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“Saving our planet, lifting people out of poverty, advancing economic 

growth... these are one and the same fight. We must connect the 

dots between climate change, water scarcity, energy shortages, 

global health, food security and women’s empowerment. Solutions 

to one problem must be solutions for all.” 

Ban Ki-moon 

Former Secretary-General of the United Nations
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Essays on Energy and Development 

in sub-Saharan Africa 

Energy access, climate change, and the Nexus 

 

Abstract 
This dissertation is a collection of five essays examining some important energy-

related aspects at the interplay of sub-Saharan Africa (SSA)’s development and its 

interactions with the regional and global environment. The essays are introduced 

by a general overview chapter – highlighting the core energy-related challenges 

of SSA and the scope of this work. The main implications of the essays, both for 

research and for policymakers, are then considered in the final discussion 

chapter. 

The first essay focuses on access to modern energy, and chiefly on electricity. I 

illustrate the role of satellite data and the statistical analysis of geospatial data in 

improving the understanding of the electricity access situation in sub-Saharan 

Africa. The essay includes an analysis of inequality characterising the electricity 

access quality in the region. The main finding is that after decades, energy access 

inequality is beginning to decline but it remains prominent in particular as far as 

the quantity consumed is concerned. I find that electrification efforts between 2020 

and 2030 must triplicate their pace to meet Sustainable Development Goal 7.1.1. 

The second essay develops a spatially-explicit bottom-up energy demand 

assessment platform to estimate the energy needs among communities where 

access to electricity is currently lacking, as identified with the methodology 

introduced in the first essay. The assessment is not restricted to residential energy 

needs, but it includes a detailed, appliance-based account of power needs for 

schools, healthcare facilities, water pumping for irrigation, crop processing, and 

micro enterprises, the key drivers of rural development. I carry out a country-study 

for Kenya to show the importance of considering multiple demand sources beyond 

residential when the aim is developing an electrification strategy which truly 

overcomes energy poverty. I also show that there is considerable potential for rural 

productivity and profitability growth thanks to the input of electric energy. In many 

areas, these local profits might pay back the electrification infrastructure 

investment in only few years. 

The third essay analyses a specific aspect at the interplay between electricity 

access planning, household energy demand and climate change adaptation. I 
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combine climate, satellite, and demographic data and scenarios to produce a 

global spatially-explicit estimate of unmet ACC demand due to the lack of 

electricity access. Based on integrated climate-energy and geospatial 

electrification modelling, I find that in sub-Saharan Africa, the global hotspot of 

energy poverty, accounting for the estimated local ACC needs on top of baseline 

residential consumption targets determines a substantial reduction in the share of 

decentralised systems as the least-cost electrification option by 2030, and a major 

ramp-up in the power generation capacity and investment requirements. My 

results call for a greater consideration of climate adaptation needs in the planning 

of energy systems of developing countries and in evaluating the trade-off between 

the central power grid expansion and decentralised systems to achieve universal 

electrification. 

Electrification planning must be techno-economically efficient, but it must also 

consider the political-economic environment where investment needs to be 

channelled. The fourth essay evaluates the role of governance and regulatory 

quality in the electricity access modelling framework. In particular, I introduce an 

Electricity Access Governance Index based on multiple indicators implement it into 

the PBL’s IMAGE-TIMER electrification model through its modifier effect on private 

discount rates (a measure of risk and willingness to accept future costs vis-à-vis 

present costs). The results show that governance and regulatory quality in 

electricity access have a significant impact on the optimal technological mix and 

the private investment flows for reaching universal electrification in sub-Saharan 

Africa. In particular, risky environment crowd out private providers of decentralised 

energy access solutions with the risk of leaving many without electricity even after 

2030.  

The fifth and final essay takes a nexus perspective in the analysis of the African 

power sector. It deals with the reliability of the energy system in hydropower-

dominated power systems (such as in many countries in Central and East Africa) 

and the role that climate change and extreme events can exert on it. The essay 

combines qualitative and quantitative analysis to (i) propose a robust framework to 

highlight the interdependencies between hydropower, water availability, and 

climate change, (ii) systematically review the state-of-the art literature on the 

projected impacts of climate change on hydropower in sub-Saharan Africa, and (iii) 

provide supporting evidence on past trends and current pathways of power mix 

diversification, drought incidence, and climate change projections. I find that 

climate change can affect supply reliability and security in multiple ways. For 

instance, several major river basins have been drying throughout the twentieth 

century. Nonetheless, I highlight that diversification has hitherto only been 

promoted in a limited number of countries. I suggest how integrating variable 

renewables and hydropower can increase system resilience. 
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EJ: Exajoule 

