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Bayesian Quickest Detection of Credit Card
Fraud

Bruno Buonaguidi∗, Antonietta Mira†, Herbert Bucheli‡, and Viton Vitanis§

Abstract. This paper addresses the risk of fraud in credit card transactions by de-
veloping a probabilistic model for the quickest detection of illegitimate purchases.
Using optimal stopping theory, the goal is to determine the moment, known as
disorder or fraud time, at which the continuously monitored process of a con-
sumer’s transactions exhibits a disorder due to fraud, in order to return the best
trade-off between two sources of cost: on the one hand, the disorder time should
be detected as soon as possible to counteract illegal activities and minimize the
loss that banks, merchants and consumers suffer; on the other hand, the frequency
of false alarms should be minimized to avoid generating adverse effects for card-
holders and to limit the operational and process costs for the card issuers. The
proposed approach allows us to score consumers’ transactions and to determine,
in a rigorous, personalized and optimal manner, the threshold with which scores
are compared to establish whether a purchase is fraudulent.
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MSC2020 subject classifications: Primary 62H30, 60G40; secondary 65C60.

1 Introduction

Payment habits have changed dramatically over the past thirty years thanks to new
technologies. Nowadays a growing number of purchases, also of small amounts, are
paid by credit and debit cards. While these electronic payment methods boost business
and make the lives of buyers easier, they also heighten the fraud risk borne by the
payments industry. As shown by the Nilson Report (2017), in 2016 worldwide fraud
losses amounted to 7.15 cents per $ 100 of card transactions; the card total volume was
$ 31.878 trillion, while fraud losses reached $ 22.80 billion and the latter amount has been
predicted to double by 2025. The total cost is even greater when the consequences of card
fraud are considered: banks and card issuers make investments in anti-fraud technologies
and bear the losses incurred by their clients; merchants sustain high cost to guarantee
their customers high standard of security and can be charged back by card issuers if any
negligence during a transaction occurs; finally, clients, often refunded by banks when
victimized by fraud, are frustrated when their cards are blocked unnecessarily. Thus,
counteracting credit card fraud is in the interest of all these actors.
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Credit card fraud occurs whenever a credit card is used without the consent of its
legitimate owner with the aim of either making purchases or stealing money. As first
defense level against fraud, card issuers have developed authentication measures, such
as the check of numerical codes (like the card PIN or the cardholder’s zip code), signa-
ture and fingerprint verification systems and the 3D secure scheme (an authentication
method that requires a cardholder either to insert a temporary generated password for
finalizing her on-line transaction or to authorize the transaction over a second chan-
nel). However, since fraudsters dynamically adapt their strategies to the latest anti-
fraud technologies, authentication measures may fail. Then, as second defense level,
card issuers make use of detection measures to discriminate between legitimate and
fraudulent transactions; currently employed fraud detection techniques are discussed
in Section 2. Here, let us recall that these techniques are supervised methods, namely
they are calibrated on a training sample of transactions which are labeled as legitimate
or fraudulent: when a new transaction arrives, the trained model predicts its class. In
particular, a suspicion score between 0 and 1 is assigned to each transaction, which
is subsequently declared as fraudulent when the score is higher than a certain thresh-
old.

In the literature this threshold is determined empirically: for example, in Bhat-
tacharyya et al. (2011); Mahmoudi and Duman (2015); Quah and Sriganesh (2008);
Srivastava et al. (2008); Zaslavsky and Strizhak (2006) default values, such as 0.3 or
0.5, are used; in Jurgovsky et al. (2018), the threshold is fixed so that the training set
is characterized by a predetermined true positive rate; in Carneiro et al. (2017), the
threshold is such that either in the training set the false positive and the true positive
rates are equal or a predetermined percentage of the top most rated transactions is
labeled as illegal. In any case, to the best of the authors’ knowledge, there is no formal
theory which justifies these choices and in Carneiro et al. (2017) it is said that “it is
critical to choose the score threshold for considering an order to be legitimate or fraud-
ulent”. This paper aims therefore at introducing a probabilistic model for the quickest
detection of credit card fraud where for each transaction the posterior probability of
being fraudulent is returned and a personalized threshold for each cardholder is opti-
mally determined. The unobservable disorder or fraud time, at which the continuously
monitored process of a consumer’s transactions exhibits a disorder due to fraud, can
be estimated as the first time the posterior probability process exceeds the threshold.
This is the optimal stopping time, which minimizes the expected trade-off between the
probability of having a false positive and the detection delay since the occurrence of the
fraud.

The quickest detection problem of a change in the probabilistic features of a stochas-
tic process has been widely studied. In Shiryaev (1978, Chap. 4.4) the early detection
of a change in the drift of a Brownian motion was analyzed and was extended to a finite
horizon formulation in Gapeev and Peskir (2006) and to other diffusion processes in
Johnson and Peskir (2017); Gapeev and Shiryaev (2013). Partial solutions for the de-
tection of a shift in the intensity of a Poisson process are in Davis (1976); Gal’Chuk and
Rozovskii (1971), while a complete solution was provided in Peskir and Shiryaev (2002).
The latter is the basis of this article, where, according to Schmittlein et al. (1987), it
is assumed that the observed process of a card user’s expenditures follows a compound
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Poisson process, whose arrival times are the purchase times and whose jumps represent
the corresponding amounts and the geographical coordinates. This process will change
its intensity and jump distribution when hit by fraud, which we detect by resorting to
the algorithm developed in Dayanik and Sezer (2006). We underline that this is the first
time that the optimal stopping theory (see, e.g., Peskir and Shiryaev (2006); Shiryaev
(1978)) and the results of the aforementioned articles are applied to credit card fraud
detection. Further results on the quickest detection for compound Poisson processes
were obtained in Bayraktar and Dayanik (2006); Bayraktar et al. (2005); Buonaguidi
and Muliere (2015); Gapeev (2005); Herberts and Jensen (2004).

The article is organized as follows. In Section 2 we briefly recall the data mining tech-
niques currently used in credit card fraud detection. In Section 3 we introduce three
Bayesian quickest detection models and we describe how we can adapt them to credit
card fraud detection. We analyze the optimal strategy to raise the alarm of fraud and
we see that it is the first time a functional of the observed cardholder’s expenditures
pattern, known as posterior probability process or, equivalently, (generalized) odds pro-
cess, exceeds a threshold; we also describe the algorithm that can be used to compute it.
In Section 4, using real credit card transactions provided by one leading company in the
Swiss credit card market, we estimate the pre and post-fraud expenditure distribution
parameters of the cardholders and these values will be used to compute their optimal
thresholds. Then, we assess how our methodology performs in classifying new legiti-
mate and fraudulent credit card transactions (both simulated and real); performance of
our models will be derived, discussed and compared with that of other methodologies.
Section 5 contains a summary discussion and concluding remarks.

2 Literature review on credit card fraud detection

Data mining refers to the discovery of patterns and relationships in a huge amount of
data and is widely used to screen credit card transactions to detect fraud. Detection
must work in real time: when the details of a transaction are received by a credit
card issuer, the latter must decide within a few milliseconds if the transaction must
be authorized or not. This step is of key importance, because approving a fraudulent
operation implies the loss of the corresponding amount; on the other side, rejecting a
legal purchase creates disturbances for a cardholder. In this section we recall some of
the most popular data mining methodologies employed in credit card fraud detection;
literature reviews are also presented in Bolton and Hand (2002); Ngai et al. (2011).

Logistic regression and rule-based methods are well known and among the first tech-
niques employed in fraud detection due to their simplicity. Logistic regression is just
a special case of the generalized linear model; in rule-based methods, rules are either
established by experts on the basis of prior analysis or extracted from decision trees.
Applications to credit card fraud of logistic regression and rule-based methods can be
found in Bahnsen et al. (2016); Bhattacharyya et al. (2011); Carneiro et al. (2017); Yeh
and Lien (2009) and Bahnsen et al. (2016); Mahmoudi and Duman (2015); Yeh and
Lien (2009), respectively; we also refer to Letham et al. (2015) for a Bayesian approach
to rule-based methods.
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Ensemble methods are used to improve the classification accuracy. They are made up
of an aggregation of different classification models: a training set is used to create train-
ing subsets and on each of them a model is calibrated. When a new transaction arrives,
each model returns a class prediction, which is used together with the predictions of the
other models to determine the class of the ensemble. Boosting and random forests are
two examples of ensemble methods. In boosting, used in Chan et al. (1999), the models
are trained sequentially: the transactions which have not been correctly classified in the
previous model are weighted more in the next one, in order to give more importance to
the misclassified cases. The ensemble class is a weighted average of each model class,
whose weight depends on how well the model performed. A Bayesian version of boost-
ing, known as BART (Bayesian Additive Regression Trees), was proposed in Chipman
et al. (2010). Random forests are an ensemble of decision trees built on sub-samples ran-
domly drawn with replacement from the original training set. The class that a random
forest assigns to a new transaction is the mode of the classes predicted by the single
decision trees. Random forests were applied in Bahnsen et al. (2016); Bhattacharyya et
al. (2011); Carneiro et al. (2017) and used in a Bayesian inference setting in Raynal et
al. (2019). Unlike the rule-based and decision tree methods, ensemble methods are less
prone to over-fitting but their interpretation is more complex.

