aspects that determine the risk assessment of each
attack in terms of its severity level are multiple, and
include the geopolitical, social, economic, image, and
cost/opportunity impact on the victims. The geopolitical
impact is considered relevant if governmental or national
security institutions (or high representatives) are involved.
The economic impact is measured in terms of the amount
of estimated damages. It also includes the damage in terms
of image and cost/opportunity impact on the victims. The
economic impact is classified in three classes according to
the amount of estimated damages (in dollars): tens/hundreds
of thousands of USD, millions/tens of millions of USD, hun-
dreds of millions/billions of USD. The evaluation in terms of
social impact is based on the number of individuals involved:
one individual/hundreds of individuals, thousands/hundreds
of thousands of individuals, millions/hundreds of millions
of individuals.
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FIGURE 2 Distribution of variable Severity for the periods 2017 and
2018.

As stated in the Introduction, we use a cumulative
link model (a particular type of regression model with an
ordinal response variable) to explain variable Severity (Sec-
tion 2.1) as a function of the following explanatory variables
(Section 2.2):

* a set of qualitative variables (from the examined data set)
describing peculiar characteristics of the observed cyber
attacks (Section 2.2.1);

* an additional quantitative variable named Closeness indi-
cating dependence, in terms of vulnerability, among the
victims of cyber attacks (Section 2.2.2).

The general formulation of the cumulative link model and
its properties are provided in Section 3, while its specific for-
mulation with reference to cyber risk data is described in
Section 4.

2.1 | Response variable Severity: The
severity evaluation of a cyber attack

The expert evaluation of the severity level of a cyber attack
can be considered a realization of a random ordinal variable
S, named Severity, assuming K increasing values. In our con-
text, S assumes K = 3 levels: 1= medium severity, 2 =
high severity,and 3 = critical severity.

Figure 2 shows the distribution of the severity level of
cyber attacks for 2017 and 2018. We notice that the situation
worsened from 2017 to 2018: While the number of medium-
level attacks slightly increased (+13%), that of high-impact
attacks significantly increased (+47%) and that of critical
attacks almost doubled (+79%).

2.2 | Explanatory variables

2.2.1 | Qualitative explanatory variables

For each cyber attack, the data set reports information on
the following qualitative variables: Type of Attack, Attack
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TABLE 1 Description of the examined variables of the cyber risk data set.
Variable Category Frequency
Type of Attack (T- ...) Cybercrime (T-Cyb) 77.98%
(4 categories) Espionage/Sabotage (T-Esp) 12.39%
Hacktivism (T-Hac) 5.23%
Information Warfare (T-Inf) 4.40%
Attack Technique (A- ...) 0-day (A-0Ody) 1.19%
(5 categories) Multiple Threats/APT (A-Mul) 6.01%
SQL Injection (A-SQL) 0.30%
Trivial Threats (A-Tri) 66.93%
Unknown (A-Unk) 25.57%
Continent (C- ...) Africa (C-Afr) 1.08%
(6 categories) America (C-Ame) 44.08%
Asia (C-Asi) 10.90%
Australia/Oceania (C-Aus) 1.75%
Europe (C-Eur) 14.74%
Multiple Continents (C-Mul) 27.44%
Victim (V- ...) Automotive (V-Aut) 0.49%
(19 categories) Banking/Finance (V-Ban) 10.19%
Chemical/Medical (V-Che) 0.04%
Critical Infrastructures (V-Cri) 3.62%
Entertainment/News (V-Ent) 8.10%
GDO/Retail (V-Gdo) 2.35%
Gov-Mil-LEAs-Intelligence (V-Gmi) 16.09%
Gov.Contractors/Consulting (V-Gco) 0.75%
Health (V-Hea) 8.92%
Hospitability (V-Hos) 2.95%
Multiple Targets (V-Mul) 19.63%
Online Services/Cloud (V-Onl) 8.36%
Organization/ONG (V-Org) 0.97%
Others (V-Oth) 2.61%
Religion (V-Rel) 0.15%
Research-Education (V-Res) 6.72%
Security Industry (V-Sec) 0.52%
Software/Hardware Vendor (V-Sof) 6.64%
Telco (V-Tel) 0.90%

Technique, Continent (indicating where the attack took
place), and Victim (indicating the sector affected by the cyber
attack). A synthetic description of these variables is reported
in Table 1. For more details on Type of Attack and Attack
Technique, see the Appendix.

In our analysis, we consider only the qualitative variables
Type of Attack, Attack Technique, and Continent as explana-
tory variable of the examined cumulative link model. Variable
Victim (the sector affected by the attack) is not considered as
an explanatory one, but it will be considered indirectly in the
construction process of the variable Closeness as described in
the following section.

