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Abstract
Sodium–glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of 
diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects 
that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined condi-
tions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also 
to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk 
and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for 
SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in 
the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune 
system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.
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CIA	� Cancer-induced anaemia
CFZ	� Carfilzomib
CKD	� Chronic kidney disease
ENaC	� Epithelial sodium channel
EPO	� Erythropoietin
ESC	� European society of cardiology
HR	� Hazard ratio
HF	� Heart failure
HFmrEF	� Heart failure with mildly reduced ejec-

tion fraction
HFpEF	� Heart failure with preserved ejection 

fraction
HFrEF	� Heart failure with reduced ejection 

fraction
HNF4	� Hepatocyte nuclear factor 4
hs-CRP	� Hypersensitive-C-reactive-protein
HIF‐α	� Hypoxia-inducible factor alpha
HER2	� Human Epidermal Growth Factor Recep-

tor 2
HK II	� Hexokinase II
IFN	� Interferon
Fe2+	� Iron ion
ICIs	� Immune checkpoint inhibitors
IL	� Interleukin
mmHg	� Millimeters of mercury
MyD88	� Myeloid differentiation primary response 

88
NADPH	� Nicotinamide Adenine Dinucleotide 

Phosphate
NLRP3	� NOD-like receptor pyrin domain con-

taining protein 3
PGC-1	� Peroxisome proliferator-activated 

receptor-gamma coactivator
PI3K	� Phosphoinositide 3-kinase
Pip4k2c	� Phosphatidylinositol-5-phosphate 

4-kinase
PD-L1	� Programmed cell death-ligand 1
ROS	� Reactive oxygen species
RBC	� Red blood cells
SGK1	� Serum- and Glucocorticoid-Regulated 

Kinase 1
STAT3	� Signal transducer and activator of tran-

scription 3
SIRT1	� Sirtuin 1
Na2+	� Sodium ion
SGLT2	� Sodium–glucose cotransporter 2
TNF	� Tumor necrosis factor
TLR	� Toll-like receptor
TGF	� Transforming growth factor

Introduction

Sodium‐glucose cotransporter 2 inhibitors (SGLT2i) rep-
resent a class of antidiabetic medications with a unique 
story. Initially approved for the treatment of type 2 dia-
betes mellitus, thanks to their glycosuric action, subse-
quently showed cardioprotective and nephroprotective 
effects that made them one of the most innovative drugs in 
cardiology and nephrology over the last decades [20, 164].

SGLT2i reduce serum glucose by inhibiting renal tubu-
lar glucose reabsorption, thus promoting urinary glucose 
excretion [143]. Two types of sodium‐glucose cotrans-
porters are present in the nephron, mainly located in the 
S2 and S3 segments of the proximal tubule, reabsorbing 
the majority of filtrated urinary glucose [155]. By inhibit-
ing SGLT2, these drugs impair glucose reabsorption in 
the proximal tubule, determining a reduction of the renal 
threshold of glycosuria. Canagliflozin, dapagliflozin and 
empagliflozin are representatives of SGLT2i, also known 
as gliflozins [97].

An important hemodynamic effect of gliflozins is 
related to blood pressure reduction, through tubulo-glo-
merular feedback stimulation reversal, glycosuria and 
natriuresis. Moreover, SGLT2i may improve blood pres-
sure control by inhibiting the sympathetic nervous system 
[100]. Of importance, SGLT2i promote weight loss and 
lipid metabolism shift, inducing visceral fat reduction, as 
well as increased lipolysis [72, 133]. The ramifications 
of SGLT2 inhibition in lipid metabolism also enable to 
understand their atheroprotective effect [8, 133]. In this 
context, an emerging property of gliflozins is related to 
their anti-inflammatory action, causing the attenuation 
of interleukin (IL)-6, tumor necrosis factor (TNF), inter-
feron (IFN)-γ, NF-κβ, toll-like receptor (TLR)-4 and trans-
forming growth factor (TGF)-β [17, 74]. Both in vitro and 
in vivo models showed that gliflozins may limit inflamma-
tion, targeting a wide array of pathways that play a pivotal 
role in the development of atherosclerosis [107, 128].

In 2015, the EMPA-REG OUTCOME trial was the first 
study to focus on the cardiovascular outcomes related to 
treatment with SGLT2i. In 7020 patients with type 2 dia-
betes mellitus and high cardiovascular risk, randomized 
to empagliflozin or placebo and evaluated at a median 
follow-up of 3.1 years, a reduction in heart failure (HF) 
hospitalization, cardiovascular death and mortality was 
observed in the empagliflozin arm compared to placebo 
[13]. These promising results laid the groundwork for suc-
cessful trials with SGLT2i also in HF patients with either 
reduced or preserved ejection fraction (HFrEF and HFpEF, 
respectively) [6, 91, 130], afterwards confirmed by sev-
eral meta-analyses [19, 162]. Overall, available evidences 
made SGLT2i one of the “four pillars” of HFrEF treatment 
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and the first recommended medication in HF with mildly-
reduced ejection fraction (HFmrEF) and HFpEF, accord-
ing to most recent updates of guidelines [89, 90].

Growing data also introduced the possibility of adding 
SGLT2i to the pharmacological armamentarium of cardio-
vascular disease prevention [33] or treatment of subclini-
cal cardiac dysfunction, including those cases observed in 
cancer patients exposed to potentially-cardiotoxic agents 
[21, 95]. At the same time, preclinical data suggested a role 
of SGLT2i in preventing cancer progression and mitigating 
cytopenia induced by chemotherapy [95].

This review will, therefore, focus on the role of SGLT2i 
as modulators of the cardiovascular system, with special 
emphasis being paid to myocardial function and metabolism 
pathways. The biological rationale and clinical evidence for 
bringing SGLT2i at the center of the Cardio-Oncology stage 
will be presented (Fig. 1). We will also shed light on pos-
sible research directions and their implications in cancer 
patients’ management.

Mechanisms of cardiac protection in cancer 
patients through SGLT2 inhibition

In preclinical models, SGLT2i have consistently shown to 
exert direct beneficial effects on the cardiac tissue, especially 
in the setting of chronic conditions such as HF. These effects 
reflect SGLT2i modulation of pro-inflammatory and oxida-
tive stress processes, ion transport, myocardial sodium and 

calcium homeostasis, as well as metabolic/mitochondrial 
pathways, such as ketone bodies production [25, 96, 120, 
164]. Given that these processes are also supposed to be 
involved in chemotherapy-associated cardiac injury, there 
is growing interest in the potential role played by SGLT2i 
in the field of Cardio-Oncology [31].

