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38123 Povo TN, Italy
eSchool of Physical Sciences, NISER,

Bhubaneshwar, Khurda 752050, India
f Instituut voor Theoretische Fysica, KU Leuven,

Celestijnenlaan 200D, B-3001 Leuven, Belgium

E-mail: roberto.auzzi@unicatt.it, s.baiguera@campus.unimib.it,

a.legramandi@campus.unimib.it, giuseppe.nardelli@unicatt.it,

proy@niser.ac.in, nicolo.zenoni@unicatt.it

Abstract: We analytically compute subsystem action complexity for a segment in the

BTZ black hole background up to the finite term, and we find that it is equal to the

sum of a linearly divergent term proportional to the size of the subregion and of a term

proportional to the entanglement entropy. This elegant structure does not survive to more

complicated geometries: in the case of a two segments subregion in AdS3, complexity has

additional finite contributions. We give analytic results for the mutual action complexity

of a two segments subregion.

Keywords: AdS-CFT Correspondence, Black Holes

ArXiv ePrint: 1910.00526

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2020)066

mailto:roberto.auzzi@unicatt.it
mailto:s.baiguera@campus.unimib.it
mailto:a.legramandi@campus.unimib.it
mailto:giuseppe.nardelli@unicatt.it
mailto:proy@niser.ac.in
mailto:nicolo.zenoni@unicatt.it
https://arxiv.org/abs/1910.00526
https://doi.org/10.1007/JHEP01(2020)066


J
H
E
P
0
1
(
2
0
2
0
)
0
6
6

Contents

1 Introduction 1

2 Subregion complexity for a segment in AdS3 4

2.1 Bulk term 6

2.2 Null boundary counterterms 7

2.3 Joint terms 8

2.4 Complexities 9

3 Subregion complexity for a segment in the BTZ black hole 9

3.1 Bulk contribution 11

3.2 Null normals 12

3.3 Null boundaries and counterterms 13

3.4 Joint contributions 13

3.5 Complexities 14

4 Subregion complexity for two segments in AdS3 15

4.1 Bulk contribution 17

4.2 Counterterms 18

4.3 Joint contributions 18

4.4 Complexities 19

5 Mutual complexity 20

5.1 Strong super/subaddivity for overlapping segments 21

6 Conclusions 22

A Another regularization for the action of one segment in BTZ 23

A.1 Bulk contribution 24

A.2 Gibbons-Hawking-York contribution 25

A.3 Null boundaries counterterms 25

A.4 Joint terms 26

A.5 Complexity 27

1 Introduction

The AdS/CFT correspondence provides a controlled environment to investigate the deep

relation between quantum information and gravity. In holography, entanglement entropy

is proportional to the area of extremal surfaces [1]. This result provides a more general

framework to the idea that the black hole entropy is proportional to the area of the event
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horizon [2]. The issue of entanglement entropy in AdS/CFT has been studied in recent

years by many authors, see [3, 4] for reviews.

The desire of understanding the interior of the black hole horizon motivates the inves-

tigation of less traditional quantum information quantities. The growth of the Einstein-

Rosen bridge continues for a much longer time scale compared to the thermalization time,

where entanglement entropy saturates. This motivates the introduction in holography of

the new quantum information concept of computational complexity [5–8]. Given a set

of elementary quantum unitary operations and a reference state, quantum complexity is

heuristically defined as the minimal number of elementary operations needed to reach a

generic state starting from the reference one. Therefore complexity gives a measure of the

difficulty in preparing a given state starting from a simple reference state. A nice geomet-

rical formalism which involves geodesics in the space of unitary evolutions was introduced

in [9, 10]. In recent years, several attempts have been done to define complexity in quantum

field theory. When considering free field theories, it is possible to regularize the theory by

placing it on a lattice, which reduces the computation of complexity to the case of a set

of harmonic oscillators [11–15]. It is still challenging to define complexity for interacting

field theories. In 2 dimensions, an approach involving the Liouville action was proposed

in [16–18] and another based on Virasoro algebra was studied in [19]. Another approach,

which uses geodesics in the space of sources to define complexity, was investigated in [20].

A few proposals have been suggested for the holographic dual of complexity:

• complexity=volume (CV) [5–7] relates complexity to the volume V the extremal

surfaces anchored at the boundary

CV = Max

(
V

GL

)
, (1.1)

where G is the Newton constant and L the AdS length.

• complexity=action (CA) [21, 22] relates it to the action evaluated on the Wheeler-

De Witt (WDW) patch, which is the domain of dependence of the volume extremal

surface

CA =
IWDW

π
. (1.2)

• complexity=spacetime volume (CV 2.0) [23] links complexity with the spacetime

volume V̂ of the WDW patch

CV 2.0 =
V̂

GL2
. (1.3)

Holographic complexity has been recently studied by many groups in various asymptotically

AdS gravity backgrounds, see for example [24–38]. The study of holographic complexity

can be generalized also to spacetimes with other UV asymptotics, such as Lifshitz theories

and Warped AdS black holes, see e.g. [39–43].

An interesting extension of the holographic complexity conjecture is to consider restric-

tions to subregions of the boundary conformal field theory. This is physically motivated by

analogy with the entanglement entropy. Each of the holographic complexity conjectures

has a natural subregion generalization:
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• the subregion CV [45] proposes that the complexity associated to a boundary region

A is proportional to the volume of the extremal spatial volume bounded by A and

by its Hubeny-Rangamani-Takayanagi (HRT) surface [46].

• subregion CA [47] (or CV 2.0) proposes that the subregion complexity is given by the

action (or the spacetime volume, respectively) of the intersection between the WDW

patch and the entanglement wedge [44].

Subregion complexity has been recently studied by many authors, e.g. [48–60]. A few

options for the quantum information dual of holographic subregion complexity have been

proposed, such as purification or basis complexity [51]. In order to identify the correct

quantum field theory dual, it is necessary to compute subregion complexity in many phys-

ical situations.

In this paper we study the CA and CV 2.0 conjectures for subregions in asymptotically

AdS3 spacetime. We find the following analytic result for the subregion complexity of a

segment of length l in the BTZ [61, 62] black hole background:

CBTZ
A =

l

ε

c

6π2
log

(
L̃

L

)
− log

(
2L̃

L

)
SBTZ

π2
+

1

24
c , (1.4)

where L̃ is a free scale of the counterterm in the action [24], ε is the UV cutoff, c the CFT

central charge and SBTZ the Ryu-Takayanagi (RT) entanglement entropy of the segment

subregion. Equation (1.4) is also valid for the particular case of AdS3, which was previously

studied in [28, 47]. We find a similar expression also for the CV 2.0 conjecture, see eq. (3.30).

The compact expression (1.4) follows from surprising cancellations in the lengthy direct

calculation that we performed. In particular, the log divergence and part of the finite

contribution sum up to reproduce a term proportional to the entanglement entropy. This

fact does not look as a coincidence and calls for a physical interpretation. Note that both the

coefficients of the linear and log divergent terms in (1.4) depend on the counterterm scale L̃.

We should choose L̃ > L in order to have a positive-definite complexity; consequently, the

coefficient of the entropy term in eq. (1.4) must be negative. Apart from this restriction, L̃

is not specified and its physical meaning is still obscure; it might be related to the details

of the regularization procedure that must be implemented to define complexity on the

quantum field theory side. We leave these topics for further investigation.

