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In the framework of the static patch approach to de Sitter holography introduced in [1], the growth
of holographic complexity has a hyperfast behaviour, which leads to a divergence in a finite time.
This is very different from the AdS spacetime, where instead the complexity rate asymptotically
reaches a constant value. We study holographic volume complexity in a class of asymptotically AdS
geometries which include de Sitter bubbles in their interior. With the exception of the static bubble
case, the complexity obtained from the volume of the smooth extremal surfaces which are anchored
just to the AdS boundary has a similar behaviour to the AdS case, because it asymptotically grows
linearly with time. The static bubble configuration has a zero complexity rate and corresponds to
a discontinuous behaviour, which resembles a first order phase transition. If instead we consider
extremal surfaces which are anchored at both the AdS boundary and the de Sitter stretched horizon,
we find that complexity growth is hyperfast, as in the de Sitter case.

I. INTRODUCTION

The AdS/CFT correspondence [2] provides an
interesting theoretical laboratory to address many
important open questions in quantum gravity.
However, our observed universe is rather differ-
ent from an AdS background. It is then a crucial
problem to find a quantum gravity formulation for
a cosmological setting. It is interesting to inves-
tigate generalizations of holography for de Sitter
(dS) spacetime. This is a challenging problem, be-
cause in dS there is no natural notion of timelike
boundary contrary to asymptotically AdS space-
time.
In order to provide a holographic description of

dS, the dS/CFT correspondence [3–5] proposes a
duality between quantum gravity in dSD space-
time and a (D − 1)-dimensional CFT living on a
spacelike boundary at the future spacelike infin-
ity in dS. Examples of explicit dS/CFT correspon-
dence have been proposed for higher spin gravity
in four dimensions [6] and for 3-dimensional Ein-
stein gravity [7, 8]. The boundary theory in these
cases is not unitary and rather exotic compared
to the textbook examples of CFTs, because it de-
scribes dS from the perspective of a metaobserver
who lives at the future infinity.
A finite entropy can be associated with the area

A of the dS cosmological horizon [9] surrounding a

∗ roberto.auzzi@unicatt.it
† giuseppe.nardelli@unicatt.it
‡ gpeddeun@sissa.it
§ nicolo@hetmail.phys.sci.osaka-u.ac.jp

static patch observer. Following [10–12], if we con-
sider a dS spacetime which includes particles and
black holes, we can define a generalized entropy
Sgen which includes the cosmological horizon en-
tropy and the ordinary entropy Sout of the matter
which can be seen by the observer at the center of
the static patch

Sgen =
A

4G
+ Sout , (I.1)

where we denote by G the Newton constant. It
has been argued that the maximum possible value
of Sgen is saturated by the empty dS spacetime
[10, 11, 13]. The presence of a bound for Sgen moti-
vates another class of approaches to holography for
dS space, see for example [14–19], in which gravity
in dS is conjectured to be dual to a quantum me-
chanical system with a finite number of degrees of
freedom.

Quantum information provides a useful concep-
tual framework to implement several entries of the
dictionary of holographic dualities, and might give
precious insights on how to formulate holography
for the dS spacetime [20–22]. An interesting gen-
eralization of the Ryu-Takayanagi [23, 24] entan-
glement entropy formula has been proposed in the
context of static patch horizon holography in dS
[1, 25, 26]. In this proposal, the AdS boundary
is replaced in dS by a stretched horizon which is
taken just inside the cosmological horizon that sur-
rounds a static patch observer. The Bekenstein-
Hawking entropy associated to the cosmological
horizon [9] is then interpreted as the entanglement
entropy between the left and right static patches.
Further recent works include [27–33].
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Computational complexity is another concept in
quantum information theory which may play an
important role in holography, see [34–36] for re-
views. Indeed, entanglement entropy saturates too
fast to describe the growth of the Einstein-Rosen
bridge inside a black hole horizon [37] in terms of
the boundary CFT. On the other hand, quantum
complexity saturates in a much larger timescale
compared to the thermalization one, so it has the
correct behavior [34, 38] to overcome the limita-
tions of entanglement entropy. In theoretical com-
puter science, complexity [39] measures how hard
it is to build a generic target state from a simple
reference one, applying a set of elementary gates.
For quantum systems with a finite number of de-
grees of freedom, a continuous notion of complex-
ity was introduced by Nielsen [40] in terms of the
length of geodesics in the space of unitary opera-
tors. There is a large amount of arbitrariness in
the definition of complexity, due to the choice of
reference state and of the computational cost of el-
ementary gates. Despite these ambiguities, quan-
tum complexity is expected to exhibit several ro-
bust and universal properties [41], provided that
the computational costs of elementary gates is cho-
sen in such a way that the complexity metric has
negative curvature [42–47]. It is still an open prob-
lem to generalize Nielsen’s approach to complexity
in quantum field theory. Many advances have been
made in defining complexity in free field theory
[48, 49]. The definition of complexity in CFT is
still a work in progress, see [50–54].
Three main proposals have been extensively

studied as a holographic dual of quantum compu-
tational complexity:

• Complexity=volume (CV) [55], in which
complexity is proportional to the volume of
the maximal codimension-one spatial surface
anchored at a boundary time slice.

• Complexity=action (CA) [56, 57], in which
complexity is proportional to the gravita-
tional action evaluated on a codimension-
zero bulk region, called the Wheeler DeWitt
patch.

• Complexity=volume 2.0, in which complex-
ity is proportional to the spacetime volume
of the Wheeler DeWitt patch [58].

Further generalizations have been investigated in
[59–61]. All these holographic proposals reproduce
the expected behavior of quantum complexity for
an AdS black hole: in the regime of bulk classi-
cal gravity, which should be appropriate for times
which are less than exponential in the entropy of
the system [62], complexity asymptotically grows
linearly with time.

As studied in [1, 63], the definition of holo-
graphic complexity can be extended to static patch
horizon holography in dS [1, 25, 26]. Much differ-
ently compared to AdS, holographic complexity in
dS exhibits a hyperfast growth, i.e. the complexity
growth is so fast that it diverges at a finite criti-
cal time. In [1], Susskind proposed the hyperfast
growth to be a signature that the Hamiltonian of
the dual of dS is not of the usual k-local type. Here
k-local means that the Hamiltonian is the sum of
terms that simultaneously act at most on k degrees
of freedom, where k is parametrically of order unity
in the limit of a large number of degrees of freedom.

It is tempting to relate the hyperfast growth
of complexity in dS to the exponential growth of
spacetime. In order to further investigate the rea-
son of a different time dependence of holographic
complexity compared to AdS, it is interesting to
contemplate intermediate situations. At the cross-
road between AdS and dS holography, we can con-
sider gravity backgrounds with an asymptotically
AdSD boundary which include dSD regions in their
interior. Examples in D = 2 include the centaur
geometry [64, 65], which can be built in dilaton-
gravity theories1. For centaurs, the dS part of the
spacetime is not hidden behind an AdS black hole
horizon. Holographic volume complexity in these
backgrounds was recently studied in [67]. In this
case, the evolution of complexity is qualitatively
different compared to both AdS and dS cases, be-
cause complexity is a decreasing function of time.

In this paper, we study volume complexity
in higher-dimensional examples of asymptotically
AdS spacetimes with dS bubbles in their interior
[68, 69]. This kind of geometries can be realized,
for instance, in an Einstein-scalar theory where the
potential has various minima separated by a do-
main wall. The D ≥ 3 case significantly differs
from the D = 2 one, since in higher dimensions
the dS portion of the geometry is always screened
by an AdS horizon at late time. In order to sim-
plify the model, it is useful to consider the limit in
which the thickness of the domain wall surround-
ing the dS interior is small compared to the other
physical scales, as studied in [70–72] for a flat ex-
ternal space and in [68, 69] for an AdS external
region. For simplicity, we specialize to D = 3 bulk
spacetime dimensions and we consider spherically
symmetric geometries consisting of a dS region and
an asymptotically AdS spacetime separated by a
domain wall with negligible thickness. We set the
AdS scale to one, and we parameterize the dS cos-
mological constant by λ and the domain wall ten-

1 Related studies of dS bubbles in dilaton gravity include
[66].
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FIG. 1. Penrose diagrams for a static bubble. We
show in red and in blue the bubble trajectory in dS
(left) and in AdS (center), respectively. Our geometry
(on the right) is obtained by joining the dS portion to
the left of the red line with the AdS region to the right
of the blue line.

sion by κ. Outside the bubble, the solution is a
BTZ black hole [73] with mass proportional to µ.
While the parameters λ and κ specify the theory,
µ is a property of the state.
We focus on backgrounds which are invariant

under time-reversal symmetry t → −t. For the
critical value µ = µ0, where

µ0 =

√
(κ2 + λ− 1)2 + 4λ− (κ2 + λ− 1)

2λ
, (I.2)

the only time-reversal invariant solution is the
static bubble, see figure 1. For µ > µ0, the bub-
ble starts from zero radius and expands to infinite
size, without entering the external true vacuum re-
gion. From the viewpoint of an external observer,
the bubble remains behind a black hole horizon.
However, no such bubble solution exists which en-
joys time-reversal invariance. So, in this paper we
focus on the regime µ ≤ µ0.

For a fixed µ < µ0, there are two time-reversal
invariant solutions:

• A bubble collapsing in a finite proper time,
for which the interior portion of dS has finite
spacetime volume. We refer to this case as
”small bubble” solution. We have to further
distinguish between two subcases. For 0 <
µ < µs, where

µs =
1

κ2 + λ
< µ0 , (I.3)

the dS bubble is initially on the same side
of the Penrose diagram as the AdS bound-
ary. We refer to this configuration as a ”very
small bubble”, see figure 2. For µs < µ < µ0

the bubble is initially on the opposite side
of the Penrose diagram with respect to the
AdS boundary. We call this situation a ”not
so small bubble”, see figure 3.

• A bubble expanding for an infinite proper
time, which contains an infinite portion of

FIG. 2. Penrose diagrams for a very small bubble 0 <
µ < µs.

FIG. 3. Penrose diagrams for a not so small bubble
µs < µ < µ0.

the dS spacetime. We refer to this case as
”large bubble” solution. We here introduce

µh =
1− κ2

λ
< µ0 . (I.4)

For 0 < µ < µh, the interior of the bubble
contains as a subset a dS static patch. We
call this situation a ”very large bubble”, see
figure 4. By contrast, we refer to the solution
with µh < µ < µ0 as a ”not so large bubble”,
see figure 5. Note that very large bubbles can
only be obtained for small enough domain
wall tension, i.e. κ < 1.

In the parameter space, the static bubble configu-
ration is at the border between the small and the
large bubble regimes.

With the exception of the very small bubble, in
all cases an observer outside the horizon can not
directly see the dS bubble at any time, because it is
screened by the black hole horizon. The presence
of the dS bubble is instead detected by the volume
complexity, because the extremal surface always
penetrates the dS region of the geometry.

FIG. 4. Penrose diagrams for a very large bubble 0 <
µ < µh (top panel) and for a not so large bubble µh <
µ < µ0 (lower panel).
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FIG. 5. Penrose diagrams for a not so large bubble
µh < µ < µ0.