Biological basis of SGLT2i protection 
against anthracycline‑induced cardiotoxicity

Anthracyclines represent the backbone treatment for sev-
eral solid and hematological malignancies and are associated 
with potential dose-dependent cardiotoxic effects, eventually 
leading to the development of subclinical left ventricular 
dysfunction, overt HF and malignant arrhythmias [125]. 
There is a plethora of mechanisms involved in anthracy-
cline-induced cardiotoxicity, among others (i) regulation of 
macrophage phenotype expression; (ii) generation of highly 
reactive oxygen species (ROS) inducing membrane lipid per-
oxidation and causing a direct damage to cardiac myocytes 
[52–54]; (iii) inhibition of cardiac topoisomerase IIβ, lead-
ing to transcriptome changes, mitochondrial dysfunction and 
apoptosis [56, 116, 126, 134, 135, 137, 159]; (iv) down-
regulation of ferroptosis. Main mechanisms of anthracycline 
induced cardiotoxicity are sketched in Fig. 2.

Fig. 1   Role of sodium glucose 
cotransporter 2 (SGLT2) inhibi-
tors across the spectrum of 
cardiotoxicity, solid tumors and 
hematologic malignancies
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Regulation of macrophage phenotype expression

Macrophages are important actors of immune response, 
being involved in both activation and resolution of the 
inflammatory process, and in tissue repair through fibrosis 
[64]. In brief, the different roles played by macrophages 
are explained by their phenotype expression, with M1 and 
M2 macrophages exerting, respectively, induction and 
resolution of inflammation [85].

M2 macrophages have been shown to influence post-
myocardial infarction remodeling in mice models through 
the action of IL-13, which modulates monocyte infiltration 
in the wounded cardiac tissue and their polarization [55]. 
M2 macrophages contribute to the control of the inflam-
matory process through several actions; in particular, 
M2a macrophages are associated with arginase produc-
tion, which is believed to determine collagen deposition 
and fibrosis development. On the other hand, M2c mac-
rophages, preferentially activated by SGLT2i, are believed 
to favor IL-10 expression, a suppressor cytokine that pro-
motes the resolution of the fibrotic process [76]. It was in 
keeping with these notions that four weeks treatment with 
SGLT2i promoted cardiac repair and reduced pathological 
remodeling in a rat model of myocardial infarction [76].

SGLT2i also attenuated cardiac fibrosis via regulating 
the signal transducer and transcription activator STAT3-
dependent pathway, consequently reducing infiltration of 

myofibroblast and collagen accumulation [76]. At the same 
time, empagliflozin limited cardiac fibrosis by inhibiting 
the NADPH-oxidase activity following ischemic injury 
[79].

Although multiple studies investigated the effects of 
SGLT2i on macrophages and fibrosis, our understand-
ing of the precise role of cardiac macrophages in doxoru-
bicin-induced cardiotoxicity is still limited. The imbalance 
between macrophage phenotypes and their infiltration in 
the myocardium seems to be involved also in anthracycline-
induced myocardial injury [39]. Studies in mouse models 
suggest that acute doxorubicin treatment increases M1 
macrophage population, while suppressing the M2 counter-
part [15, 73]. Moreover, studies of an IL-12p35-KO mouse 
mode showed that IL-12 and IL-35 deficiency exacerbated 
doxorubicin-induced myocardial injury through promotion 
of M1 macrophage differentiation, increase of pro-inflam-
matory cytokines and reduction of M2 macrophage-related 
anti-inflammatory cytokines [157]. Other studies demon-
strated that IL-22 is a critical regulator of macrophage dif-
ferentiation in response to cardiac injury [158], while IL-22 
deficiency reverses doxorubicin-induced cardiac imbalance 
of M1 versus M2 macrophages, increasing the M2 popula-
tion. This effect was associated with reduced cardiomyocyte 
vacuolization and apoptosis, with concomitant improvement 
of global cardiac function [158].

Fig. 2   Molecular mechanisms of anthracycline-induced cardiomyo-
cyte death. Anthracyclines, in particular doxorubicin, treatment initi-
ates multiple pathways including upregulation of death receptors, cal-
cium overload, disruption in iron homeostasis with lipid peroxidation, 
generation of ROS with final DNA damage and cell death. AMPK 5ʹ 

adenosine monophosphate-activated protein kinase, DNA deoxyribo-
nucleic acid, Fe2+ iron, GLC glucose, MyD88 Myeloid differentia-
tion primary response 88, IL-1β R Interleukin-1 beta receptor, NF-kB 
Nuclear factor kappa-light-chain-enhancer of activated B cells, ROS 
reactive oxygen species, TLR toll-like receptor
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Modulation of cardiomyocyte Ca2+/Na+ homeostasis 
and downregulation of inflammasome

The inflammasome is a multiprotein complex that plays a 
role in the activation and perpetuation of the inflammatory 
process, with nucleotide-binding oligomerization domain 
(NOD)-like receptor pyrin domain containing protein 3 
(NLRP3) being a critical component of the innate immune 
system. This mediates caspase-1 activation and the secretion 
of proinflammatory cytokines in response to microbial infec-
tion and cellular damage [61]. The inflammasome, in order 
to exert its function, needs to be activated through three 
stimulus events: ionic flux, ROS and/or organelle damage.

Indeed, multiple studies investigated the role of the 
inflammasome in myocardial injury and its interaction with 
gliflozins. In acute myocardial infarction, the activation of 
NLRP3 inflammasome is critical, as shown by the reduced 
extension of infarct size in Nlrp3−/− mice [61, 93], although 
its role in the ischemia–reperfusion (I/R) damage is still con-
troversial [58, 123]. In mice models of HF, empagliflozin 
blunts the decline in cardiac function, also reducing NLRP3 
inflammasome activation and IL1β secretion [66]. Likewise, 
empagliflozin attenuates macrophagic NLRP3 inflammas-
ome activation in patients with type 2 diabetes [68]. As well, 
a series of reports showed that empagliflozin positively regu-
lates cardiomyocyte homeostasis and inflammasome activ-
ity. Of note, in preclinical studies, SGLT2i inhibited the Na+/
H+ exchanger, leading to lower cytosolic concentration of 
Na+ and Ca2+ in cardiomyocytes [14, 141]. In diabetic rats, 
empagliflozin exerts a potential anti-diabetic effect through 
prevention of Ca2+/Na+ dysregulation in cardiomyocytes 
and decrease in ROS, leading to improved cardiac function, 
attenuation of ventricular hypertrophy and correction of pro-
longed QT interval [75].

In the Cardio-Oncology field, anthracycline exposure 
increases levels of ROS and Ca2+ in cardiomyocytes, with 
subsequent mitochondrial dysfunction, inflammasome acti-
vation, apoptosis and necrosis [79]. Doxorubicin exposure 
increases the production of circulating IL-1-β, IL-6 and C 
reactive-protein (CRP), enhancing through inflammation, the 
risk of metabolic diseases and cardiovascular manifestations 
[114]. Indeed, gliflozins counterbalance the various cardio-
toxic mechanisms generated by anthracyclines, thus leading 
to an improvement in dysregulated pathways. Quagliariello 
et al. demonstrated that incubation of cardiomyocytes from 
non-diabetic mice with empagliflozin significantly reduced 
the intracellular Ca2+ content and expression of several 
pro-inflammatory cytokines. Moreover, the authors dem-
onstrated an improvement in LVEF and radial/longitudinal 
strain after anthracycline exposure in the empagliflozin mice 
group [66]. This report also highlighted a role of SGLT2i in 
the modulation of NLRP3 and myeloid differentiation pri-
mary response 88 (MyD88)-related pathways, known to be 

involved in the cytokine release that characterizes HF [111]. 
Similarly, the role of empagliflozin in preventing doxoru-
bicin-induced myocardial dysfunction in non-diabetic mice 
was reported by Sabatino et al. In particular, empagliflozin 
caused 50% less myocardial fibrosis independently of gly-
caemic control [121].

