

For numbered affiliations see end of article.

Correspondence to

Dr Nicolò Bizzarri, UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma 00168, Italy; nicolo.bizzarri@yahoo. com

NB and LR contributed equally.

Received 24 April 2023 Accepted 7 August 2023 Published Online First 15 September 2023

Radiomics systematic review in cervical cancer: gynecological oncologists' perspective

Nicolò Bizzarri ^(D), ¹ Luca Russo ^(D), ² Miriam Dolciami, ² Konstantinos Zormpas-Petridis, ² Luca Boldrini, ² Denis Querleu ^(D), ¹ Gabriella Ferrandina, ^{1,3} Luigi Pedone Anchora, ¹ Benedetta Gui ^(D), ² Evis Sala, ^{2,3} Giovanni Scambia ^(D), ^{1,3}

ABSTRACT

Objective Radiomics is the process of extracting quantitative features from radiological images, and represents a relatively new field in gynecological cancers. Cervical cancer has been the most studied gynecological tumor for what concerns radiomics analysis. The aim of this study was to report on the clinical applications of radiomics combined and/or compared with clinical-pathological variables in patients with cervical cancer. **Methods** A systematic review of the literature from inception to February 2023 was performed, including studies on cervical cancer analysing a predictive/ prognostic radiomics model, which was combined and/or compared with a radiological or a clinical-pathological model.

Results A total of 57 of 334 (17.1%) screened studies met inclusion criteria. The majority of studies used magnetic resonance imaging (MRI), but positron emission tomography (PET)/computed tomography (CT) scan, CT scan, and ultrasound scan also underwent radiomics analysis. In apparent early-stage disease, the majority of studies (16/27, 59.3%) analysed the role of radiomics signature in predicting lymph node metastasis; six (22.2%) investigated the prediction of radiomics to detect lymphovascular space involvement, one (3.7%) investigated depth of stromal infiltration, and one investigated (3.7%) parametrial infiltration. Survival prediction was evaluated both in early-stage and locally advanced settings. No study focused on the application of radiomics in metastatic or recurrent disease.

Conclusion Radiomics signatures were predictive of pathological and oncological outcomes, particularly if combined with clinical variables. These may be integrated in a model using different clinical-pathological and translational characteristics, with the aim to tailor and personalize the treatment of each patient with cervical cancer.

INTRODUCTION

Check for updates

© IGCS and ESGO 2023. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Bizzarri N, Russo L, Dolciami M, *et al. Int J Gynecol Cancer* 2023;**33**:1522–1541. Radiomics in gynecological cancers is a relatively new field of research.¹ Cervical cancer is the most studied gynecological tumor,² with the first report on radiomics published in 2014.³ The International Federation of Gynecology and Obstetrics (FIGO) introduced the use of imaging for cervical cancer staging in 2018,⁴ and it is known that magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT) are currently the

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Radiomics analysis in cervical cancer is a relatively new field of research.

WHAT THIS STUDY ADDS

⇒ The best predictive performance was obtained by the integration of radiomics features with different clinical, radiological, and pathological parameters.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ Integration of radiomics features with known prognostic factors might help clinicians to tailor cervical cancer treatment and follow-up.

most accurate imaging modalities for local disease and distant metastases staging, respectively.⁵

Radiological evaluation is currently based on qualitative assessment and simple metrics, such as tumor size/evaluation of disease extent on MRI or metabolic activity, and evaluation of lymph node and distant metastases on PET/CT; but images do contain high-dimensional quantitative data that may reflect the 'unseen' tumor characteristics and biological hallmarks.⁶

Radiomics is the process of extracting quantitative features from radiological images (Figure 1). Different radiomics features are typically extracted after contouring the region of interest, generally corresponding to the site of disease. Radiomics quantify the phenotype, which is subsequently correlated with various outcomes, such as prediction of response to treatments, probability of recurrence, and survival.⁷

Texture analysis, histogram analysis and morphometric analysis represent the three main families of features currently analysed in radiomics studies.⁶ As a non-invasive method of assessing the tumor and its surrounding microenvironment, radiomics holds the potential to evaluate and monitor tumor characteristics, such as temporal and spatial heterogeneity, thereby potentially reducing the need for invasive procedures.⁶⁸⁹

Cervical cancer represents an ideal tumor in which radiomics evaluation can be applied, as it spreads in a step-by-step way with parametrial invasion/lymph nodes being the first site of extra cervical metastasis.⁴

$\begin{array}{c} \label{eq:product} Fail and the second secon$

Figure 1 Radiomics standard pipeline. Radiological images are segmented to obtain the region of interest (ROI), corresponding to the tumor volume. The ROI is processed, and high-dimensional radiomic features of different classes are extracted with dedicated software. The feature selection procedure then reduces the number of features, eliminating redundant ones. Afterwards, selected features are combined to build the model for the prediction of the chosen outcome.

Also, the majority of patients are diagnosed with two histological types,¹⁰ with already known clinical-radiological prognostic factors¹¹ and a limited clinical application of other -omics analyses (such as genomics or proteomics) to date.¹²

The aim of this systematic review was to report on the clinical applications of radiomics combined and/or compared with clinical-pathological variables in patients with cervical cancer.

METHODS

The methods for this review were specified a priori based on the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.¹³

A systematic search for articles on radiomics and cervical cancer in PubMed and Scopus Database was performed in February 2023. No limit on date of publication was applied (articles from inception to 1 February 2023 were screened). No restriction on the country was applied.

The search terms used the following key words combinations: [((cervix) OR (cervical)) AND ((tumor) OR (cancer) OR (neoplasm)) AND ((radiomic) OR (radiomics) OR (texture))].

Inclusion criteria were:

- peer-reviewed original articles;
- ▶ studies that included patients with diagnosis of cervical cancer;
- ► all FIGO stages;
- all type of images; and
- studies including a predictive/prognostic radiomics model, which was combined or compared with a radiological or clinical-pathological model.

Reviews, case reports, editorial comments, conference abstracts, short communications, pre-clinical or technical studies, animal studies, and non-English language studies were excluded. Studies analysing pre-invasive disease or colposcopy texture/images were also excluded.

Lastly, studies not including comparison or combination of a radiomics model with a radiological or clinical-pathological model were also excluded.

Data extraction was performed manually and independently by two reviewers (NB and LR), and any disagreement was discussed with a third reviewer (MD). Citations and references of the retrieved studies were used as additional sources. All included articles were evaluated for potential conflicts of interest.

RESULTS

A total of 334 studies were retrieved, and 57 (17.1%) were selected according to the aforementioned criteria. The detailed list of articles included after the selection process is reported in OnlineSupplementalTable 1. The PRISMA flowchart describes the applied selection steps and reports the reasons for exclusion (Figure 2).

Early-Stage Cervical Cancer

Prediction of 'Intermediate' Risk Factors

Patients with apparent early-stage cervical cancer undergoing radical surgery might have the so-called 'intermediate' risk factors at final histology, represented by the combination of tumor size, depth of stromal infiltration, and lymphovascular space invasion (LVSI) status.¹⁴

A potential application of radiomics is the prediction of 'intermediate' risk factors on pre-operative images.

LVSI

Table 1 demonstrates the different studies investigating the role of different imaging modalities-based radiomics in predicting LVSI. Almost all studies evaluated MRI-based radiomics.^{15–19} with only one study evaluating PET/CT-based radiomics.²⁰ Three of these studies proposed a nomogram including clinical-pathological and radiological variables.^{16 18 19} In general, radiomics models reached better concordance indexes in predicting LVSI in cervical cancer than clinical and radiological models alone.

Depth of Stromal Infiltration

The only study analysing depth of stromal infiltration was published by Ren et al,²¹ and showed that MRI-based radiomics analysis outperformed radiologists for the pre-operative diagnosis of middle or deep stromal invasion in early-stage cervical cancer. The probability of invasion could be predicted by a nomogram, which included radiomics signature.

Figure 2 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart.

Prediction of 'High' Risk Factors

High-risk factors include lymph nodes metastasis, parametrial infiltration, and positive surgical margins.²² When pre-operatively identified, these factors can represent an indication to avoid radical surgery and refer patients to chemoradiotherapy. Surgical margins involvement has not been the specific aim of any study involving radiomics. In fact, prediction of free surgical margins derives from a combination of patient selection and surgical technique. Therefore, this high-risk factor is not accessible pre-operatively. Several studies have assessed the ability of radiomics to predict high-risk factors such as occult lymph node metastases and parametrial invasion, otherwise occult at standard imaging.

Lymph Node Metastasis

Prediction of lymph node metastases in patients with cervical cancer has been the most investigated topic in radiomics studies. Table 2 shows the studies analysing the radiomics prediction of lymph node metastases.

Of the 16 included studies, 11 (68.8%) performed radiomics analysis by contouring the tumor, $^{23-33}$ three (18.8%) by contouring

the tumor and the peri-tumoral area,^{34–36} and two (12.5%) by contouring the lymph nodes.^{37 38} One of the first studies evaluating the role of PET/CT-based radiomics in predicting lymph node metastases²³ showed that the combination of radiomic features and vascular-endothelial growth factor (VEGF) expression had a significantly superior predictive value (area under the curve 0.878, 95% CI 0.772 to 0.947), compared with that of the conventional metabolic parameters.

