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Abstract
This paper addresses the critical issue of road safety and accident prevention by integrating
road features, network theory, and advanced statistical models. It emphasises the impor-
tance of understanding the relationship between road infrastructure and accident risk, which
impacts on various administrative stakeholders and on citizens’ safety. While existing liter-
ature focuses on road features and engineering solutions, this paper highlights the need to
consider implicit spatial constraints as well. Our study builds on prior research by proposing
a novel approach that merges conditional autoregressive modelling with a two-stage mixed
Geographically weighted Poisson regression. This integrated methodology allows us to con-
sider both the effect of risk factors at a global level and at a local road level. By leveraging the
strengths of these two methods, we aim to capture both overarching trends and local varia-
tions of risk factors, thereby offering a comprehensive understanding of accident risk factors.
Using data from the Open Street Map database, which covers the wide province of Milan
in Italy, our models identify influential street characteristics, providing valuable insights for
informed decision-making regarding road safety measures. Our method can be applied to
any region in the world. The paper describes the models used, the dataset employed, and
presents a detailed numerical analysis demonstrating the effectiveness of the approach in
identifying and understanding accident risk factors within road networks. This information
can help guide investments for the benefit of society.
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1 Introduction

Road crashes are a significant cause of death, grief and loss worldwide and require thorough
investigation and concerted efforts. According to data from the World Health Organization
(WHO), road crashes cause over one million deaths annually, placing them among the top
ten causes of death in all age groups. Greater compliance with traffic signals and the respect
of driving rules is likely to reduce the number of accidents but exploring ways to improve
road safety could also be beneficial.

Understanding the relationship between accident risk and road infrastructure has bene-
fits for a range of stakeholders, including urban planners, policymakers, and transportation
authorities. However, it also directly affects citizens’ experiences when using public spaces.
A deeper understanding of how road infrastructure affects accident probabilities enables indi-
viduals to make informed decisions about routes, modes of transportation, and overall risk
exposure. This knowledge allows individuals to proactively seek safer routes and exercise
greater caution in high-risk areas, thereby enhancing personal safety and well-being.

To help policymakers and administration to address their decision to increase road safety,
a wide literature has been published to highlight the weakest features of roads or network of
roads. From an engineering point of view, pioneering researches byDavies (1944) and Smeed
(1949) delved into optimal road composition to mitigate accidents, while recent studies
like Christensen et al. (2022) propose the use of Energy Absorbing Structures for crash
mitigation. In Greibe (2003) andMackay (1994) the challenges in preventing road accidents,
as road and vehicle improvements, are discussed. However, road network structures often
carry implicit constraintswithin their spatial domains. Tang et al. (2023) focus on urban traffic
accidents in China, scrutinising both moving-vehicle and fixed-object crashes using multi-
scale geographically weighted regression. The research unveils similar clustering patterns
for both crash types, uncovering overlapping accident-prone areas. They focus not only
on technical aspects but also on selecting road characteristics and their contextual factors
influencing accident occurrences.

In this framework, spatial road safety analysis has been developed in order to examine
the geographical distribution and patterns of road accidents, enabling targeted interventions
and precise adjustments to road infrastructure aimed at reducing risks and enhancing overall
safety within specific areas (see Ziakopoulos and Yannis (2020) for a review of spatial
approaches). Specifically, models operating on road networks have been extensively used
in recent years for analysing streets at a very detailed level. In particular, point processes
have been employed to assess the occurrence of events (such as accidents), by considering
spatial and topological road features (see, e.g., Baddeley et al. (2021) for a review on these
topics). Yet, due to constraints in available datasets, count models often stand as a pragmatic
adaptation of point processes within this context (see, e.g., Tang et al., 2023; McSwiggan,
2019; Baddeley et al., 2020).

Within the domain of countmodels, various approaches exist in the literature, each offering
unique insights. In our proposal, we present a merge of two components: a modification of
the conditional autoregressive modelling (see Boulieri et al., 2016; Gilardi et al., 2022)
incorporating spatial lagged effects, to estimate efficiently the risk of accidents at the road
level, and a two-stage mixed geographically weighted Poisson regression (see Murakami et
al., 2023; Briz-Redón et al., 2019; Gomes et al., 2017) to unveil local heterogeneity. Two
basic versions (semi-parametric geographically weighted Poisson regression and conditional
autoregressive prior) of these models have been indeed compared in Xu and Huang (2015),
highlighting advantages and drawbacks. We show in this paper how a fusion between them

123



Annals of Operations Research

helps to capture both network-wide trends and local nuances, providing a comprehensive
understanding of accident risk factors. This combination is relevant because it combines the
strengths of both approaches: the modified conditional autoregressive modelling captures
trends in accident risk across the whole area, while the mixed geographically weighted
Poisson regression reveals specific behaviour at the road level. By integrating these two
methodologies, our approach offers a more comprehensive understanding of accident risk
factors, ensuring that both network-wide patterns and local aspects are adequately addressed.

To demonstrate the effectiveness of our approach, we applied it to the province ofMilan in
Italy. We obtained road features from the OpenStreetMap contributors (2017) database and
accident data from the ISTAT - Italian National Institute of Statistics (2021) for the period
between 2016 and 2020. By using both models, we identified the key street characteristics
that influence accident risk and revealed the distribution of relevant covariates at a road level.
This offers valuable insights for informed decision-making in road safety measures.

The paper is structured as follows: Sect. 2 focuses onmodels specifically designed for spa-
tial data. In particular, Sect. 2.1 provides a rationale for employing count models in our data
analysis. Section2.2 underscores the significance of incorporating spatial dependence in acci-
dent risk assessmentmodels and outlines the general framework.Our approach is summarised
in Sect. 3. Additionally, Sect. 3.1 details the application of proper conditional autoregres-
sive models with spatial lags, while Sect. 3.2 introduces the two-stage mixed Geographically
Weighted Poisson regressionmethod. The description of the dataset and its structure are high-
lighted in Sect. 4. The subsequent Sect. 5, presents the numerical analysis and it is dedicated
to summarise our findings. The discussion focuses on the results derived from the condi-
tional autoregressive models (Sect. 5.1) and the geographically weighted Poisson regression
(Sect. 5.2). Conclusions are drawn in the final section.

2 Models for spatial data for road safety: why do we use count model

Due to the absence of modern technology and appropriate algorithms for analysing street-
level crash events, the initial papers on spatial road safety analysis were developed using the
areal approach (Miaou et al. 2003; Aguero-Valverde and Jovanis 2006; Boulieri et al. 2016).
As deeply reported in McSwiggan (2019) problems with aggregation of data are related to
the so called “ ecological fallacy”. Freedman (1999) states: “ the ecological fallacy consists
in thinking that relationships observed for groups necessarily hold for individuals”(this issue
is also known as the modifiable areal unit problem (MAUP), see Gilardi et al., 2022). In our
context, groups are the areal clusters used for the analysis and individuals are the accidents
in the road segment. For example, we may state that speed is related to the crash intensity
in a region but roads have different speed limits and some of them (or many of them) are
pedestrian zones. Also thanks to the increasing solutions of computational burdens in the
analysis of network of lines, the number of papers estimating the risk at the road level is
increasing. Some recent applications are in Borgoni et al. (2021) and Gilardi et al. (2022).
In this section, we motivate the use of count models, then we focus on count models with
spatial dependence and finally we introduce proper conditional autoregressive models. We
highlight some limitations of the existingmodels in our context in order to justify the approach
proposed in Sect. 3.
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2.1 Spatial point patterns vs count models

Models based on a network of lines have recently gained popularity due to the availability of
open-source spatial databases (e.g. OpenStreetMap contributors, 2017) for analysing street
networks at a very detailed level (see Barua et al., 2014; Barrington-Leigh & Millard-Ball,
2017; Mooney & Minghini, 2017; Briz-Redon et al., 2019, Gilardi et al., 2022). In this con-
text, many approaches have employed spatial smoothing to simplify the estimation process.
However, in this paper, we adopt count models on a network of lines because they offer high
flexibility, allowing us to investigate crash intensity at the street segment level. This approach
can provide more informative insights for social and policy monitoring. Alternative strate-
gies and interpretations of road networks are extensively described in Lord and Mannering
(2010), Savolainen and Mannering (2011), and Ziakopoulos and Yannis (2020).