Normalization of SGK1 and ENaC myocardial expression

Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1) 
is highly expressed in the human and murine heart and is 
upregulated in many pathophysiological settings, includ-
ing obesity, heart disease and diabetes. SGK1 regulates the 
expression of a number of ion channels, including epithelial 
sodium channel (ENaC), which is upregulated in obesity 
and diabetes [47]. In insulin-resistant female diabetic mice, 
increased myocardial expression of SGK1 and ENaC caused 
myocardial fibrosis and eccentric LV hypertrophy, while 
empagliflozin reduced SGK1 and ENaC levels, as well as 
related pro-fibrotic signals, leading to an improved diastolic 
relaxation. These results suggest that the SGLT2i mediated 
improvement in cardiac function may be modulated, in part, 
through reduction in SGK1/ENaC activity [47]. In a mouse 
model, Zhang et al. also demonstrated that the downregu-
lation of SGK1 pathway reduced doxorubicin-mediated 
cardiotoxicity through the phosphorylation and nuclear 
translocation of NFκB, leading to reduction of cardiomyo-
cyte inflammation and apoptosis [166]. This would further 
identify SGK1 downregulation as a possible mechanism of 
cardiac protection induced by SGLT2i.

Upregulation of ketone body release

Recent in  vitro studies suggest that β-hydroxybutyrate 
(β-OHB), a ketone body that increases during SGLT2i treat-
ment, may protect against anthracyclines by reducing ROS 
levels and by improving mitochondrial function in cardiomy-
ocytes [102]. On the other hand, ketone serves as an effec-
tive source of energy in the failing heart and can mitigate 
cardiomyocyte damage by reducing ROS and by increasing 
ATP levels [10]. Modulation of cardiac metabolism might 
thus represent a rather pivotal mechanism through which 
SGLT2i could protect against anthracycline cardiotoxicity.

Downregulation of ferroptosis

Ferroptosis is a mechanism of iron-dependent non-apoptotic 
cell death characterized by iron overload and lipid peroxida-
tion. Ferroptosis occurs in many pathophysiologic condi-
tions and may contribute to acute kidney injury, neuronal 
death, and cancer cell death as well [36, 62, 81, 82, 154]. 
Ferroptosis is also involved in cardiovascular diseases such 
as cardiomyopathies and acute myocardial infarction [32]. In 
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a mouse model of cardiac ischemia–reperfusion injury, the 
iron chelator desferrioxamine and the glutaminolysis inhibi-
tor compound 968, both with ferroptosis inhibitory activity, 
reduced myocardial infarct size and improved cardiac func-
tion [44, 106].

Canagliflozin mitigates ferroptosis, and by doing so it was 
shown to improve cardiac function in a preclinical model 
of HFpEF [83]. This raises interest on SGLT2i as potential 
cardiac protectant against anthracyclines, especially since 
ferroptosis is strongly involved in anthracycline cardiotoxic-
ity [167]; however, we are unaware of studies that addressed 
this hypothesis in detail.

Upregulation of PGC‑1α and mitochondrial protection

In preclinical studies, anthracycline-dependent cardiomyo-
cyte damage was fingerprinted by reduced AMP-activated 
protein kinase (AMPK) expression and double-strand deox-
yribonucleic acid (DNA) breaks, which is consistent with 
anthracyclines intercalating in DNA and blocking the activ-
ity of topoisomerase IIβ that is constitutively expressed in 
cardiomyocytes [76]. As anticipated earlier, topoisomerase 
IIβ inhibition triggers transcriptome changes that culminate 

in mitochondrial dysfunction and apoptosis [145]. Doxo-
rubicin would nonetheless induce anthracycline cardiotox-
icity by many other mechanisms, which may range from 
excess of ROS production in mitochondria to suppression 
of peroxisome proliferator-activated receptor gamma coac-
tivator-1 alpha (PGC-1α), a transcription coactivator that 
plays a primary role in mitochondrial oxidative phospho-
rylation and fatty acid oxidation [117, 146, 160]. Studies of 
ischemic cardiomyopathy in laboratory animals have shown 
that empagliflozin increases the levels of PGC-1α, leading to 
mitochondrial protection [161], while other studies showed 
that similar mechanisms enabled empagliflozin to protect 
cardiomyocytes against doxorubicin [144].

The molecular mechanisms through which SGLT2i might 
exert cardioprotection against anthracyclines are summa-
rized in Fig. 3.

Biological basis of cardioprotection in cardiotoxicity 
induced by other cancer drugs

Cardiotoxicity complicates the clinical use of many anti-
cancer drugs other than anthracyclines [52, 138]. There are 

Fig. 3   Molecular mechanisms through which SGLT2 inhibitors may 
exert a cardioprotective role in anthracycline-treated patients and 
in patients developing cancer therapy related cardiac dysfunction. 
AMPK 5ʹ adenosine monophosphate-activated protein kinase, CKMB 
Creatine Kinase MB, FGF-21 Fibroblast growth factor-21, NLRP3 
nucleotide-binding oligomerization domain-like receptor family pyrin 

domain containing 3, NTproBNP N-terminal pro B-type natriuretic 
peptide, MyD88 Myeloid differentiation primary response 88, IL-1β 
Interleukin-1 beta, NADPH nicotinamide adenine dinucleotide phos-
phate, IL-10 Interleukin-10, PGC-1 Peroxisome proliferator-activated 
receptor-gamma coactivator, SIRT-1 Sirtuin-1, STAT-3 Signal trans-
ducer and activator of transcription 3



Basic Research in Cardiology	

Ta
bl

e 
1  

M
ai

n 
im

m
un

e 
ch

ec
kp

oi
nt

 in
hi

bi
to

rs
 (I

C
Is

) a
va

ila
bl

e 
in

 c
lin

ic
al

 p
ra

ct
ic

e 
an

d 
as

so
ci

at
ed

 a
dv

er
se

 e
ve

nt
s, 

Re
fs

. [
88

–9
5]

a  To
ta

l P
er

ce
nt

ag
es

 re
fe

rr
in

g 
to

 in
di

vi
du

al
 c

as
e 

sa
fe

ty
 re

po
rts

 w
ith

 a
t l

ea
st 

on
e 

IC
I a

s t
he

 su
sp

ec
te

d 
dr

ug
 (n

: 2
47

8)
 re

tri
ev

ed
 fr

om
 E

ud
ra

vi
gi

la
nc

e.
 D

at
e 

fro
m

 M
as

co
lo

 e
t a

l. 
[8

6]