Other authors showed that the performance of MRI-based radiomics model was significantly better than that of each predictive factor alone (including clinical stage and MRI-reported lymph node status).²⁴ Several studies^{25–32 34–38} evaluated the role of MRI-based radiomics in the prediction of nodal metastases; the majority concluded that the radiomics signatures are more accurate in predicting lymph node metastases compared with clinicalradiological features. The best performance was reached by the model which combined radiomics and clinical-radiological features.

Two studies evaluated the predictivity of CT-based radiomics to predict lymph node metastases with promising results, especially

		bit better than	formed el in	adiomics scin-C or	MRI- model ormance neters.	ad-score niently 3dict	lular used I for	raphy;
	Main conclusion	Functional maps exhil discriminative values anatomical images.	Radiomics model per better than MRI mode predicting LVSI.	Combination of PET r with COX-2 and tenas provides a new tool fr detecting LVSI.	The multi-parametric combined radiomics r reached a better perfu- than the clinical parameter than than the clinical parameter than than the clinical parameter than than than than than than than than	The nomogram and <i>r</i> could be used conver and individually to pre LVSI.	Radiomics nomogram from peri-tumoral regi and the degree of cell differentiation can be as a non-invasive tool predicting LVSI.	PET, positron emission tomogr
	Clinical model compared or combined with radiomics model	Combined	Combined	Combined	Combined	Combined	Combined	tic resonance imaging; l
	AUC radiomics model external validation set	° Z	0.727	0.806	°Z	°Z	0.788	ion; MRI, magne
	AUC radiomics model (max)	0.831	0.754	0.914	0.922	0.810	0.771	cular space invas
	Machine learning or deep learning	Machine learning	Machine learning	Machine learning	Machine learning	Machine learning	Machine learning	LVSI, lymphovas.
al cancer	Nomogram	°N N	Yes	2 2	2	Yes	Yes	transfer constant;
/SI in cervic	Imaging	MRI (T2, T2 FS, ADC, Ktrans, Ve, Vp)	MRI (T1)	PET/CT	MRI (SFOV, T2, ADC, T2WI, FS-T2WI, T1c)	MRI (T1, FS- T2WI, DWI, ADC, CE)	MRI (CE T1W, T2W)	ation; Ktrans, volume
edicting L	External validation set	° N	°N N	2	2	°N N	°Z	ing; FS, Fat-satur
lels in pre	Internal validation set	° Z	Yes	Yes	Yes	Yes	Yes	n-weighted imag
Idiomics mod	No of participants	56	105	12	125	233	163	/genase-2; DWI, Diffusio
clinical and ra	Design	Retrospective	Retrospective	Retrospective	Retrospective	Retrospective	Retrospective	anced; COX-2, cyclooxy
ombining c	Journal	J Magn Reson Imaging	J Magn Reson Imaging	BMC Cancer	Front Oncol	Br J Radiol	Diagn Interv Radiol	e; CE, Contrast-Enh
ng or c	Year	2019	2019	2021	2022	2022	2022	Ider the curv
Studies comparir	Title	Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma	MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively	Prediction of lymphovascular appee invasion using a combination of tenascin-C, cox-2, and PET/CT radiomics in PET/CT radiomics in petrivcal squamous cell carcinoma	Multi-parametric magnetic resonance imaging- of cenvical cancer for preoperative prediction of lymphovascular space invasion	Multiparametric MRI radiomics nomogram for predicting lymph-vascular space invasion in early- stage cervical cancer	Multi-parametric MRI- based peri-tumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer	diffusion co-efficient; AUC, area un field of view.
Table 1	Authors	Wu et al ¹⁵	Li et al ¹⁶	Li et al ²⁰	Huang et al ¹⁷	Xiao et al ¹⁸	Cui et al ¹⁹	ADC, apparent c sFOV, scanning

		GF d the	allowed mph han	s hat of nne.	n bh diomics e ant ctors	mbines s	boo	paric
	ю	ures in vith the VEC el improve uracy.	signatures nation of ly sis (better t adiology).	model wa: atter than t e factor alc	nomogran an improwity for lymp sis. The rac egrating th ature with ogic risk d a signific ver the sed only or sed only or ori.	ree that co del of MRI a node statu diagnostic	nature and instrated g identifyin etastasis.	Conti
	n conclus	liomic featu bination w ression lev diction acc	radiomic s d discrimir e metastas ventional r	radiomics lificantly be n predictiv	radiomics nonstrated liction abili e metastas nogram intt norics sign norics s	decision th omics moc cal lymph leved best ormance.	liomics sig C-Ag demo ormance ir ph node m	
	lel Mai	Rad exp prec	The goo nod con	eacl	The dem non rradi fact fact in th valic	The radii ach perf	SCC SCC Iymi	
	cal model bared or bined with	Dined	Jared	oined (no parison with al/radiomic 테 alone)	parison pined mod s clinical- ological	oined	pined	
	s Clinic comt radio	Com	Com	Comp comp mode	Comp comb versu pathc	Com	Co	
	AUC radiomic model external validatio set	0 N	°N N	°Z	0 N	oZ	°Z	
cancer	UC diomics odel nax)	803	754	870	606	895	852	
rvical	nine A ling or ra ming (n	0. 0.	ning 0.	ing 0.	0.	ing 0.	O	
s in ce	Macl learn deep m learn	Mach	Mach learn	Mach	Mach	Mach learn	Deep learn	
astase	Nomogra	0 Z	° N	^o Z	Kes	°Z	Yes	
e meta	ping	PET/CT	(T1CE,	(ADC)	(T2, DWI)	(T2 er tumoral)	(T2FS)	
h nod	al Imag	FDG	MRI T2)	M	MR	Humc +peri	M	
g lymp	Externa n validati set	o Z	No.	2 Z	°Z	Ŷ	Ŷ	
edictin	Internal validatior set	Yes	Yes	Yes	Yes	Yes	Yes	
s in pr	n	5	ar	5	2	r+peri-	2	
model	Cour ts regio	Tumo	Tumo	Tumo	Tung	Tumo tumo	Tumo	
omics	lo of articipant	4	43	53	Q	88	6	
d radio	2 0	5	-	-	0	-	-	
ical an	uğı	ospective	o	0	0	o	0	
id clini	Des	Retr	Retr	Retr	Retr	Retr	Retr	
mbinir	a	Radiol	jn Reson ng	Radiol	Radio	ther on co	adiol	
) or co	Jourr	Eur J	J Maç Imagi	Br J F	Eur J	Radic	R. J.	
paring	Year	2018 di aa	2019	2019 Is	2019 e	2019 C	5020	
s com		-DG PET ures pression pelvic trastasis ar trastasis ar trelationsh e cervical	nature as actor for netastasis e cervical	an ADC- nics model r pelvic netastases th stage tl squamou a	prediction bh nodes early-stag er using mogram ssed on MRI and ghted	alysis of s diagnosti of lymph asis in cervical	e odel for the of lymph asis in early-stag mous cell	
Studie	Ø	ue of [¹⁸ F] liomic feat d VEGF ex oredicting phatic me ir potential arrly-stage amous ce	diomic sig redictive f. phh node n ærly-stage rcer	asibility of sed radion predicting ph node n patients win IIA cervica	soperative pelvic lym tastasis in vical canc liomics no. veloped bs veloped bs veloped bs usion-veit aging	diomics ar i improvec formance de metasta ients with icer	preoperativ liomics mc ntification de metaste ients with vical squa cinoma	
le 2	rs Tit	Val rad anc lyn the in € squ	tal ²⁵ Ra a p lym car car	al ²⁴ Fec bax lyn Cell B-L	et Pre of I me cer rad dev dev fi fi fi fi fi fi fi fi fi	al ³⁴ Ra MF per pat can	tal ²⁷ Ar rad noc pat cer can	
Tab	Autho	Li et a	Kan e	Yu et	wang al ²⁸	Wu et	Yan e	