A hidden Markov model is a stochastic process with two hierarchical levels: the inner
one is represented by a finite number of states and is hidden, namely not observable,
while the outer one is the observable outcome generated in correspondence to a given
state. Probabilities governing the transition among states and probabilities with which
outcomes are generated are the model parameters. Hidden Markov models were used for
credit card fraud detection in Srivastava et al. (2008): for each purchase type (the hidden
state), the price range (low, medium and high) is observed. The model works as follows:
after the parameters estimation, a new transaction arrives and its price range is passed
to the model; the latter computes the probability that the transaction is characterized
by the observed price range. When this probability is too low, the transaction deviates
from the normal behavior and is therefore identified as fraudulent. This methodology
has a nice probabilistic interpretation, but its structure (number of states and number
of outcomes for each state) needs to be carefully adapted. We refer to Ko et al. (2015)
for a Bayesian approach to hidden Markov models in change-point problems.

Support vector machines are techniques used to separate data. Data can be either
linearly separable, when there exists a hyperplane that divides all the data of one class
from the data of the other class, or linearly inseparable, when such a hyperplane does
not exist. However, in the latter case, using a non linear mapping, the original data
can be mapped to a higher dimensional space where the transformed data becomes
linearly separable. Support vector machines aim at searching for the best hyperplane
separating the training data, namely the hyperplane with maximal margin of separation
between the edges (the so called support vectors) of the two classes. Once a support
vector machine has been trained on a set of credit card transactions, a new transaction
is classified as fraudulent or legitimate depending on which of the two portions of the
space, determined by the estimated hyperplane, the explanatory variables lie. Limits
of this methodology are the choice of the function that maps linearly inseparable data
to linearly separable ones and the specificity of this function to the addressed problem.
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Support vector machines were investigated in Bhattacharyya et al. (2011); Carneiro et
al. (2017); Mahmoudi and Duman (2015) and in Polson et al. (2015) their Bayesian
version was provided.

Neural networks have become very popular among card issuers thanks to their ability
to extract solutions from highly involved problems. A neural network is always charac-
terized by a set of nodes, or neurons, connections among the neurons and a function
which weights these connections. Neurons are placed in one or more layers: each neuron
of one layer receives inputs from the neurons of the previous layer and combines this
information with the weights of its connections. This operation propagates up to the
neurons of the last layer, which return the final output. A set of labeled credit card
transactions is used to train the model: an error function measures the distance be-
tween the output of the model and the true output. As this distance function depends
only on the weights of the connections among neurons, the weights minimizing the er-
ror are searched by means of optimization algorithms. Despite their good performance,
neural networks have some drawbacks: they are a “black box”, in the sense that the
function that they aim at optimizing cannot be inferred from the network structure;
their topology (number of neurons and layers) strongly depends on the specific problem
to be addressed; optimization algorithms do not always converge to the optimal set of
weights that minimize the error function (see, e.g., Bishop (2006, Secs. 5.2.1 and 5.5)
and Hastie et al. (2009, Secs. 10.7 and 11.5.4–11.5.5)). Neural networks were applied in
Dorronsoro et al. (1997); Jurgovsky et al. (2018); Mahmoudi and Duman (2015); Quah
and Sriganesh (2008); Yeh and Lien (2009); Zaslavsky and Strizhak (2006). A Bayesian
perspective on neural networks and on their connection to statistical data reduction
techniques was given in Polson and Sokolov (2017); methods of Bayesian optimization
for hyperparameter selection in neural networks (as well as in logistic regression and
support vector machines) were studied in Snoek et al. (2012).

3 Methodology description

A common feature of the methodologies analyzed in Section 2 is that they return a
suspicion score in [0,1] on how likely a transaction is fraudulent. Then, a transaction
will be labeled as fraudulent if the score exceeds a fixed threshold. However, there is no
theory which explains how to compute it optimally and, as already said in Section 1,
it is usually fixed empirically. In the following sections, we introduce our model, which
provides a rigorous and personalized method to determine a threshold and the associated
optimal strategy for each cardholder, so that the trade-off between the losses from
detecting fraud too early or too late are minimized.

3.1 The model

We describe our model following the lines in Peskir and Shiryaev (2002). On the measur-
able space (Ω,F ) the random variable θ is defined with respect to a family of probability
measures (Ps)s≥0, such that Ps(θ = s) = 1. θ represents the so called fraud or disorder
time, at which the expenditures pattern X := (Xt)t≥0 of a cardholder changes its sta-
tistical features due to fraud. According to the hypothesis in Schmittlein et al. (1987)
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(see also Glady et al., 2009), we assume that X is a compound Poisson process:

Xt :=

Nt∑
j=1

Yj , P
s(X0 = 0) = 1, s ≥ 0. (3.1)

In the expression above, N := (Nt)t≥0 is a standard Poisson process, which models the
purchases time, and {Yj}j≥1 is a sequence of independent and identically distributed
R

d-valued random variables, representing, for example, the amount of the transactions
and their geographical coordinates. At the disorder time θ, N changes its arrival rate
from λ0 to λ1 and {Yj}j≥1 switch their common distribution from v0(·) to v1(·). It is
assumed that λi > 0 and vi(·), defined on (Rd,B(Rd)), are all known, i = 0, 1, and that
v1(·) is absolutely continuous with respect to v0(·).

Next, we define the probability measure

Pπ := πP0 + (1− π)

∫ ∞

0

λe−λs
P
s ds, π ∈ [0, 1), λ > 0, (3.2)

where π and λ are given and fixed. Expression (3.2) contains our prior belief about
θ, that, under Pπ, takes value 0 with probability π and, with probability 1 − π, is
exponentially distributed with mean 1/λ. Since fraud is not directly observable, the
best we can do is detecting θ through a strategy based on the continuous monitoring
of X. Let FX

t ⊂ F be the sigma-algebra generated by X up to t; then our goal is
to determine a stopping time τ with respect to FX = (FX

t )t≥0 which is as close as
possible to θ. Formally, the Bayesian quickest detection problem aims at computing one
of the following risk functions

V1(π) := inf
τ

(
Pπ(τ < θ) + c1Eπ[(τ − θ)+]

)
, (3.3)

V2(π) := inf
τ

(
Eπ[(θ − τ)+] + c2Eπ[(τ − θ)+]

)
, (3.4)

V3(π) := inf
τ

(
Pπ(τ < θ) + c3Eπ[e

α(τ−θ)+ − 1]
)
, (3.5)

and obtaining the optimal stopping time at which the infimum on the right-hand side
of (3.3)–(3.5) is achieved. In the above expressions, ci, i = 1, 2, 3, and α are positive
and given values and (x)+ := max{0, x}. In (3.3) the probability of a false positive
(stopping before the fraud time) and the expected linear detection delay are combined:
the longer the observation of X, the lower the probability of raising a false alarm, but
the higher the delay in detecting θ; moreover, c1 weights the importance assigned to
these two sources of costs. Analogous interpretations hold for (3.4), where the expected
advance in detecting θ replaces the probability of a false alarm, and for (3.5), where the
expected exponential detection delay is considered (see, e.g., Beibel, 2000; Poor, 1998),
with α being the internal rate of return at which the losses due to a detection delay are
compounded. It will soon be evident that the structure of the solutions to (3.3)–(3.5) is
similar, as already noticed in Bayraktar et al. (2005); Davis (1976).
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3.2 The optimal stopping problem

We are going to see that problems (3.3)–(3.5) can be reduced to an equivalent optimal
stopping problem for a one-dimensional Markov process. Let us introduce the processes
Π := (πt)t≥0, ϕ := (ϕt)t≥0 and Φα := (Φα,t)t≥0 defined by

πt := Pπ

(
θ ≤ t|FX

t

)
, ϕt :=

πt

1− πt
, Φα,t :=

Eπ

[
eα(t−θ)1{θ≤t}|FX

t

]
1− πt

. (3.6)

Since πt is the posterior probability that fraud has already occurred at time t given
all the past history of X, Π is called posterior probability process; ϕ is known as odds
process because ϕt is the odds of πt. Φα is the generalized odds process because Φα = ϕ
when α = 0; for this reason, in the sequel we will refer to Φα only. Resorting to stochas-
tic calculus and standard arguments based on Dayanik and Sezer (2006); Peskir and
Shiryaev (2002), it is easy to show that Φα satisfies the following stochastic differential
equation:

dΦα,t =
(
λ+ (α+ λ− λ1 + λ0)Φα,t

)
dt+Φα,t−

∫
Rd

(
λ1

λ0
f(x)− 1

)
μ(dx, dt), (3.7)

where Φα,0 = π
1−π , f(x) is the Radon-Nykodym derivative of v1(·) with respect to v0(·)

and μ(t, A) is the random measure of the jumps of X in A ∈ B(Rd) over the time
interval (0, t] and are defined by

f(x) := dv1(x)/dv0(x), μ(t, A) :=
∑
s≤t

1{ΔXs∈A}. (3.8)

The dynamic in (3.7) shows that Φα is a strong Markov process. Adapting the results
in Johnson and Peskir (2017) to Φα, it is possible to show that problems (3.3)–(3.5) are
equivalent to:

Vi(π) = (1− π)

(
hi + qiUi

(
π

1− π

))
, Ui(φ) := inf

τ
E
∞
φ

[∫ τ

0

e−λt(Φα,t − ki)dt

]
,

(3.9)
where α = 0, when i = 1, 2, and

hi, qi, ki =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, c1,
λ

c1
, i = 1,

1

λ
, c2,

1

c2
, i = 2,

1, c3α,
λ

c3α
, i = 3.