2.2.2 | Explanatory variable Closeness:
Definition, construction, and interpretation

We extend the set of explanatory variables with variable
Closeness, a quantitative indicator of the level of systemic
risk. Following the approach presented in Giudici (2018), we
use social network analysis instruments to define this new
variable starting from the information provided by variable
Victim.

Variable Closeness is constructed via the following three
steps procedure that will be described in detail in the
following paragraphs.
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Step 1: Calculation of the weekly “Criticality index” time
series for each category of Victim.

Step 2: Construction of the “Network™ among Victim cate-
gories.

Step 3: Calculation of the ‘“Percentage Closeness Central-
ity Measure” for each category of Victim (Closeness
values). Addition to the original data set of a col-
umn (Closeness values) containing for each category
of Victim the corresponding value of the percentage
closeness centrality measure.

We now proceed with a detailed description of the pre-
vious steps. In the following, for simplicity, we use the
word victim to indicate a specific category of variable
Victim.

Step 1: Calculation of the weekly “Criticality index.”

For each single victim, we consider the time series of the
weekly Criticality indexes. The Criticality index proposed by
Facchinetti and Osmetti (2018) and Facchinetti et al. (2019)
is based on the relative cumulative frequencies F} of cyber
attacks suffered by a victim for k = 1, ..., K increasing levels
of severity (in our analysis, K = 3 as shown in Section 2.1).
For a specific victim v; and for a specific week W, this index
is calculated as

K N

oy ozl 1)

w K-1
The index can be used to provide an indication of vulnera-
bility of the victims. It assumes values in the interval [0,1]
(see footnote * for more detail). The higher the value of
the Criticality index, the higher is the vulnerability of the
corresponding victim.

Step 2: Network construction.

We first recall some basic notation and terminology of
social network analysis that will be useful for the following
part; see, for example, Wasserman and Faust (1996) for more
details. A social network is represented by a weighted graph
G = (V,E), where the set of nodes V = {v;;1=1,...,|V|}
denotes the units under consideration, and the set of edges
E indicates the connection between the different units. All
edges are undirected, that is, if (v, vj) e E also (vj, v) €E.
We associate to each edge a measure of the strength of the
association between the different units (w;; weight of the
edge). The width of each single edge is proportional to the
corresponding weight. The weights can be stored in a matrix
called the adjacency matrix of the weighted graph. If nodes
v; and v; are adjacent in the graph (they are joined by an
edge), we observe wy; in position (1, j) of the adjacency matrix.
A path connecting two nodes v; and v; is a set of nodes

4?:& = 0 when the cyber attacks are concentrated only on the lowest severity level or
when the attacks do not occur for the specific victim in the examined week; 1 ‘Vi = 1 when
the attacks are concentrated only on the highest severity level. In all other situations, the
index assumes any value between 0 and 1.

V= 00y s Vi e s Uy = suchthatforh = 1,...,m, (¥V,_1, 7))
is an edge of the graph.

In our study, the nodes represent the victims (sectors)
affected by cyber attacks. Each pair of victims, v; and v}, is
then connected by an edge in the network if the two corre-
sponding criticality series of values present a nonzero partial
correlation. The width of the edge (v;,v;) is proportional to
the absolute partial correlation among the Criticality index
time series.

In the left panel of Figure 3, we report the lower triangu-
lar part of the absolute partial correlation matrix (without the
main diagonal), while in the right panel, we represent the
obtained network structure. The grayscale and the width of
the edges in the network show how strong such correlation
is. High values of the absolute partial correlation indicate a
strong dependence in terms of vulnerability of the victims.
Low values imply that the vulnerabilities of two victims are
not related. For the implementation, we used the R package
“qgraph” (Epskamp et al., 2021).

Step 3: Variable Closeness.

To define variable Closeness, we rely on the closeness cen-
trality measure for weighted graphs proposed by Opsahla
(2010). This measure scores each node based on its distance
to all the other nodes of the network, considering also the
strength of the connection.

To proceed, first, we need to introduce the concepts of
distance of two nodes in a path and the notion of shortest
path among them. The distance between nodes v; and v; on a
specific path (v; = Vg, ve s Py oo s Uy = Vi) is given by d(l,j) =
(; + .-+

[worl [Wn—1nl [Wn—1)m
weight associated to the edge (v,_;,v,) for h=1,...,m. The

shortest path among nodes v; and v; is the one with the mini-
mal distance d*(l,) between the two nodes, that is, d*([,j) =
min{d(l,j)}.

The percentage closeness centrality measure ¢; of node v,
is defined as

), where W(h—=1)h is the

1

== x100%. )
Y. d (L))

€

Closeness is the variable assuming, for each victim /, values
¢; calculated via Equation (2). Closeness values obtained for
each single victim of our data set are reported in Table 2. The
higher the value of Closeness, the higher the strength of the
connection of a victim in the network.