One may wonder if such a simple connection between subregion complexity and en-

tanglement entropy is valid also for more general subsystems. For this reason, we compute

action complexity in the case of a two segments subregion in AdS3. This quantity has as

before a linear divergence proportional to the total size of the region and a log divergence

proportional to the divergent part of the entropy. However, if the separation between the

two disjoint segments is small, there is no straightforward relation between the finite part

of complexity and entropy, see eq. (4.23).

The paper is organised as follows. In section 2 we review the subregion complexity

calculation for a segment in AdS3. In section 3 we compute the subregion complexity for

a segment in the BTZ background, and we show that it is related to the entanglement
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entropy. In section 4 we calculate subregion complexity for two disjoint segments in AdS3.

In section 5 we discuss mutual complexity. In appendix A we compute the single segment

subregion complexity in the BTZ background with a different regularization.

Note added: while we were finalizing the writing of this paper, ref. [63] appeared on

the arXiv. They also suggest a relation between terms in subregion complexity and en-

tanglement entropy. In particular, in their eqs. (7.8) and (7.9), they guess (supported by

numerics) some expressions for subregion CA and CV 2.0 for a segment in global AdS3.

These expressions should be connected via analytic continuation to our calculations for

subregion complexity of a segment in BTZ, eq. (1.4) and (3.30).

2 Subregion complexity for a segment in AdS3

It is useful to review the AdS3 calculation [28, 47, 63] to set up the notation and the

procedure, and as a warm-up for the more complicated BTZ case. because afterwards we

will be interested in the more complicated BTZ case. Let us consider gravity with negative

cosmological constant in 2 + 1 dimensions

S =
1

16πG

∫ (
R+

2

L2

)√
−g d3x , (2.1)

which has as a solution AdS3 spacetime, whose metric in Poincaré coordinates reads

ds2 =
L2

z2

(
−dt2 + dz2 + dx2

)
. (2.2)

The AdS curvature is R = −6/L2 and L is the AdS length. The central charge of the dual

conformal field theory is:

c =
3L

2G
. (2.3)

Two common regularizations [47] are used in the CA conjecture (see figure 1):

• Regularization A: the WDW patch is built starting from the boundary z = 0 of the

spacetime and a cutoff is then introduced at z = ε.

• Regularization B: the WDW patch is built from the surface z = ε.

We will mostly use regularization B; comparison with regularization A is discussed in

appendix A.

We consider a subregion on the boundary given by a strip of length l and for conve-

nience we take x ∈
[
− l

2 ,
l
2

]
, at the constant time slice t = 0. The geometry relevant to the

computation of action complexity is the intersection between the entanglement wedge [44]

of the subregion with the WDW patch [21, 22], see figure 2. We will consider all the

contributions to the action involving null surface and joint terms introduced in [24]. The

intersection point between the WDW patch, the entanglement wedge and the boundary at

z = 0, x = ±l/2 gives a codimension-3 joint, that a priori can contribute. This kind of joint

exists just in regularization B; we will check that regularization A gives a similar result in

appendix A. So we believe that this joint at most shifts the action of an overall constant.
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Figure 1. The two regularizations commonly used in the CA conjecture.

zint(x)

zRT(x)

x

z

Figure 2. Left: intersection of WDW patch with entanglement wedge in the (x, z, t) space. The

boundary of the entanglement wedge is in yellow, while the boundary of the WDW patch is in red.

Right: intersections in the (x, z) plane, with zRT in black, zint in blue and the cutoff z = ε in red.

We use regularization B with a cutoff a z = ε. The Ryu-Takayanagi (RT) surface [1]

is given by the space-like geodesic:

t = 0 , z2 + x2 =

(
l

2

)2

, (2.4)

which is a circle of radius l/2. It is convenient to introduce:

zRT =

√(
l

2

)2

− x2 . (2.5)

The entanglement wedge is a cone whose null boundaries are parameterized by

tEW = ±
(
l

2
−
√
z2 + x2

)
. (2.6)
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The boundaries of the WDW patch, which are attached to the regulator surface, are de-

scribed by the equations

tWDW = ± (z − ε) . (2.7)

The intersection curve between the null boundary of the WDW patch and the one of the

entanglement wedge is

zint =
(l + 2ε)2 − 4x2

4(l + 2ε)
or xint =

1

2

√
(l + 2ε)(l − 4z + 2ε) . (2.8)

The UV cutoff ε for the radial coordinate z intersects the RT surface at the following

value of x:

xmax =

√(
l

2

)2

− ε2 . (2.9)

This shift from x = l/2 is necessary for a correct regularization of the on-shell action.

Following [24], the action includes several terms

I = Ibulk + Ib + Ict + IJ , (2.10)

where Ibulk is the bulk term (see eq. (2.1)), Ib the null boundary term (see (2.15)), Ict the

counterterm (2.19) and IJ the null joint contribution (2.22).

2.1 Bulk term

The curvature is constant and so the Einstein-Hilbert term (2.1) is proportional to the

spacetime volume. We can split the bulk contribution in two parts, based on the intersection

between the WDW patch and the entanglement wedge, which we parametrize with the

function zint(x). In the first region the WDW patch is subtended by the entanglement

wedge. Consequently, we integrate along time 0 ≤ t ≤ tWDW(z), then the radial direction

along ε ≤ z ≤ zint(x), and finally along the coordinate 0 ≤ x ≤ xmax:

I1
bulk = − L

4πG

∫ xmax

0
dx

∫ zint

ε
dz

∫ tWDW

0
dt

1

z3
(2.11)

In the second region the entanglement wedge is under the WDW patch, then the integration

involves the endpoints 0 ≤ t ≤ tEW(z, x), zint(x) ≤ z ≤ zRT(x) and finally 0 ≤ x ≤ xmax :

I2
bulk = − L

4πG

∫ xmax

0
dx

∫ zRT

zint

dz

∫ tEW

0
dt

1

z3
(2.12)

A direct evaluation of the integrals gives:

I1
bulk = − L

16πG

l

ε
− L

4πG
log

(
ε

l

)
− L

8πG
.

I2
bulk =

L

8πG
log

(
ε

l

)
+
L(π2 + 8)

64πG
. (2.13)

The total result of the bulk action is:

IAdS
bulk = 4(I1

bulk + I2
bulk) = − L

4πG

l

ε
+

L

2πG
log

(
l

ε

)
+

Lπ

16G
. (2.14)
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2.2 Null boundary counterterms

A hypersurface described by the scalar equation Φ(xa) = 0 has a normal vector ka = −∂aΦ.

If the hypersurface is null, kak
a = 0 and then it can be shown [64] that the hypersurface is

generated by null geodesics, which have kα as a tangent vector.

In correspondence of a null boundary, the following term should be added to the

action [24]:

Ib =

∫
dS dλ

√
σκ , (2.15)

where λ is the geodesic parameter, S the transverse spatial directions, σ is the determinant

of the induced metric on S and κ is defined by the geodesic equation

kµDµk
α = κ kα . (2.16)

In our case, the null normals to the WDW patch and the entanglement wedge are given

respectively by the following 1-forms:

k± = α (±dt− dz) , w± = β

(
±dt+

zdz√
z2 + x2

+
xdx√
z2 + x2

)
, (2.17)

where α, β are arbitrary constants that will cancel in the final result. We denote by (k±)µ

and (w±)µ the corresponding vectors. It can be checked that they correspond to an affine

parametrization of their null surfaces, i.e.