The traditional way to apply the CV proposal is
to consider the volume of extremal surfaces which
are anchored at the AdS boundary and which are
smooth both in the AdS and in the dS portions
of the spacetime. This prescription can be applied
both for large and small bubbles. With the excep-
tion of the static bubble configuration, we find that
at late time holographic complexity grows linearly
with the same slope as for the BTZ black hole. In
the fine-tuned case of the static bubble, we find in-
stead that volume complexity is time-independent.
The time dependence of complexity that we ob-

tain reveals that the hyperfast growth is not neces-
sarily related to the exponential growth of space-
time, which is a feature of large bubbles. If we
consider the prescription in which smooth extremal
surfaces are anchored just at the AdS boundary, we
find that the dS portion of the extremal surface
always remains in the dS static patches, without
entering the regions behind the dS horizon. This
is the reason why the exponential growth of large
bubbles fails to be detected by volume complexity.
As proposed in [68], the boundary dual of a large

bubble configuration should be a a quantum field
theory in a mixed state. This observation can be
justified as follows. For time-reversal symmetric
bubbles, eq. (I.2) implies that

λµ ≤ λµ0 ≤ 1 , (I.5)

which is equivalent to

SBH ≤ SdS , (I.6)

where SBH is the entropy of the external AdS black
hole and SdS is the entropy of the internal dS static
patch SdS, i.e.

SBH = 2π
√
µ , SdS =

2π√
λ
. (I.7)

For large bubbles, the interior region contains a
portion of the dS horizon, so the number of de-
grees of freedom accessible from the AdS bound-
ary is less than the number of degrees of freedom
of the internal dS region. We are then forced to in-
terpret large bubbles configurations in AdS/CFT
as gravity duals of a density matrix, obtained by

tracing over a part of the degrees of freedom of the
dS region inside the bubble.

In the context of static patch horizon hologra-
phy in dS [1, 25, 26], we can conjecture that the
purification of the dual mixed state is a general-
ization of thermofield double state [74] in which
the CFT living at the boundary of AdS and the
quantum system living on the stretched dS horizon
are entangled. This suggests another way to apply
the CV proposal in the case of very large bubbles:
we can anchor extremal surfaces both at the AdS
boundary and at the dS static patch stretched hori-
zon. In this case, we find that extremal surfaces
cross the dS horizon and tend to bend towards the
future infinity. The complexity growth is hyperfast
and diverges in finite time, as in the dS case.

The paper is organized as follows. In section
II we describe the bubble setup and the thin wall
approximation. In section III we present the equa-
tions of the extremal surfaces both in AdS and in
dS and we discuss the refraction law for the ex-
tremal surface on the bubble. In section IV we
study volume complexity, using the prescription in
which the extremal surfaces are anchored just at
the AdS boundary and are smooth both in the AdS
and in the dS regions of the spacetime. In section
V we study volume complexity for very large bub-
bles, using extremal surfaces which extend between
the AdS boundary and the dS stretched horizon.
We conclude in section VI. Several technical details
are presented in appendices.

II. THEORETICAL SETUP

We consider a spherically symmetric dS3 bub-
ble inside an asymptotically AdS3 spacetime. The
spacetime metric is taken as follows

ds2i,o = (gi,o)µνdx
µ
i,odx

ν
i,o

= −fi,o(r) dt2i,o +
dr2

fi,o(r)
+ r2dθ2 ,(II.1)

where the subscripts i and o refer to the inside and
outside regions, respectively. The outside geome-
try is a BTZ black hole [73] with

fo(r) = r2 − µ , (II.2)

where the mass of the black hole is proportional
to µ. For simplicity we set the AdS length L = 1.
The inside geometry is a dS3 spacetime with radius
rdS = 1/

√
λ, namely

fi(r) = 1− λ r2 . (II.3)

Introducing the tortoise coordinate

r∗i,o =

∫
dr̃

fi,o(r̃)
, (II.4)
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we can define the light-cone coordinates v, u as fol-
lows

vi,o = ti,o+r
∗
i,o(r) , ui,o = ti,o−r∗i,o(r) . (II.5)

An explicit evaluation of the integral (II.4) gives

r∗o(r) =
1

4
√
µ
log

(
r −√

µ

r +
√
µ

)2

,

r∗i (r) =
1

4
√
λ
log

(
1 + r

√
λ

1− r
√
λ

)2

, (II.6)

where the integration constants are chosen in such
a way that r∗o(∞) = 0 and r∗i (0) = 0.
When considering spacetime regions nearby the

black hole and the cosmological horizons, it is
convenient to write the metric in Eddington-
Finkelstein (EF) coordinates (vi,o, r) or (ui,o, r):

ds2i,o = −fi,o(r) dv2i,o + 2dr dvi,o + r2dθ2

= −fi,o(r) du2i,o − 2dr dui,o + r2dθ2 .

(II.7)

In order to describe the maximally extended ver-
sions of the dS3 and the BTZ spacetimes, it is
necessary to introduce two copies of the EF co-
ordinates u and v, which we denote by uL, vL and
uR, vR, where L and R stand for left and right, re-
spectively. Penrose diagrams for these geometries
with constant u, v lines are shown in figure 6. Our
conventions for Penrose diagrams are discussed in
appendix A.

A. The domain wall

The inside and the outside geometries are
patched together along a domain wall with neg-
ligible thickness, whose trajectory on each side of
the spacetime is parametrized by

r = R(τ) , (II.8)

with τ the proper time measured on the domain
wall itself. We will denote by a dot ˙ the derivative
with respect to the proper time τ .

The equation of motion for R(τ) follows from
Israel’s junction conditions [75] (see [68–70, 76] for
reviews), i.e.:

• The metric must be continuous across the
wall. The coordinate r multiplies the metric
of the transverse sphere S1, so it is continu-
ous. Instead, the coordinate ti,o is in general
discontinuous in passing from inside to out-
side.

• The discontinuity in the extrinsic curvature
Kab across the wall is fixed by the energy-
momentum tensor. For spherically symmet-
ric geometries, it is customary to introduce
the quantities

βi,o = (Kθ
θ )i,oR . (II.9)

The jump between βi and βo is

βi − βo = κR , (II.10)

where in our case

βi = ±
√
Ṙ2 + fi(R) ,

βo = ±
√
Ṙ2 + fo(R) ,

κ = 8πGσ . (II.11)

In eq. (II.11), σ is the domain wall tension
and G is the Newton’s constant. The sign of
βi,o is positive if the coordinate r increases as
the wall is approached from the interior or as
one moves away from the wall in the exterior,
and negative in the opposite situations. If
both βi,o have the same sign, r is monotonic
near the wall. If βi,o have different signs, r is
locally extremised at the location of the wall.

Squaring twice eq. (II.10), independently of the
choices of signs in eq. (II.11), the equation of mo-
tion can be expressed as

Ṙ2 + V (R) = 0 , (II.12)

where the second term, playing the role of an ef-
fective potential, is

V (R) = fo(R)−
(fi(R)− fo(R)− κ2R2)2

4κ2R2
.

(II.13)
Specializing the general expression (II.13) to eqs.

(II.3) and (II.2), we find

V (R) = −AR2 +B − C

R2
, (II.14)

where

A =
(λ+ κ2 − 1)2 + 4λ

4κ2
,

B =
1 + κ2 + λ+ µ− κ2µ+ λµ

2κ2
,

C =
(1 + µ)2

4κ2
. (II.15)

Note that A > 0 and C > 0. It is also convenient
to introduce

β =
B

A
, γ =

C

A
. (II.16)

Depending on the values of parameters, we can
have three physically different situations:
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Constant uR

Constant vR

Constant vL

Constant uL

tt

Constant vR

Constant uR

Constant uL

Constant vL

tt

FIG. 6. Penrose diagrams for dS3 spacetime (left) and for the BTZ black hole (right). The arrows show the
directions of increasing coordinate t on both the sides of the diagrams.

a) The maximum of V (R) is positive. In this
case, the radius of the bubble as a function
of the bubble proper time τ has either a max-
imum or a minimum .

b) The maximum of V (R) is exactly zero. In
this case, we have an unstable static bubble
solution, besides other solutions which ap-
proach the maximum from both sides with
asymptotically zero velocity Ṙ.

c) The maximum of V (R) is negative. In this
case, the radius of the bubble monotonically
contracts or expands without any maximum
or minimum.

The qualitative behavior of V (R) in these three
cases is shown in figure 7.
Time-reversal invariance selects a potential

V (R) with non-negative maximum, as in cases a)
and b). This requires

β2 ≥ 4γ . (II.17)

For time-reversal symmetric bubbles, an explicit
integration of eq. (II.12) gives

R(τ) =

√
β

2
∓
√
β2 − 4γ

2
cosh(2

√
Aτ) . (II.18)

The − sign solution corresponds to a small bubble
(the bubble has maximal radius at τ = 0 and col-
lapses in a finite proper time), whereas the + sign
solution describes a large bubble (the bubble has
minimal radius at τ = 0 and expands forever).
The condition in eq. (II.17) is is satisfied for

0 < µ ≤ µ0, where the limiting value µ = µ0 is
defined in eq. (I.2) and corresponds to a static
bubble.
For a given choice of the parameters λ, µ, κ with

µ < µ0 it is possible to have both a contracting
and an expanding solution. The maximal radius

for the contracting bubble is

Rmax(µ) =

√
β

2
−
√
β2 − 4γ

2
, (II.19)

while the minimal radius for the expanding bubble
is

Rmin(µ) =

√
β

2
+

√
β2 − 4γ

2
. (II.20)

Both Rmax and Rmin are real positive numbers for
0 < µ ≤ µ0. The values of Rmax and Rmin satisfy
the following constraints:

• Rmax ≤ Rmin, with the equality saturated
for µ = µ0.

• Rmin ≤ 1/
√
λ, with the equality saturated

for the special value µ = µh, see eq. (I.4).

• Rmax ≥ √
µ with the equality saturated for

the special value µ = µs, see eq. (I.3).

In figure 8 we show a plot of Rmax and Rmin as
functions of µ, for a fixed value of λ and κ.
In order to specify the solution, we should also

determine the time coordinates ti,o on the surface
of the bubble, both in the inside and in the outside
regions. Such time coordinates, which we denote
by Ti,o(τ), are specified by the equation

Ṫ 2
i,o =

1

fi,o(R)

(
1 +

Ṙ2

fi,o(R)

)
, (II.21)

following from the normalization of the bubble ve-
locity vector wα

wαwα = −1 , wα = (Ṫ , Ṙ, 0) . (II.22)

Combining the equation of motion (II.12) with eq.
(II.21) we find

dTi,o
dR

= ±
√
fi,o(R)− V (R)

fi,o(R)
√
−V (R)

. (II.23)
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FIG. 7. Qualitative plots of the effective potential V (R) in eq. (II.14) with positive (plot a), vanishing (plot b)
and negative (plot c) maximum. Blue arrows represent the possible evolution of the bubble radius R(τ).

μ=μs μ=μh μ=μ01 2 3 4 5
μ

0.5

1.0

1.5

2.0

2.5

3.0

R

Rmax

Rmin

Rstatic

1/ λ

μ

FIG. 8. Illustrative plot of Rmax and Rmin as functions of µ, for λ = 0.1 and κ = 0.8.