		I that and peri- maging ance. sr del sp tus. tus. from	ih node lymph cal tte	s-clinical rmance node	gram nance nd test	vector hed criteria criteria ph rts. sd models ma ma ma	nued
	Main conclusion	The deep learning model used both intratumoral ao tumoral tergoins on contra- enhanced T1-weighted in showed the best perform these results were furthe improved in a hybrid moo that combined tumor im that combined tumor im that combined tumor im that combined tumor im a given and MR1- reported lymph node sta Moreover, the hybrid moo was significantly associa with disease-free surviva cervical cancer.	The combination of lymp radiomics signature with node clinical morphologin features could discrimina lymph node metastasis relatively well.	The combined radiomics model had highest perfor in discriminating lymph n metastasis.	The deep learning nomo; showed the best perform in development cohort ar cohort.	The MRI-based support machine models perform better than morphologic of tymph node status MF yelded status MF yelded similar discrimia abilities in predicting tym node metastasis in the nod dition, the MRI-base support vector machine i n addition, the ARI-base support vector machine i in the adenocationma denosquamous carcino subgroups.	Contil
	Clinical model compared or combined with radiomics model	Combined	Combined	Combined	Combined (comparison with radiomic model only)	Combined	
	AUC radiomics model external validation set	0.933	°Z	°N N	°Z	°z	
	AUC radiomics model (max)	86. O	0.820	0.988	0.890	0.79	
	Machine learning or deep learning	Deep learning	Machine learning	Machine learning	Deep learning	Machine learning	
	Nomogram	Ŝ	Yes	Yes	Yes	ž	
	Imaging	T2, DWI) T2, DWI)	MRI (T2)	MRI (T2)	MRI (DW, ADC)	MRI (TTCE, T2, DWI)	
	External validation set	Se	9 Z	°N N	2	ž	
	Internal validation set	2	Yes	Yes	Kes	Yes	
	Countoured region	tumor + peri- tumor	Tumor+LNs	Tumor	Tumor	Tumor	
	No of participants	894	132	150	169	104	
	Design	Retro	Retro	Retro	Retro	Retro	
	Journal	JAMA Netw Open	Eur Radiol	Diagnostics	BMC Med Imaging	Acad Radiol	
	Year	2020	2021	2022	2022	2022	
Continued	Title	Development of a deep learning model to identify iymph node metastasis on MRI in patients with cervical cancer	Feasibility of T(2)WI- MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cenvical cancer patients	Radiomics based on nomogram predict pelvic lymphnode metastasis in early-stage cervical cancer	RESOLVE DWI based deep learning nomogram for prediction of normal sized lymph node metastasis in cervical cancer: a preliminary study	MRI texture analysis for preoparative prediction of lymph node metastasis in patients with nonsquamous cell cervical carcinoma	
Table 2	Authors	Wu et al ⁸⁶	Song et al ³⁷	Xia et al ²⁸	Qian et al ²⁸	Xiao et al ³⁰	

		voxel texture texture lesions vosing astasis vere s. s. s. digher dinical	ep epssed e, deep r lymph nination int	or tumoral odal MRI sting	ew l clinical- ne rrvical ing 3.	tage, status. c model, age, was mph vical	nission
	Main conclusion	Models based on intra inconcent motion diffu weighted imaging and parameters of primary and lymph nodes both performed well in diarg performed well in diarg well in diarg performed well in din diarg	The performance of de learning nomogram sur the diagnosis of experi- gymecologists. Therefox learning nomogram can as a non-invasive tool in and thus assit theatme and thus assit theatme decision-making.	High clinical potential fi intra-tumoral and peri-i radiomics with multi-m for pre-operative predic fymph node metastasis	The reduced field-of-vir DWI-derived combined radiomics model has th potential for staging ce cancer, thereby facilitat clinical decision-makin.	Radiomics and FIGO st predicted tymph nodes A noninvasive radiomic combining two radiomi features and a FIGO st built for prediction of ly node status in early cet carcinoma.	onance imaging; PET, positron er
	Clinical model compared or combined with radiomics model	Combined	Combined	Combined	Combined	Combined (no comparison with clinical/radiomic model alone)	lymph node; MRI, magnetic res
	AUC radiomics model external validation set	0.937	0.804	0.804	0.887	°Z	herent motion; LN,
	AUC r radiomics model (max)	0.937	0.867	0.891	0.887	0.800	IM, intravoxel incol
	Machine learning o deep learning	Machine learning	Deep learning machine learning	Machine learning	Machine learning	Machine learning	, Fat-saturation; IV
	Nomogram	ž	Yes	Yes	Yes	92	ind Obstetrics; FS
	Imaging	DWI) DWI)	ст	MRI (T1CE, T2)	MRI (ADC)	ст	on of Gynecology (
	External validation set	2	Yes	Yes	Ŷ	2	em ational Federati
	Internal validation set	Yes	Yes	Yes	Yes	Yes	glucose; FIGO, Int
	Countoured region	Tumor+LNs	Tumor	Tumor+peri- tumor	Tumor	Tumor	;; FDG, fluorodeoxy
	No of participants	143+83	1123	169	94	150	s it provides original data. , diffusion weighted imaging
	Design	Retro	Retro	Retro	Retro	Retro	eless, it has been included a computed tomography; DWI
	Journal	Acad Radiol	Clin Transl Med	MRI	Insights into Imaging	Br J Radiol	a letter to the editor, neverth CE, contrast-enhanced; CT, sothelial growth factor.
	Year	2022	2022	2022 F	2023	2020	but rather as a ler the curve; (vascular end
Continued	Title	Feasibility of predicting pelvic lymph node metakasis based on IVIM-DWI and texture parameters of the priman lesion and lymph nodes in patients with centical cancer	Development of a deep learning-based nomogram for predicting lymph node metastasis in cervical cancer. A multicenter study	MRI-based peri-tumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study	Reduced field-of-view DWI-derived clinical- radiomics model for the prediction of stage in cervical cancer	Noninvasive CT radiomic model for preoperative prediction of lymph node metastasis in early cervical carcinoma	not published as an original article iffusion co-efficient; AUC, area und C, squamous cell carcinoma; VEGF
Table 2	Authors	al ³⁸ al	Liu et al ³¹ *	Shi et al ³⁶	Huang et al ³²	Chen et al ³³	*The article was ADC, apparent o tomography; SC

when a deep learning-based analysis was performed.^{31 33} In particular, Liu et al showed that the radiomics models surpassed the radiological prediction of lymph node metastases,³¹ while Chen et al developed a combined radiomics-FIGO stage model with high prediction of nodal involvement.³³

Parametrial Invasion

Only a few studies showed that radiomics signature of the primary tumor is able to predict the likelihood of occult parametrial involvement at pre-operative MRI scan with high accuracy. This information could be used as a supplementary tool to provide individualized treatment plans for patients with cervical cancer.^{39 40}

Survival

Two studies showed that radiomics signature was more accurate in predicting disease-free survival compared with clinical-pathological features alone.^{41 42} However, conflicting results were reported on the performance of combined radiomics-clinical-pathological models in predicting survival,^{41 42} with one study showing no significant survival improvement given by the combined model,⁴¹ and the other demonstrating that the combined model performed better than the clinical model in disease-free survival prediction in both the training and validation set.⁴² In particular, in the study by Fang et al,⁴¹ 18 features were identified to be predictive for diseasefree survival, including 10 features derived from contrast-enhanced T1-weighted (CET1w) images and eight features extracted from T2-weighted (T2w) images. This might indicate that CET1w images probably contains more prognostic information than T2w images. Importantly, shape flatness was included in the 10 CET1w-derived features, whereas small flatness value indicated an irregular tumor shape.

In the other study by Zhou et al,⁴² 4/8 (50.0%) of the selected features were derived from CET1w, indicating that intra-tumoral and peri-tumoral tumor enhancing features are potentially associated with tumor perfusion and vascularization; thus, providing a prognostic signature in early cervical cancer.

Locally Advanced Cervical Cancer

Table 3 includes studies on radiomics signatures in locally advanced cervical cancer.

The majority of studies (21/30, 70.0%), analysed radiomics models in patients undergoing exclusive chemoradiotherapy.^{3 43–63} Most of these studies reported on survival (both disease-free survival and overall survival),^{43–45 47 49–54 56–62 64} or response to therapy^{3 43 44 46 48 55 63 65 66} as main predictive outcome of interest. MRI-based^{3 43 44 46 50 52 55–59 61–65} and PET/CT-based^{43–45 47–49 51 54 60}

radiomics were mainly used, with only two studies using CT-based radiomics.^{53 66} Overall, the radiomics signature predicted the above-mentioned outcomes of interest better than clinical-pathological-radiological models. The combined models were the best predictors in most of studies, with only a few studies concluding that combined/integrated models did not perform better than clinical models.³

Distant Metastasis and Recurrent/Persistent Cervical Cancer

None of the analysed studies included patients with diagnosis of distant metastasis or with recurrent/persistent cervical cancer.

DISCUSSION

Summary of Main Results

This systematic review reports the application of radiomics on images acquired in different cervical cancer settings (Figure 3). It showed that the best predictive performance was obtained by the integration of radiomics with different parameters including clinical, radiological, and histopathological ones.⁶⁷ The majority of studies on early-stage disease focused on prediction of lymph node metastases; in locally advanced disease they focused on prediction of response to treatment and survival. No radiomics studies evaluated distant metastases or recurrence.

Radiomics analysis in cervical cancer represents an opportunity to pre-operatively predict intermediate and high-risk factors that would change the type of surgery or the indication to surgery.

Results in the Context of Published Literature

Radiomics was born with the aim to bridge the gap between standard medical imaging and personalized medicine.^{68 69} In-depth analysis of bioimages can provide the detailed information needed to guide gynecological oncologists to tailor the treatment according to the characteristics of the tumor. Radiomics can be indeed considered part of precision medicine in the multi-omics approach.