D
ru

g 
na

m
e

So
ur

ce
Ta

rg
et

In
di

ca
tio

ns
Im

m
un

e-
re

la
te

d 
ad

ve
rs

e 
ev

en
ts

 (I
R-

A
Es

)
C

ar
di

ac
 im

m
un

e-
re

la
te

d 
ad

ve
rs

e 
ev

en
ts

 (I
R-

A
Es

) 
To

ta
l (

%
)a

M
an

ag
em

en
t o

f o
f I

C
Is

-
re

la
te

d 
ca

rd
io

to
xi

ci
ty

Pe
m

br
ol

iz
um

ab
Ig

G
4 

hu
m

an
iz

ed
 a

nt
ib

od
y

Pr
og

ra
m

m
ed

 c
el

l d
ea

th
 

pr
ot

ei
n 

1 
(P

D
-1

)
M

el
an

om
a,

 lu
ng

 c
an

ce
r, 

he
ad

 a
nd

 n
ec

k 
ca

nc
er

, 
H

od
gk

in
 ly

m
ph

om
a,

 
sto

m
ac

h 
ca

nc
er

, c
er

vi
ca

l 
ca

nc
er

C
ut

an
eo

us
, i

m
m

un
e 

pn
eu

-
m

on
ia

, h
yp

ot
hy

ro
id

is
m

, 
jo

in
t a

nd
 m

us
cl

e 
pa

in
, 

co
lit

is
, H

ep
at

ot
ox

ic
ity

Im
m

un
e 

ne
ph

rit
is

 a
nd

 
pi

tu
ita

ry
 in

fla
m

m
at

io
n

To
ta

l: 
32

.5
%

M
yo

ca
rd

iti
s:

 1
6.

3%
Pe

ric
ar

di
al

 e
ffu

si
on

: 8
.3

%
A

cu
te

 m
yo

- c
ar

di
al

 in
fa

rc
-

tio
n:

 1
.7

%
A

rr
hy

th
m

ia
: 2

.4
%

1.
 W

ith
ho

ld
 IC

I t
he

ra
py

 
(g

ra
de

 ≥
 2)

2.
 S

ta
rti

ng
 C

on
ve

nt
io

na
l 

ca
rd

ia
c 

tre
at

m
en

t
3.

 Im
m

un
os

up
pr

es
si

ve
 

th
er

ap
y 

(if
 m

yo
ca

rd
iti

s o
r 

pe
ric

ar
di

al
 d

is
ea

se
:

Fi
rs

t l
in

e:
 H

ig
h-

do
se

 c
or

ti-
co

ste
ro

id
s (

1–
2 

m
g 

pr
ed

-
ni

so
ne

/k
g/

da
y,

 o
ra

l o
r I

V
 

de
pe

nd
in

g 
on

 sy
m

pt
om

s
M

et
hy

lp
re

dn
is

ol
on

e 
1 

g 
ev

er
y 

da
y 

(f
ul

m
in

an
t m

yo
-

ca
rd

iti
s)

G
lu

co
co

rti
co

id
-r

ef
ra

ct
or

y 
an

d 
gl

uc
oc

or
tic

oi
d-

re
si

st
an

t:
A

dd
iti

on
 o

f e
ith

er
 m

yc
op

he
-

no
la

te
, i

nfl
ix

im
ab

, 
rit

ux
im

ab
 o

r a
nt

i-t
hy

m
o-

cy
te

 g
lo

bu
lin

, a
ba

ta
ce

pt
 

(C
TL

A
-4

 a
go

ni
st)

 o
r a

le
m

-
tu

zu
m

ab
 (C

D
52

 b
lo

ck
ad

e)
, 

to
ci

liz
um

ab
Pl

as
m

ap
he

re
si

s
Pe

ric
ar

di
tis

: c
on

si
de

r a
dd

i-
tio

n 
of

 c
ol

ch
ic

in
e 

an
d 

no
n-

ste
ro

id
al

 a
nt

i-i
nfl

am
m

at
or

y 
dr

ug
s

Ip
ili

m
um

ab
Ig

G
1 

hu
m

an
 a

nt
ib

od
y

C
yt

ot
ox

ic
 T

-L
ym

ph
oc

yt
e 

A
nt

ig
en

 4
(C

TL
A

-4
)

M
el

an
om

a,
 re

na
l c

el
l c

ar
-

ci
no

m
a 

(R
C

C
), 

co
lo

re
ct

al
 

ca
nc

er
, h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a,

 n
on

-s
m

al
l c

el
l 

lu
ng

 c
an

ce
r (

N
SC

LC
), 

m
al

ig
na

nt
 p

le
ur

al
 m

es
o-

th
el

io
m

a,
 e

so
ph

ag
ea

l 
ca

nc
er

C
ol

iti
s, 

pi
tu

ita
ry

 in
fla

m
m

a-
tio

n 
an

d 
ra

sh
N

eu
ro

to
xi

ci
ty

 (m
en

in
gi

tis
), 

he
pa

to
to

xi
ci

ty
, H

ep
at

o-
to

xi
ci

ty
, H

ae
m

at
ol

og
i-

ca
l t

ox
ic

ity
, a

nd
 o

cu
la

r 
to

xi
ci

ty

To
ta

l: 
5.

8%
 (s

in
gl

e 
ag

en
t)

9.
4%

 (n
iv

ol
um

ab
 c

om
bi

na
-

tio
n)

M
yo

ca
rd

iti
s:

 9
.3

%
Pe

ric
ar

di
al

 e
ffu

si
on

: 8
.0

%
A

cu
te

 m
yo

ca
rd

ia
l i

nf
ar

c-
tio

n:
 4

.9
A

rr
hy

th
m

ia
: 1

.2
N

iv
ol

um
ab

Ig
G

4 
hu

m
an

 a
nt

ib
od

y
Pr

og
ra

m
m

ed
 c

el
l d

ea
th

 
pr

ot
ei

n 
1 

(P
D

-1
)

M
el

an
om

a,
 lu

ng
 c

an
-

ce
r, 

m
al

ig
na

nt
 p

le
ur

al
 

m
es

ot
he

lio
m

a,
 re

na
l c

el
l 

ca
rc

in
om

a,
 H

od
gk

in
 

ly
m

ph
om

a,
 h

ea
d 

an
d 

ne
ck

 c
an

ce
r, 

ur
ot

he
lia

l 
ca

rc
in

om
a,

 c
ol

on
 c

an
ce

r, 
es

op
ha

ge
al

 sq
ua

m
ou

s c
el

l 
ca

rc
in

om
a,

 li
ve

r c
an

ce
r, 

ga
str

ic
 c

an
ce

r, 
an

d 
es

op
h-

ag
ea

l o
r g

as
tro

es
op

ha
ge

al
 

ju
nc

tio
n 

ca
nc

er

C
ut

an
eo

us
, i

m
m

un
e 

pn
eu

-
m

on
ia

, h
yp

ot
hy

ro
id

is
m

, 
jo

in
t a

nd
 m

us
cl

e 
pa

in
, 

co
lit

is
, H

ep
at

ot
ox

ic
ity

Im
m

un
e 

ne
ph

rit
is

 a
nd

 
pi

tu
ita

ry
 in

fla
m

m
at

io
n

To
ta

l: 
43

.2
%

M
yo

ca
rd

iti
s:

 1
6.