Plugging the explicit expressions for fi and fo in
eq. (II.23), we get

dTi
dR

= ± 1

2κ

1 + µ−R2(1 + λ− κ2)

(1− λR2)
√
AR4 −BR2 + C

,

dTo
dR

= ± 1

2κ

1 + µ−R2(1 + λ+ κ2)

(R2 − µ)
√
AR4 −BR2 + C

.

(II.24)

Time-reversal solutions to these equations are ob-
tained by imposing the boundary condition

Ti,o(Rmax) = 0 or Ti,o(Rmin) = 0 (II.25)

in the collapsing and the expanding case, respec-
tively.

B. Static bubbles

A static bubble solution is realized for β2 = 4γ,
or equivalently µ = µ0, see eq. (I.2). The radius
of the bubble is thus

Rstatic = Rmin(µ0) = Rmax(µ0) . (II.26)

The matching condition between the Ti,o coordi-
nates is

dTi
dTo

= ±

√
fo(Rstatic)

fi(Rstatic)
= ±µ0 . (II.27)

C. Small bubbles

In this case, eq. (II.24) admits a smooth solu-
tion for Ti. On the other hand, the trajectory is not
smooth in the coordinate To, which should then be
replaced by an EF coordinate, see eq. (II.5). Re-
ferring to the Penrose diagrams for the collapsing
bubble sketched in figures 2 and 3, we distinguish
between two cases:

• Very small bubble, 0 < µ < µs. The
initial position of the bubble R = Rmax is
on the same side of the AdS boundary. The
smooth coordinates that should be used are
vR for the black hole (or uR for the white
hole). Denoting by UR,o and VR,o the right
EF coordinates on the bubble surface in BTZ
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spacetime, the equations of motion are

dVR,o

dR
= − 1

2κ

1 + µ−R2(1 + λ+ κ2)

(R2 − µ)
√
AR4 −BR2 + C

+
1

R2 − µ
,

dUR,o

dR
=

1

2κ

1 + µ−R2(1 + λ+ κ2)

(R2 − µ)
√
AR4 −BR2 + C

− 1

R2 − µ
. (II.28)

• Not so small bubble, µs < µ < µ0. In this
case we should use uL for the black hole (or
vL for the white hole). Denoting by UL,o and
VL,o the left EF coordinates on the bubble
surface in BTZ spacetime, the equations of
motion are

dUL,o

dR
= − 1

2κ

1 + µ−R2(1 + λ+ κ2)

(R2 − µ)
√
AR4 −BR2 + C

− 1

R2 − µ
,

dVL,o
dR

=
1

2κ

1 + µ−R2(1 + λ+ κ2)

(R2 − µ)
√
AR4 −BR2 + C

+
1

R2 − µ
. (II.29)

D. Large bubbles

Large bubbles are examples of bags of gold
[69, 77], which are defined as spacetimes in which
an eternal black hole exterior is attached by an
Einstein-Rosen bridge to an interior which is a
portion of Friedman-Lemaitre-Robertson-Walker
(FLRW) cosmology with an infinite spacetime vol-
ume. In these geometries, the entropy of the in-
terior can exceed the exterior Bekenstein-Hawking
entropy, see eq. (I.6), so the bulk states cannot
be put in correspondence with the CFT states of
the dual field theory. It has been suggested that
the Bekenstein-Hawking entropy does not in gen-
eral count all the states inside the black hole, but
only those which are distinguishable from the out-
side [77, 78]. In particular, large bubble solutions
has been proposed to provide the holographic dual
of a density matrix [68].
Equation (II.24) for the outside time To gives a

smooth solution, while Ti is singular because the
dS horizon is crossed at some time by the bubble.
We then pass to EF coordinates, see eq. (II.5).
With reference to the Penrose diagrams for the ex-
panding bubble sketched in figures 4 and 5, we
discriminate between two cases:

• Very large bubble, 0 < µ < µh. The ini-
tial position of the bubble R = Rmin is in
the right static patch. Denoting by UR,i and
VR,i the right EF coordinates on the bubble
surface in dS, the equations of motion are

dVR,i

dR
=

1

2κ

1 + µ−R2(1 + λ− κ2)

(1− λR2)
√
AR4 −BR2 + C

+
1

1− λR2
,

dUR,i

dR
= − 1

2κ

1 + µ−R2(1 + λ− κ2)

(1− λR2)
√
AR4 −BR2 + C

− 1

1− λR2
. (II.30)

• Not so large bubble, µh < µ < µ0. The
initial position of the bubble R = Rmin is in
the left static patch. Denoting by UL,i and
VL,i the left EF coordinates on the bubble
surface in dS, the equations of motion are

dUL,i

dR
=

1

2κ

1 + µ−R2(1 + λ− κ2)

(1− λR2)
√
AR4 −BR2 + C

− 1

1− λR2
,

dVL,i
dR

= − 1

2κ

1 + µ−R2(1 + λ− κ2)

(1− λR2)
√
AR4 −BR2 + C

+
1

1− λR2
. (II.31)

III. VOLUME FUNCTIONAL

According to the CV conjecture [55], complexity
of the boundary state is proportional to the volume
of a maximal codimension-one surface anchored at
the given boundary time. The volume complexity
CV is usually normalized as

CV =
V
GL

, (III.1)

where V is the volume of the maximal slice, G the
Newton’s constant and L the AdS radius. In this
section we discuss the volume of extremal surfaces
in both the AdS and the dS parts of the geometry.
Then, we address the matching condition on the
domain wall.

Due to spherical symmetry, the extremal surface
can be parameterized as

r = r(l) , t = t(l) , (III.2)

where l is a single-valued coordinate along the sur-
face. Since the coordinate t is singular nearby the
horizons, it is useful to write the volume functional
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in both the versions of the EF coordinates u and
v:

Vi,o = 2π

∫
L dl ,

L = r
√

−fi,o(v′i,o)2 + 2r′v′i,o

= r
√
−fi,o(u′i,o)2 − 2r′u′i,o , (III.3)

where ′ denotes a derivative with respect to l. The
extremal surface is characterized by a conserved
quantity Pi,o, which in the (v, r) and in the (u, r)
coordinates reads

Pi,o =
∂L
∂v′i,o

=
r (−fi,ov′i,o + r′)√
−fi,o(v′i,o)2 + 2r′v′i,o

,

Pi,o =
∂L
∂u′i,o

=
r (−fi,ou′i,o − r′)√
−fi,o(u′i,o)2 − 2r′u′i,o

,

(III.4)

respectively.
The volume functional in eq. (III.3) is invariant

under reparameterization in l. To fix this gauge
freedom, it is convenient to impose the conditions√

−fi,o(v′i,o)2 + 2r′v′i,o = r or√
−fi,o(u′i,o)2 − 2r′u′i,o = r , (III.5)

in such a way that the volume functional becomes

Vi,o = 2π

∫
r2 dl . (III.6)

With this gauge choice, the conserved quantity Pi,o

can be expressed as follows

Pi,o = −fi,ov′i,o + r′ , v′i,o =
r′ − Pi,o

fi,o
,

Pi,o = −fi,ou′i,o − r′ , u′i,o =
−r′ − Pi,o

fi,o
.

(III.7)

By inserting this back into the gauge constraint,
we get

(r′)2 + Ui,o(r) = P 2
i,o , Ui,o(r) = −fi,o(r) r2 ,

r′ = ±
√
P 2
i,o + fi,o(r) r2 , (III.8)

which is valid in both the EF coordinate systems
(v, r) and (u, r). The conserved quantity Pi,o can
also be written as

Pi,o = −fi,o t′i,o . (III.9)

Note that Ui,o(r) in eq. (III.8) can be interpreted
as effective potentials, see figure 9 for qualitative
plots.

The extremum of r(l) represents a turning point
rt for the extremal surface. We can have a turning
point both in the external BTZ region and in the
internal dS one:

• In the external asymptotically AdS region,
rt,AdS is a minimum of r(l), given by

rt,AdS =

√
µ+

√
µ2 − 4P 2

o

2
. (III.10)

For a turning point to exist, it is necessary
to require

P 2
o ≤ P 2

max =
µ2

4
. (III.11)

• In the internal dS region, rt,dS is a maximum
of r(l), given by

rt,dS =

√
1 +

√
1 + 4λP 2

i

2λ
. (III.12)

The difference in the time coordinate t between
two points on the extremal surface can be ex-
pressed as

ti,o(r2)−ti,o(r1) = ∓
∫ r2

r1

Pi,o

fi,o
√
P 2
i,o + fi,o(r) r2

dr ,

(III.13)
where the − sign should be chosen for a param-
eterization with r′(l) > 0, while the + sign for a
parameterization with r′(l) < 0. In the integral in
eq. (III.13), the Cauchy principal value prescrip-
tion should be used when crossing the horizon.

With the convention r2 > r1, the volume of the
extremal surface reads

Vi,o = 2π

∫ r2

r1

r2√
P 2
i,o + fi,o(r) r2

dr . (III.14)

A. A refraction law for the extremal surface

To determine the codimension-one extremal sur-
faces, we solve eqs. (III.8) and (III.7) both in the
interior and in the exterior of the bubble. Then, we
match the two solutions on top of the domain wall,
imposing that the total volume is extremal. Phys-
ically, the extremal surface is somehow ”refracted”
by the domain wall. In appendix B, by introducing
a coordinate system which describes both the inte-
rior and the exterior of the bubble in terms of the
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r=1/ 2 λ

Ui=-
1

4 λ

r=1/ λ

r

Ui(r)

r= μ /2

Uo=
μ2

4

r= μ
r

Uo(r)

FIG. 9. Effective potential for the extremal surface in the dS region (left) and in the AdS one (right).

same time coordinate ti, we derive the refraction
condition in the thin wall approximation.
By spherical symmetry, it is not restrictive to

focus just on the time and radial coordinates. We
denote by xµi,o(l) the coordinates of the extremal

codimension-one surface and by Xµ
i,o(τ) the tra-

jectory of the domain wall. We then introduce

the tangent vector to the extremal surface
dxµ

i,o

dl

and the velocity vector of the domain wall
dXµ

i,o

dτ ,
namely

dxµi,o
dl

= (t′i,o(l), r
′
i,o(l)) ,

dXµ
i,o

dτ
= (Ṫi,o(τ), Ṙ(τ)) . (III.15)

The matching condition on top of the domain wall
is

(gi)µν
dxµi
dl

dXν
i

dτ
= (go)µν

dxµo
dl

dXν
o

dτ
. (III.16)

The details of the derivation are in appendix B. A
similar result was derived in [79] for geodesics.
Given an extremal surface intersecting the do-

main wall at some value of the radial coordinate
R, we denote by ρi,o(R) the value of r′i,o(l) com-
puted at the intersection, i.e.

ρi,o(R) = r′i,o(l0) where ri,o(l0) = R .
(III.17)

By means of eq. (III.9), we can write the matching
condition (III.16) as

Pi
dTi
dR

+
ρi(R)

fi(R)
= Po

dTo
dR

+
ρo(R)

fo(R)
. (III.18)

The setup with an extremal surface crossing a
null shell of matter with negligible thickness was
studied in [80] for geodesics and in [81, 82] for
codimension-one surfaces. This case formally cor-
responds to a domain wall moving at the speed of
light and the result is consistent with eq. (III.18).