Recently, there has been a significant evolution in the clinical decision-making process, which can now benefit from multiple approaches to assist the physicians in the diagnosis, treatment, and prediction of outcomes, leading to personalized care for every single patient. The integration of different -omics information can improve on the integrated system by objectively quantifying the disease features and more accurately predicting different outcomes.⁷⁰ Prediction of 'intermediate risk factors' in early-stage disease (LVSI and depth of stromal invasion) represents an important tool that can aid surgeons to tailor the radicality of the surgery.¹⁴

It is known that lymph node metastasis represents the worst prognostic factors in apparent early-stage disease.¹¹ Lymph node involvement is currently assessed using morphologic features (short axis >8–10 mm, shape, margins, and signal intensity) on MRI and glucose uptake at ¹⁸FDG-PET/CT, with high specificity (93%) and low sensitivity (53–66%). The low sensitivity is due to the limited capability for conventional imaging to detect small metastatic lymph nodes (short axis <5 mm). The addition of diffusion weighted imaging (DWI) increases sensitivity of MRI up to 87%, even if it suffers from low specificity.⁷¹

The prediction of lymph node metastasis in apparent early-stage cervical cancer has been one of the most studied topics in radiomics analyses, with two meta-analyses recently published. The first involved 12 studies with a total of 793 patients, and showed that pre-operative MRI-based radiomics features perform well in predicting lymph node metastasis with pooled sensitivity of 80% and an area under the curve of 76%.⁷² The second, more recent, meta-analysis included 22 studies with a total of 2314 patients, and showed that both apparent diffusion co-efficient values and radiomics analysis demonstrated good diagnostic performance for the detection of lymph node metastasis. Radiomics demonstrated higher pooled sensitivity than conventional imaging features. Compared with radiomics analysis, apparent diffusion co-efficient values were clinically more promising, as they are more easily accessible and widely applied, and show a non-statistically significant trend to outperform radiomics analysis. Given the generally

	Main conclusion	Pre-treatment dynamic contrast-enhanced martinast-enhanced advanced cenvical cancer contained information relevant for prediction of tor prediction of tor prediction of tor cenvical cancer patients, texture patients, texture patients, texture patients, texture patients, texture difficult and compete with the compete with the competes with the competes with the difficant models based on radiomics based on radiomics factures with the and stage did not improve classification performance.	In LACC treated with CRT, radiomics features from functional imaging function-weighted imaging (MRI and PET, respectively are indersendent prevel) are of recurrence and of recurrence and of recurrence and the support program program and the support program and the support parameters.	The previously developed PET/MRI adiomics predictive models were successfully validated in two independent external cohorts. The PFS model reached at high accuracy better than prediction using standard clinical variables.	In cervical cancer patients cancer patients cerving definitive chemoradiotherapy, pre-treatment pre-trual features on 18F-FDG-PET/CT can supplement the prognostic information.	Continued
	Clinical model compared or combined with radiomics model	Compared and combined	Compared	Compared (vs clinical- pathological features: FIGO stage, volume, tumor size, nodal status, histology)	Compared	
	AUC radiomics model external validation set	ŝ	ŝ	0.930	° Z	
	AUC radiomics model (max)*	Accuracy*	0.950	Ŷ	Survival analysis with HR by single characteristi (textural or clinical features)*	
	Machine learning or deep learning	Machine learning	Machine learning	Machine learning	None	
	Nomogram	ŝ	Ŝ	°z		
	Imaging	MRI (D CE)	18F-FDG PET/ GT+MRI	18F-FDG PET/ CT+MRI	18F-FDG PET/C1	
	External validation set	2	ž	Yes	Ŷ	
	Internal validation set	Xes	Yes	Ŝ	S Yes	
ical cancer	Outcome	Response to therapy	DFS+LRC	DFS+LRC	• PRFS + DMFS	
anced cerv	Treatment	CCRT	ССЯТ	ССЯТ	CCRT	
cally adv	Stage	LACO	LACO	IACC	IACC	
gnature in Ic	No of partici pants	rospective 81	rospective 102	rospective 78	rospective 142	
omics siç	Des	Trans Ret Imaging	Nuci Ret Mol ing	Nuci Ret Mol ing	Retr	
ing radio	r Jour	4 Med	7 Eur J Med Imag	8 Med Imag	S CI	
Studies analys	e , Yea	ssification of dynamic 201 runss tenhanced in mages of cenvical in mages of cenvical systs and support stor machines stor machines	diction of outcome 201 appretament - PLO FET/CT and and and anced centcal anced centcal anced therapy anoradiotherapy	ernal validation of a 201 thined ET and MRI noris model for diction of recurrence arvical cancer invisit teated with imoradiotherapy	tural features of 201 visal cancers on G-PET/XT associate Patrivial and local start with definitive ated with definitive imoradiotherapy	
Table 3	Authors Tit	Tomheim Cit et al ³ and vec and vec	Lucia et Pre usi 181 MRF car car chr	Lucia et Ext al ⁴⁴ cor pred in c che	Chen et Tex al ⁴⁵ ED FD vit rei tre tre che	

Table	3 Continued																
Authors	Title	Year	Journal	Design	No of partici pants	Stage	Treatment	Outcome	Internal validation set	External validation set	Imaging	Nomogram	Machine learning or deep learning	AUC radiomics (max)*	AUC radiomics model external validation set	Clinical model compared or combined with radiomics model	Main conclusion
Sun C et a ^{l65}	Radiomic analysis for pretreatment prediction of response prediction of response of anotherapy in to coally advanced cervical cancer: a multicentre study	2019	EBioMedicin	e Retrospec	tive 275	PCC	NACT	Response to therapy	Yes	2 Z	MRI (T2 intra- tumoral and peri-tumoral) intra-tumoral)	° Z	Machine learning	0.998 (multi- sequence model)	666 0	Compared	This study MRH-based reductions MRH-based reductions features hold potential features hold potential relatives the pre-teatment prediction of respons to NACT in LACC and the pre-teatment dentry right patient dentry right patient vording unnecessary treatment.
Fang et al ⁴	Multi-habitat based radionos for the prediction of treatment response to concurrent demontherapy and radiation therapy in locally advanced cervica eancer	2020	Front Oncol	Retrospec	tive 120	LACC	соят	Response to therapy	ŝ	ž	MRI (T2+T1 CE + DWI)	ĝ	Machine learning	0.820	0.738	Compared	A radiomic model from multiple tumor from multiple tumor in pablats had the ability ior predicting treatment response in patients response in patients cervical camere bafer cervical camere bafer adiomic model has shown good predictive proved to preform proved to preform proved to preform proved to preform proved to preform
Mu et al ⁴⁷	18F-FDG PET/CT habita radomics predicts tradines predicting the automic of the prediction of the envised cancer treated with chemoradiotherapy	h 2020	Radiol Artif Intell	Retrospec	tive 154	LACC	CORT	PFS+OS	Yes	ŝ	18F-FDG PET/CT	Yes	Machine learning	0.860	0.850	Combined (Comparison of combined of combined of clinical- pathological- FIGO staging system)	The radiomics nonnograms constructed with T constructed with T adaptive and radiomics signatures, resulted in significantly better performance for the estimation of DFS compared with the FIGO staging system.
Tian et a ^{l%}	Prediction of response to properative neoadjuvant champeragy in focally advanced cervical cancer using multicenter cribesed adjomic analysis	2020	Front Oncol	Retrospec	tive 277	200	NACT +surgery or RT	Response to therapy	kê S	2	cT (with and without contrast)	2	Machine learning	0.803	0.821	Combined mpartson with radiomic model atone)	Radiomics signature and post-contrast and post-contrast and post-contrast and post-contrast and graph (statmouth adequately distinguish chemotheragen tio responders and responders, and across centra performance than a better predictive performance than adome. Both models showed good showed good
																	Continued

.

Original research

_

		2	۲. Č.	<u>.0</u>		7
	Main conclusion	Based on a moderatel high fixed sensitivity and optimized for specificity, the model using both clinical maging features had the best performance in predicting both loco regional failure and distant failure.	Incorporating non- turmor radiomic biomarkers can improve the performance of prognostic models compared with using orompared with using orompared with using oromy clinical and turmor origination biomarkers. was stage III-IVA), two was stage III-IVA), two radiomic biomarkers, and one biomarker, biomarkers, biomarkers, biomarker, biomarkers, biomar	The combination of clinical and radiomics features can provide information to predict behavior and prognosi of LACC and to make more accurate treatment decisions.	A machine learning approach based on clinical and pre- treatment 181-FDG FET-based radiomic features may be usefu for predicting tumor progression in central cancer patients. The disease progression in central disease progression area. metabolic tumor volume, gray-level non- uniformity for nun (GLRLM_GLNU).	Continued
	Clinical model compared or combined with radiomics model	Combined (comparison with both radiomic and clinical model)	Combined	Combined (only stated in conclusion)	Oombined	
	AUC radiomics model external validation set	Ŝ	2	° Z	ŝ	
	AUC radiomics model (max)*	0.840	Survival analysis with the by single characteris (textural features) ⁺ features) ⁺	ЧN	0.872	
	Machine learning or deep learning	Machine learning	Machine learning	Machine learning	Machine learning	
	Nomogram	No	2	°Z	2	
	Imaging	18F-FDG PET/G	18F-FDG PET/G	MRI (T2)	18F-FDG PET/G	
	External validation set	2	ž	2 Z	ž	
	Internal validation set	°Z	Yes	Ž	ž	
	Outcome	LR-failure D- failure	D	PFS+OS	Ω. Δ	
	Treatment	сонт	CORT	ссят	or CHT +/ CHT	
	Stage	LACC	PACO	LACC	ESCO+LA(
	No of partici Design pants	Aetrospective 75	Aetrospective 127	fetrospective 60	aerrospective 50	
	Journal	Technol Cancer Res Treat	J Nucl Med	Tumori	Abdom Radiol	
	Year	2020	2021	2021	2021	
3 Continued	Title	Quantitative PET Imeging and clinical parameters as predictive factors for patients with everytors of a prediction model generated using multi- objective support vector machine learning	Improved prognosis of teament failure in cerveal cancer with nontumor PET/CT radiomics	MRI-based radiomics: promise for locally advanced cervical cancer treated with a tailored integrated therapeutic approach	Machine learning based evaluation of clinical and pretreatment 185- FDG-PET/CT radiomic features to predict features to predict cancer patients cancer patients	
Table (Authors	Zhou et al ⁴⁸	et al ⁴⁵	Laliscia et al ⁵⁰	Nakajo et al ⁵¹	