(3.10)

The infimum in (3.9) is taken over the stopping times of Φα, that coincide with those of
X, as evident from (3.7). Further, unlike (3.3)–(3.5), where the expectation is under Pπ,
in (3.9) the expectation is under P∞

φ , the probability measure under which fraud never
occurs, namely θ = ∞, conditional to the event {Φα,0 = φ}, for φ ≥ 0. It is immediate to
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see that Ui ≤ 0, because τ = 0 is an admissible stopping time, and Ui ≥ −ki/λ, which
arises from never stopping (i.e., τ = ∞) and the fact that Φα takes positive values.
We also see that it is never optimal to stop before Φα reaches ki, because, before that
moment, the integrand in (3.9) remains negative. Indeed, it is well known that there
exists a threshold Bi ≥ ki such that the optimal stopping time in (3.9) is given by

τ�i := inf{t ≥ 0 : Φα,t ≥ Bi}, Bi = Bi(λ, ci, α, λ0, v0(·), λ1, v1(·)), i = 1, 2, 3,
(3.11)

which is the first moment at which Φα exceeds Bi (see Bayraktar et al., 2005; Buonaguidi
and Muliere, 2015; Gapeev, 2005; Gapeev and Shiryaev, 2013; Johnson and Peskir, 2017;
Peskir and Shiryaev, 2002; Shiryaev, 1978). From (3.11) we observe that the optimal
threshold is independent of π, the prior probability that fraud occurs immediately, and
this is consistent with the general optimal stopping theory (Peskir and Shiryaev, 2006;
Shiryaev, 1978). Further, from (3.6) and the fact that α = 0 when i = 1, 2, we have
that (3.11) is equivalent to

τ�i := inf{t ≥ 0 : πt ≥ Ci}, Ci :=
Bi

1 +Bi
, i = 1, 2. (3.12)

3.3 The algorithm

Solving the Bayesian quickest detection problems (3.3)–(3.5) boils down to computing
the function Ui in (3.9) and the threshold Bi in (3.11), i = 1, 2, 3 (for a simpler notation,
the index i will be omitted). This can be done by resorting to the iterative procedure
provided in Dayanik and Sezer (2006).

When a credit card transaction is made, X from (3.1) has a jump. Denoted by
{σn}n≥1 the jumping times of X, let us notice that they coincide with the jumping
times of Φα, as the second addend in (3.7) shows. In particular,

Φα,σn = Φα,σn−
λ1

λ0
f(Yn), n ≥ 1. (3.13)

Equation (3.7) also shows that Φα solves, between two successive jumps, the first order
linear differential equation

dΦα,t

dt
= λ+ aΦα,t, a := α+ λ− λ1 + λ0, and t ∈ [σn, σn+1), n ≥ 1, (3.14)

whose solution is

Φα,t = x(t− σn,Φα,σn), x(t, φ) :=

⎧⎪⎨
⎪⎩
−λ

a
+ eat

(
φ+

λ

a

)
, a �= 0,

φ+ λt, a = 0,

(3.15)

for t ∈ [σn, σn+1). Φα is therefore a piecewise deterministic Markov process: between
any two subsequent jumps it follows the deterministic flow t �→ x(t, φ), being φ ≥ 0 the
starting point of the process after a jump (see, e.g., Davis, 1993).
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Let us consider the family of optimal stopping problems

U (n)(φ) := inf
τ
E
∞
φ

[∫ τ∧σn

0

e−λt(Φα,t − k)dt

]
, n ≥ 1, (3.16)

where the infimum is taken with respect the stopping times of Φα,t and we integrate up
to the minimum between a stopping time τ and σn. In order to exploit the piecewise
deterministic Markov property of Φα, let us define the operators J : Cb([0,∞))×[0,∞)×
[0,∞) → R and J0 : Cb([0,∞))× [0,∞) → R by

J(g, φ, t) := E
∞
φ

[∫ t∧σ1

0

e−λu(Φα,u − k)du+ 1{t≥σ1}e
−λσ1g(Φα,σ1)

]
, (3.17)

J0(g, φ) := inf
t∈[0,∞)

J(g, φ, t), (3.18)

where Cb([0,∞)) is the set of bounded and continuous functions on [0,∞). Then, we
can compute sequentially the functions u(n) ∈ Cb([0,∞)), n ≥ 0, defined by

u(0)(φ) := 0, u(n)(φ) := J0(u
(n−1), φ), φ ≥ 0, n ≥ 1, (3.19)

that satisfy the property u(n) = U (n), n ≥ 1, and limn→∞ u(n) = U . Observing that
σ1 has exponential distribution with mean 1/λ0 under P

∞ and using Fubini’s theo-
rem, (3.18)–(3.19) read more explicitly as

u(n)(φ) = inf
t∈[0,∞)

∫ t

0

e−(λ+λ0)u
(
x(u, φ)− k + λ0S(u

(n−1), x(u, φ)
)
du, (3.20)

where S : Cb([0,∞))× [0,∞) → R is the operator defined by

S(g, x) :=

∫
Rd

g

(
λ1

λ0
f(y)x

)
v0(dy). (3.21)

Finally, the threshold B in (3.11) is given by

B = lim
n→∞

B(n), B(n) := inf{φ ≥ 0 : u(n)(φ) = 0}. (3.22)

Practically, the previous computations end when n is sufficiently large. The technical
details on the implementation of the illustrated approximation scheme can be found in
Dayanik and Sezer (2006, Sec. 5) and are also reported in the Supplementary Material
(Buonaguidi et al. 2020a; 2020b).

4 Experimental setup

In this section, we calibrate the quickest detection models in (3.3)–(3.5) on a real set
of credit card transactions and we test them on simulated and real datasets. Common
performance measures will be computed to evaluate the predictive power of the proposed
methodology.
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4.1 The dataset

One of the most important Swiss credit card issuers, with more than 1.5 million is-
sued cards and more than 100 million transactions authorized every year, provided us
with a vast dataset of real credit card transactions, including Internet purchases. This
dataset covers a six-month period, from June to November 2016, and contains the de-
tails of 124,770 authorized transactions, which pertain to 4,077 different cardholders.
Each transaction has the following attributes: BaseCardID, the identification code of a
cardholder, which remained the same even if she replaced her card during the considered
period (cardholders had been completely anonymized); RecordDateTime, the date and
the time at which the operation took place; TrxAmount, the transaction amount in the
currency of the issuer; MerchantLocation, the location of the merchant; isTrxFraud, a
flag indicating whether the transaction was fraudulent. The latter attribute is created
by the card issuer a few days after the transaction, which is identified as fraudulent by
means of the analysis of fraud experts and the confirmation of the cardholders: when
the fraud team manually revises suspicious transactions, the additional information to
which the team members have access, such as the merchants identification number and
the merchants category (restaurant, pharmacy, ATM, etc), allows them to identify illegal
purchases reliably; then, the legitimate cardholders are contacted for their confirmation
on the fraudulent nature of the transactions. In the dataset 2,778 transactions were
labeled as fraudulent, implying a fraud ratio of 2.23%. Actual fraud ratios are much
lower than this value; however, in our dataset, fraudulent transactions have been over-
weighted to mitigate the problem of data skewness, occurring when the legitimate cases
far outnumber the fraudulent ones.

By means of the BaseCardID, transactions were grouped and sorted in ascending or-
der by the RecordDateTime. A new attribute ElapsedDays was obtained as the number
of days between two consecutive operations; for the first transaction of each cardholder,
ElapsedDays was set equal to 0. This attribute has been derived because when a fraud-
ster steals a credit card or the associated sensible information, he usually attempts to
make as many transactions as possible in a narrow window of time, before the fraud
is detected and the card is blocked. Accordingly, the variable TrxAmount has a key
role in fraud detection, because fraudsters try to maximize spending before they are
discovered, as suggested in Bhattacharyya et al. (2011); Bolton and Hand (2002). The
importance of the time elapsed between transactions and their amounts was also un-
derlined in Carneiro et al. (2017, Table 6). The MerchantLocation attribute has been
finally used to derive the geographical coordinates of the associated transactions: Lat-
itude and Longitude. Indeed, fraudsters perpetrate their activities in places which are
often different from the ones where cardholders make their legitimate purchases. Then,
knowing where a transaction took place is relevant for a more efficient identification of
fraudulent behaviors. Table 1 shows the final structure of our dataset.

Name: BaseCardID ElapsedDays TrxAmounts Latitude Longitude isTrxFraud

Range: alphanumeric R+ R+ [−90, 90] [−180, 180] {0, 1}

Table 1: Structure of the derived dataset.