(k±)µDµ(k±)α = 0 , (w±)µDµ(w±)α = 0 . (2.18)

The term (2.15) vanishes in our calculation because we used an affine parameterization,

see eq. (2.18).

We still need to include the contribution from the counterterm, which ensures the

reparameterization invariance of the action:

Ict =
1

8πG

∫
dλ dS

√
σΘ log

∣∣∣L̃Θ
∣∣∣ , (2.19)

where Θ is the expansion scalar of the boundary geodesics and L̃ is an arbitrary scale. If

an affine parameterization is used, we can use the result [64]

Θ = Dµk
µ . (2.20)

We can then evaluate eq. (2.19) on each boundary:

• The counterterm on the entanglement wedge boundary vanishes because Θ = 0. This

agrees with the calculations in [44].

• For the boundary of the WDW patch we obtain:

IWDW
ct = − L

2πG

∫ xmax

0
dx

∫ zint

ε

dz

z2
log

∣∣∣∣∣αL̃zL2

∣∣∣∣∣
=

L

4πG

l

ε

[
1 + log

(
α
L̃ε

L2

)]
+

L

4πG
log

(
ε

l

)
log

(
α2 εlL̃

2

L4

)
+

L

2πG
log
(ε
l

)
+

Lπ

12G
. (2.21)
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2.3 Joint terms

The contribution to the gravitational action coming from a codimension-2 joint, given by

intersection of two codimension-1 null surfaces [24], is

IJ =
η

8πG

∫ xmax

−xmax

dx
√
σ log

∣∣∣a1 · a2
2

∣∣∣ (2.22)

where σ is the induced metric determinant on the codimension-2 surface, a1 and a2 are the

null normals to the two intersecting codimension-1 null surfaces and η = ±1. The overall

sign η can be determined as follows: if the outward direction from a given null surface

points to the future, we should assign η = 1 if the joint is at the future of the null surface,

and η = −1 if it is at the past. If the outward direction from a given null surface points to

the past, η = −1 if the joint is at the future, and η = 1 if it is at the past.

The four joints give the following contributions:

• The first joint is at the cutoff z = ε; we find

√
σ =

L

ε
, log

∣∣∣∣k− · k+

2

∣∣∣∣ = log

∣∣∣∣α2 ε
2

L2

∣∣∣∣ , (2.23)

and then from the general expression (2.22)

Icutoff
J = − L

4πG

l

ε
log

(
α
ε

L

)
. (2.24)

• The second joint to compute involves the RT surface:

√
σ =

2lL

l2 − 4x2
, log

∣∣∣∣w+ ·w−

2

∣∣∣∣ = log

∣∣∣∣β2 l
2 − 4x2

4L2

∣∣∣∣ , (2.25)

which gives

IRT
J =

L

4πG
log
(ε
l

)
log

(
β2εl

L2

)
+

Lπ

48G
. (2.26)

• The last joint terms come from the intersections between the null boundaries of the

WDW patch and the ones of the entanglement wedge:

√
σ =

4L(l + 2ε)

(l − 2x+ 2ε)(l + 2x+ 2ε)
, (2.27)

log

∣∣∣∣k+ ·w+

2

∣∣∣∣ = log

∣∣∣∣(l − 2x+ 2ε)(l + 2x+ 2ε)

4L(4x2 + (l + 2ε)2)

∣∣∣∣2 . (2.28)

Therefore the joints evaluate to

I int
J = − L

2πG
log
(ε
l

)
log

(
αβ

2

εl

L2

)
− 5πL

48G
. (2.29)
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Summing all the joint contributions we find

Itot
J = − L

4πG

l

ε
log

(
α
ε

L

)
+

L

4πG
log

(
ε

l

)
log

(
4L2

α2εl

)
− πL

12G
. (2.30)

Note that the dependence on the normalization constant β of the normals cancels in (2.30);

this is due to the fact that the null surfaces which have the RT surface as boundaries

have vanishing expansion parameter Θ. Also, when summing the joint term (2.30) with

the counterterm contribution (2.21) the double log terms cancel and the dependence on

α cancels.

2.4 Complexities

Summing all the contributions, the action complexity is:

CAdS
A =

IAdS
tot

π
=

c

3π2

{
l

2ε
log

(
L̃

L

)
− log

(
2L̃

L

)
log

(
l

ε

)
+
π2

8

}
. (2.31)

Instead, from eq. (2.14), the spacetime volume complexity is:

CAdS
V 2.0 =

2

3
c

{
l

ε
− 2 log

(
l

ε

)
− π2

4

}
. (2.32)

Both the calculations are in agreement with [63]. In both the expressions for the complexity

we recognize a term proportional to the entanglement entropy of the segment:

SAdS =
c

3
log

(
l

ε

)
. (2.33)

This suggests that the complexity for a single interval has a leading divergence proportional

to the length of the subregion on the boundary, a subleading divergence proportional to

the entanglement entropy and a constant finite piece. We test this expression for the BTZ

case in the next section.

3 Subregion complexity for a segment in the BTZ black hole

We consider the metric of the planar BTZ black hole in 2+1 dimensions with non-compact

coordinates (t, z, x)

ds2 =
L2

z2

(
−fdt2 +

dz2

f
+ dx2

)
, f = 1−

(
z

zh

)2

, (3.1)

where L is the AdS radius and zh is the position of the horizon. The mass, the temperature

and the entropy are:

M =
L2

8Gz2
h

, T =
1

2πzh
, S =

πL2

2Gzh
. (3.2)

The geometry needed to evaluate the subregion complexity for a segment is shown in

figure 3
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zint(x)

zRT(x)

x

z

Figure 3. Region relevant to the action computation for a segment in the BTZ case, for l = 5.

Left: intersection of WDW patch with entanglement wedge in the (x, z, t) space. The boundary

of the entanglement wedge is in yellow, while the boundary of the WDW patch is in red. Right:

intersections in the (x, z) plane, with zRT in black, zint in blue and the cutoff z = ε in red.

The RT surface is a spacelike geodesic which lies on a constant time slice t = 0 and

which is anchored at the edges of the boundary subregion [68]:

x±(z) =
1

4
zh

log

(
J + 1

J − 1

)2

+ log

z2
h − Jz2 ±

√
z4
h − (1 + J2) z2

hz
2 + J2z4

z2
h + Jz2 ±

√
z4
h − (1 + J2) z2

hz
2 + J2z4

2
 , (3.3)

where

J = coth

(
l

2zh

)
. (3.4)

The turning point of the geodesic is at x±(z∗) = 0, where

z∗ = zh tanh

(
l

2zh

)
. (3.5)

Since z∗ < zh for every value of the boundary subregion size l, the geodesic never penetrates

inside the event horizon of the black hole. It is convenient to invert eq. (3.3):

zRT = zh

√√√√√cosh
(
l
zh

)
− cosh

(
2x
zh

)
cosh

(
l
zh

)
+ 1

. (3.6)

In our static case, the entanglement wedge coincides with the causal wedge [65–67],

which can be constructed by sending null geodesics from the causal diamond on the bound-

– 10 –
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ary into the bulk. The explicit expressions of such geodesics are [66]

x̃EW(z, j) =
zh
2

log


√
z2
h + j2(z2 − z2

h) + jz√
z2
h + j2(z2 − z2

h)− jz

 ,

t̃EW(z, j) = ±

 l
2

+
zh
2

log


√
z2
h + j2(z2 − z2

h)− z√
z2
h + j2(z2 − z2

h) + z

 . (3.7)

We obtain an analytical expression for the boundary of the entanglement wedge in terms

of a unique explicit relation between (t, z, x) by determining j = j(z, x) from the first

equation in (3.7) and then inserting it into the second equation of (3.7). The result can be

written as

tEW = ±

 l2 − zh arccoth


√

2zh cosh
(
x
zh

)
√

2z2 + z2
h cosh

(
2x
zh

)
− z2

h


 . (3.8)

The WDW patch is delimited by the radial null geodesics:

tWDW = ±zh
4

log

(
zh + z

zh − z
zh − ε
zh + ε

)2

. (3.9)

The intersection between the boundary of the WDW patch and the entanglement wedge is:

tint = tWDW , zint = zh
cosh

[
l

2zh
+ arctanh

(
ε
zh

)]
− cosh

(
x
zh

)
sinh

[
l

2zh
+ arctanh

(
ε
zh

)] . (3.10)

We plot this curve in figure 3.