To explain the reasons for using count models, we revisit the fundamental principles of
a linear network (see Baddeley & Nair, 2012). It is defined as the union L = ⋃m

i=1 si of a
finite number m of line segments s1, . . . , sm in the plane, where si = [ζi , νi ] = {w : w =
t · ζi + (1 − t) · νi , 0 ≤ t ≤ 1} is the line segment with endpoints ζi , νi , belonging to the
two-dimensional space. Crashes located on a network correspond to a point pattern x on L .
A point pattern is a finite set x = {x1, . . . , xn} of distinct points xi ∈ L , where n ≥ 0. For
any set B ⊂ L , let Nx (B) = N (x ∩ B) be the number of points of x lying in B (Rakshit et
al., 2021).

To assess the impact of covariates on occurrences, many models employed in spatial point
processes use a density of the form g(u,θ)

G(θ)
where g represents an explicitly defined function

expressed in terms of interaction functions with the data, θ is a vector of parameters, and
G(θ) is a normalizing constant that cannot be explicitly evaluated. Since G(θ) is unknown,
conducting standard likelihood estimation becomes challenging (Jensen & Møller, 1991).

In modelling car crashes, let us assume that point locations are distinct and possess an
intensity function λ(u), u ∈ L , enabling the computation of the average accidents in L ,
defined as it follows:

E[NX (B)] = �(B) =
∫

B
λ(u) d1u, (1)

where d1u denotes integration with respect to arc length (Ang et al., 2012; Baddeley et al.,
2017; Rakshit et al., 2021). In the case of non-homogeneous Poisson point process, which
is the most commonly used process for modelling crashes on a linear network, a significant
implication is that the points in x∩B are assumed to be independent and identically distributed
(i.i.d.) with a probability density function f (u) = λ(u)

�(B)
. Consequently, the log-likelihood

can be expressed as:

l =
n∑

i=1

log λ(xi ) −
∫

L
λ(u) d1u. (2)

This expression is numerically intractable and necessitates approximation, which can be
achieved using the Berman–Turner device specifically designed for networks (Berman &
Turner, 1993; McSwiggan, 2019).

Acrucial technical consideration in this context is that a spatial covariateV on L is assumed
to be a real- or vector-valued function V (u), u ∈ L . It is furthermore assumed that the values
V (u) are fixed and known (in principle) for all locations u ∈ L , in order to model, within
a Generalised Linear Model (GLM) framework, links of the form λ(u) = exp(βT V (u)),
where β represents the standard vector of parameters. In practical scenarios, these values
may only be available at specified sample locations. and it is relevant to possess information
about V (u) at locations u beyond those confined to the point pattern. An alternative to GLM
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is the estimation of spatially-varying event densities using kernel density estimators. The goal
of density estimation is to statistically infer the spatially-varying density from an observed
point pattern x with only minimal assumptions about the underlying point process. However,
it is important to note that this topic falls outside the scope of this paper. We simply mention
that kernel estimation on a linear network is not a standard application of kernels and can be
computationally complex; various different techniques have been proposed (see Baddeley et
al., 2021 for a review on this topic).

In general, the framework depicted above suggests that, in principle, any point process
model applied to a linear network should not assume that a covariate remains constant along
any edge of the network. This is achievable, for instance, when information about the distance
of a crash from an intersection can be accurately computed or when the variational risk (such
as the length of road visible to a driver at their location) along a curve can be determined.
However, it is worth noting that in cases where extremely high map resolution and precise
location data are not always available, some authors Briz-Redon et al. (2019) propose a
workaround by capturing the differential risk, for example, between road locations around
intersections and road segments. This is done by dividing the original network structure into
shorter road segments in the proximity of each road intersection for a more refined analysis.

Similar to many other applications described in the literature, the dataset available to
us does not allow the fit of a point process. This is primarily due to the fact that the loca-
tion of accidents often lacks the corresponding street number or the exact kilometer of the
event occurrence, especially in cases of accidents along highways. Consequently, we will
investigate count models with spatial components.

If we assume that the linear network is partitioned into J disjoint subsets l1, . . . , lJ (for
instance, the edges of the network) and if the spatial covariate functions are assumed to be
invariant on each subset, then

V(u) = v j for u ∈ l j (3)

where v j = (v j1, . . . , v j p) is the vector of p features of l j . This allows us to aggregate the
point processes over these subsets, resulting in observable random variables N j = N (x∩ l j ),
representing the counts of points falling into each subset, with μ j = E[N j ] that denotes
the expected number of counts in l j . These assumptions hold significance in our context,
aligning with the customary practice in most of road accident research where the subsets l j
correspond to the original segments which defined the network, and the available covariates
remain constant along each segment.

In this scenario, the non-homogeneous Poisson process with a log-linear intensity exhibits
a constant intensity within each subset. This implies that N j can be used to fit a Poisson log-
linear regression with

N j ∼ Pois(μ j ) ∀ j i.i.d. r.v. with μ j =
∫

l j
λ(u) d1u. (4)

Consequently, the log-likelihood of a point process corresponds to a Poisson count model

l =
∑

j

(
n j logμ j − μ j

)
(5)

2.2 Spatial dependence

In order to model spatial data (see, for example, Glaser, 2017; Gschlossl & Czado, 2007),
we must introduce the concept of spatial dependence, which necessitates the definition of a
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proximitymatrix. LetY = (Y1, Y2, . . . , Yn)T be the vector of random variables observed in n
different regions (in our case, edges). Consider the n×n proximity matrix or neighbourhood
matrix,W. In an area partitioned inton subareas, the elementwi j may represent theweight, the
connectivity degree, or the spatial proximity intensity between li and l j , with wi,i = 0 ∀i ∈
{1, ..., n}. The other elements can be selected rather arbitrarily. One of the most common
choices to define the non-null weights wi j is based upon neighbourhood considerations:

wi j =
{
1, if j ∈ Q(i)

0, if j /∈ Q(i)
(6)

where the set Q(i) denotes the neighbours of variable Yi . Specifically, wi j equals 1 when
areas i and j share boundaries, and 0 otherwise.