4
Pe

ric
ar

di
al

 e
ffu

si
on

: 6
.2

A
cu

te
 m

yo
ca

rd
ia

l i
nf

ar
c-

tio
n:

 2
.4

A
rr

hy
th

m
ia

: 3
.0

A
te

zo
liz

um
ab

Ig
G

1 
hu

m
an

iz
ed

 a
nt

ib
od

y
Pr

og
ra

m
m

ed
 c

el
l d

ea
th

-
lig

an
d 

1 
(P

D
-L

1)
U

ro
th

el
ia

l c
ar

ci
no

m
a 

(U
C

), 
no

n-
sm

al
l c

el
l l

un
g 

ca
nc

er
 (N

SC
LC

), 
sm

al
l 

ce
ll 

lu
ng

 c
an

ce
r (

SC
LC

), 
he

pa
to

ce
llu

la
r c

ar
ci

no
m

a 
an

d 
al

ve
ol

ar
 so

ft 
pa

rt 
sa

rc
om

a

C
ut

an
eo

us
, i

m
m

un
e 

pn
eu

-
m

on
ia

, h
yp

ot
hy

ro
id

is
m

, 
jo

in
t a

nd
 m

us
cl

e 
pa

in
, 

co
lit

is
, H

ep
at

ot
ox

ic
ity

Im
m

un
e 

ne
ph

rit
is

 a
nd

 
pi

tu
ita

ry
 in

fla
m

m
at

io
n

To
ta

l: 
4.

2%
M

yo
ca

rd
iti

s:
 1

8.
1

Pe
ric

ar
di

al
 e

ffu
si

on
: 7

.9
A

cu
te

 m
yo

-c
ar

di
al

 in
fa

rc
-

tio
n:

 3
.9

A
rr

hy
th

m
ia

: 2
.4



	 Basic Research in Cardiology

few preclinical studies exploring the cardioprotective role of 
SGLT2i against these drugs.

Trastuzumab is an anti-Human Epidermal Growth Factor 
Receptor 2 (HER2) antibody, primarily used in the treat-
ment of HER2 overexpressing breast cancers (approximately 
15–20% of all diagnoses). Anti-HER2 agents exert cardio-
toxicity by a variety of mechanisms that include, among 
others, DNA-damage and ferroptosis [80, 131]. In vitro and 
in vivo studies showed that empagliflozin mitigates DNA 
damage and ferroptosis induced by trastuzumab [94]. In 
other preclinical studies, empagliflozin was able to ame-
liorate cardiomyocyte autophagy induced by sunitinib, an 
angiogenesis inhibitor. This reflect empagliflozin interac-
tions with the AMP-activated Protein Kinase-Mammalian 
Target of Rapamycin (AMPK-mTOR) signaling pathway 
but other mechanisms of protection might well involve a 
reversal of sunitinib-induced microvascular injury and the 
consequent increase of coronary flow [63, 115].

Interesting data emerging from murine models and clini-
cal studies suggest the potential protective effect of SGLT2i 
in mitigating cardiovascular toxicity caused by anti-angi-
ogenic therapies. Luseogliflozin showed to upregulate the 
expression of vascular endothelial growth factor (VEGF)-α 
in the kidney after ischemia–reperfusion injury in non-dia-
betic mice [165]; at the same time, Nikolaou et al. dem-
onstrated the protective role of chronic administration of 
empagliflozin in the myocardial ischemia–reperfusion injury 
in diabetic mice, sustained by the upregulation of VEGF 
pathway [101].

Antimetabolite drugs, such as 5-Fluorouracil (5-FU) and 
Capecitabine, are also associated with serious cardiovascular 
toxicities, such as coronary spasm, myocardial infarction, 
arrhythmias and HF [129]. Evidence regarding antime-
tabolites cardiotoxicity may reveal a cardioprotective role 
exerted by SGLT2i. In a preclinical study, the administra-
tion of empagliflozin in mice treated with 5-FU ameliorated 
the cardiotoxic effects by different mechanisms including 
vasodilating effect, antioxidant and anti-inflammatory prop-
erties and the downregulation of tumor necrosis factor alpha 
(TNFα)/ toll like receptors (TLR)/ nuclear factor-κB (NF-
κB) pathway [113].

Another example of how SGLT2i can counteract or 
prevent cardiovascular toxicity from non-anthracycline 
drugs involves studies on carfilzomib (CFZ), a proteasome 
inhibitor, currently approved for relapsed/refractory multi-
ple myeloma. Clinical employment of CFZ is limited by 
cardiovascular toxicity, mainly due to endothelial dysfunc-
tion. Canagliflozin abrogated the apoptotic effects of CFZ 
in cultured endothelial cells, and again this occurred by an 
AMPK-dependent mechanism [26].

A detailed analysis should be reserved to immune check-
points inhibitors (ICIs), currently approved for many solid 
tumors treatment [4]. Main compounds used in clinical 

practice are reported in Table 1 [4, 9, 35, 49, 59, 110, 150, 
168]. ICIs, inducing a non-specific autoimmune response by 
activating T cells, may lead to immune-related adverse events 
(irAEs) occurrence [109]. It has been observed that around 
60–80% of patients who undergo ICIs treatment may experi-
ence irAEs, with 20% of them suffering from high-grade irAEs 
[65]. As well, among cancer patients who received a combina-
tion scheme (e.g. ipilimumab + nivolumab), more than 90% 
had at least one irAE, and nearly half of them had severe irAEs 
[67]. These side effects obviously do not spare the heart. How-
ever, ICIs-induced cardiotoxicity is a relatively rare complica-
tion and frequently manifests with myocarditis. Recent studies 
have found that SGLT2i may offer a promising approach to 
reduce all-cause mortality in cancer patients receiving ICIs 
therapy. Perelman et al. retrospectively analyzed 119 patients 
treated with ICIs; of them, 24 (20%) had SGLT2i on board. 
SGLT2i emerged as an independent predictor for lower all-
cause mortality [108]. Noteworthy, another important find-
ing was that the baseline hematocrit (HCT) was higher in the 
SGLT2i group (37 ± 6% vs. 33 ± 6%, p = 0.003) underling the 
active role on hematopoiesis played by these medications in 
cancer patients [38]. The complex mechanisms through which 
SGLT2i may oppose ICIs cardiotoxic effects are still unknown 
and translational research is needed. 