B. Buonaguidi, A. Mira, H. Bucheli, and V. Vitanis 271

4.2 Models calibration

Calibrating the Bayesian quickest detection models (3.3)–(3.5) means (i) establishing
the parameter λ in (3.2), governing the prior distribution of the fraud time θ, (ii) deter-
mining the constants ci, i = 1, 2, 3, and α in (3.3)–(3.5), (iii) estimating the quantities
(λ0, v0(·)) and (λ1, v1(·)) for the cardholder’s expenditure process (3.1) and (iv) com-
puting the optimal threshold Bi, i = 1, 2, 3, in (3.11). For point (i), we relied on fraud
experts prior knowledge for a reasonable value of λ. In (ii), the values ci, i = 1, 2, 3,
are chosen by the models user, that, according to her needs, may decide to weigh more
or less heavily the detection delay; α is still chosen by the models user on the basis of
the interest rate at which the losses due to detection delays are compounded. For the
quantities in (iii), we adopted the following approach: for each cardholder, her legiti-
mate transactions (the ones where the attribute isTrxFraud takes value 0) are used to
estimate her own arrival rate λ0 and jumps distribution v0(·); λ1 and v1(·) are estimated
only once on all the fraudulent transactions in the dataset, meaning that we assume
the existence of a representative fraudster who may potentially act against all the card-
holders. The latter assumption is motivated by the fact that fraudulent transactions
data do not discriminate among different fraudsters and fraud represents a tiny per-
centage of the total number of purchases: hence, we need to aggregate all the available
information to reliably estimate at least one representative fraudster behavior. More
details on the estimation procedure under different “information schemes” will be given
in this section. Finally, the personalized optimal threshold at point (iv) depends on the
quantities in (i)–(iii), as shown by (3.11), and is determined for each cardholder through
the algorithm of Section 3.3.

Observing the elapsed days only

When the date and the time of a transaction are the unique features that we can
observe and, consequently, only the ElapsedDays attribute in Table 1 is available, the
cardholder’s expenditure process X in (3.1) becomes a simple Poisson process. This
formally arises from setting Yn = 1 P

s-a.s., n ≥ 1 and s ≥ 0, so that vi(dx) = δ1(x)dx,
i = 0, 1, where δ1(·) is the Dirac measure; it implies that f(x) = 1{1}(x) in (3.8).
Let K1 be the set of indexes relative to the subsequent fraudulent transactions in the
derived dataset and, similarly, let K0 be the set of indexes associated to the consecutive
legitimate purchases of a given cardholder. Then, since the inter-arrival times of a
Poisson process are independent and follow an exponential distribution with mean 1/λ0

and 1/λ1, for the legitimate and fraudulent cases respectively, λi can be determined as
the maximum likelihood estimate

λ̂i =
|Ki|∑

j∈Ki
ElapsedDaysj

, i = 0, 1, (4.1)

where |Ki| is the cardinality of the set Ki. We obtained λ̂1 = 3.012032, meaning that
when a fraudster steals a credit card, he tries to make about three transactions per
day on average; the maximum likelihood estimates of λ0 for the cardholders in the
dataset range in the interval [0.005769, 2.776012]. Then, legitimate transactions occur
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less frequently than the fraudulent ones. This fact can also be inferred from Figure 1,
where the cumulative distribution function of the elapsed days between all the pair of
consecutive fraudulent transactions of our dataset is compared with that of a sample of
subsequent legitimate purchases.

Figure 1: Comparison between the cumulative distribution function of the elapsed days
between two consecutive fraudulent transactions (in red) and the one of the elapsed
days in a sample of 2,000 subsequent legitimate purchases (in green).

Observing the elapsed days and the transaction amounts

When also the transaction amounts are available, in the compound Poisson process (3.1)
the sequence of random variables {Yj}j≥1 can be used to model the purchase expendi-
tures. Letting {Yj}j≥1 represent the logarithm of the variable TrxAmount, we assumed
that, before and after fraud, Yj follows a Gaussian distribution with mean and variance
μi and σ2

i , i = 0, 1, respectively. Then,

vi(dx) = N1(x;μi, σ
2
i )dx, i = 0, 1, and f(x) =

N1(x;μ1, σ
2
1)

N1(x;μ0, σ2
0)
, (4.2)

where N1(x;μi, σ
2
i ) is the univariate Gaussian density with mean and variance μi and σ2

i

evaluated at x ∈ R. Denoted by H1 the set of indexes of all the fraudulent transactions
and by H0 the set of indexes of all the legitimate purchases for a given cardholder (let
us observe that Ki ⊆ Hi, i = 0, 1), μi and σ2

i can be computed by resorting to the
maximum likelihood estimators

μ̂i =

∑
j∈Hi

Yj

|Hi|
, σ̂2

i =

∑
j∈Hi

(Yj − μ̂i)
2

|Hi|
, i = 0, 1. (4.3)

For the fraudulent transactions, we obtained μ̂1 = 4.095233 and σ̂2
1 = 3.124095. The left

panel of Figure 2 reports the histogram of the logarithmic amounts of the fraudulent
transactions and compares it to the estimated Gaussian density. The right panel plots
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the estimated pairs (μ0, σ0) characterizing the Gaussian distribution of the logarithmic
legitimate amounts of all the cardholders. The intensities λ0 and λ1 are estimated
according to (4.1).

Figure 2: Left panel: histogram of the fraudulent logarithmic amounts and estimated
Gaussian density with μ̂1 = 4.095233 and σ̂2

1 = 3.124095. Right panel: pairs (μ0, σ0) of
the Gaussian densities of the legitimate logarithmic amounts of all the cardholders.

Observing the elapsed days, the amounts and the geographical coordinates

The last and full informative scheme we consider is the one where the geographical
coordinates are also available. The cardholder’s expenditures processX in (3.1) becomes
now multivariate, since the random variables {Yj}j≥1 are used to model the logarithm
of the amounts, the longitude and latitude of the transactions and take therefore values
in R

3. Since consumers make the majority of their purchases in a few selected places, we
decided to model the coordinates through mixtures of Gaussian distributions. Amounts
are assumed to be independent of the coordinates; then, we extend (4.2) to

vi(x, y)dxdy = N1(x;μi, σ
2
i )dx×

ni∑
j=1

pi,jN2(y; ηi,j ,Σi,j)dy, i = 0, 1, x ∈ R, y ∈ R
2,

(4.4)
where N2(y; ηi,j ,Σi,j) is the bivariate Gaussian density of the j-th mixture component
with mean vector and covariance matrix ηi,j and Σi,j , respectively. In (4.4), ni repre-
sents the number of components, the so called clusters, of the mixture and pi,j is the
probability that an element belongs to component j, and is such that

∑ni

j=1 pi,j = 1.
From the expression above, we easily find that the Radon-Nykodym derivative f(·)
in (3.8) takes the form

f(x, y) =
N1(x;μ1, σ

2
1)

N1(x;μ0, σ2
0)

×
∑n1

j=1 p1,jN2(y; η1,j ,Σ1,j)∑n0

j=1 p0,jN2(y; η0,j ,Σ0,j)
, x ∈ R, y ∈ R

2. (4.5)

The maximum likelihood estimators of λi, μi and σ2
i , i = 0, 1, are still given by (4.1)

and (4.3). Once the numbers of mixture components, n0 and n1, are chosen, ηi,j , Σi,j

and pi,j , j = 1, . . . , ni, i = 0, 1, can be estimated by resorting to the EM-algorithm
(Dempster et al., 1977). For the longitude and the latitude of the fraudulent purchases,
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we used a bivariate Gaussian mixture model with n1 = 6 components, whose induced
clusters are shown in Figure 3. For each cardholder, a bivariate Gaussian mixture model
was estimated on the coordinates of her legitimate transactions. We initially fixed n0 = 3
components; if the algorithm failed to converge (because, for example, transactions were
concentrated in a very few or just one region), n0 was decreased to 2 or 1.

Figure 3: Clusters of the fraudulent transactions obtained by estimating a Gaussian
mixture model with six components on their geographical coordinates. Cluster 1 (red)
is centered in Australia and its weight is p1,1 = 0.027. Cluster 2 (yellow) embraces
Asian countries with weight p1,2 = 0.057; Cluster 3 (green) comprises south American
and south African countries and its weight is p1,3 = 0.041. Cluster 4 (light blue) includes
central and south European Countries, with weight p1,4 = 0.202. Cluster 5 (blue) mainly
refers to the United States and has weight p1,5 = 0.279. Cluster 6 (violet) mainly refers
to the United Kingdom and has weight p1,6 = 0.393.

Some notes on the thresholds computation

We set λ = 1/365 in (3.2), namely in our prior belief, as elicited by experts, a cardholder
suffers, on average, an attempt of fraud once per year. The algorithm of Section 3.3 for
the computation of the optimal threshold in (3.11) was applied for each of the previous
information schemes, for each of the models in (3.3)–(3.5) and for each cardholder.
For each of the models (3.3)–(3.5), which we refer to as “linear”, “expected miss” and
“exponential”, respectively, different values of ci, i = 1, 2, 3 were used. For example, in
the linear problem (3.1), the cases of c1 = 0.1 and c1 = 0.2 were considered; in the
expected miss problem (3.4), we first set c2 = 10 and then c2 = 50; in the exponential
case (3.5), we first considered c3 = 1,000 and then c3 = 2,000. In the exponential case,
α was set equal to 1.3367×10−4, which is equivalent to an annual internal rate of return
of 5%. Information on these parameters is usually available to a credit card issuer and
in any case can be obtained on the basis of statistics of previous months/years.