	ar Main conclusion	The multi-parametric MRH-derived radiomic signature could be used as a non-invasive prognostic tool for predicting DFS in LACC patients. Higher adiomic signature was according signature was according signature demonstrated better prognostic performance in performance in performance in performance in performance in performance in performance in performance in performance on significant improvement.	Radiomics has the potential for pro-invasive risk stratification, and may improve the prediction of OS in prediction of OS in prediction of OS in prediction of OS in patients with even and radiomics score and radiomics score addreationics addreation individually predict the OS prodability with add for infinition.	The radiomics score demonstrated good performance in stratifying patients into high-risk and low-risk groups of progression in the progression in the progression in the area demonss score and patients age, hencogram, diregrating nonogram, integrating nonogram, integrating nonogram, integrating nonogram, integrating nonogram, integrating nonogram, and ymph vascular space integrations age prominent	Continued
	Clinical model compared c combined with radiomics model	Combined (comparison with both radiomic and clinical model)	Combined	Ombined	
	AUC radiomics model external validation set	0.787	0.830	0.820	
	AUC radiomics (max)*	0.816	0.830	0.879	
	Machine learning or deep learning	Machine learning	Machine learning	Machine learning	
	Nomogram	Ŝ	Yes	Yes	
	Imaging	MRI (T2+ADCmap)	CT (CE)	MRI (T2+DWI)	
	External validation	Ŝ	ê	Ŷ	
	Internal validation set	Xes	Yes	Yes	
	Outcome	DTS	8	о Ч	
	Treatment	ссят	ССЯТ	Surgery	
	Stage	LACC	LACO	LACO	
	No of partici pants	ive 263	106 106	ive 181	
	Design	Ratrospect	Retrospect	Refr ospect	
	Journal	Front Oncol	Front Oncol	Front Oncol	
	Year	2021	505 8 c	al 2021	
3 Continued	Title	Predicting disease- tree survival with multiparametric signature in cenvical cancer patients undervent CCRT	Radiomic score as a potental imaging inmarker for predicing survival in patients wit cervical cancer	MRI radiomic features potential biomarker fo progressial or partents prediction of patients with locally advanced with locally advanced or vicial cancer undergoing surgery	
Table (Authors	Liu et al ⁸²	LI et a ¹⁵³	Cal et al ⁶⁴	

able	3 Continued																
uthors	Title	Year	Journal	Design	No of partici pants	Stage	Treatment	Outcome	Internal validation set	External validation set	Imaging	Nomogram	Machine learning or deep earning	AUC radiomics model (max)*	AUC radiomics model external validation set	Clinical model compared or combined with radiomics model	Main conclusion
arreira et	(18FFDG PET radiomics to predict disease-free survival in cervical canter: a mult-scame/ center study with external validation	2021	Eur J Mucl Med Moi Imaging	Retrospectiv	6 158	LACC	ссят	0FS	ž	Yes	PET/CT	2	achine learning	07.280	0.57	Combined	(18F)FDG PET radiomic leatures combined with machine learning add leavant information to the standard official parameters in terms of LACC patient's outcome, auternality across PET/ or devices. The best model was obtained using 10 turnor to liver features combined with dinical information.
ss stand et	IVIM-DWI and MRI- based radiomics in cervical cancer prediction of concurrent chemoradiotherapy sensitivity in combination with clinical prognostic factors	2022	Magn Reson Imaging	Retrospectiv	e 163	LACC	сонт	Response to therapy	Yes	9	MRI (IVIM+T2)	Yes	Machine learning	786.0	0.984	Combined	MRI-based radiomics and clinical prognostic factors showed pipelinical value in predicting CCRT sensitivity for LACC with better predictive performance when combined.
hang et	The value of whole- tumor tacture analysis of ADC in predicting the early recurrence of locally advanced envical quantous cell cancer treated with concurrent chemoradiotherapy	2022	Front Oncol	Retrospectiv	o 210	LACC	CORT	9 9	Yes	ž	MRI (ADC)	2	Machine learning	0.804	0.821	Combined	In the clinical variables, T stage and ymph unde metasttasis were independent risk independent risk independent risk independent risk atture and clinical model was established, at exhibited the injenest attor in the attor in the setting action of the was significantly higher than the ALC of the than the ALC of the than the ALC of the model.
																	Continued

Table	3 Continued																
Authors	Title	Year	Journal	Design	No of partici pants	Stage	Treatment	Outcome	Internal validation set	External validation set	Imaging	Nomogram	Machine learning or deep learning	AUC radiomics model (max)*	AUC radiomics model external validation set	Clinical model compared or combined with radiomics model	Main conclusion
Wei et al ²⁷	MRI radomics in overall survival prediction of local advanced carvical cancer patients tread by following socurrent chemoradiotherapy alone alone	2022	Magn Reson Imaging	Not stated in abstract	30	TAGO	ccRT≠AGT	8	ž	ž	MRI (T2)	Yes	learning tearning	0.879	Ŝ	Combined	The two radiomics nodels were built and the provided from the primary turnor of "Levelght MRI. The adjoints signature and onlines signature and clinical features were predictors of "Os, progression-free surval. Jocal regional control and managatais were stratified into low- isk group adtermined or mograms, were stratified into low- isk group and high- isk group and high- septication performance agional control, and maternasis free survval. Depression- ere survval. local agional control, and maternasis free survval. Depression- ere survval. local agional control, and maternasis free survval. Depression- and nomogram as superior to the and nomogram and superior to the prognosis prediction endermance of FIGO step.
lkushima et al ¹⁸	Prediction of out-of- field recurrence at the relative technetics at the relative and the same environment of the central parameters and finited parameters and finited parameters at finite appares fladiation for obogy Study Group Oncology Study Group	2022	L Radiat Res	Retrospective	180	LACC (IB)	соят	ОЯ	S OF	2	MRI (T2+DWI)	2	Machine learning	0.734	2	Combined	Combining MRI adjoints with clinical adjoints with clinical argameters improved the accuratory of requesting out of lield recurrence after chemoral chemery of cally advanced evicial cancer. The UC was improved on combining the of para-aortic lymph of para-aortic lymph of para-aortic lymph of para-aortic lymph of a mastastasis with hard rom the least that from the least absolute shmikage model for DWIs, model for DWIs,
																	Continued

	ain conclusion	 te texture analysis of e 4DC maps could vised along with citical prognostic omatkers to predict analysis and OS in patients in stage IIICr cervical Cr teared by CCPT. teared by CCPT. the stage of OS, were mpraced with 2018 the stage of OS, were more dwith 2018 teared with 2018 the stage of System uses. 	assical prognostic tors and tumor terrest and tumor atment PET/CT were prificantly associated the prognosis in therits with LACC. Auraliate analyses clorated that FIGO age, the presence of developments, high terre A2: 11 alvels, de stornal features de asjorificant to presence of de stornal features de asjorificant to and as well as a well as a S. Metabolic tumor tume as well as a sociated with real as significantly sociated with real so significantly sociated with real so significantly were alysis, the presence alysis, the presence alysis, the presence alysis, the presence alysis, the presence alysis, the presence alysis, and FFS, and FFS, and FFS,	e radiomics score hieved significantly inter predictive reformation of PFS and stimation of PFS and scompared with e 2018 FEO staging stem and clinical- edicting model. accombined model ristructed with T age. tymb node instructed with T age. Witch were instructed with T age. Witch were instructed not PFS d OS, which were intrastor of PFS d OS, which were and those of the princard score.
	Clinical model compared or combined with radiomics Mi	Combined Th Comparison thus comparison that comparison that models between pathological Pt FIGO with system) Th thus that that that that that that that tha	Compared that the second secon	Combined Th ((comparison as (comparison as radiomic pre- and dimical pre- pro- thr thr thr thr thr thr thr thr thr thr
	AUC radiomics model external validation set	ŝ	â	0.309 PFS and 0.785 OS 0.785
	AUC radiomics model (max)*	0.750 PFS; 0.822 OS (C-Index)	Survival HR by singe characteristic rextural features)	0.792 PFS; 0.822 OS
	Machine learning or deep learning	Machine Ieaming	Noa	Machine learning
	Nomogram	Yes	ŝ	Yes
	Imaging	MRI (ADC)	GT+MRI CT+MRI	MRI (T2+ADC DC multiparametric LAVA)
	External validation set	2	2	2
	Internal validation set	ŝ		Yes
	Outcome	PFS+0S	RFS + OS	PFS+OS
	reatment	Соят	сонт	CORT
	Stage	LACC	LACO	LACC
	No of partici pants	e 1	0 	e 185
	Design	Retrospective	Retrospectiv	Retrospectiv
	Journal	Eur J Radiol	Strahlenther Onkol	Cancer Imaging
	Year	2022	2022	2022
3 Continued	Title	Added-value of texture analysis of ADD in predicting the ADC in predicting the with 2018 FIGO stage with 2018 FIGO stage the by concurrent treated by concurrent chemoradiotherapy	The value of metabolic paramatysis in predicting analysis in predicting advance can vical advance can vical cancer treated with chemoradiotherapy	MRI-based radomics value for predicting the survival of patients with locally advanced cenvical squamous cell cancer reated with concurrent chemoradiotherapy
Table 3	Authors	al ⁵⁸ et	et al ⁸⁰	al ^{ti} ng et