The next ingredient is the model. The most common model is the conditionally autore-
gressive (CAR) model by Besag (1974). Its general form is:

Yi = μi + φi + ei (7)

where, φi and ei are the spatially structured random effect and the unstructured effect,
respectively, i.e., a location-specific component. To incorporate spatial covariates, a mean
specification dependent on covariates can be introduced by setting:

μi = xTi β (8)

where xTi = (1, xi1, . . . , xik)T is the transposed vector of k covariates observed in the
region/link i , and β = (β0, β1, . . . , βk)

T is a vector of parameters. For identification pur-
poses, this model is typically addressed within a Bayesian framework to capture local and
spatial uncertainty due to factors not measurable only through the datasets, also because of
the dynamics of crash occurrences. A prior distribution for each φi is assumed to be:

φi | φ j , j 	= i ∼ N

⎛

⎝
∑

j

wi jφ j , σ
2

⎞

⎠ (9)

i.e., it is assumed to be distributed according to a normal random variable with an average
equal to the sum of the weighted values of its neighbours and an unknown variance. The
joint distribution of φ is a multivariate normal random variable φ ∼ N (0,Q−1) with Q =
[τD(I−αB)]whereD is a diagonalmatrixwhose entries represent the number of neighbours,
τ is the precision parameter, α controls the degree of spatial correlation (α = 0 implies spatial
independence and α = 1 implies complete spatial correlation). Finally, B = D−1W is the
scaled adjacency matrix.

Due to computational complexity (see Cantaluppi et al., 2023), the Intrinsic Conditional
Auto-Regressive (ICAR)models are often employed, setting α = 1. In this case,Q simplifies
to τ(D − W). It is possible to prove that the ICAR prior may face rank-deficiency issues.
In general, a set of sum-to-zero constraints on the vector φ is necessary for each group of
connected segments (Hodges et al., 2003). In our application, we deal with a fully connected
road network, so we only need to impose one set of constraints (Gilardi et al., 2022).

Applying this method to data of a network of lines has several limitations, as it does not
consider the true distance between two locations in a directed graph. Additionally, it must
be applied to a whole area, making it challenging to interpret the impact on the estimates of
different domain characteristics.

Therefore, in the following section, we provide a different proposal that allows us to solve
the issues listed above.

123



Annals of Operations Research

3 What model for crash intensity?

We propose an extension of existing models to fit car crashes. Specifically, our proposal
consists of two main steps. The first one enhances CAR by incorporating a spatial lag of X
(SLX), a concept borrowed from the econometric literature. This step is relatively fast, reliable
and flexible. It allows tomodel spatial heterogeneity and to estimate in a compact way the risk
of accidents of the edges of the area under consideration. The second step introduces a novel
two-stage Graphically Weighted Poisson Regression (GWPR). This step proves invaluable
for a more in-depth exploration of the characteristics that influence a specific segment or edge
of the road network, revealing the key components that are likely to contribute significantly
to the expected local accident rate. The two solutions will be detailed in Sects. 3.1 and 3.2,
respectively.

3.1 CARwith SLX

With the purpose of extending CAR, we need to consider the distance along a directed
network, taking into account the real constraints of street navigation fromone point to another.
To include the intuitive notion that links too far apart are conceptually not dependent, we
employ the bi-square kernel function (see Nakaya et al., 2005), where the weights wi j with
i 	= j of the proximity matrix are defined as follows:

wi j =

⎧
⎪⎨

⎪⎩

[

1 −
(
di j
h

)2
]2

, if di j < h

0, if di j ≥ h

(10)

and di j is the distance between i and j , h is the bandwidth and it will be selected using a
cross-validation procedure. It is worth pointing out that the weight decreases as the distance
increases, and the selection of h allows to add sparsity to the matrix, resulting in a significant
reduction of the computational time.

Additionally, to account for the constraints imposed by the road infrastructure, we do not
define di j as the Euclidean distance but as the weighted shortest path distance. Specifically,
a directed path in a graph denotes the shortest route from one node (or vertex) to another,
where links have the same specific direction. The length of this path, in the case of a weighted
graph, is obtained by summing the weights of each link involved in the path.

Given the distances outlined above, we propose a hybrid of two spatial autoregressive
models (SLM and SLX, for detailed information and further references see Vega & Elhorst,
2015). In general, the average count of a spatially dependent variable in the i-th road is
modelled according to:

Yi |{y j , j ∈ N (i)} ∼ Pois(Eiμi ) (11)

where the dependent variable, conditioned on its neighbours, follows a Poisson distribution.
For practical applications in the insurance context, see, for instance, (Gschlossl & Czado,
2007; Tufvesson et al., 2019).

Notice that Ei represents the exposure parameter, also known as offset. This component
is added to the model to consider the occurrences of the response variable in relation to a unit
measure. In this context, it is common to use metrics such as the length of the road, traffic
volume, or the vehicle miles travelled (VMT), which is the product of the road length and
the number of cars over a specified time unit. Specifically, VMT serves as an indicator of
the total distance travelled (in miles or kilometers) by all vehicles within a specific area/road
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and time period. It aids in identifying regions that experience higher travel frequency. For
our purposes, we will use the VMT.

In general, traffic information is available at some cost. Most common providers (as
Google, HERE, Bing, TomTom, etc.) partially allow the download of traffic flows for free,
but only for limited areas or periods. Alternative indicators can be obviously used. Boulieri
et al. (2016) use annual average daily traffic, which is the number of vehicles travelling
along a given point on a highway on an average day in the year. Authors in Gilardi et al.
(2023) propose measurement error models to filter the uncertainty in measuring traffic. For
our purposes, we saved traffic data for the Milan province.

Considering μi , typically it is assumed that

log(μi ) =
k∑

j=1

xi j · β j + φi + ei (12)

The fixed and the spatial components on the right, which encompass the link characteristics,
are not indexed with respect to time because they refer to the structure of the network, which
is substantially assumed to be constant over the reference time horizon. It models the average
occurrences on a link in the time unit. Due to the lack of consistent data at sufficiently short
intervals, for the response variable we consider the time component only at the yearly level
using the approach proposed in Korn (2021).

To address the aforementioned details, we propose combining the CAR model and the
SLX model to limit unobservable components in formula (7) to measure clearly the impact
of features on risk. We will also explicitly incorporate the spatial dependence of features and
accident occurrences. This approach will ensure a logical flow of information to consider the
influence of neighbouring network structure.1 We set:

μ = ρWy + Xβ + WX(−1)η (13)

with wi j = 0 for i = j and ‖wi .‖ = 1 ensuring row-wise normalization of weights to 1.
The parameter ρ modulates the spatial dependence among occurrences, making it a valuable
component for identifying areas more susceptible to accidents. η is a vector of parameters
that measures the marginal impact of the features of explanatory variables associated with
neighbouring links. The notationX(−1) indicates theXmatrix without the column associated
to the intercept.