Let us finally make four remarks: (1) when {Yj}j≥1 contain more features than
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what are considered in our analysis, the assumption of independence in part of these
explanatory variables could ease the estimation of v0(·) and v1(·); (2) for a given model
and cardholder, the algorithm complexity increases with the informative scheme: when
only the elapsed days are considered, the integral in (3.21) disappears (because v0(·)
concentrates all its mass on 1), so that the optimization problem in (3.20) can be
quickly solved; instead, when the amounts or both the amounts and the coordinates are
considered, the integral in (3.21) is one-dimensional or three-dimensional, respectively,
and this slows down the solution procedure of (3.20); (3) we wrote the code in Matlab
and we used a standard 2017 laptop for the computations: the estimation of (λ0, v0(·))
took about 0.002, 0.002 and 0.009 seconds on average for each cardholder when the
elapsed days, the elapsed days and the amounts, and the elapsed days, the amounts and
the coordinates are observed, respectively. These times rose to 21, 146 and 456 seconds
when also the cardholder specific optimal threshold from (3.11) was computed; (4) at
first sight, the just reported execution times are relevant. However, they can be easily
managed if we consider that the algorithm of Section 3.3 applies independently to each
cardholder and, therefore, can be parallelised among cardholders for faster and more
efficient computations, as well as the fact that in practice fraud models would need to
be implemented in high-performance computing languages and are usually re-trained
less than once a month.

4.3 Models testing on simulated transactions

In order to assess the goodness of the models (3.3)–(3.5), 20 datasets of transactions
were simulated. Each of them has the same structure reported in Table 1 and was gen-
erated in the following way: for each cardholder, 50 transactions were simulated and the
flag indicating their legal or illegal nature was extracted from a Bernoulli distribution
having parameter 0.1 (i.e., about 10% of the dataset transactions are fraudulent); the
fraudulent transactions always occur later than the set of the legitimate ones. According
to the representation in (3.1), for any legitimate cardholder transaction, the attribute

ElapsedDays was extracted from an exponential distribution with mean 1/λ̂0, the vari-
able TrxAmounts was taken to be the exponential of a Gaussian random number with
mean and variance μ̂0 and σ̂2

0 , and the Longitude and Latitude attributes were gen-
erated from a mixture of bivariate Gaussian densities. The parameters characterizing
all these distributions are cardholder specific and were obtained during the calibration
step as discussed in Section 4.2. For all the fraudulent transactions, the ElapsedDays
variable was drawn from an exponential distribution with mean 1/λ̂1, the logarithm of
TrxAmounts was simulated from a Gaussian density with mean and variance μ̂1 and σ̂2

1

and the Longitude and Latitude variables were simulated according to the mixture of
bivariate Gaussian densities of Figure 3; let us recall that these fraudulent distributions
are not cardholder specific.

Scoring

In each of the 20 simulated datasets, we computed, for each cardholder and each in-
formative scheme, the dynamic given by (3.13)–(3.15) of the (generalized) odds process
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Φα (we remind that α = 0 for the linear and expected miss models, where ϕ = Φ0).

As shown in Sections 3.2–3.3, its dynamic only depends on π from (3.2) (we always

fixed π = 0), λ, α, (λ0, v0(·)) and (λ1, v1(·)). All the transactions characterized by

a value of Φα greater than the cardholder specific optimal threshold were labeled as

fraudulent, according to (3.11)–(3.12). Because of its optimality, the adopted detection

strategy minimizes the trade off between early and unjustified credit card blocks and

late interventions in disclosing fraudulent transactions and so, under the evaluation

measures (3.3)–(3.5), outperforms any other strategy.

Performance measures

By comparing the actual nature of a transaction (variable isTrxFraud in the simulated

datasets) and the corresponding model prediction, performance measures commonly

used in the literature were computed. As reported in Table 2, transactions identified

correctly as fraudulent are said true positives, while those classified correctly as legiti-

mate are the true negatives; we may also have false positives, when legitimate transac-

tions are identified as fraudulent, and false negatives, when fraudulent transactions are

predicted as legitimate.

Predicted fraudulent Predicted legitimate

Actual fraudulent true positive false negative

Actual legitimate false positive true negative

Table 2: Confusion matrix.

Let us denote by TP, FN, TN, FP the number of true positives, false negatives, true

negatives and false positives in a dataset. Then, we considered seven standard metrics:

the accuracy (Acc), which is the proportion of correct predictions (it could be misleading

because, for example, if all the transactions were predicted as legitimate in our datasets,

were the percentage of fraud is about 0.1, the accuracy would be around 0.9); the false

positive rate (FPR), also known as fallout, which is the proportion of predicted fraud-

ulent transactions among the legitimate ones; the true positive rate (TPR), also called

sensitivity or recall, which expresses the proportion of predicted fraudulent transactions

among the fraudulent ones; the negative predicted value (NPV), which returns the pro-

portion of actual legitimate transactions among those predicted as such; the precision

(Pr), which is the proportion of actual fraudulent transactions among those predicted

as such; the Matthews correlation coefficient (MCC), which represents the correlation

between the actual and predicted nature of the transactions. Their expressions are re-

ported for completeness in the Supplementary Material. We also derived the area under

the ROC curve (AUC), being the ROC (receiver operating characteristic) curve defined

as the set of all the pairs of points (FPR, TPR) obtained by letting the cardholders

threshold varies.
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Results

In the next table the values of the metrics discussed above are shown and are also re-
ported in Figure 4 for a better visualization. They are obtained as the average of the
corresponding metrics computed for each of the 20 simulated datasets; in the brack-
ets the standard errors are reported. The first two blocks of Table 3 show the results
for the linear model (3.3) when c1 is 0.1 and 0.2, respectively, across the information
schemes of Section 4.2. The abbreviations ED, TrxAm and Coo stand for elapsed days,
transactions amounts and geographical coordinates. We see that the results improve as
more attributes are considered: the FPR decreases and all the other metrics increase,
as expected. Overall the obtained performance measures are very satisfactory both in
absolute terms and when compared to the literature: for example, in Bhattacharyya et
al. (2011, Tables 6a–6c) the best values of the Acc, FPR, TPR, Pr and AUC are 0.996,
0.001, 0.812, 0.613 and 0.934, respectively; in Carneiro et al. (2017, Table 5) the FPR
is 0.019, the TPR is 0.587 and the Pr is 0.407.

Acc FPR TPR NPV Pr MCC AUC

Linear, c1 = 0.1

ED 0.94513 (6.5e-05) 0.00182 (3.0e-05) 0.45696 (9.0e-04) 0.94418 (6.8e-05) 0.96454 (5.6e-04) 0.64311 (6.7e-04) 0.93986 (2.9e-04)

ED + TrxAm 0.95397 (8.1e-05) 0.00050 (1.5e-05) 0.53502 (9.5e-04) 0.95188 (8.3e-05) 0.99141 (2.7e-04) 0.71007 (6.8e-04) 0.95141 (2.2e-04)

ED + TrxAm + Coo 0.98591 (5.8e-05) 0.00008 (4.1e-06) 0.85700 (6.2e-04) 0.98470 (6.2e-05) 0.99909 (4.4e-05) 0.91816 (3.6e-04) 0.98052 (1.7e-04)

Linear, c1 = 0.2

ED 0.94803 (6.9e-05) 0.00654 (6.9e-05) 0.53002 (9.1e-04) 0.95111 (6.7e-05) 0.89792 (1.0e-03) 0.66666 (7.6e-04) 0.93986 (2.9e-04)

ED + TrxAm 0.95838 (7.3e-05) 0.00123 (2.3e-05) 0.58673 (7.8e-04) 0.95695 (7.4e-05) 0.98106 (3.6e-04) 0.74093 (5.5e-04) 0.95141 (2.2e-04)

ED + TrxAm + Coo 0.98695 (5.4e-05) 0.00019 (8.1e-06) 0.86861 (5.6e-04) 0.98593 (5.7e-05) 0.99795 (8.5e-05) 0.92434 (3.3e-04) 0.98052 (1.7e-04)

Exp. miss, c2 = 10

ED 0.93749 (7.2e-05) 0.00016 (9.6e-06) 0.36382 (9.4e-04) 0.93533 (7.5e-05) 0.99578 (2.3e-04) 0.58188 (7.4e-04) 0.93986 (2.9e-04)

ED + TrxAm 0.94668 (8.3e-05) 0.00011 (7.1e-06) 0.45706 (9.6e-04) 0.94428 (8.5e-05) 0.99763 (1.4e-04) 0.65604 (7.1e-04) 0.95141 (2.2e-04)

ED + TrxAm + Coo 0.98427 (6.8e-05) 0.00002 (2.4e-06) 0.83969 (7.0e-04) 0.98288 (7.3e-05) 0.99975 (2.6e-05) 0.90834 (4.1e-04) 0.98052 (1.7e-04)

Exp. miss, c2 = 50

ED 0.94663 (6.8e-05) 0.00340 (4.8e-05) 0.48690 (9.6e-04) 0.94702 (7.9e-05) 0.93949 (8.1e-04) 0.65468 (7.2e-04) 0.93986 (2.9e-04)

ED + TrxAm 0.95578 (7.7e-05) 0.00088 (2.5e-05) 0.55705 (8.2e-04) 0.95404 (7.5e-05) 0.98556 (4.1e-04) 0.72289 (6.2e-04) 0.95141 (2.2e-04)