IV. COMPLEXITY FROM SMOOTH
EXTREMAL SURFACES

The conservative way to apply the CV conjec-
ture in asymptotically AdS geometries with an in-
ternal dS bubble is to consider extremal codimen-
sion one surfaces which are anchored at some given
time tb at the AdS boundary and which are smooth
in the interior. These surfaces lie partially in the
dS and partially in the asymptotically AdS parts
of the geometry. By convention, we choose l in eq.
(III.2) to be positive and to vanish at the center of
the dS static patch.

In order to avoid a singularity at r = 0 in the
dS interior, we must impose the condition Pi = 0.
This can be checked as follows. Using eqs. (III.9)
and (III.8), the induced metric on the extremal
surface in the gauge (III.5) is

ds̃2i = r2(l)
(
dl2 + dθ2

)
. (IV.1)

From eq. (III.8), r(l) can have two qualitatively
different behaviors nearby l → 0:

• For Pi = 0, r(l) ≈ r′(l), so the induced met-
ric

ds̃2i ≈ dr2 + r2dθ2

is smooth at l → 0, with 0 ≤ θ ≤ 2π.

• For Pi ̸= 0, r2(l) ≈ P 2
i l

2, so the induced
metric

ds̃2i ≈ P 2
i (l

2dl2 + l2dθ2)

has a singular scalar curvature at l → 0.

A similar property holds in the case of AdS Vaidya
spacetime, see [81].

Equation (III.9) implies that for Pi = 0 the ex-
tremal surface in the interior lies at constant ti
coordinate. Examples of these surface are shown
in figure 10.
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FIG. 10. Examples of extremal codimension one sur-
faces with Pi = 0 in the dS Penrose diagram. The in-
terior part of the smooth extremal surfaces correspond
to the portion of these surfaces inside the bubble.

A. Small bubbles

For small bubbles, the inside geometry is just a
region of the left static patch. Then, there is no
turning point in the dS portion of the geometry,
or equivalently r′i(l) > 0. As a direct consequence,
we have ρi(R) > 0 everywhere on the domain wall.
With the condition Pi = 0, the refraction law in
eq. (III.18), which must be implemented at the
bubble surface r = R(τ), is

R√
fi(R)

=
ρo(R)

fo(R)
+
dTo
dR

Po ,

Po = ±
√
ρ2o(R)− fo(R)R2 . (IV.2)

Depending on the sign of the product dTo

dR Po,
two physically different solutions to the constraint
(IV.2) exist. Let us fix for convenience the sign in
eq. (II.24) as follows

dTo
dR

= − 1

2κ

wo(R)

(R2 − µ)
√
AR4 −BR2 + C

,

wo(R) = 1 + µ−R2(1 + λ+ κ2) . (IV.3)

Note that2 the quantity wo(Rmax) is positive for
0 < µ < µs and negative for µs < µ < µ0. In both
cases, the sign choice in eq. (IV.3) is such that,
for To ≥ 0, the bubble always moves towards the
upper direction of the Penrose diagram. The con-
figuration in which the bubble moves in the oppo-
site direction can be recovered by a time reflection
t→ −t.

2 This can be checked by the following properties: a) the
unique positive solution of the equation wo(Rmax) = 0 in
the variable µ is µ = µs; b) for µ = 0, wo(Rmax) > 0.

Pmax
2 =

μ2

4

R=R- R=R+R=0 R=Rmax
R

Po
2

FIG. 11. Behavior of P 2
o (R) in eq. (IV.5) for small

bubbles.

With the assumption of positive Po, eq. (IV.2)
has the following solution

ρo(R) = −
R
(
µ− 1 +R2

(
κ2 + λ− 1

))
2
√
1− λR2

.

(IV.4)

From a direct calculation, we can check that
ρo(Rmax) vanishes just for µ = µs. Also, we have
that ρo(Rmax) > 0 for µ → 0. This shows that
ρo(Rmax) is positive for 0 < µ < µs and negative
for µs < µ < µ0. In both cases, this sign is con-
sistent with a refraction of the extremal surface
through the domain wall. For negative Po, the so-
lution to eq. (IV.2) corresponds to a ”reflection”
of the extremal surface, see appendix C 1. Thus,
we discard this solution.

Plugging eq. (IV.4) into eq. (IV.2), we get

P 2
o (R) = R2(µ−R2)

+
1

4
R2

(
µ− 1 +R2

(
κ2 + λ− 1

))2
1− λR2

,(IV.5)

see figure 11 for a plot. Note that P 2
o (0) =

P 2
o (Rmax) = 0. Using the fact that R < 1/

√
λ for

small bubbles, we obtain the following inequality

P 2
o (R) ≥ Uo(R) = R2(µ−R2) , (IV.6)

where Uo(R) is the effective potential in eq. (III.8).

The maximum of Uo(R) is at R = R̂ =
√
µ/2

and its value is Uo(R̂) = µ2/4 = P 2
max, defined

in eq. (III.11). Then, the maximum of P 2
o (R) is

bigger than P 2
max, as it is clear from figure 11. Let

us define the radii R± as the two solutions to the
equation

P 2
o (R±) = P 2

max =
µ2

4
. (IV.7)
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From the property P 2
o (
√
µ/2) > µ2/4, it follows

that

R− ≤
√
µ

2
≤ R+ . (IV.8)

As we will see, the radii R± determine the behavior
of the complexity rate at large time tb.

1. Complexity rate

Depending on the parameter values and on R,
the quantity ρo(R) in eq. (IV.4) can be either pos-
itive or negative. A detailed analysis is deferred to
appendix C 2. Based on the sign of ρo(R), the de-
tails of the extremal surface are slightly different.
Let us distinguish between the two situations:

• ρo(R) > 0. The radial coordinate of the ex-
tremal surface is monotonic between r = R
and the AdS UV cutoff r = Λ. From eq.
(III.14), the volume is

V
2π

=

∫ R

0

r√
fi(r)

dr

+

∫ Λ

R

r2√
P 2
o + fo(r) r2

dr . (IV.9)

According to eq. (III.13), the boundary time
is

tb = To(R)

−
∫ Λ

R

1

fo

(
Po√

P 2
o + fo(r) r2

)
dr .(IV.10)

In order to find the complexity rate, we use
the same strategy as in [86]. Namely, we sum
and subtract the quantity Potb to the volume
expressed in eq. (IV.9):

V
2π

= Potb +

∫ R

0

r√
fi(r)

dr

+

∫ Λ

R

√
P 2
o + for2

fo
dr − PoTo(R) .

(IV.11)

Taking the derivative of eq. (IV.11) with re-
spect to tb, and using eq. (IV.2), we find the
complexity rate

W =
1

2π

dV
d tb

= Po . (IV.12)

The asymptotic linear growth corresponds to
the V → ∞ and tb → ∞ limit, which for-
mally comes from the divergence of the in-
tegrands in eqs. (IV.9) and (IV.10) in cor-
respondence of the turning point rt,AdS, see

eq. (III.10). In particular, the turning point
rt,AdS satisfies

P 2
o + fo r

2 = 0 .

This singularity is integrable except for
P 2
o → P 2

max = µ2/4. In order to find a diver-
gent tb in eq. (IV.10), we need the turning

point rt,AdS =
√
µ/2 to lie inside the integra-

tion domain [R,∞]. Thus, from eq. (IV.8),
we find that tb is regular for R→ R+ and di-
verges for R→ R−. In other words, the late
time limit tb → ∞ corresponds to R→ R−.

• ρo(R) < 0. For the extremal surfaces to be
attached to the AdS boundary there must be
a turning point rt,AdS < R inside the black
hole. From eq. (III.14), the volume is

V
2π

=

∫ R

0

r√
fi(r)

dr

−
∫ rt,AdS

R

r2√
P 2
o + fo(r) r2

dr

+

∫ Λ

rt,AdS

r2√
P 2
o + fo(r) r2

dr . (IV.13)

According to eq. (III.13), the boundary time
reads

tb =

∫ rt,AdS

R

1

fo

(
Po√

P 2
o + fo(r) r2

)
dr

−
∫ Λ

rt,AdS

1

fo

(
Po√

P 2
o + fo(r) r2

)
dr

+ To(R) . (IV.14)

The rate W can be evaluated by the same
strategy as in the previous case. The result
is again given by eq. (IV.12).

As in the previous case, the asymptotic linear
growth of complexity is in correspondence
of the divergence of the integrands in eq.
(IV.14) at r = rt,AdS. The singularity is
generally integrable, except for Po = Pmax,
for which rt,AdS =

√
µ/2. In this case, the

late tb limit corresponds to R → R+. For
0 < R < R+, instead, the extremal surface
never reaches the AdS boundary.

Extremal surfaces can be found numerically by
integrating the equations of motion (III.7) and
(III.8). The dS portion of these extremal surfaces
corresponds to the Pi = 0 surfaces shown in figure
10. The AdS portion of two prototypical examples
of solutions is plotted in the left panels of figures
12 and 13. The complexity rate as a function of
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λ = 1, κ = 0.5, μ = 0.2
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W

FIG. 12. Left panel: AdS portion of the extremal surfaces for a very small bubble. Right panel: plot of the
complexity rate. For every value of the boundary time tb there exists a single extremal surface.

λ = 1, κ = 0.5, μ = 0.85

-2 -1 1 2
tb

-0.4

-0.2

0.2

0.4

W

FIG. 13. Left panel: AdS portion of the extremal surfaces for a not so small bubble. Right panel: plot of
the complexity rate. Note that multiple extremal surfaces exist for boundary times tb inside the window in eq.
(IV.15).

the boundary time tb is shown on the right panels
of the same figures.
In the example in figure 12, for a given value of

the boundary time tb there exists a single extremal
surface anchored at the AdS boundary. Instead, in
the example in figure 13 in a time window centered
at tb = 0, i.e.

−Tb < tb < Tb , (IV.15)

three extremal surfaces anchored at the same value
of the boundary time tb exist. The rate W is then
a multivalued function of the time tb.