If a victim is strongly correlated (positively or negatively)
with many others, it is also highly interconnected to them in
the network (high value of Closeness). This could indicate a
connection of the victims in terms of vulnerability. Therefore,
an increase in vulnerability of a victim can set alarm bells
for the interconnected ones. On the other hand, we observe a
low effect in case of weak correlation (correlation coefficient
near zero) among the examined victim and other victims in
the network.
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structure (on the right).

TABLE 2 Closeness for the victims of cyber attacks.

Victim Frequency of attack Closeness
V-Aut 13 0.467
V-Ban 273 0.611
V-Che 1 0.380
V-Cri 97 0.578
V-Ent 217 0.492
V-Gdo 63 0.628
V-Gmi 431 0.414
V-Gceo 20 0.559
V-Hea 239 0.620
V-Hos 79 0.564
V-Mul 526 0.447
V-Onl 224 0.558
V-Org 26 0.503
V-Oth 70 0.500
V-Rel 4 0.660
V-Res 180 0.369
V-Sec 14 0.396
V-Sof 178 0.520
V-Tel 24 0.377

3 | METHODOLOGICAL APPROACH:
THE CUMULATIVE LINK MODEL
3.1 | Model specification

The cumulative link model is the most popular model for
ordinal response data, see Agresti (2010). In this section, we

Lower triangular part of the absolute partial correlation matrix without the main diagonal (on the left) and the corresponding network

present its general formulation, and we refer to Section 4 for
its application to cyber risk data.

Let R be a K-category ordinal response variable. For any i-
th unit, i = 1 --- n, a nonlinear link function (i.e. logit, probit,
...) is used to express the cumulative distribution of R; as a
function of a set of explanatory variables, that is,

link[P(R; < )] = link[F(r)] = a, — x;8

r=1,..,k...K=1;, i=1,.,{..,n 3)
In Equation (3), r is the observed value of R;, F(-) is the
cumulative distribution function, «, is the intercept, § is the
(column) vector of the regression parameters, X; is a (row)
vector containing the values of the explanatory variables, and
link is a suitable link function. The larger the value of x;f, the
higher the probability to obtain a higher level of R; in terms
of its ordinal scale.

The set of explanatory variables may consist of both
quantitative and qualitative variables. The vector of explana-
tory variables x; is obtained concatenating the following
elements: y; = [y;1, -, Yips > Yip] @ vector containing, for
unit i, the observed values of p quantitative variables,
and a g-dimensional factor vector z; = [2;, ..., Zjp, -, Zjg]
corresponding to the qualitative variables.

Indeed, qualitative variables are entered in the model as
factors. For any qualitative variable s, we construct a set of

dichotomous indicators (one for each level except for base-

] Ly
line one) z;, = [zl.lh, ,z;’;, ,z?hh l)], where h =1, ...,q and

L, is the number of possible levels of the examined qualita-
tive variable. The indicator zl.il, t =1,..,(L, — 1), assumes
value one if the examined variable has level ¢ and zero oth-
erwise. If all th are equal to zero, it means that in the model
we are considering such a variable at its baseline level.
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The (column) vector of the regression coelficients f8
can also be splitted in two parts, ¥ = [V, Vps s ¥l
corresponding to the quantitative variables and A =
[A15.e s Ap, s A4g] to the qualitative ones, with 4, =

(A, .20, A

Note that f does not depend on r; that is, the model
assumes that the effect of the each explanatory variable
is identical for all the considered cumulative probabilities.
McCullagh (1998) named this assumption the proportional
odds (PO) assumption. A discussion about the validity of the
PO assumption in our context is presented in Section 4.2.

3.2 | Model estimates interpretation:
Marginal effect measures

Even if the structure of model (3) resembles that of an
ordinary linear model, the use of a nonlinear link function
produces effects on the link scale that are not straightfor-
wardly interpretable. For example, in a cumulative logit
model, for the level ¢ of a generic qualitative variable
indexed by k (h = 1, ..., q), the corresponding parameter —/llf
measures the difference between logits of cumulative proba-
bilities of the examined category with respect to the baseline
level; for a generic quantitative variable indexed by i (h =
1,...,p), =y, measures the change in the cumulative logit
per one-unit increase in the examined variable, adjusting for
the other ones. Furthermore, the partial effect of one vari-
able can be modified by the inclusion in the model of a new
variable uncorrelated with it. On the other hand, the par-
tial effect is identical in a standard linear regression model.
See Agresti (2013) and Agresti and Tarantola (2018) for a
critical discussion.