able	3 Continued																
thors	Title	Year	Journal	Design	No of partici pants	Stage	Treatment	Outcome	Internal validation set	External validation set	Imaging	Nomogram	Machine learning or deep learning	AUC radiomics model (max)*	AUC radiomics model external validation set	Clinical model compared or combined with radiomics model	Main conclusion
e e	Nomograms combining clinical and imaging parameters to pradict recurrence and disease tree survival after concurrent chemoradiotherapy in patients with locally patients with locally cancer cancer	2023	Acad Radio	Retrospective	115	LACO	соят	Recurrence+DFS	Yes	ž	DWH+T2 WI) DWH+T2 WI)	Xes	Machine learning	0.977		Combined (no with clarical with clarical model atone)	The nonnograms based on clinical, incoherent motion diffusion weighted imaging- DWI and radiomics parameters have high clinical value in predicting recurrence with LOC2 after and DFS of patients with LOC2 after predicting recurrence and post-treatment Radiomics-score were independent pregnostic factors for recurrence and DFS in patients with cervical cancer.
ang et	MRI-based radiomics for prediction of transmit prediction of concurrent to concurrent ocality advanced center squamous cell cancer squamous cell cancer	2023 al	Abdom Radiol	Retrospective	9	PAC	100	Response to therapy	Yes	2	MRI (T2+ADCmap)	çes	Machine learning	0.857	0.842	Combined with both adomic and clinical model)	The combined model constructed with humor grade, FIGO stage, and radiomics-score active the best performance, which were significantly higher than the clinical model. The radiomics features, showed good performance, which was higher than the diffeence was not there active a solu-
ght include oc T, adjuvant ch sard ratio; IVIM	mbined radiomics and clinical (radiolo emotherapy, ADC, apparent diffusion c 1, intravoxel incoherent motion; LACC, i	xgical/pathologica. co-efficient; AUC, locally advanced) models AUC. area under the curve; OCF pervical cancer; LAVA, Voli	RT, concurrent chemo-n ume Interpolated; LRC,	radiotherapy; CE, contr , loco-regional control;	rast-enhanced; CHT, c : MRI, magnetic resone	themotherapy; CT, computed to ance imaging; NACT, neoadjuva	mography; DCE, Dynamic or nt chemotherapy; NR, not re	ontrast-enhanced; DFS, iported; OS, overall surv	, disease-free survival; C /ival: PET, positron emis:	MFS, distant metastasis-fr sion tomography; PRFS, p.	ree survival; DWI, diffusio etvic relapse-free surviva	n weighted imaging; 18 I; SOC, squamous cell c	F-FDG, 18F-fluorodeox carcinoma: VEGF, vascu	syglucose; FIGO, Internular endothellal growth	ational Federation of Gy factor.	necology and Obstetrics; HR,

RADIOMICS APPLICATIONS IN CERVIX CANCER

Figure 3 Current applications of radiomics in cervical cancer in the 57 articles included in this systematic review. LACC, locally advanced cervical cancer; LVSI, lymphovascular space involvement.

low-quality scores of included radiomics studies, well-designed studies are warranted to provide a more robust level of evidence for radiomics.⁷³

The apparent diffusion co-efficient maps quantify the diffusivity of water molecules inside the tissue, with tumor regions of high cellular density being associated with increased restriction.⁷⁴ Apparent diffusion co-efficient values are more easily interpretable, while also having good repeatability, allowing for monitoring treatment response, and making their integration in clinical settings easier.⁷⁵

In many cases, simple quantitative metrics from apparent diffusion co-efficient maps have outperformed more complex radiomics analysis. This could also be attributed to the fact that many of the considered radiomics studies do not provide enough evidence on a model's robustness or reproducibility. To facilitate the introduction of radiomic studies in clinical practice, it will be necessary to include similar repeatability experiments, as well as independent external datasets, to ensure the validity of the results.

With the high performance of radiomics in predicting risk of lymph node metastasis (Table 2), it was provocatively stated that radiomics signature could go beyond the concept of sentinel lymph node, being radiomics a non-invasive method able to discriminate the presence of lymph node metastasis with such high accuracy.⁷⁶ It is relevant to mention that, despite not being included in the results of this systematic review, different studies analysed the accuracy of radiomics signature extracted from ultrasound scan images.^{77 78} Interestingly, ESGO guidelines accept 'expert' ultrasound scan as a

staging method in cervical cancer,⁷⁹ making the use of radiomics in ultrasound an intriguing innovative field of research.

The ability of radiomics to predict high and intermediate risk factors in cervical cancer, as reported in our review, was also confirmed by a recent study by Li et al⁸⁰ showing that radiomics MRI improved the pre-treatment identification of multi-modality therapy candidates in early cervical cancer. It is known from ESGO and other international guidelines that surgery followed by adjuvant treatment in early-stage cervical cancer should be avoided, as it increases risk of morbidity.^{79 81} The radiomics signature should be combined in a multi-omics framework, which integrates biological data and clinical parameters to obtain a final accurate tailored decision for the patient.

Concerning locally advanced disease, the included studies analysed patients treated either with exclusive chemoradiation or neoadjuvant chemotherapy followed by radical surgery. Other studies also showed that using radiomics indicators, it is possible to identify non-responders to chemoradiotherapy and modify the treatment accordingly, in patients undergoing chemoradiation and radical surgery.⁸² It is also important to highlight that radiomics could be used as predictor of other outcomes, such as treatmentrelated toxicity, which is an important endpoint for all cancer survivors.^{83–86}

Strengths and Weaknesses

The main strength of this study is that it describes the current evidence of radiomics analyses in cervical cancer from a clinical perspective. Moreover, we included only studies combining or comparing radiomics and clinical-pathological data, to directly test radiomics in a more clinical decisional environment. On the other hand, we have to acknowledge that the lack of standardization and interpretability of the radiomics pipeline significantly limits the comparison of the results from different studies, and especially with the ones published at the very beginning of this discipline. Moreover, studies on prediction of lymph node metastasis did not differentiate whether these were macroscopic or low-volume metastases. Lastly, despite it not being considered the treatment recommended by the guidelines, we included studies adopting neoadjuvant therapy; however, these were included within the systematic literature search.

Implications for Practice and Future Research

Radiomics signatures seem to be a promising tool in predicting pathological and oncological outcomes in patients with cervical cancer. For this reason, it would be ideal to integrate them within a clinical model in synergy with known prognostic factors. One potential application would be tailoring adjuvant treatment within known risk groups according to radiomics signatures. This is an interesting example of how radiomics could support gynecological oncologists to modulate or avoid the adjuvant treatments. Jiang et al⁸⁷ showed that the combination of radiomics signature and clinical-pathological features had a more accurate predictive ability than clinical-pathological features alone. The authors presented two cases with same clinical-pathological characteristic (same age, FIGO stage, histology, grade, tumor size, no lymph node metastasis, no LVSI), but one recurred after 17 months and the other was free from disease at 87 months. MRI-based radiomics characteristics of these cases were completely different (patient with 17 months recurrence: T1 contrast-enhanced radiomics score 2.60, T1 contrast-enhanced+T2 radiomics score 2.46; vs patient with 87 months: T1 contrast-enhanced radiomics score 0.53, T1 contrastenhanced+T2 radiomics score 0.61), mirroring the disease-free survival. This represents a further step towards a personalized adjuvant treatment selection, based not only on clinical or pathological characteristics, but also on radiomics.

One could even hypothesize tailoring the radicality of hysterectomy according to pre-operative radiomics (or combined radiomics and clinical-pathologic) findings. A radiomics analysis of patients included in the ongoing robot-assisted approach to cervical cancer (RACC) trial⁸⁸ has been recently designed, and will provide further information on the predictivity of such approach on clinicalpathological outcomes of patients with early-stage cervical cancer treated with radical surgery.