As in the AdS case, we denote by xmax the maximum value of the transverse coordinate,

which is reached when we evaluate the RT surface at z = ε:

xmax = zh arccosh

[√
1− ε2

z2
h

cosh

(
l

2zh

)]
. (3.11)

3.1 Bulk contribution

We split the integration region as in the AdS case, see eqs. (2.11), (2.12). The total bulk

action then is Ibulk = 4(I1
bulk + I2

bulk). A direct calculation gives:

Ibulk =
L

8πGzh

∫ xmax(ε)

0
dx

 4 sinh
[

l
2zh

+ arctanh
(
ε
zh

)]
cosh

(
l

2zh
+ arctanh

(
ε
zh

))
− cosh

(
x
zh

) − 4zh
ε

+2 coth

(
x

zh

)
log

∣∣∣∣∣∣
sinh

(
l−2x
2zh

)
sinh2

[
l+2x+2zh arctanh(ε/zh)

4zh

]
sinh

(
l+2x
2zh

)
sinh2

[
l−2x+2zh arctanh(ε/zh)

4zh

]
∣∣∣∣∣∣
 .

(3.12)

This integral can be computed analytically, and gives the CV 2.0 complexity in eq. (3.30).
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3.2 Null normals

In order to compute the counterterms due to the null surfaces and the joint contributions,

the null normals are needed. It is convenient to use an affine parameterization, which can

be found using the following Lagrangian description of geodesics:

L =
L2

z2

(
−f(z) ṫ2 +

ż2

f(z)
+ ẋ2

)
(3.13)

where the dot represents the derivative with respect to the affine parameter λ. Since the

Lagrangian does not depend on t and x, we have two constants of motion

E = −1

2

∂L
∂ṫ

=
L2

z2
f(z) ṫ , J =

1

2

∂L
∂ẋ

=
L2

z2
ẋ . (3.14)

Imposing the null condition L = 0 and making use of eq. (3.14) leads to

ż = ± z2

L2

√
E2 − J2f(z) . (3.15)

Therefore, from eqs. (3.14) and (3.15), the tangent vector to the null geodesic is

V µ =
(
ṫ, ż, ẋ

)
=

(
z2

L2f(z)
E, ± z2

L2

√
E2 − J2f(z),

z2

L2
J

)
. (3.16)

Lowering the contravariant index with the metric tensor, we get the normal 1-form to the

null geodesic

V = Vµdx
µ = −E dt ±

√
E2 − J2f(z)

f(z)
dz + J dx . (3.17)

The null geodesics which bound the WDW patch are x-constant curves, and so J = 0.

This gives the following normals:

k+ = k+
µ dx

µ = α

(
dt− dz

f(z)

)
, k− = k−µ dx

µ = α

(
− dt− dz

f(z)

)
, (3.18)

where α is an arbitrary constant.

The null geodesics that bound the entanglement wedge are normal to the RT sur-

face, i.e.

Vµ
dXµ

RT (x)

dx
= 0 , Xµ

RT(x) = (0, zRT , x) , (3.19)

where zRT is given in eq. (3.6). With this condition and eqs. (3.17) and (3.19), we find

a relation between the two constants of motion E and J which then gives (for t > 0 and

t < 0 respectively)

w± = w±µ dx
µ = β (±dt+ a dz + b dx) , (3.20)

where

a =
e
− x

zh

(
e

2x
zh + 1

)
zz2
h(

z2
h − z2

)√
4z2 + e

− 2x
zh

(
e

2x
zh − 1

)2

z2
h

, b =
e
− x

zh

(
e

2x
zh − 1

)
zh√

4z2 + e
− 2x

zh

(
e

2x
zh − 1

)2

z2
h

. (3.21)
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3.3 Null boundaries and counterterms

The term in eq. (2.15) vanishes because we used an affine parameterization. The countert-

erm in eq. (2.19) gives:

• For the null normals of the boundary of the entanglement wedge, this contribution

vanishes because Θ = Dµ(w±)µ = 0.

• For the null normals of the boundary of the WDW patch, a direct calculation gives

Θ = αz
L2 and:

IWDW
ct = − L

2πG

∫ xmax

0
dx

∫ zint(x)

ε
dz

1

z2
log

∣∣∣∣∣ L̃L2
αz

∣∣∣∣∣
=

L

2πG

∫ xmax

0
dx

1 + log
∣∣∣ L̃L2 αε

∣∣∣
ε

+
sinh

(
l

2zh
+ arctanh

(
ε
zh

))
zh

[
cosh

(
x
zh

)
− cosh

(
l

2zh

)
+ arctanh

(
ε
zh

)]
×

1 + log

∣∣∣∣∣∣ L̃zhαL2

cosh
(

l
2zh

+ arctanh
(
ε
zh

))
− cosh

(
x
zh

)
cosh

(
l

2zh
+ arctanh

(
ε
zh

))
∣∣∣∣∣∣
 .

(3.22)

3.4 Joint contributions

We evaluate the joint terms in eq. (2.22):

• The joint at the cutoff gives:

Icutoff
J = − L

4πG

∫ xmax

0

dx

ε

∣∣∣∣ α2 z2
h ε

2

L2(z2
h − ε2)

∣∣∣∣ . (3.23)

• The joint at the RT surface:

IRT
J = − L

4πGzh

∫ xmax

0
dx

sinh
(
l
zh

)
cosh

(
l
zh

)
− cosh

(
2x
zh

) log

∣∣∣∣∣∣β
2z2
h

2L2

cosh
(
l
zh

)
− cosh

(
2x
zh

)
cosh2

(
x
zh

)
∣∣∣∣∣∣ .

(3.24)

• The joints coming from the intersection between the null boundaries of the WDW

patch and the ones of the entanglement wedge give:

I int
J =

L

2πGzh

∫ xmax

0
dx

sinh
(

l
2zh

+ arctanh
(
ε
zh

))
cosh

(
l

2zh
+ arctanh

(
ε
zh

))
− cosh

(
x
zh

)
× log

∣∣∣∣∣∣∣
ex/zhαβz2

h

L2

[
cosh

(
l

2zh
+ arctanh

(
ε
zh

))
− cosh

(
x
zh

)]2

1 + e2x/zh cosh
(

l
2zh

+ arctanh
(
ε
zh

))
− 2ex/zh

∣∣∣∣∣∣∣ .
(3.25)

All the joints contributions and the counterterm are regularized by the cutoff ε.
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3.5 Complexities

We performed all the integrals analytically and we further simplified the result using various

dilogarithm identities, including the relation:

8 Re

[
Li2

(
1 + ie

y
2

1 + e
y
2

)
− Li2

(
1

1 + e
y
2

)
− Li2

(
1 + ie

y
2

)
− Li2

(
e

y
2 − i

1 + e
y
2

)]

= −7π2

6
+ 4

(
log
(

1 + e
y
2

))2
+ log 2

[
2y − 4 log

(
ey − 1

y

)
+ 4 log

(
2

y
sinh

y

2

)]
,

(3.26)

which can be proved by taking a derivative of both side of the equation with respect to y.