ED + TrxAm + Coo 0.98636 (5.5e-05) 0.00011 (5.8e-06) 0.86187 (5.8e-04) 0.98522 (5.9e-05) 0.99872 (6.2e-05) 0.92082 (3.4e-04) 0.98052 (1.7e-04)

Expon., c3 = 1,000

ED 0.94653 (7.0e-05) 0.00326 (4.5e-05) 0.48452 (9.6e-04) 0.94679 (7.9e-05) 0.94154 (7.7e-04) 0.65384 (7.2e-04) 0.93987 (2.9e-04)

ED + TrxAm 0.95555 (7.5e-05) 0.00086 (2.3e-05) 0.55452 (8.4e-04) 0.95379 (7.5e-05) 0.98582 (3.9e-04) 0.72126 (6.3e-04) 0.95141 (2.2e-04)

ED + TrxAm + Coo 0.98631 (5.5e-05) 0.00011 (5.5e-06) 0.86134 (5.9e-04) 0.98516 (5.9e-05) 0.99876 (5.8e-05) 0.92053 (3.4e-04) 0.98052 (1.7e-04)

Expon., c3 = 2,000

ED 0.94844 (8.1e-05) 0.01060 (8.5e-05) 0.57154 (8.8e-04) 0.95506 (7.0e-05) 0.85423 (1.0e-03) 0.67376 (7.8e-04) 0.93987 (2.9e-04)

ED + TrxAm 0.96012 (8.5e-05) 0.00246 (3.1e-05) 0.61589 (8.0e-04) 0.95984 (8.1e-05) 0.96444 (4.4e-04) 0.75297 (6.0e-04) 0.95141 (2.2e-04)

ED + TrxAm + Coo0.98748 (5.2e-05) 0.00032 (1.0e-05) 0.87521 (5.5e-04)0.98662 (5.4e-05) 0.99663 (1.0e-04) 0.92749 (3.3e-04)0.98052 (1.7e-04)

Table 3: Simulated data: metrics for linear model (3.3) with c1 = {0.1, 0.2}, expected
miss model (3.4) with c2 = {10, 50}, exponential model (3.5) with c3 = {1, 000, 2, 000}
and α = 1.3367× 10−4, across different information schemes. For the third information
scheme, the bold font is used to highlight the best value of each metric across the
different models.

We may notice from Table 3 that an increase of the parameter c1 implies, for a given
information scheme, an increase of the FPR, TPR and NPV and a decrease of the Pr. It
is intuitively explained by the fact that when more importance is given to the losses due
to a detection delay, each cardholder threshold shifts downwards; then, since the score
process is independent of c1 (as we can see from the AUC which is the same across the
two values of c1), more fraudulent transactions are predicted. This leads to an increment
of the numerators of the FPR and the TPR, while their denominators, corresponding to
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Figure 4: Metrics from Table 3. For each metric, the corresponding values across the
three information schemes are shown: blue bars are for ED, green bars are for ED +
TrxAm and yellow bars are for ED + TrxAm + Coo. The numbering 1, . . . , 6 refers
to the models considered in Table 3: 1 and 2 are for the linear model when c1 is 0.1
and 0.2, respectively; 3 and 4 are for the expected miss model when c2 is 10 and 50,
respectively; 5 and 6 are for the exponential model with α = 1.3367× 10−4 when c3 is
1,000 and 2,000, respectively.

the actually legitimate and actually fraudulent transactions, remain unchanged. Lower
values of the cardholder thresholds also imply that, given that a purchase has been
labeled as fraudulent (resp. legitimate), there is a higher chance that it is legitimate,
causing a lower Pr (resp. higher NPV).

The third and fourth block of Tables 3 show the metrics for the expected miss
model (3.4) with c2 = 10 and c2 = 50, respectively. The fifth and sixth block of Table 3
contain the results for the exponential model (3.5) with c3 = 1,000 and c3 = 2,000,
respectively, when α = 1.3367 × 10−4. Considerations analogous to the ones of the
linear model apply to these cases as well.

Comparative performance analysis on simulated datasets

Models associated to the data mining techniques discussed in Section 2 can be used
as benchmark for the results of Table 3. These models have been trained for each of
the three information schemes on the initial dataset of Section 4.1 by using appropri-
ate built-in Matlab functions. For the logistic regression we used the glmfit function
by specifying the binomial distribution for the response variable; for the rule-based
methods we constructed decision trees based on the CART algorithm (see, e.g., Han
et al., 2012) via the fitctree function; for boosting, in order to mitigate the problem
of imbalanced data, we applied the RUSBoost (random undersampling boosting) al-
gorithm (Seiffert et al., 2008) by means of the fitcensemble function; for BART we
used the pbart function (from the BART R-package), setting the number of posterior
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draws for each transaction to 500; for random forests we employed the Breiman’s al-
gorithm (Breiman, 2001) via the TreeBagger function and we adopted 50 classification
trees; for the hidden Markov model we treated the dichotomous variable isTrxFraud
as the hidden state and the elapsed times, amounts and geographical coordinates as
the observable outcomes and we recovered the maximum likelihood estimates of the
transitions and outcomes probabilities through the function hmmestimate; for sup-
port vector machines the ISD (iterative single data) algorithm (Kecman et al., 2005)
has been used together with a Gaussian kernel for data separation via the fitcsvm
function; for neural networks we trained a feedforward network (a special type of
neural networks where there are not cycles among neurons, but information moves
forward from the input neurons, through the hidden layers, up to the output neu-
rons) with one hidden layer consisting of 10 neurons by means of the patternnet func-
tion.

Let us recall that the just cited classification methodologies may underperform when
the training data are skewed, like in our case where fraudulent transactions are 2.23%.
To overcome this problem and have more meaningful results, firstly data have been
balanced by drawing from the initial dataset random sub-samples characterized by a
fraud ratio of 10%; apart from boosting (where the RUSBoost algorithm balances data),
the algorithms have been subsequently calibrated on these sub-samples.

Figure 5: Metrics from Table 4. For each metric, the corresponding values across the
three information schemes are shown: blue bars are for ED, green bars are for ED +
TrxAm and yellow bars are for ED + TrxAm + Coo. LR, DT, Bo, BA, RF, HM, SV
and NN stand for logistic regression, decision trees, boosting, BART, random forests,
hidden Markov model, support vector machines and neural networks, respectively.

Table 4 shows the metrics across the three information schemes of the previous
classification models applied to the 20 simulated datasets described at the beginning of
Section 4.3. The sign “-” refers to the metrics that, according to their definition in the
Supplementary Material, were not computable. The content of Table 4 can be visualized
in Figure 5. We may notice that random forests, the hidden Markov model and support
vector machines keep the FPR low, while logistic regression, decision trees, boosting,
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Acc FPR TPR NPV Pr MCC AUC

Logistic regression

ED 0.90198 (1.1e-04) 0 (0) 0 (0) 0.90198 (1.1e-04) – – 0.90255 (1.2e-04)

ED + TrxAm 0.88915 (1.3e-04) 0.01915 (5.4e-05) 0.04529 (4.3e-04) 0.90447 (1.1e-04) 0.20443 (1.6e-03) 0.05502 (7.9e-04) 0.83843 (1.7e-04)

ED + TrxAm + Coo 0.88703 (1.4e-04) 0.04849 (1.0e-04) 0.29338 (6.2e-04) 0.92199 (1.0e-04) 0.39657 (9.7e-04) 0.25667 (8.4e-04) 0.76312 (3.2e-04)

Decision trees

ED 0.86205 (1.8e-04) 0.05333 (1.4e-04) 0.08340 (4.7e-04) 0.90480 (1.2e-04) 0.14526 (7.3e-04) 0.03879 (6.0e-04) 0.58334 (4.3e-04)

ED + TrxAm 0.86244 (1.5e-04) 0.05557 (1.0e-04) 0.10797 (4.2e-04) 0.90691 (1.2e-04) 0.17433 (6.9e-04) 0.06524 (5.7e-04) 0.58933 (5.2e-04)

ED + TrxAm + Coo 0.85678 (1.5e-04) 0.06793 (1.4e-04) 0.16375 (4.6e-04) 0.91120 (1.2e-04) 0.20751 (8.3e-04) 0.10665 (6.5e-04) 0.61562 (4.2e-04)

Boosting

ED 0.90140 (1.2e-04) 0.00361 (3.7e-05) 0.02731 (2.5e-04) 0.90409 (1.1e-04) 0.45087 (2.9e-03) 0.09169 (7.9e-04) 0.73675 (3.8e-04)

ED + TrxAm 0.89722 (1.3e-04) 0.01642 (4.8e-05) 0.10258 (4.7e-04) 0.90979 (1.2e-04) 0.40435 (1.5e-03) 0.16452 (8.8e-04) 0.70093 (3.8e-04)

ED + TrxAm + Coo 0.88781 (1.4e-04) 0.03425 (8.4e-05) 0.17032 (5.1e-04) 0.91465 (1.1e-04) 0.35069 (9.6e-04) 0.19001 (6.8e-04) 0.63085 (6.2e-04)

BART

ED 0.90181 (1.2e-04) 0 (0) 0 (0) 0.90181 (1.2e-04) – – 0.82557 (9.2e-05)