The effect of each explanatory variable on the response
variable R; can be more intuitively explained in terms of the
so-called marginal effect (ME) measures; see Agresti and
Tarantola (2018), Greene (2008), Long and Freese (2014),
Long and Mustillo (2018), among others. The ME indi-
cates how a change in a specific explanatory variable affects
the response variable, holding constant the value of all the
other explanatory variables. They are intuitive and can be
calculated from any type of explanatory variable. The ME
measures can be interpreted similarly as regression coef-
ficients in a standard regression model. For quantitative
continuous variables, they measure the instantaneous rate of
change. For quantitative discrete variables or qualitative vari-
ables, they measure the discrete change with respect to the
baseline level. They indicate how the probability of being in
a particular level changes when we move from the examined
level to the reference one. As an exemplification, the ME of
a quantitative variable for level r of variable R; is the partial
derivative of P(R; = r) with respect to the examined variable,
holding all the other variables constant. While the ME for
level ¢ of a qualitative variable measures the change in the
probability P(R; = r) when the level changes to the baseline
one, and the other variables assume specific values. Naturally,
these effects can be calculated for any value of r.

Depending on the way we fix the values of the other
explanatory variables, we can obtain three different types of
ME measures. The average marginal effect (AME), as the
name suggests, is obtained by calculating the ME of a spe-
cific explanatory variable for each observation in the sample,
and then averaging across all values. Alternatively, one can
compute the marginal effects at representative (MER) values;
that is, the ME measures are computed by choosing represen-
tative values of the other explanatory variables (i.e., values
of particular interest for the considered problem). Finally, the
marginal effects at the mean (MEM) are computed with all
remaining explanatory variables held at their mean.

Among these summary measures, Long and Freese (2014)
recommended the use of the AME since it can be interpreted
as the sample average of the ME. Furthermore, AME mea-
sures are quite stable when we add an explanatory variable to
the model that is uncorrelated with the variable whose effect
we are describing, see Mood (2010). For an additional discus-
sion on ME measures, see Agresti and Tarantola (2018) and
Sun (2015) among others.

We use the standard function polr of the R package
Mass to fit the model. For quantitative and binary explana-
tory variables, one can use the ocAME function by Agresti
and Tarantola (2018), which supplies the AME using output
from the polr. We use an extension of ocAME (ocAME_CAT)
that deals with qualitative variables with more than two lev-
els. This new function can be requested via e-mail from
the authors.

3.3 | Link function

We now describe the principal types of link functions used for
cumulative link models. In polr standard link functions are
examined (logit, probit, log-log, and cloglog). It is possible
to extend polr to incorporate more flexible and asymmet-
ric link functions, such as the bgeva link function proposed
by Calabrese and Osmetti (2013) and Calabrese et al. (2016).
The bgeva link function is defined as the quantile function
of a generalized extreme value (GEV) random variable, with
a tail parameter 7 € R, which regulates the shape of the
function. Depending on the value of 7, several special cases
can be recovered; for example, when 7 — 0, the log-log link
function is obtained; see Agresti (2013) and Calabrese and
Osmetti (2013). This link function is particularly suitable for
unbalanced samples; see Andreeva et al. (2015). A cumula-
tive bgeva model for ordinal outcomes could be obtained by
using the bgeva link function in Equation (3). The list of the
examined link functions is reported in Table 3.

4 | EMPIRICAL RESULTS

We now apply a cumulative link model to our data to identify
the variables that most influence the severity of a cyber attack.
We consider the ordinal variable Severity S (Section 2.1),
with K = 3 levels, as response variable and variables Type
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TABLE 3 Link functions.

Link function Form

logit log[% ]

probit O F()]

log-log log[~log(F(r))]
cloglog log[—log(1 — F(r))]
cauchy tan[z(F(r) — %)]
beeva =IOt

T

of Attack, Attack Technique, Continent, and Closeness (Sec-
tion 2.2) as explanatory variables. In the following, S; denotes
the random variable Severity for the i-th cyber attack.

The cumulative link model in 3 becomes

llnk[P(Sz <s)]= Ay — /lyl —Z7Yr —ZiaVA — ziCyC

s=1,2 i=1,..,{,..,n, @
with

-y, the observed Closeness value for unit i,
(T— Evp) (T—Hac) (T Inf)

- Zip = [le e ,Z ] i-th factor vector for Type
of Attack,
-z, = [zfﬁ 04 Zgz_Mul), ZE:“_T”), zg_U"k)] i-th factor vector

for Attack Technique,
(C— Afr) (C—Ame) _(C—Asi) _(C—Aus) (C Eur)
- Zic = lzc ic Zic %ie Zic ]
factor Vector for Continent,
- A parameter for Closeness,
(T—Esp) _(T—Hac) _ (T—Inf)

i-th

- =y, Y Yy ] parameter vector for
Type of Attack
) =Y (A—0dy) y I(L‘A—Mul)’ ZA—Trz),y(A—Unk)] parameter vec-

tor for Attack Technique,
(C—Afr) _ (C—Ame) _(C—Asi) (C—Aus) _(C—Eur)
- [}/C k] yC k] .C 5 }/C IR &el ]
parameter vector for Continent.