MRI analysis of locally advanced cervical cancer treated with neoadjuvant chemotherapy and radical surgery showed that radiomics features hold potential in the pre-treatment prediction of response to neoadjuvant chemotherapy in locally advanced cervical cancer, which could be used to identify the right patients for receiving neoadjuvant chemotherapy; thus avoiding unnecessary treatment. This could spare the radiotherapy for a potential recurrence and avoid the use of triple treatment (chemotherapy, surgery, and radiotherapy) which is not advised by international guidelines owing to high morbidity.⁷⁹ Studies specifically looking at outcomes of patients diagnosed with distant metastases or with recurrent/persistent cervical cancer are needed. Lastly, recent

evidence has shown that digital pathology approaches can aid in genotype classification, risk stratification, and outcomes prediction. 'Radio-pathomics' represents an emerging opportunity to bridge the existing knowledge gap between abstract mathematical image representation and underlying biology by matching radiological images and biopsy slides, paving the way for more innovative hybrid predictive models.⁸⁹

CONCLUSION

Radiomics in cervical cancer is a new imaging research field. Radiomics models are highly predictive of pathological and oncological outcomes, particularly if combined with clinical variables. Most published studies are retrospective, and radiomics was not part of the original study design, thus reducing the overall quality of the produced evidence.

It is important to highlight that radiomics has to be considered part of an integrated model that should aim to harmonize different clinical-pathological and translational advances recently obtained in cervical cancer treatment, to offer patients a comprehensive multi-omics approach.

Author affiliations

¹UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy

²Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy ³Università Cattolica del Sacro Cuore, Rome, Italy

Acknowledgements The authors acknowledge the work of the Gemelli Science and Technology Park Radiomics core research facility team.

Contributors Conceptualization: GS, NB. Methodology: NB, LR, MD. Data curation: NB, LR, MD, KZP, LB, DQ, GF, LPA, BG, ES. Writing- Original draft preparation: NB, LR, ES, GS. Supervision: ES, GS. Writing- Reviewing and Editing: all authors. Guarantor: NB.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs

Nicolò Bizzarri http://orcid.org/0000-0002-1727-904X Luca Russo http://orcid.org/0000-0002-0495-7462 Denis Querleu http://orcid.org/0000-0002-3984-4812 Benedetta Gui http://orcid.org/0000-0002-5130-2100 Giovanni Scambia http://orcid.org/0000-0003-2758-1063

REFERENCES

- 1 Shrestha P, Poudyal B, Yadollahi S, *et al*. A systematic review on the use of artificial intelligence in gynecologic imaging background, state of the art, and future directions. *Gynecol Oncol* 2022;166:596–605.
- 2 Reuzé S, Orlhac F, Chargari C, et al. Prediction of cervical cancer recurrence using Textural features extracted from 18F-FDG PET images acquired with different scanners. *Oncotarget* 2017;8:43169–79.
- 3 Torheim T, Malinen E, Kvaal K, *et al.* Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. *IEEE Trans Med Imaging* 2014;33:1648–56.
- 4 Bhatla N, Berek JS, Cuello Fredes M, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet 2019;145:129–35.
- 5 Manganaro L, Lakhman Y, Bharwani N, et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: updated guidelines of the European society of urogenital radiology after revised FIGO staging 2018. *Eur Radiol* 2021;31:7802–16.
- 6 Gillies RJ, Kinahan PĔ, Hricak H. Radiomics: images are more than pictures, they are data. *Radiology* 2016;278:563–77.
- 7 Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. *Eur J Cancer* 2012;48:441–6.
- 8 Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (Radiomics) in oncology. Ann Oncol 2017;28:1191–206.
- 9 Liu Z, Wang S, Dong D, et al. The applications of Radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. *Theranostics* 2019;9:1303–22.
- 10 Cohen PA, Jhingran A, Oaknin A, *et al*. Cervical cancer. *Lancet* 2019;393:169–82.
- 11 Cibula D, Dostálek L, Jarkovsky J, et al. The annual recurrence risk model for tailored surveillance strategy in patients with cervical cancer. Eur J Cancer 2021;158:111–22.
- 12 Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, *et al.* Integrated genomic and molecular characterization of cervical cancer. *Nature* 2017;543:378–84.
- 13 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9.
- 14 Cibula D. Early-stage intermediate-risk—the group with the most Heterogenous management among patients with cervical cancer. *Int J Gynecol Cancer* 2022;32:1227–8.
- Wu Q, Shi D, Dou S, *et al.* Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma. *J Magn Reson Imaging* 2019;49:1141–8.
 Li Z, Li H, Wang S, *et al.* MR-based radiomics nomogram of
- 16 Li Z, Li H, Wang S, et al. MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively. J Magn Reson Imaging 2019;49:1420–6.
- 17 Huang G, Cui Y, Wang P, et al. Multi-parametric magnetic resonance imaging-based radiomics analysis of cervical cancer for preoperative prediction of lymphovascular space invasion. *Front Oncol* 2022;11:663370.
- 18 Xiao M, Li Y, Ma F, et al. Multiparametric MRI radiomics nomogram for predicting lymph-vascular space invasion in early-stage cervical cancer. Br J Radiol 2022;95:20211076.
- 19 Cui L, Yu T, Kan Y, et al. Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in earlystage cervical cancer. *Diagn Interv Radiol* 2022;28:312–21.
- 20 Li X, Xu C, Yu Y, et al. Prediction of lymphovascular space invasion using a combination of tenascin-C, Cox-2, and PET/CT radiomics in patients with early-stage cervical squamous cell carcinoma. BMC Cancer 2021;21.
- 21 Ren J, Li Y, Yang J-J, et al. MRI-based radiomics analysis improves preoperative diagnostic performance for the depth of stromal invasion in patients with early stage cervical cancer. *Insights Imaging* 2022;13:17.
- Peters WA III, Liu PY, Barrett RJ II, *et al.* Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk earlystage cancer of the cervix. *JCO* 2000;18:1606–13.
 Li K, Sun H, Lu Z, *et al.* Value of [¹⁸F]FDG PET radiomic features
- 23 Li K, Sun H, Lu Z, et al. Value of [¹⁸F]FDG PET radiomic features and VEGF expression in predicting pelvic lymphatic metastasis and their potential relationship in early-stage cervical squamous cell carcinoma. *Eur J Radiol* 2018;106:160–6.
- 24 Yu YY, Zhang R, Dong RT, *et al.* Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB-IIA cervical squamous cell carcinoma. *Br J Radiol* 2019;92:20180986.

- 25 Kan Y, Dong D, Zhang Y, *et al.* Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. *J Magn Reson Imaging* 2019;49:304–10.
- 26 Wang T, Gao T, Yang J, et al. Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusionweighted imaging. *Eur J Radiol* 2019;114:128–35.
- 27 Yan L, Yao H, Long R, et al. A preoperative radiomics model for the identification of lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Br J Radiol 2020;93:20200358.
- 28 Xia X, Li D, Du W, et al. Radiomics based on nomogram predict pelvic lymphnode metastasis in early-stage cervical cancer. *Diagnostics (Basel)* 2022;12:2446.
- 29 Qian W, Li Z, Chen W, *et al.* RESOLVE-DWI-based deep learning nomogram for prediction of normal-sized lymph node metastasis in cervical cancer: a preliminary study. *BMC Med Imaging* 2022;22:221.
- 30 Xiao ML, Wei Y, Zhang J, *et al.* MRI texture analysis for preoperative prediction of lymph node metastasis in patients with nonsquamous cell cervical carcinoma. *Acad Radiol* 2022.
- 31 Liu Y, Duan H, Dong D, et al. Development of a deep learning-based nomogram for predicting lymph node metastasis in cervical cancer: a multicenter study. *Clin Transl Med* 2022;12:e938.
- 32 Huang Q, Deng B, Wang Y, et al. Reduced field-of-view DWI-derived clinical-radiomics model for the prediction of stage in cervical cancer. *Insights Imaging* 2023;14:18.
- 33 Chen J, He B, Dong D, et al. Noninvasive CT radiomic model for preoperative prediction of lymph node metastasis in early cervical carcinoma. Br J Radiol 2020;93:20190558.
- 34 Wu Q, Wang S, Chen X, *et al*. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer. *Radiother Oncol* 2019;138:141–8.
- 35 Wu Q, Wang S, Zhang S, et al. Development of a deep learning model to identify lymph node metastasis on magnetic resonance imaging in patients with Cervical cancer. JAMA Netw Open 2020;3:e2011625.
- 36 Shi J, Dong Y, Jiang W, *et al.* MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study. *Magn Reson Imaging* 2022;88:1–8.
- 37 Song J, Hu Q, Ma Z, et al. Feasibility of T WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients. *Eur Radiol* 2021;31:6938–48.
- 38 Zhang Y, Zhang K-Y, Jia H-D, *et al.* Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer. *Acad Radiol* 2022;29:1048–57.
- 39 Wang T, Gao T, Guo H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram. *Eur Radiol* 2020;30:3585–93.
- 40 Li X, Lin T, Liu B, et al. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2- weighted images. *Front Bioeng Biotechnol* 2020;8:590.
- 41 Fang J, Zhang B, Wang S, *et al.* Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer. *Theranostics* 2020;10:2284–92.
- 42 Zhou Y, Gu HL, Zhang XL, *et al*. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer. *Eur Radiol* 2022;32:2540–51.
- 43 Lucia F, Visvikis D, Desseroit M-C, et al. Prediction of outcome using pretreatment¹⁸F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. *Eur J Nucl Med Mol Imaging* 2018;45:768–86.
- 44 Lucia F, Visvikis D, Vallières M, *et al.* External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. *Eur J Nucl Med Mol Imaging* 2019;46:864–77.
 45 Chen S-W, Shen W-C, Hsieh T-C, *et al.* Textural features of cervical
- 45 Chen S-W, Shen W-C, Hsieh T-C, *et al.* Textural features of cervical cancers on FDG-PET/CT associate with survival and local relapse in patients treated with definitive chemoradiotherapy. *Sci Rep* 2018;8:11859.
- 46 Fang M, Kan Y, Dong D, *et al*. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer. *Front Oncol* 2020;10:563.