The average of the spatial Poisson model can be expressed in a reduced form as:

log(λ) = (In − ρW)−1 (
Xβ + WX(−1)η

) + offset (14)

To facilitate rapid estimation of ρ, β, η, and their associated uncertainty, we employ the
software INLA2 (Gómez-Rubio et al., 2020, 2021; Lindgren & Rue, 2015), utilising the
homonymous R package (R Core Team, 2022; Bivand et al., 2015). A hierarchical structure

is assumed. We have set 0 < ρ < 1 with θ ∼ logitbeta(1, 1)3 where θ = log
(

ρ
1−ρ

)
. For

each parameter in β, η, Gaussian vague priors, i.e. N (0, 1000), are employed.
To reduce the overall complexity of formula (14) we cannot perform standard variable

selection methods. There are no p-values in INLA. Importance or significance of variables

1 This model is also known under the name of Spatial Durbin Model (SDM)
2 Detailed documentation available at https://www.r-inla.org/documentation.
3 If θ = logi t(ρ) and ρ ∼ Beta(a, b), then θ is distributed as a Logit-Beta with density algebraically written

as: f (ρ) = (a + b)

(a)(b)
ρa−1(1 − ρ)b−1.
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requires to examine if their (e.g.) 2.5% and 97.5% posterior estimates overlap zero. This
involves removing covariates and seeing how this might change model fit according to the
model’s Deviance Information Criterion (DIC). We executed this step iteratively, reducing
progressively the number of covariates until when the removal of any additional covariate
resulted in a DIC increase exceeding 10%. In addition a hierarchical selection has been
applied: if a variable in X is removed then also the corresponding variable in WX(−1) is
removed. The vice versa was not allowed. To consistently account for the year-to-year effect,
the year component has never been removed. The step is somehow computational demanding
but it helped to improve significantly the interpretation of the final models.

3.2 GWPR: a hierearchical approach

To integrate the detailed analysis of a Poisson point process with the approximations of a
Poisson count model and to leverage the flexibility offered by variable selection techniques in
identifying subsets of covariates that can capture local heterogeneity, we propose a two-stage
mixed geographically weighted Poisson regression (GWPR).

Geographically weighted regression (GWR) (see Brunsdon et al., 1998) performs regres-
sion analyses using local samples within a specified bandwidth distance to explore spatially
varying relationships between explanatory and dependent variables. Specifically, we focus
on the GWPR version, which assumes at the generic position u:

Y j ∼ Pois(μ j E j ) (15)

Y j are i.i.d. and μ j = exp(x jβ(u)) and E j is the offset, while β(u) is the vector of varying
coefficients. These coefficients are calibrated using a kernel regressionmethodology, inwhich
we estimate smoothed geographical variations of parameters with a spatial weighting kernel.
The estimates of the parameters are calibrated in a point-wise way (see Brunsdon et al.,
2005). The local log-likelihood at position u is:

l(u) =
n∑

j=1

(μ j E j + y j log(μ j E j )) · wi j (‖u − u j‖) (16)

where wi j is the geographical weight of the j-th observation at the i-th regression point. The
weighting kernel used is the bi-square kernel function provided in formula (10), with di j set
to the shortest path distance.

It is noteworthy that the parameters depend on u. This implies an interaction between
geographical location and the functional relationships within the linear predictor. The model
potentially encompasses different coefficients for eachu.What is particularly intriguing is that
while conventional kernel regressionmodelling aims at estimating a regression function f by
approximating it with polynomials centred on specific values of xi , in GWPR, the likelihood
is geographically weighted with the weights being determined by a kernel function centred
on u. The key distinction lies in the fact that in GWR, the kernel is defined in a geographical
space while the regression model pertains to predictor-variable space.

Therefore, this approach enables us to map the variation in the regression coefficients,
providing insights into the spatial patterns between the predictor and response variables. An
example of the application of standard GWR for car crashes is Pirdavani et al. (2014). What
the literature on crash occurrences has not yet thoroughly examined is the potential geo-
graphical dependency of certain covariates, while others may not exhibit this characteristic.
For instance, traffic lights in urban areas may demonstrate spatial dependence, but in rural
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areas, that may not hold true. Hence, for μ j in (15) we propose the following structure:

μ j = exp

⎛

⎝
k∑

j=1

xi jβ j (ui ) +
q∑

m=1

ximγm

⎞

⎠ (17)

where γm are the coefficients of the variables that do not show geographical dependence.
The estimation process involves an iterative method (see (Nakaya et al., 2005)). However, it
appears crucial how to effectively partition the explanatory variables into the two subsets.

To this purpose, we propose a hierarchical GWPR algorithm:

1. Setting the bandwidth

• Start with an initial value for the bandwidth, denoted as h.
• Define z(−i) as the vector z without the i-th element or the statistics obtained by

removing the i-th row of the data matrix.
• Solve the following optimization problem:

ĥ : min
n∑

i=1

[
yi − ŷ(−i)(h)

]2 (18)

where
ŷ(−i)(h) = E j exp(x j β̂(u)) (19)

and
β̂(u) : max

β(u)

{
l(−i)(u)

}
(20)

Note: The mean squared prediction error is used, but it can be replaced with other
appropriate cost functions like deviance, Akaike Information Criteria, etc.

2. Penalised GWPR

• Formulate the penalised GWPR problem as follows:

max
β(u)

{

l(u) − γ

( p∑

l=1

[
(1 − α)β2

l (u) + α|βl(u)|]
) ∣

∣
∣
∣ γ, α, ĥ

}

(21)

where γ > 0 is the regularisation parameter and 0 ≤ α ≤ 1 moderates the elastic
net penalty (Zou & Hastie, 2005).

3. Splitting the explanatory variables

• Divide the explanatory variables intoX(−z) andZ,whereZ contains the not significant
variables. In case of α = 1 (i.e., the LASSO framework), Z will include variables
with coefficients equal to 0. X(−z) contains all the variables but those in Z.

• Z might contain variables that are either truly irrelevant to the problem or are local,
i.e., with negligible to null geographical effect.

4. Orthogonal subsets

• Using the vector of residuals at step 3, apply a penalised (not geographical) elastic net
method using only the variables in Z. LetQ be the variables selected by the method.
Q should contain the subset of not geographical dependent variables.

5. Mixed GWPR
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Table 1 Comparison of CAR-SLX and GWPR approaches

Approach Pros Cons

CAR-SLX (Spatial
Durbin model)

Flexible weighting scheme
Estimates of the risks of a local net-
work in one step
Extension to hierarchical setup

Domain Partition is necessary
Difficult interpretation of estimates
related to lagged components
Estimates of risk factors fixed for a
given area

GWPR
(Geographically
weighted Poisson
regression)

Possibility to identify road character-
istics that specifically contribute to
the risk

Straightforward interpretation of esti-
mates
Possibility to study the distribution of
local risk factors

long computational time
Local estimates may be affected by
clustering
Pre-calibration is compulsory

• In case the setQ is not empty, consider potential covariate dependence not addressed
in step 3. Fit a mixed-GWPR (see Nakaya et al., 2005) with:

log(μ(u)) = X(−z)β(−z)(u) + Qδ (22)

with geographical weights applied only to X(−z) and penalization given by:

max
θ

{

l(u) − γ

p∑

l=1

[(1 − α)θl + α|θl |]
∣
∣
∣
∣ γ, α, ĥ

}

(23)

where θ =
[
β(−z)(u)

δ

]

.

To our knowledge, the attempt to blend elastic net methodology and GWPR is novel in
the literature. Although the computational time may be non-negligible, advancements in
technology have somewhat mitigated this concern. The main aim of our proposal is to gain
evidence regarding the local impact of variables. While car crashes are undoubtedly affected
by general factors (e.g. traffic, density of population, speed,...), addressing specific/local
components (e.g. lack of traffic lights, pedestrian crossings,...) is essential. Therefore, this
approach allows for more effective implementation of political and administrative decisions
without affecting overly large domains. An alternative approach would involve fitting a
penalisedCAR-SLXPoissonmodel to identifywhich components in the laggedWX variables
are not selected. The main limitation of CAR-SLX lies in interpreting the estimates (see
(Golgher & Voss, 2016) for a comprehensive overview of parameters interpretation in spatial
econometric models) while GWPR offers interpretation consistent with generalised linear
modelling. In our opinion both methods provide important information to investigate the risk
of accidents. In Table 1 we list some pros and cons of both.