For example, if for unit i, we observe Hacktivism (T-Hac)
as a Type of Attack, 0-day (A-0Ody) as Attack Technique, and
America (C-Ame) as Continent, Equation (4) becomes

(T—Hac)y(T—Hac) _

link[P(S; < 5)] = &y — Ay; — 21 T

A—0dy) (A—0dy —, .
Z( })y( 'y) Z(C Ame)y(C Ame)

iA A iC C =12 ®)

Note that if all elements of a factor vector are equal to
zero, it means that we are considering the corresponding
variable at the baseline level. As an exemplification, let us
consider the qualitative variable Type of Attack. As described
in Table 1, it has five different levels: Cybercrime (T-Cyb),
Espionage/Sabotage (T-Esp), Hacktivism (T-Hac), and
Information Warfare (T-Inf), with Cybercrime (T-

Cyb) as baseline level. If z; = [Z(T B~ o, §7T~ Hae) _
0, zg Inf) _ = 0], it means that in the model we are considering

Cybercrime(the baseline level) as type of attack.

We now discuss the main results obtained fitting the
model to our data and using the link functions in Table 3.
As shown in Table 4, logit, probit, and log-log cumula-
tive link models outperform the others, presenting similar
values of residual deviance (Res. dev.) and Akaike informa-
tion criteria (AIC). They also provide coherent parameter
estimations. Hence, in the following, we only present the
results for the logit model, see Table 5. The baseline levels
for variables Type of Attack, Attack Technique, and Con-
tinent are Cybercrime, SQL Injection, and Multiple
continents, respectively; similar ML parameter estimates
occur for different choices of the baseline level.

We notice that the p-values corresponding to Hacktivism,
0-day and Africa are high. Hence, these categories have
a negligible impact on the severity level. The quantitative
variable Closeness is significant, it affects positively the
severity level and may improve the predictive performance
of the model.

We remind that variable Closeness (defined in Sec-
tion 2.2.2) is based on the values of the Criticality index
that measures the vulnerability of each victim to suffer from
a cyber attack. Closeness is an indicator of the connection
of the victims in the network in terms of vulnerability, and
it is a measure of the systemic risk and its possible effect
on the probability distribution of Severity. In terms of real-
world implications, the information that a cyber attack hits a
victim strongly connected in the network could generate an
alarm signal for the other connected victims. Victims close in
terms of vulnerability should work together to prevent criti-
cal attacks and hopefully collaborate for the development of
common security protocols to protect against cyber attacks.

In order to better explain the role of variable Closeness,
in Figure 4, we depict the changes in the probability distri-
bution for the extreme severity levels when Closeness varies
from its minimum to its maximum value. In each graph of
the figure, we consider one single explanatory variable at the
time, and we fix the others at the baseline level. We notice a
similar behavior for each explanatory variable: The probabil-
ity decreases for the medium severity and increases for the
critical severity.

For a better interpretation of the effect of each explana-
tory variable, we now present the AME measures for those
explanatory variables significant at level 0.05 in Table 5. In
a cumulative link model that contains solely main effects
(as the one examined here), only the highest and lowest
probabilities change monotonically as an explanatory vari-
able increases. Therefore, in the following, we present the
ME uniquely for extreme categories of the response variable.
Furthermore, extreme categories (in our context medium vs.
critical severity) often represent noteworthy states and
are of special interest.

The AMEs for extreme categories of the response variable
(medium vs. critical severity) are reported in Table 6,
together with the standard errors, the test statistics, and the
corresponding p-values. The standard errors are obtained
via the Delta-method approach. We recall that for qualita-
tive variables with more than two possible values, the ME
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TABLE 4  Accuracy measures for the model with alternative link functions.

Link logit probit log-log cloglog cauchy bgeva (t = —0.25)
Res. dev. 5538.333 5541.049 5540.789 5565.718 5577.085 5733.813
AIC 5562.333 5565.049 5564.789 5589.718 5601.085 5757.813

Abbreviations: Res. dev., residual deviance; AIC, Akaike information criteria.

FIGURE 4 Extreme category probability
changes as a function of the range of Closeness.
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FIGURE 5 95% confidence intervals for the
average marginal effects (AMEs) significant at
level 0.05.
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as minor risks. Espionage/Sabotage and Information
Warfare cause more severe damage because they are
used mainly to steal important geopolitical and economi-
cal information. Furthermore, the available countermeasures
are currently particularly ineffective; for more details, see
Antonielli et al. (2019, pp. 13-14).