The action subregion complexity then is:

CBTZ
A =

c

3π2

{
l

2ε
log

(
L̃

L

)
− log

(
2L̃

L

)
log

(
2zh
ε

sinh

(
l

2zh

))
+
π2

8

}
. (3.27)

Introducing the entanglement entropy of an interval

SBTZ =
c

3
log

(
2zh
ε

sinh

(
l

2zh

))
, (3.28)

we can then write it in this form

CBTZ
A =

l

ε

c

6π2
log

(
L̃

L

)
− log

(
2L̃

L

)
SBTZ

π2
+

1

24
c . (3.29)

By integration of (3.12), the subregion spacetime complexity is

CBTZ
V 2.0 =

2c

3

l

ε
− 4SBTZ − π2

6
c . (3.30)

The divergencies of eqs. (3.29) and (3.30) are the same as in the AdS case eqs. (2.31)

and (2.32), which is recovered for zh = 0.

A useful cross-check can be done in the l� zh limit. Keeping just the terms linear in

l in eq. (3.27), we find agreement with the subregion complexity CBTZ,R
A computed for one

side of the Kruskal diagram, see [51, 52]:

CBTZ,R
A =

c

6

l

π2

[
1

ε
log

(
L̃

L

)
− 1

zh
log

(
2L̃

L

)]
. (3.31)

Note that in this limit the log ε divergence disappears because it is suppressed by the

segment length l.

For comparison, the volume complexity of an interval for the BTZ [45, 49] is:

CBTZ
V =

2 c

3

(
l

ε
− π

)
, (3.32)
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and it is non-trivially independent on temperature. Subregion CV at equilibrium is a topo-

logically protected quantity: for multiple intervals, the authors of [49] found the following

result using the the Gauss-Bonnet theorem

CAdS
V = CBTZ

V =
2 c

3

(
ltot

ε
+ κ

)
, (3.33)

where ltot is the total length of all the segments and κ is the finite part, that depends on

topology

κ = −2πχ+
π

2
m, (3.34)

where χ is the Euler characteristic of the extremal surface (which is equal to 1 for a disk) and

m is the number of ninety degrees junctions between RT surface and boundary segments.

It would be interesting to see if a similar result could be established for the CA and CV

2.0 conjecture. This motivates us to study the two segment case in the next section.

4 Subregion complexity for two segments in AdS3

In this section we evaluate the holographic subregion action complexity for a disjoint sub-

region on the AdS3 spacetime’s boundary. We consider two segments of size l with a

separation equal to d, located at the spacetime’s boundary on the constant time slice

t = 0. For simplicity, we work with a symmetric configuration, in which the two boundary

subregions are respectively given by x ∈ [−l − d/2,−d/2] and x ∈ [d/2, l + d/2]. Accord-

ing to the values of the subregions size l and of the separation d, there are two possible

extremal surfaces anchored at the boundary at the edges of the two subregions [3, 4]:

• The extremal surface (which in this number of dimension is a geodesic) is given by the

union of the RT surfaces for the individual subregions. This is the minimal surface

for d > d0, where d0 is a critical distance.

• The extremal surface connects the two subregions. This configuration is minimal for

d < d0.

The two cases are shown in figure 4. The geodesic with the minimal area provides the

holographic entanglement entropy for the union of the disjoint subregions. The critical

distance corresponds to the distance for which both the extremal surfaces have the same

length, i.e.

d0 = (
√

2− 1)l . (4.1)

In the first configuration (see left in figure 4), we have two non-intersecting entangle-

ment wedges and so

C1
A = 2 CAdS

A , C1
V 2.0 = 2 CAdS

V 2.0 . (4.2)

For the second configuration (right in figure 4), we must perform a new computation.

The spacetime region of interest is symmetric both with respect to the x = 0 slice and to

the t = 0 one. As a consequence, we can evaluate the action on the region with t > 0 and
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Figure 4. The possible RT surfaces for disjoint subregions of length l = 0.5 with a separation

d = 1, on the slice t = 0.

xmaxxmin xint

1

2

3

4

5

6

7

x

z

Figure 5. Left: bulk region relevant to the action subregion calculation for two segments in AdS.

Right: projection in the (x, z) plane. The regions in which the bulk integral is splitted are numbered.

x > 0 and introduce opportune symmetry factors. A schematic representation is shown in

figure 5.

The RT surface is the union of the spacelike geodesics anchored at the edges of the

region x ∈ [−l − d/2, l + d/2] and x ∈ [−d/2, d/2]. We will denote such geodesics as RT1

and RT2 respectively:

zRT1(x) =

√(
2l + d

2

)2

− x2 , zRT2(x) =

√(
d

2

)2

− x2 . (4.3)

With the introduction of the cutoff surface at z = ε, RT2 is truncated at x = xmin and

RT1 at x = xmax, defined by

xmin =

√(
d

2

)2

− ε2 , xmax =

√(
d+ 2l

2

)2

− ε2 . (4.4)

The null boundaries of the entanglement wedge can be built by sending null geodesics from

RT1 and RT2:

tEW1 =
2l + d

2
−
√
z2 + x2 , tEW2 = −d

2
+
√
z2 + x2 . (4.5)

The WDW patch, anchored at the cutoff in the present regularization, is bounded by the

null surface

tWDW = z − ε . (4.6)
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The intersection curve E between the null boundaries of the entanglement wedge,

(built from RT1 and RT2, see eq. (4.5)) is

tE =
l

2
, zE =

1

2

√
(d+ l)2 − 4x2 . (4.7)

The intersection F between the boundary of the WDW patch eq. (4.6) and the null surface

anchored at RT1 is:

tF =
1

4

[
d+ 2 (l − ε)− 4x2

d+ 2 (l + ε)

]
, zF = tF + ε . (4.8)

The intersection G between the WDW patch eq. (4.6) and the null surface anchored at

RT2 gives

tG = −d
4

+
x2

d− 2ε
− ε

2
, zG = tG + ε . (4.9)

The intersection among the three curves described above (obtained solving the condition

zE = zF = zG) gives

xint(ε) =

√
(d− 2ε) [d+ 2 (l + ε)]

2
. (4.10)

4.1 Bulk contribution

As shown in figure 5, the total bulk contribution can be divided into 7 parts for computa-

tional reasons:

Ibulk = 4

7∑
i=1

Iibulk , (4.11)

where

I1
bulk = − L

4πG

∫ xmin

0
dx

∫ zE

zRT2

dz

∫ tEW2

0

dt

z3

I2
bulk = − L

4πG

∫ xmin

0
dx

∫ zRT1

zE

dz

∫ tEW1

0

dt

z3

I3
bulk = − L

4πG

∫ xint

xmin

dx

∫ zG

ε
dz

∫ tWDW

0

dt

z3

I4
bulk = − L

4πG

∫ xint

xmin

dx

∫ zE

zG

dz

∫ tEW2

0

dt

z3

I5
bulk = − L

4πG

∫ xint

xmin

dx

∫ zRT1

zE

dz

∫ tEW1

0

dt

z3

I6
bulk = − L

4πG

∫ xmax

xint

dx

∫ zF

ε
dz

∫ tWDW

0

dt

z3

I7
bulk = − L

4πG

∫ xmax

xint

dx

∫ zRT1

zF

dz

∫ tEW1

0

dt

z3
. (4.12)

All the integrals can be evaluated analytically. Since the expressions are rather cumber-

some, we will write just the total expression of C2
V 2.0 in (4.24).
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4.2 Counterterms

The counterterms for the null boundaries of the entanglement wedge vanish as usual.