4 Datasets for car crashmodelling: description and issues

In this section, we provide details about the datasets used for assessing the risk associated
with car crashes. Our focus is on presenting the key characteristics and challenges we have
dealt with.
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Table 2 Characteristics retrieved
for road networks

Features Features

Pedestrian crossings Congestion hazard

Traffic lights Priority over oncoming traffic

Number of crossings* Crossing with priority

Start/end of no overtaking Type of lanes

Sharp curves Speed limit categories

Stop signs Urban roads

School zones Roundabouts

Steep hill Functional class*/type of roads

Animal crossing Direction travel

Slippery road Population density*

Curvature degree* Building density*

Variables with “*” can be added to the database implementing a specific
procedure necessary for their computation

• Road Network and its Characteristics In our applications, we extensively used the Open
Street Map (OSM). This data can be obtained through various methods, such as using
the R packages osmdata Padgham and Rudis (2017) or via the Overpass Application
Programming Interface (API). This API provides custom-selected portions of the OSM
map data for download. Numerous details are available for each segment of the network.
A comprehensive list of covariates used to model spatial point objects is reported in Table
2.

• Specific Considerations for Variables “ Number of Crossings” and “ Curvature Degree”
The native OSM database does not naturally provide information on the number of road
crossings for each link. To include this key risk factor, we estimated the number of
crossings by computing the number of links that intersect with other links and, at the
same time, culminate in a stop sign. This joint condition is necessary because typically
a road can be split into subsequent segments, where the vertices do not always represent
road crossings. Similarly, we have also estimated the curvature degree of each road. This
metric indicates theminimumnumber of shape points required tomaintain a curve,within
2ms of a road’s centreline. Both of these features have frequently shown significance in
predicting accident occurrences.

• Socio-demographic FeaturesMany studies (see, e.g., ISTAT - Italian National Institute of
Statistics (2021);Choudhari andMaji (2019)), have reported the correlation between local
socio-demographic factors (such as population density, family concentrations, housing
etc.) and road casualties. This information is typically not available at a street level. On
Italian official websites, this classification is reported at a census level, which represents
the highest degree of territorial subdivision in Italy. To integrate socio-demographic data
with specific road segments, a specific procedure has been implemented to match for
each road the corresponding socio-demographic value. For applications these features
have been grouped into 7 classes with the same frequency (we have used the empirical
quantiles to fix the extremes of the classes).

• Types of Accidents and Accident Locations The list of accidents we have used refers
to crashes provided by the Italian National Office of Statistics (ISTAT) that includes
only accidents reported to the police. Thus it mostly lists crashes related to fatalities or
injuries. In Appendix A, we report references for obtaining this kind of data in Italy
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Fig. 1 Map of Milan Province displaying accident locations marked with black dots. The inner red line
delineates the boundary of the city of Milan. (Color figure online)

and in other countries. For the Italian dataset, most of accident locations lack details
such as house numbers or precise positions along primary roads or highways. In such
cases, the accidents have been geographically centred at the middle of the street. As
detailed in the previous section, in the count model framework this approximation has a
negligible impact. The list of accidents’ locations lacked georeferencing, necessitating
reverse geocoding to map them onto the road network. It is important to notice that
coordinates returned by the reverse geocoding procedure (in our case based on the R
package hereR Unterfinger and Possenriede (2023)) may not perfectly match the road
network provided by a different source, such as OSM. Some degrees of approximation is
possible (Kılıç et al. (2023)). Consequently, it is possible that the coordinates are just in
close proximity to road segments. To overcome this issue, we employed the strategy to
project accidents orthogonally onto the nearest roads selecting the link with the shortest
distance from them. To account for the potential misassignment of an accident to a wrong
road through this strategy, we implemented a code to randomly assign those accidents
to one of the roads within a convex hull built near the coordinates that do not align
with the road network. The impact on the estimates is negligible and we do not report
these results in this paper. The map illustrating accident locations is depicted in Fig. 1. In
Fig. 2, we present an example from a specific area in Milan, where certain misalignments
were observed and subsequently addressed by employing the random assignment method
described above. From Fig. 1 it is clear the high concentration of events in Milan city.

• Short Segments and Structural Zero Accidents Short segments and structural zero acci-
dents pose a challenge in our network, composed of thousands of short segments. Indeed,
some segments may be associated with zero accidents not only because no events have
occurred in the past, but also due to the extremely short length of the segments, mak-
ing it improbable for an event to be observed there. This is not a problem that can be
resolved with a zero inflated model alone. Such an issue, also noted in Gilardi et al.
(2022), may artificially inflate the number of segments with zero crashes, potentially
biasing the results of models. To mitigate this, each model was fitted by systematically
filtering out edges with lengths ranging from 0 to 500ms in intervals of 25ms. The best
filter has been set at the level that allowed the best prediction in terms of minimizing
the deviance of residuals on the set of segments removed by the process. The procedure
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Fig. 2 An excerpt from themap ofMilan Province showing accident locations and highlighting specific reverse
geocoding misalignments, which were subsequently resolved using the random assignment method described
in Sect. 4

significantly enhanced the quality of the fit while minimizing the impact of roads with
potential structural zero accidents.

5 Case study

The proposed approach has been subjected to testing employing both CAR-SLX and GWPR
methods across the extensive areas of Milan city and its province. This assessment aims to
evaluate the method’s robustness when applied to different network structures. The dataset
covers the period from 2016 to 2020. It comprises 168,965 links totalling 49,377 claims
related to personal injury occurred along a total of 11,672.88km network length. By splitting
the information between the city of Milan and the province, we display details in Table 3,
where we report some statistics for most relevant road features.

With the only exception of Milan the area has been split into the 132 municipalities. For
Milan we have used the corresponding 38 postal code areas (ZIP code). Different tassellation
methods can be adopted. Our choice is addressed by the possibility of easy interpretation
of results for decision makers. The weighing scheme in model (13) and, natively, in the
GWPR model mitigate the subjective choice of any tassellation scheme. To consider the
local network complexity the overall length of the network of each area has been used to
weight the averages of the road feature of each sub-area. The weighted average of accidents
(per year) equals 25.44 for the province versus an average of 171.51 accidents for Milan, thus
showing the much higher risk of accidents in theMilan urban area. The empirical quantiles of
order 5 and 95 compared with the average show a high asymmetry for most of the variables.
As expected pedestrian crossing and traffic lights are much more concentrated in Milan city
than in the province.

Although we have not reported the details in Table 3, depending on the areas under
investigation, we observed sometimes a strong unbalance in some dichotomous explanatory
variables. It may cause quasi-collinearity problems. To address this issue, our program sys-
tematically checks the numerical stability of results. In the rare instances where the problem
was observed, we have implemented a function to investigate the causes of the failure. Cate-
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gories found to be collinear with others are removed, and the code restarts from the beginning
to ensure robustness of results. To limit the impact of short segments, 5431 segments have
been filtered out as per Sect. 4. For each sub-areas on average the percentage of edges of the
original network we have used to fit our models is 96.18% and 99.13% for the province and
the city of Milan, respectively. The high percentages of valid edges we have used allowed to
map almost completely the whole network.