Next, we consider the variable Aftack Technique. We
notice that all AME measures for critical severity level
are negatives. Trivial Threats and Unknown attack tech-
nique have a negative impact with respect to the baseline
level (SQL Injection). Hence, even if SQL Injection is
a low-frequency attack technique, its impact on critical
severity level is quite relevant. This can find an explanation
in the peculiarity of this type of attack. The SQL injection
attack consists of reading and modifying sensitive data, per-
forming unauthorized operations as an administrator on a

o A-Ti A-Unk C-Asi GC-Aus GC-Eur T-Esp T-Inf Closeness
TABLE 5 The cumulative logit model fitted to the cyber risk data.
Coefficients: Value Std. error z Value p Value
T-Espionage/Sabotage 1.879 0.140 13.431 0.000
T-Hacktivism 0.252 0.162 1.558 0.119
T-Information Warfare 1.083 0.199 5.441 0.000
A-0-day —0.568 0.854 —0.665 0.506
A-Multiple Threats —1.470 0.761 —-1.932 0.053
A-Trivial Threats —1.933 0.740 —2.613 0.009
A-Unknown —1.935 0.743 —2.606 0.009
C-Africa 0.367 0.377 0.974 0.330
C-America 0.756 0.097 7.749 0.000
C-Asia 0.883 0.143 6.161 0.000
C-Australia/Oceania 1.197 0.292 4.093 0.000
C-Europe 0.743 0.125 5.928 0.000
Closeness 0.985 0.452 2.179 0.029

measures show the difference in the estimated probabilities
for cases in one category relative to the baseline one. In
Figure 5, we plot the 95% confidence intervals only for the
significant effects reported in Table 6.

We now briefly comment on the results presented in
Table 6 and Figure 5. First, we consider the variable
Type of Attack; Espionage/Sabotage and Information
Warfare are types of attacks that are more likely than
Cybercrime (the baseline level) to generate a critical
severity. More precisely, for Espionage/Sabotage
(Information Warfare), the estimated probability to gen-
erate a critical severity is on average 0.213 (0.177)
higher than for Cybercrime. For medium severity, we
observe an inverted effect. In accordance with the opinion of
the Hackmanac experts, although Cybercrime attacks repre-
sent a huge percentage of the total number of cyber attacks
(77.98%), in terms of gravity they are nowadays classified

database, retrieving the contents of a given system, and in
some cases commanding the operating system. All these
issues can cause serious problems to the victim. On the
contrary, Trivial Treats and Unknown attack technique
affect positively medium severity level. This means that
attackers can rely on the effectiveness of more trivial
and unknown attacks to achieve the majority of attacks
(together 92.5% of the total number) even if of medium
severity.

We now consider the variable Continent, for which
the baseline level is Multiple Continents. Critical
severity attacks directed at individual continents show
a positive effect (the ME measures are positive), while
attacks of medium severity are effective against mul-
tiple continents (the ME measures are negative). It turns
out that attacks targeted against an individual conti-
nent are more effective than the ones directed to more
continents in which the effect is dispersed. A possible
explanation can be found in the peculiarities of the dif-
ferent continents. Note that, both the AME measures
of America are not significant. A possible explanation
could be that when an attack to Multiple Continents
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TABLE 6

Average marginal effects (AMESs) for the cumulative logit model fitted to the cyber risk data.

ocAME_CAT (logit.m) # new function available from the authors
$ME.1 (medium severity)

Effect Std. error z Value p Value
T-Espionage/Sabotage —-0.234 0.037 —6.420 0.000
T-Information Warfare —0.238 0.043 —5.521 0.000
A-Trivial Threats 0.425 0.162 2.619 0.009
A-Unknown 0.426 0.163 2.612 0.009
C-America —0.083 0.086 —0.968 0.333
C-Asia —0.194 0.031 —6.293 0.000
C-Australia/Oceania —0.263 0.064 —4.136 0.000
C-Europe —0.163 0.027 —6.055 0.000
Closeness -0.217 0.099 —2.186 0.029
$ME.3 (critical severity)
T-Espionage/Sabotage 0.213 0.045 4.696 0.000
T-Information Warfare 0.177 0.032 5.493 0.000
A-Trivial Threats —0.316 0.121 —2.621 0.009
A-Unknown —0.317 0.121 —-2.614 0.009
C-America 0.050 0.056 0.895 0.371
C-Asia 0.144 0.023 6.186 0.000
C-Australia/Oceania 0.196 0.048 4.097 0.000
C-Europe 0.122 0.020 5.936 0.000
Closeness 0.161 0.074 2.180 0.029

TABLE 7 Measures of correct classification obtained by PROC
LOGISTIC in SAS.

Percent concordant 65.2 d 0.333
Percent discordant 319 CI 0.667
Percent tied 2.9 y 0.342
Pairs 2337104 T 0.217

(the baseline level) is performed, America is often
affected.