We can separate the counterterm for the null boundaries of the WDW patch in two

contributions:

Ict,I =
L

2πG

∫ xint

xmin

dx

∫ zG

ε

dz

z2
log

(
L̃ α z

L2

)
,

Ict,II =
L

2πG

∫ xmax

xint

dx

∫ zF

ε

dz

z2
log

(
L̃ α z

L2

)
. (4.13)

4.3 Joint contributions

We have to include several joint contributions to the action:

• Joints on the cutoff at z = ε. The null normals are

k± = α (±dt− dz) , (4.14)

and the contribution is:

Iε = − L

4πG

∫ xmax

xmin

dx
log
(
α2ε2

L2

)
ε

= − L

2πG

l log
(
α ε
L

)
ε

. (4.15)

• Joint on RT1. The null normals to such surfaces are

w±1 = β

(
±dt+

z√
z2 + x2

dz +
x√

z2 + x2
dx

)
, (4.16)

which gives

IRT1 = − L

2πG

∫ xmax

0
dx

d+ 2l

(d+ 2l)2 − 4x2
log

β2
[
(d+ 2l)2 − 4x2

]
4L2

=
L

4πG
log (ε) log

(
β2ε

L2

)
− L

4πG
log (d+ 2l) log

(d+ 2l)β2

L2
+

Lπ

48G
.

(4.17)

• Joint on RT2. The null normals to these surfaces are

w±2 = γ

(
±dt− z√

z2 + x2
dz − x√

z2 + x2
dx

)
, (4.18)

and the action is:

IRT2 = − L

2πG

∫ xmin

0
dx

d

d2 − 4x2
log

γ2
(
d2 − 4x2

)
4L2

=
L

4πG
log (ε) log

(
γ2 ε

L2

)
− L

4πG
log (d) log

d γ2

L2
+

Lπ

48G
.

(4.19)
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• Joints between the two null boundaries of the entanglement wedge, curve E. The

normals are w+
1 and w+

2 . The contribution gives

IE =
L

πG

∫ xint

0
dx

d+ l

(d+ l)2 − 4x2
log

β γ
[
(d+ l)2 − 4x2

]
4L2

 . (4.20)

• Joint between the null boundary of the WDW patch and the null boundary of the

entanglement wedge anchored at RT1, curve F . The normals are k+ and w+
1 . The

term gives

IF =
2L

πG

∫ xmax

xint

dx
d+ 2 (l + ε)

(d+ 2 (l + ε))2 − 4x2
log

 αβ
[
(d+ 2 (l + ε))2 − 4x2

]2

16L2
[
(d+ 2 (l + ε))2 + 4x2

]
 .
(4.21)

• Joint between the null boundary of the WDW patch and the null boundary of the

entanglement wedge anchored at RT2 (curve G) with normals k+ and w+
2 . The

contribution gives

IG =
2L

πG

∫ xint

xmin

dx
d− 2ε

4x2 − (d− 2ε)2 log

αγ (d− 2ε+ 2x)2 (d− 2ε− 2x)2

16L2
[
4x2 + (d− 2ε)2

]
 . (4.22)

4.4 Complexities

Adding up all the contributions and using polylog identities, we find:

C2
A =

c

3π2

{
log

(
L̃

L

)
l

ε
− log

(
2L̃

L

)
log

(
d(d+ 2l)

ε2

)
− π2

4

+

[
log

(
L̃

L

)
+ log

(
2(d+ l)√
d(d+ 2l)

)]
log

(
(d+ l +

√
d(d+ 2l))2

l2

)

+Li2

(√
d(d+ 2l)

d+ l

)
− Li2

(
−
√
d(d+ 2l)

d+ l

)}
.

(4.23)

The spacetime volume complexity instead is

C2
V 2.0 =

2 c

3

{
2l

ε
− 2 log

d(d+ 2l)

ε2
+
π2

2
+ 8 arctanh

√
d

d+ 2l

−2

[
Li2

(√
d(d+ 2l)

d+ l

)
− Li2

(
−
√
d(d+ 2l)

d+ l

)]}
. (4.24)

The divergences of (4.23) and (4.24) are respectively the same as in eqs. (4.2); in particular,

the subleading divergences are still poportional to the entanglement entropy

S =
c

3
log

d(d+ 2l)

ε2
. (4.25)

The finite part instead is a more complicated function of d, l compared to the single inter-

val case.
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5 Mutual complexity

Consider a physical system which is splitted into two sets A,B. The mutual information

is defined as

I(A|B) = S(A) + S(B)− S(A ∪B) . (5.1)

Since the entanglement entropy is shown to exhibit a subadditivity behaviour, i.e. the

entanglement entropy of the full system is less than the sum of the entropies related to the

two subsystems, the mutual information is a positive quantity.

Another quantity which measures the correlations between two physical subsystems

was defined in [52, 63] and called mutual complexity :

∆C = C(ρ̂A) + C(ρ̂B)− C(ρ̂A∪B) . (5.2)

where ρ̂A, ρ̂B are the reduced density matrices in the Hilbert spaces localised in A and B.

If ∆C is always positive, complexity is subadditive; if it is always negative, complexity is

superadditive. By construction, in the CV and CV 2.0 conjectures complexity is always

superadditive, i.e. ∆C ≤ 0. Instead, in the CA conjecture, no general argument is known

which fixes the sign of ∆C.
∆C is a finite quantity in all the three holographic conjectures. Moreover, ∆C = 0

for d > d0 because in this case the RT surface is disconnected and then C(ρ̂A) + C(ρ̂B) =

C(ρ̂A∪B). We will check that this quantity is generically discontinuous at d = d0.

In the case of two disjoint intervals, from eq. (4.23) we find that the action mutual

complexity is:

∆CA = C1
A − C2

A =
c

3π2

{
log

(
2L̃

L

)
log

(
d(d+ 2l)

l2

)
+
π2

2

−

[
log

(
L̃

L

)
+ log

(
2(d+ l)√
d(d+ 2l)

)]
log

(
(d+ l +

√
d(d+ 2l))2

l2

)

−Li2

(√
d(d+ 2l)

d+ l

)
+ Li2

(
−
√
d(d+ 2l)

d+ l

)}
.

(5.3)

The function ∆CA is plotted in figure 6 for various η = L̃/L. From the figure, we see that

this quantity can be either positive or negative. At small d, the behavior of ∆CA is:

∆CA ≈
c

3π2
log

(
2L̃

L

)
log

(
2d

l

)
. (5.4)

For the value L̃/L = 1/2, the behaviour of ∆CA at d→ 0 switches from −∞ to ∞.