ED + TrxAm 0.89056 (1.7e-04) 0.02595 (1.4e-04) 0.12388 (5.4e-04) 0.91080 (1.2e-04) 0.34198 (1.6e-03) 0.15732 (9.3e-04) 0.78743 (2.7e-04)

ED + TrxAm + Coo 0.89366 (1.8e-04) 0.04428 (1.1e-04) 0.32373 (1.3e-03) 0.92846 (1.5e-04) 0.44321 (1.4e-03)0.32228 (1.3e-03)0.82511 (5.3e-04)

Random forests

ED 0.85395 (1.4e-04) 0.06426 (1.3e-04) 0.10132 (5.5e-04) 0.90560 (1.2e-04) 0.14626 (6.4e-04) 0.04380 (5.4e-04) 0.61043 (4.4e-04)

ED + TrxAm 0.89256 (1.1e-04) 0.01495 (5.3e-05) 0.04153 (3.2e-04) 0.90444 (1.2e-04) 0.23184 (1.4e-03) 0.05945 (7.0e-04) 0.68437 (3.0e-04)

ED + TrxAm + Coo 0.89708 (1.4e-04) 0.01017 (6.0e-05) 0.04322 (4.1e-04) 0.90443 (1.4e-04) 0.31572 (2.5e-03) 0.07447 (9.5e-04) 0.75034 (3.9e-04)

Hidden Markov model

ED 0.87514 (8.3e-04) 0.03259 (1.0e-03) 0.02606 (8.3e-04) 0.90138 (1.0e-04) 0.08001 (9.6e-04) −0.0109 (6.0e-04) 0.58427 (1.2e-03)

ED + TrxAm 0.89478 (6.6e-04) 0.00883 (7.9e-04) 0.00784 (7.7e-04) 0.90189 (1.1e-04) 0.08798 (3.0e-03) −0.0031 (8.3e-04) 0.50079 (4.0e-04)

ED + TrxAm + Coo 0.89170 (2.2e-03) 0.01284 (2.8e-03) 0.01288 (3.1e-03) 0.90203 (1.5e-04) 0.09401 (2.5e-03) −0.0006 (9.4e-04) 0.50135 (4.9e-04)

Support vector machines

ED 0.89966 (1.1e-04) 0.00257 (2.6e-05) 0 (0) 0.90175 (1.1e-04) 0 (0) −0.0158 (8.1e-05) 0.56803 (4.4e-04)

ED + TrxAm 0.88686 (1.3e-04) 0.02131 (9.3e-05) 0.04186 (2.8e-04) 0.90384 (1.2e-04) 0.17594 (1.1e-03) 0.04049 (5.8.e-04) 0.44465 (3.2e-04)

ED + TrxAm + Coo 0.89925 (1.4e-04)0.00492 (3.7e-05) 0.01698 (1.7e-04) 0.90309 (1.4e-04) 0.27276 (2.7e-03) 0.04605 (7.0e-04) 0.49969 (5.9e-04)

Neural networks

ED 0.88271 (1.2e-04) 0.02350 (2.1e-05) 0.01970 (2.2e-04) 0.90164 (1.2e-04) 0.08348 (8.7e-04) −0.0075 (4.5e-04) 0.89651 (1.3e-04)

ED + TrxAm 0.87334 (1.5e-04) 0.04126 (1.0e-04) 0.08752 (4.6e-04) 0.90627 (1.3e-04) 0.18730 (8.8e-04) 0.06578 (6.6e-04) 0.82018 (1.9e-04)

ED + TrxAm + Coo 0.87416 (1.5e-04) 0.06986 (9.4e-05) 0.35884 (8.5e-04)0.93034 (1.2e-04) 0.35810 (7.9e-04) 0.28870 (8.3e-04) 0.82494 (3.1e-04)

Table 4: Simulated data: metrics for logistic regression, decision trees, boosting, BART,
random forests, hidden Markov model, support vector machines and neural networks
across different information schemes. For the third information scheme, the bold font is
used to highlight the best value of each metric across the different models.

BART and neural networks have good results when the TPR is considered. Overall,
when the NPV, Pr, MCC and the AUC are also taken into account, the best results
are given by BART and the neural networks. When Tables 3 and 4 are compared, we
observe that the metrics of our proposed models are more satisfactory than those of
these classification methods.

Robustness

A calibrated model can also be assessed on its robustness to correctly identify “noisy”
transactions. To this aim, we considered three perturbed scenarios where transactions
were simulated by increasing the values of the cardholders specific attributes: the in-
tensity λ̂0, the mean μ̂0 and standard deviation σ̂0 of the logarithmic amounts and the
elements of the covariance matrices of the mixture of Gaussian distributions relative to
the transactions coordinates. We also considered the case where the underlying distri-
butional assumptions of the observed quantities are modified. Our conclusion is that our
model performs sufficiently well also with very noisy transactions; moreover, among the
other methodologies of Table 4, BART and neural networks show the best performance
also under stressed situations, even though their results are not as good as those of our
models. We refer to the Supplementary Material for a thorough analysis.
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Factors affecting the metrics on data simulation

At the beginning of Section 4.3 we discussed how transactions have been simulated.
Both for the cardholders and the fraudster, these transactions share the following fea-
tures with the real training dataset: (i) the average number of daily purchases; (ii) the
mean and the variance of the logarithmic expenditures; (iii) the mean vector and the
covariance matrix of the geographical coordinates of the merchants’ stores. However, it
is important to underline that in the simulated data: (iv) the fraud ratio is about 10%,
while in the training dataset it is about 2.23%; (v) no legitimate transactions occur once
a cardholder is hit by fraud, while in the training dataset we observe cases where there
are regular purchases between two fraudulent transactions.

In order to understand the possible bias induced by the last two factors and to assess
the impact on the final metrics, the simulation has been repeated. 20 new datasets with
the same size as the training dataset have been generated under three settings. Setting
1: the fraud ratio is reduced to 2.23%; setting 2: when a cardholder is hit by fraud,
legitimate purchases may occur after fraudulent transactions; setting 3: setting 1 and 2
are combined. Our trained models (3.3)–(3.5) have been subsequently used to score and
classify the transactions in each of these settings when all the attributes are observed.
Then, by means of ANOVA, the results have been compared with those of Table 3,
which we refer to as setting 0. The analysis is summarized in Figure 6.

Figure 6: FPR, TPR, NPV, Pr and AUC across the four different settings for the model
(3.3) with c1 = 0.1. For a given metric, the corresponding plot reports on the x-axis
its range and on the y-axis the four settings. For each setting a circle is placed on the
metric average, whose confidence interval is represented by an horizontal line passing
from the center of the circle; the averages of two settings are significantly different if
their intervals are disjoint. The circle associated with setting 0 (third line of the first
section in Table 3) is blue, while the other circles are red.

Figure 6 shows the metrics FPR, TPR, NPV, Pr and AUC across the different set-
tings for the trained model (3.3) with c1 = 0.1. We observe that we always reject the
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hypothesis that a metric mean remains equal across the settings. We also see that the
FPR increases from 8 × 10−5 to about 0.06 when we move from setting 0 to setting
2 and this can be explained by the fact that the score process Φα does not immedi-
ately fall below the cardholder’s optimal threshold when legitimate transactions occur
after fraudulent transactions, so that the former are misclassified. The TPR decreases
from 0.857 to about 0.64 when we move from setting 0 to setting 1 and 3 and this
is due to the fact that a small number of fraudulent transactions keeps Φα lower, so
that their identification is more difficult. The NPV increases from 0.98 to 0.99 when we
move from setting 0 to setting 1 and 3, because a lower number of fraudulent trans-
actions makes more likely that a purchase identified as legitimate is actually as such.
The Pr decreases from 0.99 to 0.59 and 0.41 when we move from setting 0 to setting
2 and 3, respectively, because when Φα exceeds the optimal threshold, it may take a
while before coming below the threshold in the presence of legitimate purchases oc-
curring after fraudulent transactions. The AUC gets slightly worse when moving away
from setting 0, because the correct identification of transactions becomes more diffi-
cult as explained for the previous metrics. Analogous results hold true for the other
models (3.4)–(3.5).

Generally speaking we can state that the since Φα is a Markov process and there-
fore depends on its past values, a different fraud ratio and/or a different mix between
fraudulent and legitimate transactions have non negligible impacts on the final metrics.
This finding is not true for the other methodologies of Table 4, where transactions are
treated as independent, in the sense that their temporal order is irrelevant. Indeed,
Figures 7 and 8 show that the FPR, TPR and AUC of boosting and neural networks
remain pretty stable across the four different settings, while the NPV and Pr increases
and decreases, respectively. Similar considerations hold true for the other analyzed data
mining techniques.

Figure 7: FPR, TPR, NPV, Pr and AUC across the four different settings for boosting.
The circle associated with setting 0 (third line of the “Boosting” section in Table 4) is
blue, while the other circles are red.
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Figure 8: FPR, TPR, NPV, Pr and AUC across the four different settings for neural
networks. The circle associated with setting 0 (third line of the “Neural Networks”
section in Table 4) is blue, while the other circles are red.