Finally, a unit change in the quantitative variable Close-
ness would produce an average rate of change in the
estimated probability equal to —0.217 for medium severity
attacks, while it is equal to 0.161 for the critical
ones. This confirms our previous findings regarding this
variable.

4.1 | Predictive power of the model

In order to assess the predictive power of the model, we
calculate the mostly used measures of correct classification
reported in Table 7. They are based on the number of concor-
dant (nc) and discordant (np) pairs between the observed and
the predicted values. A pair of observations is said to be con-
cordant (discordant) if the observation with the larger (lower)
observed response value also has the higher (lower) predicted
response value; Harrel et al. (1996). If a pair of observations

with different responses is neither concordant or discordant,
it is a tie. In Table 7 are also reported the percentage of
concordant, discordant, and tied.

Somers’d statistics is the difference between the propor-
tions of concordant and discordant pairs over the untied
pairs d = (nc —np)/t, where ¢ is the number of pairs with
different responses. It assumes values in [—1,1]. A nor-
malized version of this index in [0, 1] is the concordance
index (CI), that estimates the probability that the predic-
tions and the outcomes are concordant CI = (d + 1)/2. CI
is equal to 0.667. Therefore, we notice that for roughly
the 67% of the untied pairs on the severity level, the
observations with the higher severity are also associated to
higher predicted values. This highlights a high concordance
between observed and predicted values. Also, Goodman—
Kruskal’s y and Kendall’s 7 indicate the presence of a positive
association.

In order to evaluate the goodness of fit of the model, we
considered the Efficient Score test and Wald test. Both indi-
cate that the model gives a significant improvement over the
baseline intercept-only model (p-values<0.0001).

As suggested in Agresti (2010, pp. 69-70), since our
model contains a continuous predictor, we compute the
Lipsitz global goodness-of-fit test (Lipsitz et al., 1996). It is
an alternative goodness-of-fit test for ordinal response logistic
regression models that generalizes the Hosmer—-Lemeshow
test for binary logistic regression (Fagerland & Hosmer,
2016). It involves partitioning the data into g groups based
on the cardinality c(S) of the response variable. Lipsitz et al.
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(1996) propose that g is chosen such that 6 < g < n/5¢(S),
where n is the sample size. This method is available in the
R package generalhoslem. In our context, the Lipsitz test
shows that there is no evidence of lack of fit for low value of
g (g = 6, p-value = 0.1001).

4.2 | Discussion on the PO assumption

The score test by Peterson & Harrell (1990) is commonly
used to check the PO assumption. This test evaluates if
the effects are the same for each cumulative logit against
the alternative hypothesis of different effects (see Agresti,
2010, section 3.5.5). It compares the null hypothesis of
a model with PO (i.e., the coefficients do not depend
on the level of the response variable), to the alternative
one, a model with a separate set of coefficients for ecach
threshold.

However, when the number of explanatory variables is
large or the sample size is large, this test tends to reject the
null hypothesis even when the PO assumption is reasonable;
see Allison (1999), Btant (1990), and O’Connell (2006). Fur-
thermore, it tends to reject the null hypothesis also when few
observations fall in one of the outcome categories (Peter-
son & Harrell, 1990) or when some explanatory variables
are continuous (Allison, 1999). For these reasons, following
O’Connell (2006), we computed the score test for each qual-
itative explanatory variable separately. We rejected the null
hypothesis of PO assumption only for the categories Unknown
and Espionage/Sabotage.

Finally, we analyzed how the odds ratios (OR) com-
puted for these variables vary at the different thresholds.
In particular, we dichotomized the three levels of the vari-
able Severity and we computed three separate binary logistic
regression models with all the explanatory variables. For
both categories, we then compared the estimated ORs across
all the severity levels with the cumulative OR. Further-
more, we compared the estimated values of the coefficients.
Espionage/Sabotage presents broadly similar ORs across
all the severity levels, with an average close to the cumu-
lative OR. Moreover, the coefficients are broadly consistent
in magnitude across all the severity levels. Hence, for
Espionage/Sabotage, it seems reasonable to apply a PO
cumulative logit model. Only Unknown attack technique
presents a different picture, with ORs and coefficients varying
across the severity levels.

The above discussion suggests that the ordinal PO model
is a fair summary of the patterns in the data in relation to
the severity levels. Naturally, it is possible to consider a
more complicated model by relaxing the PO assumption; see
Agresti (2010) and Peterson & Harrell (1990).