All these findings identify SGLT2i as potential cardiopro-
tective agents against a wide spectrum of antitumor drugs. 
Needless to say, further preclinical and clinical studies are 
much needed to support this hypothesis. However, the trans-
lation of data emerged from preclinical studies to clinical 
practice is limited by the lack of models able to mimic the 
clinical scenario of cancer patients, often affected by con-
comitant comorbidities and cardiovascular disease. Indeed, 
in most studies in vivo models were represented by healthy 
animals, complicating the transposition of results to elderly, 
comorbid cancer patients [84, 122]. While assessing the 
effectiveness of cardioprotective strategies, it is essential to 
consider the impact of cardiovascular risk factors, such as 
diabetes or arterial hypertension, and previous cardiovascu-
lar events, i.e. acute and chronic coronary syndromes, which 
frequently affect patients with active cancer or cancer sur-
vivors years after drug exposure [171]. Appropriate in vivo 
models able to integrate the complexity of cancer patients 
are needed in order to better understand the pathogenesis of 
cardiovascular toxicity, the relationship between fn cancer 
and cardiovascular diseases and potential therapeutic options 
[7, 18].
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SGLT2 inhibitors in cardio‑oncology: clinical 
experience

The promising results of preclinical studies paved the 
way to the evaluation of potential cardioprotective effects 
of SGLT2i in patients undergoing anthracycline-based 
chemotherapy (Table 2). A retrospective study recently 
included 3033 patients with diabetes mellitus and treated 
with anthracyclines for solid and hematologic malignancies. 
After matching subjects for age, sex, and anthracycline start-
ing date, the authors could identify a case population of 32 
patients who received SGLT2i during chemotherapy and a 
control population of 96 subjects who did not. The primary 
outcome was a composite of HF incidence, HF hospitaliza-
tion, clinically significant arrhythmias, or a > 10% absolute 
decline in LVEF to a final value < 53%. During a median 
follow-up period of 1.5 years, when compared to controls, 
case patients experienced a lower incidence of the composite 
primary outcome, as well as reduced overall mortality and 
incidence of a composite of sepsis and neutropenic fever 
(16% vs 40%; p = 0.013). A non-significant higher incidence 
of genital infections was observed. The lower incidence of 
cardiac events was principally driven by a reduction in HF 
hospitalizations and > 10% decline LVEF to < 53% during 
chemotherapy [46].

In the same way, Chiang et al. conducted a retrospec-
tive propensity score-matched cohort study, involving 
adult patients with type 2 diabetes mellitus diagnosed with 
cancer (95% with solid tumors and 5% with haematologic 
malignancies). From a total cohort of 8640 patients, 878 
patients received an SGLT2i [primarily empagliflozin (49%), 
followed by dapagliflozin (38%) and canagliflozin (14%)] 
while 7556 did not and served as controls. During a median 
follow-up of almost 20 months, SGLT2i patients showed 
a three-fold lower rate of hospitalizations for incident HF 
compared to controls (2.92 vs 8.95 per 1000 patient-years, 
p = 0.018). In Cox regression and competing regression 
analyses, SGLT2i were associated with a 72% reduction 
in the risk of hospitalization for HF. Overall, SGLT2i was 
associated with a higher survival (85.3% vs 63.0% at 2 years, 
p < 0.001), with the risk of serious adverse events (i.e. acute 
kidney injury and diabetic ketoacidosis) similar in the two 
groups [24]. Of interest, the use of SGLT2i was associated 
with a decreased risk of urosepsis, sepsis and hypoglycemia.

Other investigators evaluated a cohort of 933 patients 
without HF history who were receiving medications for dia-
betes and underwent anthracycline-based chemotherapy. Of 
these patients, 99 received an SGLT2i while 834 did not and 
served as controls. During a median follow-up of 1.6 years, 
in the SGLT2i population there was a significant lower inci-
dence of HF hospitalizations, while no significant difference 
in incident HF diagnosis, cardiovascular disease diagnosis 

or mortality could be detected [1]. Finally, Avula et al. con-
ducted a retrospective investigation on the role of SGLT2i 
in diabetic patients exposed to antineoplastic agents and 
developing a decline in left ventricular function. In a cohort 
of 1280 adult patients without a history of ischemic heart 
disease but with chemotherapy-induced cardiac dysfunc-
tion, patients treated with SGLT2i on top of therapy showed 
reductions in acute HF exacerbation, all-cause mortality, all-
cause hospitalizations, atrial fibrillation/flutter, acute kidney 
injury and need for renal replacement therapy compared to 
controls who did not receive SGLT2i [11].

Even if limited by observational design and unmeasured 
confounders between the populations examined, these stud-
ies formed the rationale for randomized controlled trials. The 
EMPACT (Empagliflozin in the Prevention of Cardiotoxic-
ity in Cancer Patients Undergoing Chemotherapy Based on 
Anthracyclines; NCT05271162) trial is a multicenter phase 
III study aiming to assess whether prophylactic empagliflo-
zin may prevent LV dysfunction in patients receiving high-
dose anthracycline therapy.

Cardiotoxicity may not only manifest as cardiac dysfunc-
tion, but also with arrhythmic events, such as atrial fibrilla-
tion (AF) and ventricular tachycardia, generally developing 
acutely after anticancer treatment administration. In particu-
lar, AF is frequent in oncological patients, with an estimated 
prevalence of 9.77% and an age-related relative risk ratio 
in patients with cancer compared with no cancer of 10.45 
[12]. Pathogenetic factors coming at play are numerous, 
even though generally involving patients’ related factors, 
anti-neoplastic therapy performed and/or direct compres-
sion/invasion exerted by cancer itself [23, 34, 48, 92, 112]. 
There is growing evidence about the potential protective 
role of SGLT2i in arrhythmias and AF [77]. Potential bio-
logical mechanisms implicated in antiarrhythmic properties 
probably involve regulation of Ca2+ and Na+ homeostasis, 
as well as the anti-fibrotic and anti-inflammatory effects 
exerted on myocardial cells [43]. In clinical practice, dapa-
gliflozin showed to influence AF or atrial flutter events in 
the DECLARE-TIMI 58 population, reducing their occur-
rence by 19%; this effect was consistent regardless of the 
patient’s previous history of AF, atherosclerotic disease, 
blood pressure or history of HF [163]. Likewise, Abu-Qaoud 
et al. studied the effects of SGLT2i in patients with type 
2 diabetes previously diagnosed with AF and treated with 
catheter ablation, demonstrating that the use of these drugs 
was associated with a lower risk of arrhythmia recurrence 
and consequently a reduced need for cardioversion, antiar-
rhythmic therapy or new AF ablation [3]. In the light of this 
new evidence, SGLT2i may become an important tool in the 
management of rhythm-related disorders in the oncologi-
cal population, specifically in patients treated with cancer 
therapies associated with arrhythmic events.
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SGLT2 inhibitors and bone marrow function: 
implications for cancer patients

In addition to the aforementioned cardioprotective effects, 
SGLT2i seem to exert unique and complex effects on hemat-
opoiesis and bone marrow (BM) function; accordingly, BM 
cells represent the extrarenal compartment with the highest 
level of expression of SGLT2, followed by skeletal muscle 
and myocardial cells [5].

SGLT2 inhibitors and modulation of erythropoiesis.