To discriminate between the two possible behav-
iors, it is useful to introduce the quantity

K =
dtb
dPo

∣∣∣∣
tb=0

, (IV.16)

representing the reciprocal of the slope dW
dtb

com-
puted at the origin of the plots in the right panel of

figures 12 and 13. The complexity rate in figure 12
is characterized by K > 0, contrary to the one in
figure 13, where K < 0. An explicit expression for
K is given in appendix C 3. From eqs. (C.8) and
(C.11), we find that K is a decreasing function of
µ at fixed λ and κ and that K → −∞ for µ→ µ0.
In figure 14, we show K as a function of µ for a
fixed value of λ and κ. In the parameter region

λ ≥ 2 + κ− κ2 , (IV.17)

the quantity K is always negative, so multiple ex-
tremal surfaces exist for every µ, see figure 15.
According to the CV conjecture, when multiple

extremal surfaces exist, the one with maximal vol-
ume should be picked. To deal with this, let us
consider the prototypical behavior shown in figure
16. The three points C, D, and E are obtained
by extremal surfaces anchored at the same bound-
ary time, but whose volumes V and values of the
rate differ. To properly choose the maximal so-
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0.2 0.4 0.6 0.8
μ
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-2
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1

K

FIG. 14. Plot of the quantity K defined in eq. (IV.16)
as a function of µ for λ = 1, κ = 0.5. In this numerical
example K is negative for µ > 0.53 and approaches
−∞ for µ → µ0 ≈ 0.88. In order to have multiple
extremal surface for the same value of tb as in figure
13, we need K < 0. The blue portion of the plot
corresponds to very small bubbles, while the red part
to not so small bubbles.
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0.0
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FIG. 15. The white region represents the portion of
the (λ, κ) plane defined in eq. (IV.17), for which K is
negative for every value of µ.

lution, let us first consider the two points C and
D. The volumes VC and VD of the corresponding
surfaces can be inferred by starting from the vol-
ume VA of the surface located at the point A, and
following the two arrows which bring to C and D,
respectively. Since the rate is positive, the volume
increases as we move along these arrows. Hence,
both VC and VD are higher than VA. Precisely,
since the growth rate as we move from A to C is
larger than the one going from A to D, we con-
clude that VC > VD. Moreover, by time-reversal
symmetry, VC = VF . Moving along the curve from
E to F the rate is negative, which means that the
volume is decreasing: VF < VE . From this ar-
gument, we should choose the lowest value of the
rate for tb < 0 and the highest value of the rate
for tb > 0, see figure 17. Consequently, the com-
plexity rate W experiences a discontinuous jump
at tb = 0. A similar analysis was performed in [63]
for complexity in dS spacetime.

A C

D

E FB

O

G

tb

H

dC

dtb

A

FIG. 16. Schematic plot of the complexity rate in the
parameter region where there are multiple extremal
surfaces anchored at the same boundary time.

-2 -1 1 2
tb

-0.4

-0.2

0.2

0.4

W

FIG. 17. The requirement of maximal volume selects
the step-like function rate represented by the solid line.

2. Late time complexity rate

We now discuss the late time behavior of the
rate W . In terms of the bubble radius, we will
show that tb → ∞ corresponds to R → R+ or to
R→ R−, depending on the point in the parameter
space. First note that ρo(R+) has the same sign
as ρo(R−). In fact, if the signs of ρo(R±) were
different, we would have R− < R0 < R+, where
R0 is defined by the condition ρo(R0) = 0, see eq.

(C.2). Then we should have P 2
o (R0) >

µ2

4 , see
figure 11, but this is impossible because

P 2
o (R0)−

µ2

4
= −

(
κ2µ+ λµ+ µ− 2

)2
4 (κ2 + λ− 1)

2 ≤ 0 .

(IV.18)
We can then check that the tb → ∞ limit corre-
sponds to R → R+ or to R → R−. In particular,
we can have

• Case 1: If ρo(R+) < 0, the tb → ∞ limit
corresponds to R → R+. In this case both
the integrals in eq. (IV.14) diverge, due to a
singularity in correspondence of rt,AdS. For
large enough tb > 0 the complexity rate is an
increasing function of time (see for example
the right panel of figure 13).
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• Case 2: If ρo(R+) > 0, then also ρo(R−) >
0. From eq. (III.10), both for R = R+

and R = R−, we have that rt,AdS =
√
µ/2,

because P 2
o = µ2/4. The integral which

gives tb, see eq. (IV.10), is then divergent
for R = R− and not for R = R+, because
R− ≤ rt,AdS ≤ R+, see eq. (IV.8). In this
case, at large enough tb > 0 the complexity
rate is a decreasing function of time, see for
example the right panel of figure 12.

Either way, the complexity rate at late time is in-
sensitive to the presence of the bubble

1

2π
lim

tb→∞

dV
d tb

=
µ

2
. (IV.19)

However, the sign of ρo(R+) discriminates between
a growing or a decreasing complexity rate at late
time. It is a complicated problem to discuss the
sign of ρo(R+) in a generic point of the parameter
space. Still, in some particular regions of param-
eters we can determine the sign of ρo(R+) with
some simple arguments. For example, for µ → 0
we are always in case 2, because in this limit

R+ → Rmax , ρ(R+) →
1

(κ+ 1)2 + λ
> 0 .

(IV.20)
Instead, depending on the value of λ and κ, for
µ → µ0 we can have both case 1 (for example
λ = 0.5, κ = 0.5) and case 2 (for example λ = 1,
κ = 1). See appendix C 2 for further details.

According to the Lloyd’s bound [83], the max-
imum allowed growth rate of quantum computa-
tional complexity should be proportional to the to-
tal energy. In quantum systems with holographic
duals, it was proposed [57] that the Lloyd’s bound
is saturated at late time by the uncharged planar
black hole solutions in AdS. In the parameter space
portion of case 2 this version of the proposal is vio-
lated, because the asymptotic value is approached
from above. Violations of the Lloyd’s bound have
been previously found for the CA conjecture, see
[84–89]. In holographic models including just AdS
boundaries, we do not know about any other viola-
tion of the bound for the CV proposal. See [90, 91]
for examples of AdS hairy black holes in which the
bound is instead satisfied.

B. Large bubbles

Contrary to small bubbles, for large bubbles the
dS part of the geometry contains the region be-
yond the cosmological horizon r = 1/

√
λ. How-

ever, recalling that Pi = 0, we point out that
extremal codimension-one surfaces in the dS part

cannot enter the region with r > 1/
√
λ, where the

potential Ui is positive, see figure 9. Therefore,
the extremal surfaces are confined into the static
patches. In particular, for 0 < µ < µh the ex-
tremal surfaces extend into the right static patch.
Since in this case the domain wall never enter the
left static patch, we necessarily have ρi(R) < 0.
On the other hand, for µ > µh no portion of the
right static patch is present in the geometry, so the
extremal surfaces remain into the left static patch.
From this argument we conclude that ρi(R) > 0.

Some technical details in the calculations
slightly differ in the two cases:

• Very large bubble, 0 < µ < µh. Equation
(IV.2), which determines Po, is replaced by

− R√
fi

=
1

fo
ρo +

dTo
dR

Po ,

Po = ±
√
ρ2o(R)− fo(R)R2 . (IV.21)

We fix the sign of eq. (II.24) as in eq. (IV.3).
The solution for positive Po is

ρo =
R
(
µ− 1 +R2

(
κ2 + λ− 1

))
2
√
1− λR2

. (IV.22)

From here, we obtain the same value of Po

as in eq. (IV.5). It can be checked that
ρo(Rmin) in eq. (IV.22) is always negative.
Also, for fixed λ, κ, and µ, ρo(R) is a de-
creasing function of R. Therefore, ρo(R) is
always negative, which means that there is a
turning point rt,AdS < R in AdS. Note that

ρo(R) → −∞ for R→ 1/
√
λ.

The extremal surface always crosses the dS
horizon on the bifurcation sphere, because
Pi = 0. Consequently, the volume is given
by

V
2π

=

∫ 1√
λ

0

r√
fi(r)

dr −
∫ R

1√
λ

r√
fi(r)

dr

−
∫ rt,AdS

R

r2√
P 2
o + fo(r)r2

dr

+

∫ Λ

rt,AdS

r2√
P 2
o + fo(r)r2

dr . (IV.23)

The boundary time tb can be obtained by eq.
(IV.14). We find that the complexity rate is
again given by eq. (IV.12).

• Not so large bubble, µh < µ < µ0. Equa-
tion (IV.2) still holds. We fix the sign of eq.
(II.24) as in eq. (IV.3), in which wo(R) is al-
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FIG. 18. Behavior of P 2
o (R) in eq. (IV.5) for large

bubbles.

ways negative.3 This choice corresponds to a
bubble which, for To ≥ 0, moves in the lower
direction of the Penrose diagram. Assuming
Po to be positive,4 the ρo solution is given by
eq. (IV.4).

The quantity ρo(R) changes sign at R = R0,
given in eq. (C.2). However, for µ > µh we
have R0 < Rmin. In addition, in the present
case the equation ρo(Rmin) = 0 has no solu-
tion, so ρo(Rmin) is always negative, in ac-
cordance with the refraction interpretation.
Putting all together, we conclude that ρo(R)
remains negative in the range Rmin < R <
1/

√
λ. In particular, for R → 1/

√
λ we get

ρo → −∞.

Due to the negativity of ρo(R), there is a
turning point at rt,AdS < R in the AdS por-
tion. We can then use eq. (IV.13) for the
volume, eq. (IV.14) for the boundary time,
and eq. (IV.12) for the complexity rate. The
value of P 2

o is still given by eq. (IV.5). From
a direct calculation

Po(Rmin) = 0 ,

Po(1/
√
λ) = ∞ . (IV.24)

Moreover, for Rmin < R < 1/
√
λ, Po is a

monotonic function, a plot of which is dis-
played in figure 18. The unique solution R∗

to the equation

P 2
o (R

∗) = P 2
max = µ2/4 , (IV.25)

with Rmin < R∗ < 1/
√
λ, corresponds to the

extremal surface at tb → ∞.

3 As wo(R) is a decreasing function of R, it is enough to
check this property for R = Rmin, see eq. (C.15).

4 If Po is negative, ρo is given by eq. (C.1). This solution
corresponds to a reflection, so we discard it.

In figure 19 and 20 we show the extremal sur-
faces and the complexity rate for a very large and
a not so large bubble, respectively. In these exam-
ples, a single extremal surface exists for any given
boundary time tb and the complexity rate is an
increasing function of time.

In order to check if multiple extremal surfaces
can emerge for a given tb, we look at the behavior
of K, expressed in eq. (C.12). A plot of K as a
function of µ for fixed λ and κ is shown in figure
21. From the discussion below eq. (C.13), we find
that for large bubbles K is always positive, thus
there are no multiple extremal surfaces attached
at the same boundary time.

The complexity rate at large tb is still given
by eq. (IV.19). The rate is always an increas-
ing function of tb at late time, because P 2

o (R) is
always an increasing function of R in the range
Rmin ≤ R ≤ R∗, see figure 18. Referring to sub-
section IVA2, the late time rate of complexity be-
haves as in case 1 of small bubbles.

C. Static bubble limit

For the strictly static bubble configuration µ =
µ0, eq. (B.13) tells us that Po = 0, so the com-
plexity rate identically vanishes. In this setup, the
time-translation symmetry is not broken by the
presence of the bubble and ∂/∂t is an everywhere
well-defined Killing vector. Also, the extremal sur-
faces never enter the black and white hole regions
of the AdS geometry (see figure 22).

Let us now comment on how the static bubble is
realized as a limit of the small and large bubbles:

• As µ approaches the critical value µ0 from
the small bubble direction, the time Tb in
eq. (IV.15) tends to +∞, and the slope of
the complexity rate in the central unstable
branch tends to zero, see figure 23. This is
consistent with K → −∞ for µ → µ0, as
shown figure 14. In the static bubble limit
µ→ µ0, just the central branch solution sur-
vives and the complexity rate is zero. In-
terestingly, this limit is discontinuous, since
the central branch is discarded by the max-
imum volume prescription, as indicated by
the dashed line in figure 16.