S | CONCLUSIONS

In this article, we presented how cumulative link models can
be a useful instrument for cyber risk assessment. These types

of models require only ordinal data for the response vari-
able, that in our context describes the severity levels of a
cyber attack, and not the actual losses they produce. This can
protect the privacy of the cyber victims, can induce a wider
disclosure of cyber risk data, and makes the model easily
repeatable. We have applied our model to a real data set that
includes information on “serious” cyber attacks that occurred
worldwide from 2017 to 2018. We have also included in our
model a quantitative variable named Closeness as explana-
tory variable, which could provide important insights about
the existence of significant relations, in terms of vulnerability,
among victims of attacks.

Moreover, we have considered different link functions
such as logit and bgeva. Since the parameters of ordinal
response models are not as simple to interpret as slopes and
correlations for ordinary linear regression, we introduce alter-
native measures such as ME for evaluating the effect of each
explanatory variable on the cyber risk level.

The empirical analysis suggests that Espionage/
Sabotage and Information Warfare are the type of
attacks that are more likely than the others to generate a crit-
ical severity attack. Among the most commonly used attack
techniques, SQL Injection shows a quite relevant impact
on critical severity level of attacks. Also, the quantitative
variable Closeness has a significant impact on the attack
severity level. This indicates that victims close in terms
of vulnerability should collaborate for the development of
common security protocols to protect against cyber attacks.

The proposed model can be used by practitioners and reg-
ulators for setting properly cyber security policy taking into
account the specific characteristic of the observed attacks.
More specifically, they could study the intersection of the
threat landscape with the attack surface of a specific orga-
nization, in order to manage appropriate countermeasures
and prioritize interventions on the basis of the estimated
risk, considering also the available resources, the size of the
organization, and its culture on cyber security issue.

In conclusion, we remark that there is no internationally
recognized standard classification of the gravity of a cyber
attack. In our application, the classification of the severity lev-
els has been provided by cyber security experts. A different
classification could lead to different results. This highlights
the necessity to introduce a standardized classification of
cyber risk levels that can be adopted worldwide.
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APPENDIX A
In Tables A1 and A2, a detailed description of the explanatory
variables Attack Technique and Type of Attack is reported.
For sake of parsimony and to facilitate the interpretation
of the model, we decided to reduce the 10 levels of variable
Attack Technique defined in the data set grouping together
Account Cracking, DDoS, Malware, Phishing/Social
Engineering, Phone Hacking, and Vulnerabilitiesin
a new category named Trivial Threats. This encom-
passes less complex and sophisticated attack techniques:
attackers can rely on the effectiveness of “simple” malware

TABLE A1 Attack technique description.

and on more trivial and easy attack techniques to achieve their
goals. The fact that the Trivial Treats category represents
about 67% of the total implies that attackers can make suc-
cessful attacks with relative simplicity and at very low costs.
Therefore, the variable Attack Technique considered in our
model presents five levels: A-SQL = SQL Injection, A-
O0dy = 0-day, A-Mul = Multiple Threats/APT, A-Tri =
Trivial Threats, and A-Unk = Unknown.

Note that the model is robust to the choice of the aggre-
gation of the more simple attack techniques in Trivial
Treats.

0-day Flaw in software, hardware or firmware that is unknown to the party responsible for patching. 0O-day refers to the
fact that the developers have zero days to fix the problem that has just been exposed.

Account Cracking

Identification of valid login credentials by trying different values for user names and/or passwords.

DDoS Multiple compromised computer systems attack a target and cause a denial of service for users of the targeted
resource.
Malware Software which is specifically designed to disrupt, damage, or gain authorized access to a computer system.

Multiple Threats/APT

Multiple Threats refers: attacks based on more the one threats. APT (Advanced Persistent Threat): prolonged and

targeted cyber attack in which an intruder gains access to a network and remains undetected for a period of time.

Phishing/Social Engineering

Phishing: fraudulent attempt to obtain sensitive information such as usernames, passwords and credit card details.

Social Engineering: use of psychological manipulation to trick users into making security mistakes or giving

away sensitive information.

Phone Hacking
SQL Injection

Get access to an individual’s cellular phone through a variety of methods.

Code injection technique, used to attack data-driven applications, in which nefarious SQL statements are inserted
into an entry field for execution.

Unknown Most of the used techniques are Data Breach kind, for which the consequences may be known, but almost never the
execution methods.

Vulnerabilities Weakness in the computational logic found in software and hardware components that, when exploited, results in a
negative impact to the CIA.

TABLE A2 Type of attack description.

Cybercrime Use of a computer or internet as an instrument to further illegal ends, such as committing fraud, stealing identities,
or violating privacy.

Espionage/Sabotage Espionage: act or process of learning secret information through clandestine means. Sabotage: deliberate and
malicious actions aimed at weakening an enemy through disruption the of the normal processes and functions.

Hacktivism Act of hacking or breaking into a computer system for a politically or socially motivated purpose.

Information Warfare

Use of information technology as an active weapon of war.
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