The most evident BM effect of SGLT2i is modulation of 
erythropoiesis. SGLT2i increased hemoglobin count and 
hematocrit in various randomized controlled trials (sum-
marized in Table 3 along with the suggested mechanisms of 
action of SGLT2i). The most notable trial to provide such 
information was the EMPA-REG OUTCOME trial, which 
recruited 7028 diabetic patients and reported higher hema-
tocrit values in the empagliflozin groups than in the placebo 
group [170]. While originally ascribed to natriuresis and 
plasma volume contraction, the increase in hematocrit was 
later related to an enhanced production of erythropoietin [30, 
37, 88]. In fact, an increase in erythropoietin occurred early 
upon treatment initiation and subsided a new set point for the 
equilibrium between erythropoietin and haemoglobin levels 
[153]. SGLT2i improve erythropoietin expression/secretion 
via at least three distinct mechanisms: modulation of tubu-
lointerstitial hypoxia and hypoxia-induced factor (HIF)‐α 
expression, mitigation of inflammation-induced functional 
iron deficiency, and metabolic reprogramming (the latter 
manifested at a cellular level by an increased production 
of ketone bodies and a state of starvation mimicry) [104].

The action of SGLT2i to block Na+ reabsorption in the 
proximal renal tubule leads to increased delivery of sodium 
to more distal portions of the nephron, where counter-
regulatory mechanisms of Na+ absorption are recruited to 
limit the magnitude of natriuresis. It has been speculated 
that SGLT2i might in this way increase oxygen consump-
tion and predispose to tissue hypoxia in the S3 segment of 
the nephron, possibly in close proximity to the specialized 
interstitial fibroblast-like cells belonging to the deep cor-
tex, which could be stimulated to produce erythropoietin 
[156]. On the other hand, inhibition of glucose reabsorption 
would alleviate metabolic demands in the proximal tubules 
and reduce oxygen consumption, thus improving oxygena-
tion in the outer renal cortex and allowing dysfunctional 
fibroblasts to revert to a phenotype that is able to synthetizes 
erythropoietin [124].

In addition to the aforesaid considerations, the disease 
states that pose an indication to SGLT2i, such as HF and 
kidney impairment, are associated with the development of 

a typical anemia of chronic disease. This is caused by an 
inflammatory state characterized by increased levels of two 
major iron regulatory proteins, hepcidin and ferritin, and by 
a state of functional iron deficiency [147]. Hepcidin, pro-
duced by the liver, blocks the absorption of iron from the 
duodenum and its release from the reticuloendothelial sys-
tem. SGLT2i reduced serum hepcidin and ferritin levels in 
both type 2 diabetes [45] and chronic HF [24, 104], in part by 
stimulating erythropoiesis and in part by a direct anti-inflam-
matory effect [103]. Regardless of the ultimate mechanism, 
decreases in hepcidin and ferritin would lead to an increased 
release of iron from macrophages and intracellular storages, 
respectively, fueling red blood cells production. A key role 
seems to be played also by ketone bodies. Acetoacetic acid, 
β‐hydroxybutyrate, and acetone are in fact hyperproduced 
in patients during chronic SGLT2i therapy and experimental 
evidence suggests that β‐hydroxybutyrate infusion causes 
a concomitant 30% increase in erythropoietin levels and 
bone marrow glucose uptake in healthy volunteers [71]. If 
and how precisely an SGLTi-driven upregulation of ketone 
bodies would contribute to increasing erythropoiesis will 
nonetheless require further investigations. Finally, SGLT2i 
up-regulate sirtuin (SIRT)1 [132], which can then activate 
HIF-2α directly [28] or through heme oxygenase-1 and can 
enhance transcription of the erythropoietin gene [139]. Thus, 
SGLT2i may well augment erythropoietin production in kid-
ney and liver cells also in an oxygen-independent manner.

SGLT2i has also been linked with enhanced development 
and BM release of pro-angiogenic progenitor cells. In par-
ticular, dapagliflozin increased BM resident mature leuko-
cytes and circulating white blood cells in both diabetic and 
non-diabetic mice, and improved diabetes-associated defects 
in hematopoietic stem cell mobilization by granulocyte col-
ony-stimulating factor, eventually promoting the migration 
of BM cells to the sites of vascular injury [5]. In humans, 
empagliflozin increased circulating pro-angiogenic CD133+ 
progenitor cells and increased M2 polarized monocytes with 
anti-inflammatory properties [51]. As anthracycline cardio-
myopathy is at least in part due to impaired mobilization and 
regenerative functions of endothelial cell progenitors [57], 
SGLT2i could be of potential value to restore the recruitment 
of endothelial cell progenitors to sites of injury. As a last 
observation, the aforementioned work by Gongora et al. [46] 
showed that SGLT2i reduced a composite outcome of sepsis 
and neutropenic fever, possibly suggesting that these drugs 
may also exert some effects on the defense mechanisms of 
cancer patients treated with chemotherapy. SGLT2i effects 
on lymphocyte and granulocyte functions could be an inter-
esting field for future research.
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Implications of SGLT2 inhibitors use in clinical 
practice.

Anemia is a frequent finding in patients diagnosed with solid 
cancers and lymphomas or acute leukemias, and is further 
worsened by chemotherapy treatments. Unsurprisingly, ane-
mia is an important adverse prognostic factor for outcomes 
in lymphoma patients, worsening the overall and progres-
sion free survival independent of bone marrow involvement 
[98]. The pathogenesis of cancer-induced anaemia (CIA) is 
complex and multifactorial [2]. Cancer-associated chronic 
inflammatory is an important contributor, leading to a con-
dition of functional iron deficiency; for example, patients 
with diffuse large B cells lymphoma are characterized by 
increased circulating levels of IL-6, hepcidin and ferritin, 
along with a defective erythropoietin production [136]. Cur-
rent management of CIA relies on iron replacement therapy, 
transfusions and erythropoiesis stimulating agents (ESA) 

[16]. However, CIA correction remains an unmet clini-
cal need, considering that only 1/3 of patients respond to 
ESA. Moreover, ESA is associated with an increased risk 
of thromboembolic events and concerns around an acceler-
ated tumor progression have been raised. Transfusions of 
red blood cells, although in some cases unavoidable, seem 
to worsen prognosis [2]. In this setting, the multifaceted 
activities of SGLT2i on reducing inflammation while also 
safely upregulating erythropoiesis hold promise for a better 
management of CIA. Nevertheless, it is worth noting that 
SGLT2i-induced erythrocytosis seems not to be accompa-
nied by an increased risk of thrombosis, which makes pre-
mature SGLT2i discontinuation or haematocrit lowering 
strategies (such as implementation of phlebotomy program) 
unnecessary precautions [41, 42].

Figure 4 summarizes the role of SGLT2i in the hemato-
logic patient.