If η ≤ 1/2, CA is subadditive for all values of d/l. For η > 1/2, it is always possible to

find small enough distances giving a superadditive behaviour. Moreover, there is a critical

η0 ≈ 2.465 in such a way that complexity of two disjoint intervals is always superadditive if

η > η0. In order to have a positive definite subregion complexity, we should require η > 1.

Then it is not possible to achieve an universally subadditive complexity in a physically

consistent setting.
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d

l
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-5

ΔCV 2.0

Figure 6. Left: mutual complexity ∆CA for several values of η = L̃/L as a function of d
l ∈ [0, d0

l =√
2−1]. In order to have a positive-definite complexity, we must impose η > 1. The other values of

η have been included for illustrative purpose. Right: mutual complexity ∆CV 2.0. Here we set c = 1.

A similar behaviour of subregion CA is found in the thermofield double state where

the subsystems are taken as the two disconnected boundaries of spacetime. This case was

investigated for asymptotically AdS black holes in D dimensions [51, 52], showing that the

complexity=action is subadditive when η < η̂D and superadditive for η > η̂D. The value

of η̂D is given by the zero of gD(η) [51]:

gD(η) = log((D − 2)η) +
1

2

(
ψ0(1)− ψ0

(
1

D − 1

))
+
D − 2

D − 1
π , (5.5)

where ψ0(z) = Γ′(z)/Γ(z) is the digamma function. For D = 3, η̂3 ≈ 0.1.

In the CV 2.0 conjecture, from eq. (4.24) we find that the mutual complexity for two

disjoint intervals is:

∆CV 2.0 = C1
V 2.0 − C2

V 2.0 =
4 c

3

[
log

d(d+ 2l)

l2
− π2

2
− 4 arctanh

√
d

d+ 2l

+Li2

(√
d(d+ 2l)

d+ l

)
− Li2

(
−
√
d(d+ 2l)

d+ l

)]
,

(5.6)

see figure 6 for a plot. This is negative definite as expected, because the bulk region

involved in the first configuration of RT surface is smaller than the second region.

In the CV conjecture, we can use eqs. (3.33) and (3.34) from [49] to determine mutual

complexity. Considering the case of a double segment, we find that for d < d0 the mutual

complexity is constant:

∆CV = −4 c

3
π . (5.7)

5.1 Strong super/subaddivity for overlapping segments

Given two generically overlapping regions A and B, entanglement entropy satisfies the

strong subadditivity property:

∆̃S = S(A) + S(B)− S(A ∪B)− S(A ∩B) ≥ 0 . (5.8)
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Inspired by this relation, we can define [63] by analogy a generalization of the mutual

complexity as:

∆̃C(A,B) = C(ρ̂A) + C(ρ̂B)− C(ρ̂A∪B)− C(ρ̂A∩B) . (5.9)

This definition generalizes eq. (5.2) to the case where A ∩ B 6= ∅. We can investigate the

sign of this quantity in the case of two overlapping segments.

Suppose that we consider the regions given by two intervals of lengths a, b which

intersect in a segment of length c. The union of these intervals is a segment of total length

a+ b− c. From eqs. (3.29) and (3.30), we find

∆̃CBTZ
A = − log

(
2L̃

L

)
∆̃SBTZ ,

∆̃CBTZ
V 2.0 = −4∆̃SBTZ , (5.10)

where ∆̃SBTZ is the quantity defined in (5.8), computed for the two overlapping intervals

in the BTZ background. Then CA is strongly subadditive for L̃/L < 1/2 and strongly

superadditive for L̃/L > 1/2. Instead CV 2.0 is strongly superadditive.

6 Conclusions

We studied the CA and CV 2.0 subregion complexity conjectures in AdS3 and in the BTZ

background. The main results of this paper are:

• In the case of one segment, we find that subregion complexity for AdS3 and for the

BTZ can be directly related to the entanglement entropy, see eqs. (1.4) and (3.30).

• In the case of a two segments subregion, complexity in AdS3 is a more complicated

function of the lengths and the relative separation of the segments, see eqs. (4.23)

and (4.24). Subregion complexity carries a different amount of information compared

to the entanglement entropy. In particular, for two disjoint segments the mutual

complexity (defined in eq. (5.2)) is not proportional to mutual information.

One of the obscure aspects of the CA conjecture is the physical meaning of the scale

L̃ appearing in the action counterterm eq. (2.19) on the null boundaries. A deeper under-

standing of the role of this parameter is desirable. In particular, its relation with the field

theory side of the correspondence remains completely unclear.

For d < d0 = (
√

2 − 1)l, we find that the sign of action mutual complexity ∆CA of a

two disjoint segments subregion depends drastically on η = L̃/L (see figure 6).1 First of

all, we have to impose η > 1 in order to have a positive-definite complexity. Then there

are two different cases:

• η ≥ η0 ≈ 2.465, ∆CA is always negative, and so CA is superadditive as CV and CV 2.0.

• 1 < η < η0, ∆CA is negative at small d and positive at larger d < d0. In this interval,

CA is superadditive only at small enough d, and it is subadditive at larger d.

1For d > d0, ∆CA instead vanishes for all the values of η.
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It would be interesting to study the case of higher dimensional AdS space, in order to

investigate the behaviour of mutual complexity for regions of different shape, such as a

higher dimensional spheres or strips.

Sub/superadditivity properties of complexity in quantum systems should depend on

the specific definition of subregion complexity which is adopted, e.g. purification or basis

complexity as defined in [51]. So far, all the studies we are aware of focused on purification

complexity, see e.g. [15, 63]. The situation looks rather intricated: it seems that both sub

and superadditive behaviours might be obtained, depending on the explicit basis used to

define complexity and other details (see for example table 1 of [63]).

In the CV conjecture, subregion complexity for multiple intervals in the BTZ back-

ground is independent of temperature and can be computed using topology from the Gauss-

Bonnet theorem, see [49]. It would be interesting to investigate if a similar relation with

topology holds also for CA and CV 2.0. The complicated structure of the finite terms in

eqs. (4.23) and (4.24) suggests that such relation, if exists, is more intricated than in CV.
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A Another regularization for the action of one segment in BTZ

In this appendix we follow another prescription to regularize the action where the null

boundaries of the WDW patch are sent from the true boundary z = 0 and we add a

timelike cutoff surface at z = ε cutting the bulk structure we integrate over. The geometry

of the region is shown in figure 7.

The geometric data are slightly different than the ones introduced in section 3. The RT

surface and the corresponding entanglement wedge are the same, see eqs. (3.3) and (3.8).

The WDW patch starts from the true boundary z = 0 and then the null lines which delimit

it are parametrized by

tWDW = ±zh
4

log

(
zh + z

zh − z

)2

, (A.1)

where ± refers to positive and negative times, respectively. The intersection curve between

the WDW patch and the entanglement wedge is given by

zint = coth

(
l

2zh

)
− cosh

(
x

zh

)
csch

(
l

2zh

)
. (A.2)

The null normals to the boundaries of the WDW patch and the entanglement wedge are

unchanged.