• As µ approaches the static bubble value µ0

from the large bubble direction, at small tb
the complexity rate grows very slowly, see
figure 24. When µ → µ0, the complexity
rate remains frozen at zero for a large time.
This is consistent with K diverging to +∞
in this limit, as shown in figure 21.
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FIG. 19. Left panel: AdS portion of the extremal surfaces for an example of very large bubble. Right panel:
plot of the complexity rate.
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FIG. 20. Left panel: AdS portion of the extremal surfaces for an example of not so large bubble. Right panel:
plot of the complexity rate.
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FIG. 21. Plot of K, defined in eq. (IV.16), as a
function of µ for λ = 1 and κ = 0.5 in the case of large
bubbles.

D. Complexity of formation

While it is possible to look at the collapse of a
very small bubble from the outside of the black
hole, for all the other kinds of bubble an exter-

nal observer just see a black hole horizon. Thus,
we can ask whether complexity can help us to dis-
criminate, for a given value of the boundary time
tb, between a large and small bubble state with the
same µ. To look for an answer, we consider the
complexity of formation [92] at tb = 0, at which
time Pi = Po = 0. To get a finite quantity, we
subtract from the volume of the bubble Vlarge (or
Vsmall) at tb = 0 the outside volume of the BTZ
black hole at the same boundary time:

VBTZ = 2π

∫ Λ

√
µ

r√
fo
dr = 2π

√
Λ2 − µ

= 2πΛ +O

(
1

Λ

)
, (IV.26)

where Λ is the AdS UV cutoff. The complexity of
formation is thus proportional to

∆Vlarge = Vlarge − VBTZ ,

∆Vsmall = Vsmall − VBTZ . (IV.27)
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FIG. 22. AdS portion of the extremal solution for the
static bubble (which is shown in the black solid line).
These surfaces have all Po = 0 and never enter the
black and white hole regions of the geometry.

From a direct evaluation from eqs. (IV.9), (IV.13),
and (IV.23), we find

∆Vsmall

2π
=

1−
√
1−R2

maxλ

λ
∓
√
R2

max − µ

(IV.28)
where the ∓ sign refers to the cases 0 < µ < µs

and µs < µ < µ0, respectively. The regularized
volume of large bubbles instead is

∆Vlarge

2π
=
√
R2

min − µ+
1±

√
1−R2

minλ

λ
(IV.29)

where the ± sign refers to the cases 0 < µ < µh

and µh < µ < µ0, respectively.
A plot of ∆Vlarge and ∆Vsmall as function of µ

is shown in figure 25. The large bubble has always
a larger complexity than the small one. This con-
firms the intuition that a large bubble state is more
complex compared to a small bubble one with the
same mass. Also, ∆Vsmall is negative for µ → 0.
Very small bubbles in the limit µ → 0 then corre-
spond to less complex states compared to the BTZ
eternal black hole.

V. COMPLEXITY WITH A DS
STRETCHED HORIZON

For a very large bubble with 0 < µ < µh, the ge-
ometry includes a complete dS stretched horizon.
Consequently, we can consider a different prescrip-
tion to compute volume complexity, in which the
extremal codimension one surface is attached both
to the AdS boundary and to the dS stretched hori-
zon. This is an intermediate situation between the
configuration used in the CV proposal in AdS [55]
and in dS [1]. The stretched dS horizon is located

at constant r = rsh, where

rsh =
1√
λ

(1− ϵ) , (V.1)

and ϵ→ 0 is the horizon cutoff. An ϵ > 0 is neces-
sary to define a notion of time on the dS boundary,
as the horizon is a null hypersurface for ϵ = 0.
We choose the parameter l in eq. (III.2) in such

a way that it is positive and that r(l = 0) = rsh.
The dS boundary removes the conical singularity
presented by extremal surfaces at the center of the
static patch for Pi ̸= 0. For this reason, we are
allowed to consider an arbitrary value of Pi.
Extremal surfaces are stretched between the dS

horizon and the AdS boundary, so we can define
the left and the right boundary times tL, tR as the
boundary conditions

tL = ti(l = 0) , where r(l = 0) = rsh

tR = to(l = lΛ) , where r(l = lΛ) = Λ

(V.2)

and Λ is the AdS UV cutoff. In the definition of
the boundary time, we consider an arbitrary linear
relation between tL and tR

tL = αt tR , (V.3)

where αt is some opportune numerical constant.
The boundary time tb then is

tb = −tL = −αt tR . (V.4)

As a technical difference compared to the usual
Kruskal extension of the AdS black hole, there is
no time-translation Killing vector ∂t which is glob-
ally defined in all the geometry, because time in-
variance is broken by the trajectory of the bubble.
If such a symmetry existed, it would provide an
appropriate value of αt which would give a zero
complexity rate. We then expect a non-trivial time
dependence of complexity for every value of αt.

A. Extremal surfaces

In the AdS part of the geometry, the domain wall
is located into the left exterior of the black hole.
Thus, for the extremal surface to cross the black
or white hole interior, we must require ρo(R) <
0. Instead, the sign of ρi(R) might be positive or
negative. Explicitly,

ρo(R) = −
√
P 2
o + fo(R)R2 ,

ρi(R) = ±
√
P 2
i + fi(R)R2 . (V.5)

The condition for the extremal surface to reach the
AdS boundary without falling into the black hole
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λ = 1, κ = 0.5, μ = 0.882
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FIG. 23. Left panel: AdS portion of the extremal surfaces for a not so small bubble. The value of µ is rather
close to the static bubble configuration, which, with the chosen values of λ and κ, is realized for µ0 ≈ 0.88278.
Right panel: plot of the the complexity rate.
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FIG. 24. Left panel: AdS portion of the extremal surfaces for an example of not so large bubbles with a µ rather
close to the static bubble value µ0 ≈ 0.88278. Right panel: plot of the the complexity rate.
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FIG. 25. Plot of ∆Vsmall and ∆Vlarge in eqs. (IV.28)
and (IV.29) as functions of µ, for λ = 1 and κ = 0.5.

singularity is −µ/2 ≤ Po ≤ µ/2 (see the plot of
the potential in the right panel of figure 9). By
time-reflection invariance, we take Po = Pi = 0
at tb = 0, when the extremal surface meets the
domain wall at R = Rmin.

Under these assumptions, the matching condi-

tion in eq. (III.18) reads

Pi
dTi
dR

±
√
P 2
i + fi(R)R2

fi(R)
=

= Po
dTo
dR

−
√
P 2
o + fo(R)R2

fo(R)
, (V.6)

where the ± sign corresponds to ρi(R) > 0 or
ρi(R) < 0, respectively. We choose the sign of
dTo/dR as in eq. (IV.3), and the sign of dTi/dR
in eq. (II.24) as follows

dTi
dR

= − 1

2κ

wi(R)

(1− λR2)
√
AR4 −BR2 + C

,

wi(R) = 1 + µ−R2(1 + λ− κ2) . (V.7)

As a function of µ, the quantity wi(Rmin) is pos-
itive for µ > µh and negative for µ < µh. For
µ = µh, wi(Rmin) vanishes and the bubble initially
sits exactly at the dS bifurcation point.
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Equation (V.6) is solved by

Pi =
Po(wi wo ± ξ) +

√
ξ(wi ± wo)

√
P 2
o + foR2

4κ2R2fo
,

ξ = −4κ2 V (R)R2 , (V.8)

where V (R) is given in eq. (II.14). We point
out that the solution with Pi = 0 reproduces the
smooth extremal surfaces studied in section IV.
The − sign describes an extremal surface expe-
riencing a refraction, see eq. (IV.5), while the +
sign denotes an extremal surfaces undergoing a re-
flection, see eq. (C.1). Specializing to the physical
refracted solution, eq. (V.8) can be further simpli-
fied to

Pi =
1

2fo

(
Po (1− µ+R2(1− λ− κ2))

+
√
ξ
√
P 2
o + foR2

)
. (V.9)

An extremal surface is specified by the conserved
quantities Pi and Po, which are related by eq.
(V.9). Their values for given boundary times are
fixed by the boundary condition in eq. (V.3), as
we will explain below.
For the extremal surface to reach the AdS

boundary, the turning point defined in eq. (III.12)
must be at rt,dS ≥ R, which holds true for

P 2
i ≥ P̃ 2

i , P̃ 2
i = R2(λR2 − 1) . (V.10)

For Rmin < R < 1/
√
λ, the domain wall is lo-

cated on the right side of the dS static patch, so
ρi(R) < 0. We may expect that at some point

R = R̃ > 1/
√
λ, whose location depends on the

bubble parameters and on the choice of αt, the
function ρi(R) vanishes. Then, ρi(R) > 0 for

R > R̃.
The condition ρi(R̃) = 0 is equivalent to P 2

i =

P̃ 2
i , see eq. (V.10). In terms of Po, this gives

Po = P̃o =
R(µ− 1 +R2(λ+ κ2 − 1))

2
√
λR2 − 1

, (V.11)

which is well defined just for R > 1/
√
λ. Note

that P̃o → −∞ for R → 1/
√
λ. For R > 1/

√
λ

and Po > P̃o we have ρi(R) < 0, while for Po < P̃o

we have ρi(R) > 0.

B. Complexity

For the calculation of volume and boundary
time, let us distinguish between two cases:

• ρi(R) < 0. The volume is given by

V
2π

=

∫ rt,dS

rsh

r2√
P 2
i + fi(r) r2

dr

−
∫ R

rt,dS

r2√
P 2
i + fi(r) r2

dr

−
∫ rt,AdS

R

r2√
P 2
o + fo(r) r2

dr

+

∫ Λ

rt,AdS

r2√
P 2
o + fo(r) r2

dr . (V.12)

From eq. (III.13), we can write the following
expression for the AdS boundary time

tR = To(R) +

∫ rt,AdS

R

Po

fo
√
P 2
o + fo(r) r2

dr

−
∫ Λ

rt,AdS

Po

fo
√
P 2
o + fo(r) r2

dr , (V.13)

and the following expression for the dS
boundary time

tL = Ti(R) +

∫ rt,dS

rsh

Pi

fi
√
P 2
i + fi(r) r2

dr

−
∫ R

rt,dS

Pi

fi
√
P 2
i + fi(r) r2

dr . (V.14)

• ρi(R) > 0. The volume can be written as

V
2π

=

∫ R

rsh

r2√
P 2
i + fi(r) r2

dr

−
∫ rt,AdS

R

r2√
P 2
o + fo(r) r2

dr

+

∫ Λ

rt,AdS

r2√
P 2
o + fo(r) r2

dr . (V.15)

Equation (V.13) is still valid. Instead, from
eq. (III.13) we find that the time on the dS
boundary is

tL = Ti(R) +

∫ R

rsh

Pi

fi
√
P 2
i + fi(r) r2

dr . (V.16)

In order to find values of Pi and Po consistent
with the boundary condition, we need to solve eq.
(V.3) where tR and tL are specified by (V.13) and
(V.14) or (V.16), respectively. This integral equa-
tion can be solved numerically by the shooting
method.

We can then compute the extremal surfaces and
their volume numerically. In figure 26 we show the
result for αt = 1, while in figure 27 we display the
result for the choice αt = −1. In both cases we find
a hyperfast complexity rate, because the volume of
the extremal surface diverges for a finite value of
the boundary time tb.
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FIG. 26. Left and central panels: extremal surfaces in the dS and in the AdS portion of the Penrose diagram,
respectively. Right panel: plot of the volume as a function of boundary time tb. We set αt = 1, see eq. (V.3),
and we choose κ = 0.2, λ = 1.5, µ = 0.4, and ϵ = 0.06.
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FIG. 27. Plots of the same quantities as in figure 26, with the choice αt = −1.