Additional simulations have been performed by fixing a lower fraud ratio (from 1.5%
to 0.05%) in setting 3. The results confirm the previous tendency: in our model, the
FPR falls below 1% and the TPR decreases up to 0.54; the NPV increases above 0.99
while the Pr falls to 0.31; the AUC decreases to 0.93. For boosting and neural networks
(with similar conclusions for the other techniques), the FPR, TPR and AUC remains
almost unchanged as in Figures 7–8; the NPV raises above 0.99, while the Pr decreases
to 0.002.

4.4 Models testing on real transactions

We tested our calibrated models also on real credit card transactions. We used the
transactions occurred between the 1st and the 7th of December 2016. Since not all the
4,077 cardholders of the initial dataset (which covers June – November 2016, see Sec-
tion 4.1) made purchases during this period, our testing dataset refers to 1,441 of them
and contains 4,237 transactions, of which 150 are fraudulent. Similarly to the analysis of
Table 3, we studied the performance of our models under the three information schemes
of Section 4.2; as benchmark we used the classification models of Table 4.

Table 5 and Figure 9 report the obtained results. For example, for the logistic re-
gression we see that when only the elapsed time between two consecutive transactions
is observed, all the legitimate transactions are labeled correctly, but all the fraudulent
transactions are not detected (the TPR is zero); however, when also the amounts and
the geographical coordinates are considered, the FPR rises to about 5.7%, but the TPR
increases to 32%. Similar considerations hold true for the other classification models,
for which the TPR usually increases as more information becomes available. If we con-
centrate on the most complete information scheme, we see that random forests, support
vector machines and BART are the most conservative in terms of the FPR (1.7%, 2.5%
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Acc FPR TPR NPV Pr MCC AUC

Logistic regression

ED 0.96479 0 0 0.96479 – – 0.37633

ED + TrxAm 0.95845 0.00827 0.04667 0.96632 0.17073 0.08125 0.60627

ED + TrxAm + Coo 0.92113 0.05693 0.32000 0.97330 0.17021 0.18370 0.66308

Decision trees

ED 0.92089 0.04841 0.08000 0.96592 0.05687 0.02682 0.40920

ED + TrxAm 0.90117 0.06910 0.08667 0.96543 0.04377 0.01271 0.59454

ED + TrxAm + Coo 0.92535 0.04622 0.14667 0.96838 0.10377 0.08512 0.59933

Boosting

ED 0.89131 0.07761 0.04000 0.96341 0.01846 −0.0261 0.62067

ED + TrxAm 0.91714 0.05158 0.06000 0.96509 0.04072 0.00699 0.62108

ED + TrxAm + Coo 0.92887 0.04355 0.17333 0.96942 0.12683 0.11176 0.63701

BART

ED 0.96479 0 0 0.96479 – – 0.56752

ED + TrxAm 0.94765 0.01946 0.04667 0.96573 0.08046 0.03544 0.61129

ED + TrxAm + Coo 0.94601 0.03041 0.30000 0.97433 0.26471 0.25385 0.76036

Random forests

ED 0.91925 0.05206 0.13333 0.96667 0.08547 0.03916 0.52379

ED + TrxAm 0.92700 0.04038 0.03333 0.96466 0.02924 −0.0035 0.62094

ED + TrxAm + Coo 0.95047 0.01678 0.05333 0.96575 0.10390 0.04504 0.77078

Hidden Markov model

ED 0.94531 0.02092 0.02000 0.96484 0.03370 0.00159 0.57551

ED + TrxAm 0.90423 0.06666 0.10667 0.96625 0.05517 0.02927 0.64705

ED + TrxAm + Coo 0.90258 0.06861 0.11333 0.96642 0.05685 0.03226 0.64707

Support vector machines

ED 0.96479 0 0 0.96479 – – 0.30394

ED + TrxAm 0.91643 0.05474 0.12667 0.96738 0.07786 0.05704 0.45921

ED + TrxAm + Coo 0.94155 0.02481 0.02000 0.96462 0.02857 −0.0057 0.91391

Neural networks

ED 0.96479 0 0 0.96479 – – 0.37633

ED + TrxAm 0.94390 0.02433 0.07333 0.96650 0.09909 0.05669 0.60823

ED + TrxAm + Coo 0.91385 0.06593 0.36000 0.97560 0.16615 0.20417 0.69502

Proposed model

ED 0.93132 0.04624 0.32000 0.97450 0.20253 0.22014 0.86351

ED + TrxAm 0.94147 0.04135 0.47333 0.98024 0.29583 0.34534 0.91630

ED + TrxAm + Coo 0.93114 0.06564 0.84138 0.99396 0.31443 0.48911 0.95955

Table 5: Real data: metrics for logistic regression, decision trees, boosting, BART, ran-
dom forests, hidden Markov model, support vector machines, neural networks and the
linear model (3.3) with c1 = 0.1, across different information schemes. For the third
information scheme, the bold font is used to highlight the best value of each metric
across the different models.

and 3%, respectively), while logistic regression, BART and neural networks are more

prone to detect fraud as their TPRs (higher than 30%) suggest. Let us specify that

the thresholds with which the fraudulent probabilities have been compared were fixed

to 0.1 for the logistic regression, 0.07 for BART, 0.08 for the hidden Markov model
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Figure 9: Metrics from Table 5. For each metric, the corresponding values across the
three information schemes are shown: blue bars are for ED, green bars are for ED +
TrxAm and yellow bars are for ED + TrxAm + Coo. LR, DT, Bo, BA, RF, HM, SV, NN
and PM stand for logistic regression, decision trees, boosting, BART, random forests,
hidden Markov model, support vector machines, neural networks and our proposed
model (3.3) with c1 = 0.1, respectively.

and 0.2 for the neural network (several threshold values have been tried, but those just
reported seem to return the best results). The linear model (3.3) with c1 = 0.1 shows
FPR values which are similar to those of the majority of the benchmark models (about
4% and 6.5% depending on the considered information scheme), but is also character-
ized by a much higher TPR (from about 32% to 84%), which denotes its good ability
to detect fraud. The good performance of our model is also confirmed by the value of
the AUC that for each information scheme far exceeds the ones of the benchmarks.
Moreover, our model is also fast: it takes 0.0014 seconds on average to score and classify
a transaction. Similar conclusions can be drawn when the other models of Table 3 are
considered.

5 Conclusions

In this work we addressed the problem of fraud detection in credit card transactions.
Our main contributions are: (i) the application of a new detection methodology based
on a Bayesian formulated optimal stopping problem, where the trade-off between an
early false detection and a late fraud discovery is taken into account and where the
cardholders’ expenditures process are assumed to evolve according to a univariate or
multivariate compound Poisson process. The Bayesian character of the problem rests
on the prior exponential distribution of the fraud time and on the use of posterior
probability process Π in (3.6) (or, equivalently, the generalized odds process Φα) as suf-
ficient statistics for the optimal detection strategy (3.11)–(3.12); (ii) the computation
of cardholders specific optimal thresholds with which posterior probabilities are com-
pared to discriminate between legitimate and fraudulent transactions. This is a direct
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consequence of the employed optimal stopping approach and allowed us to overcome the
hurdle of how to determine a decision threshold. The latter represents one of the main
critical issues in fraud detection problems, usually addressed in the available literature
by fixing an exogenous, cardholder independent and thus not personalized threshold.

The proposed models have been calibrated on a set of real credit card transactions,
under different information schemes involving part or all of the transactions attributes
at our disposal: elapsed days, amounts and geographical coordinates. Then, the models
have been applied to score simulated and real transactions and the results have been
compared with those of other data mining approaches. The following are our findings:
(iii) on simulated data with a high fraud ratio of 10% and all the fraudulent transac-
tions occurring after the legitimate ones, our models have superior performance than
that of the existing methodologies; (iv) under noisy simulated scenarios of legitimate
cardholders’ behavior, our method is robust enough to perform better than the existing
methodologies; (v) when data are simulated by weakening the conditions of point (iii),
the metrics returned by our models suffer a statistically significant worsening. This fact
is due to their Markovian nature, for which the temporal order of the transactions has
an important impact; instead, this limit does not affect the other classification tech-
niques, which treat data as independent; (vi) when real data are used for testing, the
FPR returned by our models is similar to that returned by the other methods, even
though the TPR, Pr and AUC metrics beat the benchmarks.

Let us observe that, unlike other methodologies used in fraud detection, our approach
is not a black box, since the target functions (3.3)–(3.5) are clearly stated and can
be computationally determined. The proposed models are also flexible, in the sense
that new attributes of a transaction can be incorporated, and very general, because
they could be applied to other frameworks, such as intrusions detection in government
or private network systems. Our models must be calibrated for each cardholder and
this is an advantage in that decisions are personalized, but, at the same time, also
presents three drawbacks: (a) an adequate computational power to speed up the training
phase is required; (b) the payment history of a cardholder needs to be sufficiently long
for a meaningful estimate of her behavior and, accordingly, (c) transactions of new
cardholders not present in the training dataset cannot be scored. Then, we believe that
future research in the area of fraud detection could be devoted to the development of
hybrid models that mix the existing data mining techniques with our proposal, in order
to fully exploit their potential. For example, a “two-steps” procedure could be adopted:
in the first step a standard technique is used; in the second step the proposed method
could ease the identification of the fraudulent transactions, among those to which a high
suspicious score has been previously assigned.

Supplementary Material

Supplementary Material for “Bayesian Quickest Detection of Credit Card Fraud” (DOI:
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