5.1 CAR-SLXmodel fit

We start focusing on the fit of themodel in formula (14). Statistics for each of the 170 subareas
used to divide the province ofMilan cannot be reported. Therefore, we present some statistics
of risk coefficient estimates for the main covariates used in formula (13) in aggregated mode
(see Table 4). It is worth noting that, for the province of Milan, the quantile of order 95% of ρ̂
equals 0.438 and the median is 0. Considering the city of Milan, the same statistics are 0.734
and 0.661, respectively. As almost expected, crash occurrences show a stronger and more
persistent spatial dependence in areas with high road density compared to less concentrated
road networks.

The column titled “# estimates >0” indicates the number of times the average estimate
of an area is greater than zero, thus increasing the risk of accidents. The number of road
crossings, pedestrian crossings, and traffic lights is generally positive both inside and outside
Milan city centre, and this is persistent inmost areas. Priority roads appear to have a significant
impact on the risk of accidents in the province of Milan. In the city, roads with a fixed speed
limit of 50km/h are more exposed to the risk of accidents. Additionally, the higher the
building density, the higher the risk coefficient. The situation is different for the population
data. One possible explanation is the lower availability of this data in the province of Milan
compared to the city. The column labelled “# feature N/A” indicates the number of times
that a particular feature was not available for the specific subset. In some areas, at least one
population or building category could not be used. Conversely, the number of times that the
posterior interval of estimates overlaps zero for the population and building variables lagged
in formula (13) is moderately limited and often positive. This means that the contribution
to the risk of accidents at a specific location also depends on how many people live in the
neighbourhood of that location. The year effect shows a decrease in risk relative to 2016,
primarily due to a slight reduction of accidents, except notably in 2018, which experienced
a moderate peak in accidents. This is reflected in the decrease in values within the column
labelled “# estimates >0”. It is interesting to notice that the posterior interval of the year’s
estimates never overlaps zero, highlighting the significant contribution of this component.
Further details can be found in (ISTAT - Italian National Institute of Statistics, 2021).

The last rows in Table 4 report some descriptive statistics of the crash risk estimate, i.e. λ̂
from formula (14), at a street/edge level for year. Just for interpretation, the column labelled
“crash risk estimate (quantile 1%)” contains the vector of the 1st quantiles of the risk estimates
of each areas. The column “average” reports the corresponding weighted average. Moving
from the province of Milan to the city of Milan it is clear the estimates and, correspondingly
the risk, increase. The annual average probability to record one accident outsideMilan equals
0.6% versus 4.59% in Milan city.

Figure3 shows into details the distribution of the risk on the province ofMilan. To facilitate
the view of the map we have grouped the vector of λ̂ of each areas into classes of deciles and
used colours to plot each of them. Areas where it is expected a high concentration of traffic
or of population seem to be coherently more exposed to the risk of accidents.
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Fig. 3 (top) Map of the risk of accidents for the whole province ofMilan; (bottom) Zoom onMilan city centre.
In both figures, roads are coloured from the min (green) to the max (red) local risk, clustering roads in deciles.
(Color figure online)

From now onwe present the results at the city level. Specifically, we compare the averages
of the fitted values with the observed values for each city. For Milan, we further break down
the results for each ZIP code. Figure4 shows that, on average, the model provides reliable
estimates of the risk with respect to the observed claims.

Additionally, it can be observed how Milan is characterised by a higher risk expressed in
terms of accidents with respect to the province. Cities typically experience higher rates of
car accidents due to increased traffic density, diverse road users, varying driving speeds, and
intersections, all of which contribute to a higher likelihood of collisions compared to less
populated neighbourhoods.

The emphasis on these trends becomesmore pronouncedwhen examining the fitted values,
as displayed in Fig. 5. Notably, all ZIP codes withinMilan show a consistently higher level of
risk.Moreover, cities situated in close proximity (such as Cinisello Balsamo, Cormano, Sesto
San Giovanni) or located along significant thoroughfares linking to neighbouring provinces
(like on the connection between Milan and Monza) exhibit relevant levels of risk. This
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Fig. 4 Comparison between average observed and fitted values for cities. For Milan, we further break down
the results for each ZIP code

Fig. 5 Mean, quantiles at 10% and 90% and incidence in terms of number of links
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Fig. 6 Boxplot of fitted values according to year and quarter

accentuates the influence of immediate proximity to larger cities or key transportation routes
on the heightened risk profiles observed in these areas.

Figure6 analyses the yearly behaviour of the estimates. Specifically, the data for the year
2020 is dissected into quarters, providing a detailed view of the trends. It is clear that there
is a significant decrease in car accidents during the first quarter, which coincided with the
nationwide lockdown imposed by the Italian government on March 9, 2020. This stringent
measure restricted population movement, permitting only essential outings for specific work,
health, and urgent needs as a response to the escalating COVID-19 pandemic in the country.
While the second quarter of 2020 showcased a marginal uptick in accidents, it remained
notably lower. This period witnessed the relaxation of certain restrictions, yet factors like
shifts in commuting patterns due to widespread remote work practices and a heightened
emphasis on health and safetymeasures continued to influence the accident rates, contributing
to this observed decrease despite the partial easing of lockdown measures.

Moving our attention to the intricacies and significance of street infrastructure, our analysis
in Fig. 7 displays road behaviour based on their allowance for traffic movement. Meanwhile,
Fig. 8 focuses on the prevalence of crossroads. These visualizations show a well defined
trend: a discernible increase in accident occurrences aligning with the escalation of street
complexity. Specifically, as depicted in the data, there exists a direct relationship between
the complexity of roads and accident frequency. As the number of crossroads surges, so
does the incidence of accidents. This phenomenon is rooted in the increased potential for
collisions at these junctures, as intersections inherently pose complexity and potential haz-
ards within traffic flow dynamics. The increased number of intersecting points elevates the
complexity of navigation, thereby contributing significantly to the risk of accidents within
such environments.
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Fig. 7 Boxplot of fitted values according to the complexity/importance of the road. In red the incidence for
each class (i.e. number of links over the total). Class 1 includes roads that allow for high volume, maximum
speed traffic movement between and through major metropolitan areas. Class 5 is applied to roads whose
volume and traffic movement are below the level of any other class. In addition, walkways, truck only roads,
bus only roads, and emergency vehicle only roads receive. (Color figure online)

We focus in Fig. 9 on the effect of several dichotomous variables that have been considered
in themodel.We observe that the presence of specific traffic controlmechanisms significantly
influences the risk profile associated with different street segments. Our analysis reveals dis-
tinct risk differentials linked to the presence or absence of roundabouts and traffic lights.
Roundabouts emerge as a notable factor in mitigating accident risks. Streets equipped with
roundabouts exhibit an average estimate risk around 1% lower than those streets lacking this
traffic control feature. The design and functionality of roundabouts, promoting continuous
traffic flow and reduced collision points, contribute to this lower risk quotient. Their ability
to enforce reduced speeds and encourage cautious manoeuvring diminishes the probabil-
ity of severe accidents, thereby positively impacting overall safety on such road segments.
Conversely, the presence of traffic lights significantly elevates the risk profile. Our esti-
mates shows a noteworthy average risk higher than 7% in streets where traffic lights are
present. Traffic lights, while crucial for regulating traffic flow and pedestrian safety, can
inadvertently heighten risks due to factors such as sudden changes in signal phases, potential
red-light violations, and the potential for high-speed collisions at intersections. This eleva-
tion in risk underscores the complexities and challenges associated with managing safety at
signal-controlled intersections, necessitating a closer examination of strategies to mitigate
these heightened risks within such environments.