C. Critical time behaviour

Let us now discuss the limit of hyperfast com-
plexity growth. Expanding eq. (V.9) for large R,
we find that

Pi(R) ≈
√

(λ+ (κ− 1)2)(λ+ (κ+ 1)2)

2
R2+O(R0) .

(V.17)
The dependence of Pi on Po shows up just at order
O(R0). At large R, we can approximate Ti(R) in
eq. (II.24) as

dTi
dR

≈ 1

fi

1 + λ− κ2√
(λ+ κ2 − 1)2 + 4λ

,

Ti(R) ≈ 1 + λ− κ2√
(λ+ κ2 − 1)2 + 4λ

r∗i (R) +Q ,

(V.18)

where Q is an integration constant. Note that 1 +
λ−κ2 > 0, because κ < 1 in the very large bubble
regime.

Let us discriminate between two cases:

• λ + κ2 > 1. At large R, from eq. (V.11) we

have P̃o → +∞, then ρi(R) > 0. At large

Pi, we can approximate eq. (V.16) as

tL ≈ Ti(R) +

∫ R

rsh

dr

fi

= Ti(R) + r∗i (R)− r∗i (rsh) , (V.19)

which gives

tL ≈ ω
1

Rλ
+Q− 1

4
√
λ
log

4

ϵ2
,

ω = 1 +
1 + λ− κ2√

(λ+ κ2 − 1)2 + 4λ
. (V.20)

In the above expression, we have ω > 0 be-
cause for very large bubbles κ < 1. For large
R, the dS part of the volume in eq. (V.15)
diverges linearly:

VdS

2π
=

∫ R

rsh

r2√
P 2
i + fi(r) r2

dr

≈ R

∫ 1

rsh
R

y2√
(λ+(κ−1)2)(λ+(κ+1)2)

4 − λy4
dy .

(V.21)

The divergence of the volume for large R is
at the value of tL given in eq. (V.20).
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• λ + κ2 < 1. At large R we have P̃o → −∞,
which gives ρi(R) < 0. In this limit, combin-
ing eq. (III.12) with eq. (V.17), we find

rt,dS ≈ R√
2

(
(λ+ (κ− 1)2)(λ+ (κ+ 1)2)

λ

)1/4

.

(V.22)
At large R, corresponding to large Pi, we can
approximate tL in eq. (V.14) as

tL ≈ Ti(R) +

∫ rt,dS

rsh

dr

fi
+

∫ rt,dS

R

dr

fi
, (V.23)

which gives

tL ≈ ω̃
1

λR
+Q− 1

4
√
λ
log

4

ϵ2
, (V.24)

where

ω̃ =
2
√
2λ1/4

[(λ+ (κ− 1)2)(λ+ (κ+ 1)2)]1/4

+
1 + λ− κ2√

(λ+ κ2 − 1)2 + 4λ
− 1 . (V.25)

In the case at hand, the quantity ω̃ is always
positive. At large R and at the finite time
in eq. (V.24), the volume again diverges lin-
early as in eq. (V.21).

Summarizing, in both cases the volume complexity
diverges for tb = tcr, where the critical time is

tcr =
1

4
√
λ
log

4

ϵ2
−Q , (V.26)

and Q is the integration constant defined in eq.
(V.18). The divergence at tb = tcr takes place in-
dependently of the parameter αt in eq. (V.3). For
tb > tcr, no extremal surface exists which connects
the left dS and right AdS boundaries. As in [63],
we may regularize the divergence in the complex-
ity rate by introducing a cutoff surface at large
r = rcut nearby the future dS infinity. With this
regularization, the complexity rate would remain
finite and at t > tcr it would saturate at a value
divergent in the UV cutoff rcut.

VI. CONCLUSIONS

In this paper we investigated the time depen-
dence of volume complexity in a class of asymptot-
ically AdS3 spacetimes which include a dS3 bub-
ble in their interior. We first focused on extremal
surfaces attached just at the AdS boundary and
smooth everywhere into the interior spacetime.
With the exception of the static bubble configu-
ration, we found that complexity asymptotically

grows linearly as a function of time, with the same
rate as for the BTZ black hole. For large bub-
bles, the asymptotic value of the complexity rate
is always reached from below. For small bubbles,
the asymptotic limit can be instead reached either
from below (case 1) or from above (case 2), depend-
ing on the parameter space (see section IVA2).

The static bubble configuration gives rise to a
time-independent complexity, so it does not match
the expectation, generically satisfied by AdS black
holes, that complexity rate at late time is of the
same order of magnitude as TS, with T the tem-
perature and S the entropy of the system [34]. This
fine-tuned solution, which is realized for µ = µ0,
interpolates between the small and the large bub-
ble regimes. As soon as a small perturbation is in-
troduced, the static bubble limit can be achieved
in two different ways:

• If the limit µ → µ0 in the parameter space
is approached from the large bubble config-
uration, the complexity rate remains frozen
to zero for an initial amount of time which
tends to infinity for µ → µ0, see the right
panel of figure 24. From this side, the asymp-
totic complexity rate of the BTZ black hole
is recovered in a continuous way after an ar-
bitrarily large time.

• If the limit µ → µ0 is approached from the
small bubble region of the parameter space,
the static behavior of complexity emerges
from a class of extremal surfaces with non-
maximal volume, see figure 23. According
to the CV prescription, the non-maximal
extremal solutions should be discarded for
µ ̸= µ0 in favor of the global maximum, as
shown by the dashed line in figure 17. For
µ→ µ0 the complexity rate resembles a step
function, thus the limit is discontinuous, as
in a first order phase transition.

Interestingly, the discarded solutions would
give rise to a negative complexity rate, as
for the two-dimensional centaur geometries
studied in [67]. We may contemplate the
possibility that other physical configurations
could exist, which resemble our geometry
nearby the discarded extremal surfaces and
in which the global maximum is cut away. If
such a surgery were performed, it would give
rise to a negative complexity rate, resembling
the two-dimensional case studied in [67], in
which no black hole horizon is present in the
AdS region of the geometry.

With both procedures, for µ→ µ0 the BTZ asymp-
totic complexity rate is recovered at late time. The
limit is continuous from the large bubble direction,
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while it is discontinuous from the small bubble
side. In this sense, the static bubble can be seen as
a fine-tuned critical configuration separating quali-
tatively different behaviors in the parameter space.
From the point of view of local observables on

the AdS boundary, the static bubble configuration
is not distinguishable from the eternal BTZ black
hole. The same holds for entanglement entropy of
subregions located on the AdS boundary. To de-
tect the discontinuous nature of the static bubble
limit, other quantum information probes, such as
holographic complexity, are required.
Contrary to the result found in [1, 63] for dS,

if we consider smooth extremal surfaces attached
just to the AdS boundary there is no hyperfast
growth of complexity. In section V, we checked
that hyperfast growth is recovered in the very large
bubble case if we consider extremal surfaces an-
chored both at the AdS boundary and at the dS
stretched horizon. This choice should correspond
to complexity of a pure thermofield double state
which involves both an AdS and a dS boundary.
Defining the boundary time tb as in eq. (V.4),
we find that the volume complexity diverges at
tb = tcr given in eq. (V.26), independently of the
parameter αt in eq. (V.3).
It is tempting to suggest the following interpre-

tations for the two different ways to apply the CV
conjecture in AdS geometries with very large dS
bubbles:

• the volume of smooth extremal surfaces an-
chored just at the boundary of AdS is pro-
portional to the complexity of a mixed CFT
state, obtained by tracing over the dS de-
grees of freedom in the thermofield double
state. This situation is reminiscent of the
subregion complexity proposal [93–95].

• the volume of the extremal surface anchored
both at the AdS boundary and at the dS
static patch horizon is proportional to the
complexity of the pure product state.

Why the latter choice of boundary conditions is
possible just for very large bubbles is an interest-
ing question. Small bubble solutions do not con-
tain a stretched horizon in the dS portion of the
geometry, so the only implementable prescription
is to attach the extremal surfaces just to the AdS
boundary. In this case, we can conjecture that the
dual CFT state does not arise from a partial trace
over a pure state involving a dS boundary.
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APPENDIX

Appendix A: Details about Penrose diagrams

In this appendix we describe our conventions for
Penrose diagrams. For the BTZ external region,
the relation between the coordinates (t̃, r̃) of the
Penrose diagram and the EF coordinates (u, v) can
be expressed as

t̃ =
± tan−1(ev

√
µ)− tan−1(e−u

√
µ)

2
,

r̃ =
± tan−1(ev

√
µ) + tan−1(e−u

√
µ)

2
, (A.1)

where the first sign is for r >
√
µ and the second

sign for r <
√
µ.

For the dS spacetime interior, we use the follow-
ing choice of Penrose diagram coordinates

t̃ =
tan−1(eu

√
λ)∓ tan−1(e−v

√
λ)

2
,

r̃ =
tan−1(eu

√
λ)± tan−1(e−v

√
λ)

2
, (A.2)

where the first sign is for r < 1/
√
λ and the second

sign for r > 1/
√
λ.

In this paper, Penrose diagrams are obtained by
a parametric plot of the coordinates (±r̃,±t̃), us-
ing eq. (A.1) for the external BTZ region and eq.
(A.2) for the dS interior. The direction of increas-
ing t on each side of the diagrams is shown in figure
6.

Appendix B: Derivation of the refraction law
for extremal surfaces

Let us assume that the change of variable be-
tween ti,o is of the form

to = G(r) ti . (B.1)

The function G will be specified later by requiring
the proper time on the bubble to be continuous. In
terms of the interior time coordinate ti, the outside
metric in eq. (II.1) reads

ds2o = −foG2 dt2i − fo
d(G2)

dr
ti dr dti

+
1− f2o

(
dG
dr

)2
t2i

fo
dr2 + r2dθ2 , (B.2)
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where fi and fo are functions of r given in eqs.
(II.2) and (II.3). Hence, both the interior and the
exterior metrics have the following form:

ds2 = −g(r, ti) dt2i+
dr2

f(r, ti)
+2h(r, ti) dr dti+r

2dθ2 ,

(B.3)
where for the interior metric

g(r, ti) = fi , f(r, ti) = fi , h(r, ti) = 0 ,
(B.4)

while for the exterior metric

g(r, ti) = G2 fo ,

f(r, ti) =
fo

1− f2o
(
dG
dr

)2
t2i

,

h(r, ti) = −foG
dG

dr
ti . (B.5)

For later purposes, it is useful to evaluate the fol-
lowing quantities both inside and outside the bub-
ble:

g + fh2

f

∣∣∣∣
i

= 1 ,
g + fh2

f

∣∣∣∣
o

= G2 . (B.6)

For the metric in eq. (B.3), the volume functional
is

L = r

√
−g(r, ti) t′2i +

r′2

f(r, ti)
+ 2h(r, ti) r′t′i

Vi,o = 2π

∫
L dl , . (B.7)

It is convenient to fix the gauge as in eq. (III.6),
which is equivalent to√

−g(r, ti) t′2i +
r′2

f(r, ti)
+ 2h(r, ti) r′t′i = r .