- 47 Mu W, Liang Y, Hall LO, et al. ¹⁸F-FDG PET/CT habitat radiomics predicts outcome of patients with cervical cancer treated with chemoradiotherapy. *Radiol Artif Intell* 2020;2:e190218.
- 48 Zhou Z, Maquilan GM, Thomas K, et al. Quantitative PET imaging and clinical parameters as predictive factors for patients with cervical carcinoma: implications of a prediction model generated using multi-objective support vector machine learning. *Technol Cancer Res Treat* 2020;19:153303382098380.
- 49 Yusufaly TI, Zou J, Nelson TJ, *et al.* Improved prognosis of treatment failure in cervical cancer with nontumor PET/CT Radiomics. *J Nucl Med* 2022;63:1087–93.
- 50 Laliscia C, Gadducci A, Mattioni R, et al. MRI-based radiomics: promise for locally advanced cervical cancer treated with a tailored integrated therapeutic approach. *Tumori* 2022;108:376–85.
- 51 Nakajo M, Jinguji M, Tani A, et al. Machine learning based evaluation of clinical and pretreatment¹⁸F-FDG-PET/CT radiomic features to predict prognosis of cervical cancer patients. *Abdom Radiol (NY)* 2022;47:838–47.
- 52 Liu B, Sun Z, Xu Z-L, et al. Predicting disease-free survival with multiparametric MRI-derived radiomic signature in cervical cancer patients underwent CCRT. Front Oncol 2022;11:812993.
- 53 Li H, Zhu M, Jian L, *et al.* Radiomic score as a potential imaging biomarker for predicting survival in patients with cervical cancer. *Front Oncol* 2021;11:706043.
- 54 Ferreira M, Lovinfosse P, Hermesse J, et al. [18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/ center study with external validation. *Eur J Nucl Med Mol Imaging* 2021;48:3745–6.
- 55 Zhang Y, Zhang K, Jia H, *et al.* IVIM-DWI and MRI-based radiomics in cervical cancer: prediction of concurrent chemoradiotherapy sensitivity in combination with clinical prognostic factors. *Magnetic Resonance Imaging* 2022;91:37–44.
- 56 Zhang X, Zhang Q, Xie L, et al. The value of whole-tumor texture analysis of ADC in predicting the early recurrence of locally advanced Cervical squamous cell cancer treated with concurrent chemoradiotherapy. Front Oncol 2022;12:852308.
- 57 Wei G, Jiang P, Tang Z, *et al.* MRI radiomics in overall survival prediction of local advanced cervical cancer patients tread by adjuvant chemotherapy following concurrent chemoradiotherapy or concurrent chemoradiotherapy alone. *Magn Reson Imaging* 2022;91:81–90.
- 58 Ikushima H, Haga A, Ando K, et al. Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese radiation oncology study group. J Radiat Res 2022;63:98–106.
- 59 Zhang X, Zhang Q, Guo J, *et al.* Added-value of texture analysis of ADC in predicting the survival of patients with 2018 FIGO stage liicr cervical cancer treated by concurrent chemoradiotherapy. *Eur J Radiol* 2022;150:110272.
- 60 Pedraza S, Seiffert AP, Sarandeses P, *et al*. The value of metabolic parameters and Textural analysis in predicting prognosis in locally advanced cervical cancer treated with chemoradiotherapy. *Strahlenther Onkol* 2022;198:792–801.
- 61 Zhang X, Zhao J, Zhang Q, *et al.* MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy. *Cancer Imaging* 2022;22.
- 62 Zhang Y, Liu L, Zhang K, et al. Nomograms combining clinical and imaging parameters to predict recurrence and disease-free survival after concurrent chemoradiotherapy in patients with locally advanced cervical cancer. Acad Radiol 2023;30:499–508.
- 63 Zhang X, Zhang Q, Chen Y, et al. MRI-based radiomics for pretreatment prediction of response to concurrent chemoradiotherapy in locally advanced cervical squamous cell cancer. Abdom Radiol (NY) 2023;48:367–76.
- 64 Cai M, Yao F, Ding J, *et al.* MRI radiomic features: a potential biomarker for progression-free survival prediction of patients with locally advanced cervical cancer undergoing surgery. *Front Oncol* 2021;11:749114.
- 65 Sun C, Tian X, Liu Z, et al. Radiomic analysis for pretreatment prediction of response to neoadjuvant chemotherapy in locally advanced Cervical cancer: a multicentre study. *EBioMedicine* 2019;46:160–9.
- 66 Tian X, Sun C, Liu Z, et al. Prediction of response to preoperative neoadjuvant chemotherapy in locally advanced cervical cancer using multicenter CT-based radiomic analysis. *Front Oncol* 2020;10:77.

- 67 McCague C, Ramlee S, Reinius M, et al. Introduction to radiomics for a clinical audience. *Clin Radiol* 2023;78:83–98.
- 68 Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749–62.
- 69 Shaikh F, Franc B, Mulero F. Radiomics as applied in precision medicine. In: *Clinical nuclear medicine*. Cham: Springer, 2020.
- 70 De Maria Marchiano R, Di Sante G, Piro G, et al. Translational research in the era of precision medicine: where we are and where we will go. J Pers Med 2021;11:216.
- 71 Liu B, Gao S, Li S. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a meta-analysis based on 67 studies. *Gynecol Obstet Invest* 2017;82:209–22.
- 72 Li L, Zhang J, Zhe X, et al. A meta-analysis of MRI-based radiomic features for predicting lymph node metastasis in patients with cervical cancer. *Eur J Radiol* 2022;151:110243.
- 73 Ren J, Li Y, Liu X-Y, et al. Diagnostic performance of ADC values and MRI-based radiomics analysis for detecting lymph node metastasis in patients with Cervical cancer: a systematic review and metaanalysis. Eur J Radiol 2022;156:110504.
- 74 Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. *Oncotarget* 2017;8:59492–9.
- 75 Winfield JM, Tunariu N, Rata M, et al. Extracranial soft-tissue tumors: Repeatability of apparent diffusion coefficient estimates from diffusion-weighted MR imaging. *Radiology* 2017;284:88–99.
- 76 Bizzarri N, Boldrini L, Ferrandina G, et al. Radiomic models for lymph node metastasis prediction in cervical cancer: can we think beyond sentinel lymph node *Transl Oncol* 2021;14:101185:101185...
- 77 Jin X, Ai Y, Zhang J, et al. Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images. *Eur Radiol* 2020;30:4117–24.
- 78 Jin J, Zhu H, Teng Y, et al. The accuracy and radiomics feature effects of multiple U-Net-based automatic segmentation models for transvaginal ultrasound images of cervical cancer. J Digit Imaging 2022;35:983–92.
- 79 Cibula D, Raspollini MR, Planchamp F, et al. ESGO/ESTRO/ESP guidelines for the management of patients with cervical cancer update 2023. Int J Gynecol Cancer 2023;33:649–66.
- 80 Li Y, Ren J, Yang J-J, et al. MRI-derived radiomics analysis improves the noninvasive pretreatment identification of multimodality therapy candidates with early-stage cervical cancer. *Eur Radiol* 2022;32:3985–95.
- 81 Abu-Rustum NR, Yashar CM, Bean S, et al. NCCN guidelines insights: cervical cancer, version 1.2020. J Natl Compr Canc Netw 2020;18:660–6.
- 82 Gui B, Autorino R, Miccò M, *et al.* Pretreatment MRI radiomics based response prediction model in locally advanced cervical cancer. *Diagnostics (Basel)* 2021;11:631.
- 83 Le Z, Wu D, Chen X, et al. A radiomics approach for predicting acute hematologic toxicity in patients with cervical or endometrial cancer undergoing external-beam radiotherapy. *Radiother Oncol* 2023;182:109489.
- 84 Ren K, Shen L, Qiu J, et al. Treatment planning computed tomography Radiomics for predicting treatment outcomes and haematological toxicities in locally advanced Cervical cancer treated with radiotherapy: A retrospective cohort study. *BJOG* 2023;130:222–30.
- 85 Lucia F, Bourbonne V, Visvikis D, et al. Radiomics analysis of 3d dose distributions to predict toxicity of radiotherapy for cervical cancer. J Pers Med 2021;11:398.
- 86 Albano D, Benenati M, Bruno A, et al. Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe. *Insights Imaging* 2021;12:76.
- 87 Jiang X, Song J, Duan S, et al. MRI radiomics combined with clinicopathologic features to predict disease-free survival in patients with early-stage cervical cancer. Br J Radiol 2022;95:20211229.
- 88 Falconer H, Palsdottir K, Stalberg K, et al. Robot-assisted approach to cervical cancer (RACC): an international multi-center, open-label randomized controlled trial. Int J Gynecol Cancer 2019;29:1072–6.
- 89 Feng L, Liu Z, Li C, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. *Lancet Digit Health* 2022;4:e8–17.