Unlike the case of the other regularization, the intersection curve and the RT surface

do not meet at z = ε, but at the true boundary z = 0. For this region, there are no
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zint(x)

zRT(x)

z=ϵ

x

z

Figure 7. Another regularization for the BTZ case.

codimension-3 joints. The intersection curve between the boundaries of the WDW patch

and the entanglement wedge meets the cutoff surface at:

xint = arccosh

[
cosh

(
l

2zh

)
− ε

zh
sinh

(
l

2zh

)]
. (A.3)

This expression is found by inverting eq. (A.2) and imposing z = ε. In the folowing sections

we compute all the terms entering the gravitational action.

A.1 Bulk contribution

We split the contributions as follows

Ibulk = 4
(
I1

bulk + I2
bulk + I3

bulk

)
, (A.4)

where

I1
bulk = − L

4πG

∫ xint

0
dx

∫ zint

ε
dz

∫ tWDW

0
dt

1

z3
,

I2
bulk = − L

4πG

∫ xint

0
dx

∫ zRT

zint

dz

∫ tEW

0
dt

1

z3
,

I3
bulk = − L

4πG

∫ xmax

xint

dx

∫ zRT

ε
dz

∫ tEW

0
dt

1

z3
. (A.5)

In this case the sum of bulk terms obtained by splitting the spacetime region with the

intersection between the boundaries of the WDW patch and the entanglement wedge does

not give the entire bulk action. We need to add I3
bulk which accounts for the region between

the values xint and xmax of the transverse coordinate.
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A direct evaluation gives

I1
bulk + I2

bulk =
L

16πGzh

∫ xint(ε)

0
dx

coth

(
x

zh

)
log

∣∣∣∣∣∣
sinh

(
l−2x
2zh

)
sinh2

[
l+2x
4zh

]
sinh

(
l+2x
2zh

)
sinh2

[
l−2x
4zh

]
∣∣∣∣∣∣

+
2 sinh

(
l

2zh

)
cosh

(
l

2zh
− cosh

(
x
zh

)) − 2zh
ε

+

(
z2
h

ε2
− 1

)
log

∣∣∣∣zh − εzh + ε

∣∣∣∣
 . (A.6)

I3
bulk = − L

16πG
. (A.7)

A.2 Gibbons-Hawking-York contribution

The Gibbons-Hawking-York (GHY) surface term in the action for timelike and spacelike

boundaries is

IGHY =
1

8πG

∫
∂B′

d2x
√
− dethµν K (A.8)

with hµν the induced metric on the boundary and K the trace of the extrinsic curvature.

The only contribution of this kind comes from the timelike regularizing surface at z = ε.

The GHY contribution is given by two parts. The first one involves the WDW patch,

while the second one involves the entanglement wedge:

I1
GHY =

[
L

8πG

∫ xint

0
dx

∫ tWDW

0
dt

(
2

z2
− 1

z2
h

)]
z=ε

=
L

8πG

l

ε
− L

4πG
, (A.9)

I2
GHY =

[
L

8πG

∫ xmax

xint

dx

∫ tEW

0
dt

(
2

z2
− 1

z2
h

)]
z=ε

=
L

8πG
. (A.10)

The total GHY contribution is

IGHY = 4
(
I1

GHY + I2
GHY

)
=

L

2πG

(
l

ε
− 1

)
. (A.11)

A.3 Null boundaries counterterms

The details of calculation are very similar to the ones in section 3.3. The contribution in

eq. (2.15) and the counterterm on the boundary of entanglement wedge again vanish. The

counterterm on the boundary of the WDW patch gives:

IWDW
ct = − L

2πG

∫ xint

0
dx

∫ zint

ε
dz

1

z2
log

∣∣∣∣∣ L̃L2
αz

∣∣∣∣∣
=

L

2πG

∫ xmax

0
dx

1 + log
∣∣∣ L̃L2 αε

∣∣∣
ε

+
sinh

(
l

2zh

)
zh

[
cosh

(
x
zh

)
− cosh

(
l

2zh

)]
×

1 + log

∣∣∣∣∣∣ L̃zhαL2

cosh
(

l
2zh

)
− cosh

(
x
zh

)
cosh

(
l

2zh

)
∣∣∣∣∣∣
 .

(A.12)
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A.4 Joint terms

The joint contribution to the gravitational action coming from a codimension-2 surface

given by the intersection of a codimension-1 null surface and a codimension-1 timelike (or

spacelike) surface is

IJ =
η

8πG

∫
J
dx
√
σ log |k · n| , (A.13)

where σ is the induced metric determinant on the codimension-2 surface and n and k

are the outward-directed normals to the timelike (or spacelike) surface and the null one

respectively. Moreover,

η = − sign (k · n) sign
(
k · t̂

)
(A.14)

in which t̂ is the auxiliary unit vector in the tangent space of the boundary region, orthog-

onal to the joint and outward-directed from the region of interest [47].

The unit normal vector nµ to the z = ε surface is

nµ =
(

0, − z
L

√
f(z), 0

)
(A.15)

where the sign must be chosen so that the vector is outward-directed from the region

of interest.

The joints give the following contributions:

• The joint involving the WDW patch boundary and the cutoff surface:

Icutoff1
J = − L

2πG

∫ xint

0

dx

ε
log

(
α ε

L
√
f(ε)

)
= − L

4πG

l

ε
log

(
L

αε

)
− L

2πG
log

(
L

αε

)
.

(A.16)

• Next we consider the joint involving the cutoff surface and the entanglement wedge

boundary:

Icutoff2
J = O (ε log ε) . (A.17)

• The null-null joint contribution coming from the RT surface is the same as in the

previous regularization, see eq. (3.24).

• The joints coming from the intersection between the null boundaries of the WDW

patch and the ones of the entanglement wedge give a similar contribution as in

eq. (3.25), The main difference is that the integral is in the range [0, xint(ε)] and

the intersection is slightly different, because the WDW patch starts from z = 0 in

the present regularization:

I int
J =

L

2πGzh

∫ xint

0
dx

sinh
(

l
2zh

)
cosh

(
l

2zh

)
− cosh

(
x
zh

)
× log

∣∣∣∣∣∣∣
αβz2

h

2L2

(
cosh

(
l

2zh

)
− cosh

(
x
zh

))2

cosh
(
x
zh

)
cosh

(
l

2zh

)
− 1

∣∣∣∣∣∣∣ . (A.18)
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A.5 Complexity

Adding all the contributions and performing the integrals we finally get

CBTZ
A =

l

ε

c

6π2

(
1 + log

(
L̃

L

))
− log

(
2L̃

L

)
SBTZ

π2
− c

3π2

(
1

2
+ log

(
L̃

L

))
+

1

24
c . (A.19)

The difference with expression (3.29) consists only in the coefficient of the divergence 1/ε

and in a finite piece proportional to the counterterm scale L̃ via a logarithm.

Recently other counterterms were proposed to give a universal behaviour of all the

divergences of the action [69]. In particular, with this regularization we need to insert a

codimension-1 boundary term at the cutoff surface:

Icutoff
ct = − 1

16πG

∫
dd−1x dt

√
−h

(
2(d− 1)

L
+

L

d− 2
R̃

)
, (A.20)

being R̃ the Ricci scalar on the codimension-1 surface. Adding the extra counterterm in

eq. (A.20), we find

CBTZ
A =

l

ε

c

6π2
log

(
L̃

L

)
− log

(
2L̃

L

)
SBTZ

π2
− c

3π2
log

(
L̃

L

)
+

1

24
c . (A.21)

The numerical coefficient of all the divergences is the same as in eq. (3.29). The two

regularizations differ only by a finite piece dependent from the counterterm length scale L̃.
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