(B.8)

1. Static bubble

At constant r, continuity of the proper time on
the domain wall fixes

G(r) = ±

√
fi(r)

fo(r)
. (B.9)

Let us discuss the extremal codimension-one sur-
faces. In this case, the functions f, g, h do not de-
pend on ti, so there is a conserved quantity

P̂ =
∂L
∂t′i

=
−gt′i + hr′√

−g(r, ti) t′2i + r′2

f(r,ti)
+ 2h(r, ti) r′t′i

r .

(B.10)

With our gauge choice, the conserved quantity can
be written as

P̂ 2 =

(
g + fh2

f

)
(r′)2 − gr2 . (B.11)

Using eqs. (B.6) and (B.9), together with the fact
that g is continuous on the bubble, we find

(r′i)
2 =

fi
fo

(r′o)
2 . (B.12)

From eq. (II.27), we finally get

P 2
o =

fo(R)

fi(R)
P 2
i = µ2

0 P
2
i . (B.13)

2. Dynamical bubble

For dynamical bubbles, the functions f, g, h de-
pend on ti. All the derivatives

∂tif , ∂tih , ∂rf , ∂rh ,

will have a Dirac delta contribution localized on
the surface of the bubble

ti = Ti(τ) , r = R(τ) .

We impose the condition that this delta function
contribution is constant on the surface of the bub-
ble:

d f(r, ti)

dτ

∣∣∣∣
bubble

=
d f(R(τ), Ti(τ))

dτ

= Ṫi ∂tif + Ṙ ∂rf = 0 , (B.14)

which implies

∂tif = − dR

dTi
∂rf . (B.15)

So we expect

∂rf =
1√

1 +
(

dR
dTi

)2 δ(r −R(τ))∆f ,

∂tif = − dR

dTi

1√
1 +

(
dR
dTi

)2 δ(r −R(τ))∆f ,

where ∆f is the discontinuity of f on the surface
of the bubble. An analogous equation holds for h.

Let us introduce the variables s and w such that(
ti
r

)
=

(
cosψ − sinψ
sinψ cosψ

)(
s
w

)
, (B.16)
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where

sinψ =
Ṙ√

Ṙ2 + Ṫ 2
i

, cosψ =
Ṫi√

Ṙ2 + Ṫ 2
i

,

tanψ =
dR

dTi
. (B.17)

The derivative of f with respect to s is

∂f

∂s
=
∂ti
∂s
∂tif +

∂r

∂s
∂rf =

Ṫi∂tif + Ṙ ∂rf√
Ṙ2 + Ṫi

2
.

(B.18)
A similar property is valid for h. From eq. (B.15),
we thus find that the relations ∂sf = 0 and ∂sh = 0
are satisfied by the Dirac delta term.

Going back to the volume functional in eq.
(B.7), we can express it in the (s, w) coordinates.
In the approximation in which we consider just the
”fast” dependence of the Lagrangian due to discon-
tinuities at the two sides of the domain wall, the
Lagrangian density is independent of s. We have
then a conserved quantity of the form

P̂ =
∂L
∂s′

= (hr′ − gt′i) cosψ +

(
r′

f
+ ht′i

)
sinψ .

(B.19)

The quantity P̂ is not globally conserved on the
codimension-one extremal surface, but just before
and after the collision with the Dirac delta domain
wall. Plugging the gauge fixing condition (B.8) in,
we get

P̂ 2 =

(
g + fh2

fg
r′ sinψ ± (g cosψ − h sinψ)

g√
g + fh2

f
(r′)2 − g r2

)2

. (B.20)

The conserved quantities inside and outside the do-

main wall are

P̂ 2
i =

(
sinψ

fi
r′i ±

√
(r′i)

2 − fir2 cosψ

)2

,

P̂ 2
o =

(
1

fo
r′o sinψ ±

(
G cosψ +

dG

dr
ti sinψ

)
√

(r′o)
2 − fo r2

)2
. (B.21)

Combining the condition P̂ 2
i = P̂ 2

o with eqs. (B.17)
and (B.1), we find(

1

fi
r′i ±

√
(r′i)

2 − fi r2
dTi
dR

)2

=

=

(
1

fo
r′o ±

dTo
dR

√
(r′o)

2 − fo r2
)2

.(B.22)

We can consider the following crosschecks of eq.
(B.22):

• For ψ = 0, it reproduces the static bubble
result in eq. (B.13).

• For a bubble moving at the speed of light, we
have

dTi,o
dR

= ± 1

fi,o
. (B.23)

Specializing eq. (B.22) to eq. (B.23) and
combining with eq. (III.7), we find V ′

i = V ′
o

or U ′
i = U ′

o, depending on the choice of sign.
This is in agreement with the results in [81,
82].

Using the notation in eq. (III.15), the refraction
condition (B.22) can be written in the covariant
form

(gi)µν
dxµi
dl

dXν
i

dτ
= ±(go)µν

dxµo
dl

dXν
o

dτ
. (B.24)

By continuity with the case where there is no bub-
ble into the system, the physical solution should
be the one with the + sign, which we consider in
eq. (III.16).

Appendix C: Technical details for smooth
extremal surfaces

1. Solution with Po < 0

With the assumption of negative Po and with
the choice of sign for dTo

dR in eq. (IV.3), eq. (IV.2)
is solved by
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P 2
o = −R4 + µR2 +

(
(µ+ 1)2 +R4

(
κ2(λ− 1) + (λ+ 1)2

)
+R2

(
κ2(µ− 1)− 2(λ+ 1)(µ+ 1)

))2
4κ4R2 (1− λR2)

.

ρo = −
R4
(
κ2(λ− 1) + (λ+ 1)2

)
−R2

(
2(λ+ 1)(µ+ 1)− κ2(µ− 1)

)
+ (µ+ 1)2

2κ2R
√
1− λR2

, (C.1)

A direct calculation gives that ρo(Rmax) in eq.
(C.1) is the opposite of ρo(Rmax) in eq. (IV.4).
The same holds true for ρo(Rmin). So, the solu-
tion in eq. (C.1) corresponds to a ”reflection” of
the codimension-one extremal surface, and as such
should be discarded. Note that both the solutions
in eqs. (IV.5) and (C.1) vanish for r = Rmax =
Rmin.

2. Sign of ρo(R) for small bubbles

The function ρo(R) in eq. (IV.4) vanishes for
R = R0, where

R0(µ) =

√
1− µ

κ2 + λ− 1
. (C.2)

Therefore, if either R0(µ) is not a real number or
R0 > Rmax, the sign of ρo(R) does not change
along the surface of the bubble. Conversely, if
R0(µ) is real and R0 < Rmax, ρo(R) changes sign
along the bubble. With a direct calculation, it can
be checked that

R0(µs) =
√
µs = Rmax(µs) . (C.3)

There are then four possible behaviors of ρo(R) on
the domain wall:

A) µ < µs and λ + κ2 > 1. The function ρo(R)
is always positive.

B) µ < µs and λ + κ2 < 1. When R0 is real,
ρo(R) is positive for R0 < R ≤ Rmax and
negative for 0 < R < R0. When R0 is imag-
inary, ρo(R) is always positive.

C) µ > µs and λ + κ2 > 1. When R0 is real,
ρo(R) is negative for R0 < R ≤ Rmax and
positive for 0 < R < R0. When R0 is imagi-
nary, ρo(R) is always negative.

D) µ > µs and λ + κ2 < 1. The function ρo(R)
is always negative.

With reference to subsection IVA2, from these
considerations we find that the region of param-
eter space in bullet A) belongs to case 2, while the
part of parameter space in bullet D) belongs to
case 1.

3. Behavior of the complexity rate for tb = 0

In this appendix, we determine the explicit value
of the quantity K defined in eq. (IV.16).
Let us first consider very small bubbles. Since for
tb → 0 we have ρo(R) > 0, we should use eq.

(IV.10) to compute dtb
dPo

. By symmetry, tb = 0
corresponds to Po = 0, so

K =
dtb
dPo

∣∣∣∣
Po=0

= H −
∫ Λ

Rmax

1

r(fo(r))3/2
dr ,

(C.4)
where

H =
dTo
dR

dR

dPo

∣∣∣∣
R=Rmax

=
a

b
(C.5)

and

a = 2
√

1− λR2
max (1 + µ−R2

max(1 + λ+ κ2)) ,

b = R2
max(R

2
min −R2

max)(R
2
max − µ)

(λ+ (κ− 1)2)(λ+ (κ+ 1)2) . (C.6)

We can use the explicit integral

F (r) =

∫
−1

r(r2 − µ)3/2
dr

=
1

µ
√
r2 − µ

− 2

µ3/2
tan−1

√
r +

√
µ

r −√
µ

(C.7)

to obtain

K = H − π

2µ3/2
− F (Rmax) . (C.8)

In the case of not so small bubbles, for tb → 0 we
have ρo(R) < 0, so dtb

dPo
is given by eq. (IV.14). To

perform the computation, we first send rt,AdS →
rt,AdS + δ, then we use the Leibniz integral rule:

K = H −
∫ Λ

rt,AdS+δ

r2

(P 2
o + fo(r)r2)3/2

dr

−
∫ R

rt,AdS+δ

r2

(P 2
o + fo(r)r2)3/2

dr

+
1√

P 2
o + (rt,AdS + δ)2 fo(rt,AdS + δ)

2
drt,AdS

dPo

Po

fo(rt,AdS)
. (C.9)
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At small Po, the following approximations are
valid:

P 2
o + fo(r) r

2 ≈ (r − rt,AdS)(r +
√
µ)r2 ,

rt,AdS ≈ √
µ− P 2

o

2µ3/2
+O(P 4

o ) ,

drt,AdS

dPo
≈ − Po

µ3/2
,

1

fo(rt,AdS)
≈ − µ

P 2
o

+O(P 0
o ) . (C.10)

Hence, we get

K = H −
∫ Λ

rt,AdS+δ

1

r[(r +
√
µ)(r − rt,AdS)]3/2

dr

−
∫ Rmax

rt,AdS+δ

1

r[(r +
√
µ)(r − rt,AdS)]3/2

dr

+

√
2

µ5/4

1√
δ

= H + F (Rmax) +
3π

2µ3/2
. (C.11)

Consistently, eqs. (C.8) and (C.11) matches for
µ = µs.
In the case of large bubbles, similar calculations

give

K = H̃ + F (Rmin) +
3π

2µ3/2
, (C.12)

where

H̃ =
dTo
dR

dR

dPo

∣∣∣∣
R=Rmin

=
ã

b̃
(C.13)

and

ã = −2
√
1− λR2

min (1 + µ−R2
min(1 + λ+ κ2))

b̃ = R2
min(R

2
min −R2

max)(R
2
min − µ)

(λ+ (κ− 1)2)(λ+ (κ+ 1)2) . (C.14)

Note that K in eq. (C.12) is always positive, be-

cause both F (r)+ 3π
2µ3/2 > 0 and H̃ > 0. The latter

property follows from

wo(Rmin) < 0 , (C.15)

where wo is defined in eq. (IV.3). The inequality
(C.15) arises from the negativity of wo(Rmin) at
µ = 0. Indeed, no real solutions for µ to the equa-
tion wo(Rmin) = 0 exist. Consequently, wo(Rmin)
never changes sign as a function of µ.
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