Fig. 4   The hematological effects of SGLT2 inhibitors. On the right, 
the effects on the red blood cell in the context of chemotherapy-
induced anemia (CIA): in particular, inhibition of SGL2 promotes 
the increase in hematocrit by stimulating the release of erythropoi-
etin and activating SIRT1; it induces the modulation of interstitial 
tubule hypoxia by promoting the reduction of ferritin and hepcidin. 
SGLT2 inhibitors also reduce Ferroptosis favoring a greater amount 
of circulating iron from macrophages. On white blood cells, in the 

mouse models, SGLT2 inhibitors promote the increase of CD34+ 
cells in peripheral blood and the migration of neutrophils at the level 
of vascular injuries. Furthermore, they favor the polarization of mac-
rophages into the M2 phenotype. The presence of SGLT2 at the level 
of lymphoblasts and myeloblasts has not yet been fully elucidated. 
EPO Erythropoietin, HIF hypoxia induced factor, IL6 interleukin 6, 
SIRT1 Sirtuin-1



	 Basic Research in Cardiology

Proposed SGLT2 inhibitors effects on solid 
tumors and hematological malignancies

There are several in vitro studies suggesting that SGLT2i 
exhibit anti-proliferative activity against some types of solid 
tumors, including breast, lung, prostate, colon and pancreas. 
This may help to design strategies that combine SGLT2i 
with other cancer drugs [60, 69, 70, 169].

The metabolic reprogramming of cancer cells involves 
changes in the uptake of various substrates and changes in 
their metabolic pathways. The most striking example of 
altered metabolism is the Warburg Effect [78], which con-
sists of increased glucose uptake and its conversion to lactate 
via anaerobic glycolysis. One of the proposed mechanisms 
through which SGLT2i may limit tumor growth therefore 
consists in decreasing glucose availability to cancer cells 
through inhibition of sodium glucose cotransporter, which in 
fact is overexpressed in pancreatic, lung and prostate adeno-
carcinomas and in high grade glioblastomas [127, 148].

In this context, emerging anticancer effect of SGLT2i 
may also be obtained by reducing the activity of Hexoki-
nase II (HK II), an enzyme that has been found to play a 
significant role in cancer development. It is overexpressed in 
many types of cancer cells and has been shown to promote 
tumor growth and survival by increasing the rate of glucose 
uptake and metabolism. This enzyme is known to interact 
with mitochondria, serving as facilitator and gatekeeper of 
malignancy [87]. HK II is also able to suppress the death of 
cancer cells, increasing their metastatic potential. For these 
reasons, targeting this key enzyme is currently being inves-
tigated as novel cancer therapies [40]. Recent studies have 
shown that SGLT2i may have anticancer effects by reducing 
the activity of HK II. As well, by reducing glucose uptake 
and metabolism in cancer cells, SGLT2i may attenuate 
tumor growth and improve the effectiveness of cancer treat-
ments [29, 142, 152]. While both Hexokinase II and SGLT2i 
have been extensively studied in the context of cancer, fur-
ther research is needed to fully understand their complex 
roles in the disease and to develop effective treatments that 
target these pathways.

Programmed cell death-ligand 1 (PD-L1) function on 
cancer cells appears to be critical in immune escape and 
tumor development. SGLT2i promotes PD-L1 recycling, 
allowing the ubiquitination and proteasome-mediated deg-
radation [27]. As well, a number of emerging evidences sug-
gests that SGLT2i may have direct anticancer effects, going 
beyond metabolic properties. A recent study demonstrated 
that SGLT2 is overexpressed in osteosarcoma cells and its 
inhibition can promote treatment efficacy by inducing T cell 
infiltration [149]. In the same direction, other recent reports 
found similar efficacy of SGLT2i in the context of liver [50] 
and cervical carcinoma [151].

Effects of SGLT2i in solid tumors are currently investi-
gated in small clinical trials. The first trial enrolled 15 par-
ticipants to assess the tolerability and efficacy of dapagli-
flozin on top of standard chemotherapy (Gemcitabine and 
nab-Paclitaxel) in patients with metastatic pancreatic cancer. 
The drug was well tolerated with favorable changes in tumor 
response and plasma biomarkers [105]. An ongoing phase 
1b/2 study (NCT04073680) plans to recruit 60 participants 
with advanced solid tumors (breast, endometrial, lung, colo-
rectal, and head and neck cancers) treated in combination 
with serabelisib (a PI3K inhibitor) and canagliflozin. The 
study rationale is that hampering the glucose/insulin feed-
back pathway would enhance the efficacy of PI3K inhibition. 
A phase I trial (NCT04887935) involving 24 participants is 
planning to assess the tolerability/efficacy of neoadjuvant 
SGLT2i before radical prostatectomy in high-risk localized 
prostate cancer. Finally, a phase 1 study (NCT05521984) 
will probe dapagliflozin in combination with carmustine for 
treatment of pediatric brain tumors.

Metastasis is a significant challenge in cancer treat-
ment, often resulting in poor prognosis. Recent research 
has suggested that SGLT2i may play a role in the preven-
tion of metastasis through different mechanisms: reducing 
the expression of certain molecules that are involved in the 
adhesion and migration of cancer cells and reducing the 
activity of signaling pathways involved in the growth and 
survival of cancer cells. On this line, a recent study from 
Rogava and colleagues explored new insights into the mech-
anisms behind liver metastasis in cancer [118]. In particular, 
they focused on Pip4k2c (phosphatidylinositol-5-phosphate 
4-kinase), an actionable target of SGLT2i, and found that 
the loss of Pip4k2c leads to the activation of the PI3K-AKT 
pathway, which plays a crucial role in liver metastasis.

Less is known about SGLT2i as therapeutic agents for 
hematologic malignancies. A meta-analysis of diabetic 
patients treated SGLT2i or Dipeptidyl Peptidase (DPP)IV 
inhibitors found a lower risk of hematological malignancies 
in the SGLT2i arm, which suggests a possible protective 
role of these agents [119]. In preclinical studies, SGLT2 was 
shown to be expressed in the human tonsil [22], in regulatory 
T cells, memory CD4 and CD8 T cells and NK cells [140]. 
Moreover, SGLT2 was remarkably expressed in leukemic 
cells from patients with adult T-cell leukemia (ATL) and 
SGLT2i suppressed the proliferation of two ATL cell lines 
and of leukemic cells in peripheral blood from patients with 
ATL. The antiproliferative effect of SGLT2i in these cells 
was due to reduced glucose uptake and consequent reduced 
intracellular levels of ATP and NADPH [99].

On the basis of these preclinical studies, more evidence 
of SGLT2i in the treatment of hematological malignancies, 
including the broad spectrum of lymphoproliferative disor-
ders, is highly warranted.
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Conclusions and future directions

We reviewed the promise that SGLT2i hold as cardiac pro-
tectants, potential antiproliferative agents and stimulants of 
erythropoiesis and immune defense in the cancer patient. 
Overall, this represents the conceptual pillar to foster clinical 
research and use of SGLT2i beyond currently recommended 
indications in HF and diabetes. The need for cardioprotective 
agents is in fact a notable challenge in contemporary Car-
dio-Oncology, particularly in view of the avalanche of new 
drugs and therapies heavily treated patients with relapsed or 
refractory cancer might be considered candidates for. At the 
same time, the need for improving quality of life and patient 
reported outcomes in oncologic settings encourage studies of 
SGLT2i in cancer pathophysiology, immune system regula-
tion and infection control.
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