Particularly noteworthy is also the impact of the “ No overtaking” signal compared to
the “ Stop” signal on accident risk. Streets marked with the “ No overtaking” signal show a
risk reduction trend in comparison to those featuring the “ Stop” signal. The imposition of
restrictions on passing opportunities fosters safer driving conditions by limiting overtaking
actions, thereby diminishing the probability of accidents along these segments. Conversely,
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Fig. 8 Boxplot of fitted values according to number of crossroads. In red the incidence for each class (i.e.
number of links over the total). (Color figure online)

Fig. 9 Incidence and risk for dichotomous features used in the model
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Fig. 10 Boxplot of fitted values according to building and population densities. Building and population
classes are based on deciles. In red the incidence for each class (i.e. number of links over the total). (Color
figure online)

streets regulated by “ Stop” signals portray a comparatively higher risk profile. The imposi-
tion of these signals, while essential for controlling intersections and managing right-of-way,
appears to contribute to greater risk levels. Factors such as sudden stops, intersection com-
plexities, and potential non-compliance with stop indications may collectively elevate the
risk quotient for streets governed by these signals.

The presence of pedestrian crossings seems also correlated with increased risk on road-
ways. This is probably due to several contributing factors, as increased interaction points,
reduced visibility and concentration of vulnerable users. Indeed, pedestrian crossings intro-
duce interaction points between vehicles and pedestrians. These locations become critical
areas where differing speeds and modes of transportation intersect, heightening the risk of
accidents. Drivers must constantly be vigilant for pedestrians crossing, potentially leading to
sudden stops. In some cases, pedestrian crossings, especially those without proper visibility
aids or in poorly lit areas, can decrease the visibility of pedestrians for drivers, increas-
ing the likelihood of accidents, particularly during low-light conditions or adverse weather.
Additionally, they often concentrate vulnerable road users in specific areas, such as children,
elderly individuals, or individuals with disabilities. This concentration increases the potential
severity of accidents if a collision occurs.

Also bridges, integral parts of roadways, often pose heightened risk factors contributing
to potential accidents. Challenges emerge from restricted visibility around bends or inclines,
hindering anticipatory actions. These narrower lanes necessitate cautious navigation, poten-
tially leading to abrupt lane changes or limiting flexibility in maneuvering. Transitioning
onto bridges can induce speed variations, impacting traffic flow and increasing collision
risks. Additionally, bridges are weather-sensitive, prone to hazardous conditions like icy
surfaces or high winds, further elevating accident probabilities. Complex traffic dynamics
often accompany bridges, with merges, exits, or intersections nearby, fostering congestion
and abrupt traffic changes. Collectively, these aspects accentuate the complexity of bridge-
related driving, warranting heightened driver vigilance and careful navigation to navigate
these inherent risks effectively.

We also notice in Fig. 10 how higher densities in buildings and population tend to amplify
the risk of accidents due to several interrelated factors. In particular, higher densities in
buildings and population contribute to a more complex and congested road environment,
characterised by increased traffic volume, pedestrian activity, limited space, and intricate
intersection dynamics. These factors collectively elevate the risk of accidents, necessitating
heightened awareness, patience, and caution from drivers navigating such areas.
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Fig. 11 Boxplot offittedvalues according to speed limit categories. Speed categories are basedon themaximum
speed allowed in the street. In red the incidence for each class (i.e. number of links over the total). (Color
figure online)

Lastly, we conclude by examining the relation between risk and limit speed categories.We
observe that urban roads (i.e. class (30,50]) often exhibit higher accident risks due to increased
traffic density, diverse road users (pedestrians, cyclists, motorists), frequent intersections, and
varying driving speeds. The close proximity of vehicles and the complexity of navigating
through city streets increase the chances of collisions, particularly at intersections or during
congested periods. On the other hand, we observe that roads with very low speed limits,
often at or below 30km/h, reduce accident risks by minimizing speed differences between
vehicles, providingmore reaction time for drivers to respond to unexpected events, enhancing
visibility and control, ensuring safety for pedestrians and cyclists, calming traffic flow, and
aligning with community safety objectives in residential areas. These factors collectively
create a safer driving environment and lower the probability of accidents on these roads (Fig.
11).

Highways and belt ways typically have higher speeds and fewer intersections, leading to
a different set of risks. Accidents on highways often result from high-speed collisions, lane
changes without proper signalling, driver fatigue, and sudden braking due to congestion or
road hazards. However, highways generally have fewer points of conflict compared to urban
roads, which can reduce certain types of accidents, especially those related to intersections.

5.2 GWPR results

In the previous section, we highlighted the CAR-SLX results, which provide insights into
relevant features for evaluating accident risk at the area level. In this section,we concentrate on
GWPR results, which allow us to separate the effects at the link level, taking into account the
heterogeneity across different streets. The majority of the estimates’ distributions of formula
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Fig. 12 Distribution of estimates at the road level for various features. Included are distributions solely
for features demonstrating a non-zero modal value or displaying considerable skewness, highlighting their
discernible patterns within the dataset

(13) at the road level are symmetricwith respect to zero. To reduce the number of plots, Fig. 12
displays the distributions of features that have a non-zeromodal value or significant skewness.
At the street level, it is confirmed that the number of intersections, pedestrian crossings, and
traffic lights have a positive mode. Conversely, roundabouts, stops, roads with no overtaking
signals, sharp curves, and roads with lower traffic volume and movement compared to other
classes are mostly in the negative domain. To explore the dependence between them, the
corresponding Pearson correlation matrix is plotted in Fig. 13. Hierarchical clustering was
used to group variables that naturally show clustering, and combinations with a significance
value greater than 10% are hidden by a black square. Research has shown that traffic lights
and pedestrian crossings can increase the risk of accidents when used together. However, in
areas where speed limits are lower, such as city centres, the complexity of signals can help to
reduce the risk. On the other hand, the number of crossings and roads with speeds exceeding
90km/h can increase the risk of accidents.

The availability of estimates at a street level enables the creation of a choropleth map,
providing a visual representation of the locations or areas where a feature significantly con-
tributes to the risk. An example of this can be seen in Fig. 14. To facilitate comparison, each
vector of estimates has been classified using the same classes as those reported in the legend
of the figure. In the right-hand column, we provide a comparison of the spatial distribution
of pedestrian crossings and traffic lights at the area level from top to bottom. From the colour
intensity, it is clear that areas with traffic lights are darker than the corresponding areas with
pedestrian crossings. By following the same procedure as Fig. 3, it is possible to determine
where a specific feature has the most impact on an edge. As shown in Fig. 14 on the right,
we can delve deeper. To account for local spatial dependence we have plot estimates at the
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Fig. 13 Pearson correlationmatrix between the vector of estimates obtained at road level for features. We have
masked combinations with p-values ≥ 10% using a black square to focus on the most relevant correlations

street level with a focus on the centre of Milan city. The figures reveal that certain areas on
the outskirts of Milan are vulnerable to both traffic lights and pedestrian crossings.

Another interesting result concerns the analysis of the variables selected to compose the
matrix Q of formula (22). Table 5 shows the number of times each variable has been used
as a local feature. The list is sorted according to the overall total number of occurrences.
The majority of links does not depend on specific local variables (referred to as “no local
variables”). However, it is worth noting that the variables at the top of the list represent
specific characteristics of the road, while those at the bottom of the list mostly depend on
the local road network architecture. In those cases it is suggested that the risk of accidents
cannot be mitigated by acting on just one component. Instead, the overall local infrastructure
must be carefully considered.

6 Conclusion

This paper aims to provide a comprehensive understanding of the accident risk associated
with road infrastructure, beyond statistical analysis. The objective is to furnish policy makers
with necessary information to make informed decisions to reduce the societal impact of
crashes. The analysis of road accident data using spatial models emphasises the need to
address road safety concerns.

Drawing upon awide literature, ConditionalAutoregressivemodelling and geographically
weighted Poisson regression have been merged to create an innovative approach. This fusion
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Fig. 14 Choropleth maps depicting the varying contributions of two distinct features to the risk assessment
across different areas. The top panel shows the influence of pedestrian crossings, with the left side illustrating
data for the province of Milan and the right side for the city of Milan. Meanwhile, the bottom panel exhibits
the impact of traffic lights, again divided between the province of Milan on the left and the city of Milan on
the right

was designed not only to capture overarching trends within road networks but also to unveil
local nuances, allowing for a detailed understanding of accident risk factors.

The application of these models to real-world data from the city of Milan (Italy) and its
province between 2016 and 2020 has yielded insightful results. Valuable insights for informed
decision-making in road safety measures have been provided through the identification of
key street characteristics that influence accident risk and the spatial distribution of covariates
at a road level. This approach not only offers a practical solution but also sets a precedent for
leveraging open data for crucial societal issues. The case study focuses on a specific area,
but this does not limit the proposal’s applicability. Scalability is feasible for any region with
a relevant accident location database, as computational burdens are no longer a challenge.
The CAR-SLX model was successfully fitted for the city of Milan, covering over 2000km,
in approximately 31min using a standard laptop.

Therefore, the proposed approach, combining spatial modelling techniques, offers a
promising way to understand the root causes of road crashes and how to mitigate their
occurrences. Its effectiveness in identifying critical risk factors at a detailed level underlines
its potential to guide targeted interventions and policy decisions aimed at improving road
safety. The comprehensive nature of this approach, encompassing both network-wide trends
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Table 5 Number of times each variable has been used as of a local feature

Feature Province of Milan City of Milan Total

1 (no local variables) 117,897 28,922 146,819

2 spd_lim_cat(90,130] 22,625 2877 25,502

3 spd_lim_cat(50,90] 9149 9970 19,119

4 road_class_5 14,036 4122 18, 158

5 road_class_3 10,030 3996 14, 026

6 Urban 6304 7246 13, 550

7 road_class_4 7208 3107 10, 315

8 Bldg_class_5 7480 2705 10, 185

9 road_class_2 7994 1559 9553

10 Priority Road 6302 2238 8540

11 Traffic lights 6381 1380 7761

12 pop_class_4 5847 1186 7033

13 Lane_cat_3 3959 2746 6705

14 pop_class_3 5961 626 6587

15 Signal Complexity 4848 1303 6151

16 pop_class_5 2138 3755 5893

17 Lane_Cat_2 5213 634 5847

18 Sharp_curve 4531 864 5395

19 spd_lim_cat(30,50] 3687 1462 5149

20 Bldg_class_4 3924 1143 5067

21 Bldg_class_2 4102 846 4948

22 Bldg_class_3 3985 687 4672

23 Pedestrian crossings 3403 994 4397

24 Roundabouts 3644 496 4140

25 pop_class_2 3423 678 4101

26 Stops 2360 800 3160

27 Shape Points 2137 710 2847

28 No overtaking 2353 238 2591

29 Crossings 1201 546 1747

The list is sorted according to the overall total number of occurrences

and local intricacies, underlines its importance in advancing the discussion on road safety
analysis and policy formulation. However, although we acknowledge the significance of the
dataset used in this paper, an extensive, open-source, geocoded repository of car crashes in
Italy, it is crucial to recognise also its inherent limitations. The reliance on police-reported
accidents implies a potential under-representation of the complete spectrum of accidents
occurring in the region, as it excludes those unreported to authorities. This exclusion is
believed to predominantly encompass accidents of lesser severity, not resulting in injuries
or fatalities. Socially and statistically, these unreported incidents are expected to have a
comparatively lower impact on individuals’ lives and the healthcare system.

Indeed, it is reasonable to assume that events resulting in serious adverse outcomes, such as
injuries or fatalities, are less likely to go unreported and therefore have a higher representation
in the data set. Therefore, while recognising the inherent limitations, in particular the extent
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of unreported events, the focus remains primarily on accidents with significant societal and
individual consequences, with the aim of providing meaningful evidence to improve road
safety policies.

Appendix A Official websites for car crashes location

We list some official websites with car crashes location

• Austria Statistik Austria - Road Traffic Accidents: https://www.statistik.at/en/statistics/
tourism-and-transport/accidents/road-traffic-accidents

• Belgium

– Statbel - Road Accidents 2021: https://statbel.fgov.be/en/open-data/road-accidents-
2021

– Statbel - Road Accidents 2022: https://statbel.fgov.be/en/open-data/road-accidents-
2022

• Denmark StatBank Denmark: https://www.statbank.dk/20056
• France Data.gouv.fr - Annual Databases of Traffic Accidents:https://www.data.gouv.

fr/en/datasets/bases-de-donnees-annuelles-des-accidents-corporels-de-la-circulation-
routiere-annees-de-2005-a-2021/

• Germany

– Destatis - Road Traffic Accidents: https://www-genesis.destatis.de/genesis/online?
language=en&sequenz=statistikTabellen&selectionname=46241#abreadcrumb

– Unfallatlas - Open Data 2022: https://unfallatlas.statistikportal.de/_opendata2022.
html It is also available shape file with the correct location of all the claims occurred
in Germany from 2016 to 2021.

• GreeceHellenicStatisticalAuthority: https://www.statistics.gr/en/statistics/-/publication/
SDT04/-

• Italy Italian National Office of Statistics: https://www.istat.it/it/archivio/286933
• Portugal Statistics Portugal: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_

base_dados&bdpagenumber=1&bdnivelgeo=00&atributoordenar=null&atributoordem=
null&contexto=bd&bdtemas=00&bdfreetext=accident&bdind_por_pagina=15

• Spain Ministry of Transport, Mobility and Urban Agenda: https://apps.fomento.gob.es/
BDOTLE/inicioBD.aspx?s=4

• Sweden Swedish Transport Administration: https://www.trafa.se/en/road-traffic/road-
traffic-injuries/

• Switzerland Swiss Federal Statistical Office: https://www.pxweb.bfs.admin.ch/pxweb/
it/px-x-1106010100_101/px-x-1106010100_101/px-x-1106010100_101.px/

• United Kingdom Data.gov.uk - Road Safety Data (Updated as of 29 Novem-
ber 2023): https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/
road-safety-data
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