ESMAP: Energy Sector Management Assistance Program 

FEEM: Fondazione Eni Enrico Mattei 

FAO: Food and Agriculture Organisation 

GADM: Global Administrative Units 

GCM: General circulation model 

GDP: Gross domestic product 

GEM: Geospatial Electrification Model 

GHG: Greenhouse gas 

GHSL: Global Human Settlement Layers 

GIS: Geographical information system 

GJ: Gigajoule 

Gt: Gigaton 

GW: Gigawatt 

Ha: Hectare 

HFO: Heavy-fuel-oil 

HPP: Hydropower plant 

HRSL: High-resolution Settlement Layers 

IAM: Integrated assessment model 

IEA: International Energy Agency 

IIASA: International Institute for Applied Systems Analysis 

IMAGE: Integrated Model to Assess the Global Environment 

IPP: Independent Power Producer 

IPCC: Intergovernmental Panel on Climate Change 

IRENA: International Renewable Energy Agency 

kW : Kilowatt 

kWh: Kilowatt hour  

kWp: Kilowatt peak 
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LCA: Life-cycle assessment 

LPG: Liquefied petroleum gas 

MENA: Middle East and North Africa 

MESSAGE: Model of Energy Supply Systems And their General Environmental 

Impact 

M-LED: Multi-sectoral Latent Electricity Demand Assessment tool 

Mt: Megatonne 

MW: Megawatt 

MWh: Megawatt-hour 

NDCs: Nationally Determined Contributions 

NTL: Nighttime lights 

OECD: Organization for Economic Co-operation and Development 

OLS: Ordinary Least Squares 

OPEX: Operational expenditure 

PAYG: Pay-as-you-go 

PBL: Netherlands Environmental Assessment Agency 

PCA: Principal Component Analysis 

PPP: Purchase power parity 

PV: Photovoltaic 

PWh: Petawatt-hour 

RAMP: Rural Areas Multienergy load Profile generator model 

RCPs: Representative concentration pathways 

RF: Random forests 

RISE: Regulatory Indexes for Sustainable Energy 

RE: Renewable energy 

RoR: Run-of-river 

SDG: Sustainable Development Goal 

SPEI: Standardized Precipitation-Evaporation Index 

SRES: Special Report on Emissions Scenarios 

SSA: Sub-Saharan Africa (South Africa excluded) 

SSPs: Shared socio-economic pathways 

TIMER: Targets IMage Energy Regional model 

TPED: Total Primary Energy Demand 

TPES: Total Primary Energy Supply 

UNDESA: United Nations Department of Economic and Social Affairs 

USAID: United States Agency for International Development 

USD: US Dollars 

US EIA: US Energy Information Administration 

VIIRS-DNB: Visible Infrared Imaging Radiometer Suite Day-Night Band 

VRE: Variable Renewable Energy 

WB-MTF: World Bank Multi-Tier Framework 

WEF(E): Water-energy-food-(environment) 

WGI: World Governance Indicators   
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 Introduction 

 The growing importance of sub-Saharan Africa for 

the global economic, environmental, and 

demographic pathway 

 
During the 20th century large parts of the ‘Global North’ witnessed a massive 

process of industrialisation and infrastructure development which led to a 

dramatic improvement of socio-economic conditions. In the same period, other 

areas of the world – a key one being sub-Saharan African (SSA) – witnessed 

much more marginal transformations in their economic structure and affluence 

levels (World Bank, 2019). In 1950 the share of SSA’s population was about 7% 

of the global total, whilst today the figure is close to 15% (United Nations,  

Department of Economic and Social Affairs, 2017). Yet, the share of SSA’s 

GDP stood relatively constant (from about 2.2% of the global total in 1961 to 

about 1.9% today; World Bank, 2019).  

Since the beginning of the 21st century, different signals have however begun to 

suggest a growing relevance of the SSA economy in the global goods and 

services market, and therefore in the international political arena. The region is 

also gaining more prominent relevance in the discussions about the economic, 

environmental, and social pathways that the world will follow in the current 

century and beyond.  

There are several pieces of evidence supporting the idea of a quickly growing 

active role of SSA in the global sphere: 

 

• Firstly, SSA is the region in the world where the population is growing 

faster: today it hosts about 1.1 billion people, but middle-of-the-road 

projections suggest that within thirty years the region will very likely host 

about the double (United Nations,  Department of Economic and Social 

Affairs, 2017), i.e. that SSA would overtake - and by far - the currently 

most populous countries in the world, namely China and India.  

 

• Secondly, the urbanisation rate will also grow significantly, with 

projections suggesting a shift from today’s 41.4% to 58.1% in 2050 

(DESA, 2018). Whilst Africa’s cities will be home to an additional 950 

million people by 2050 (OECD and Sahel and West Africa Club, 2020), 

rural settlements in SSA will still be inhabited by significantly more 

people than they do today. Therefore, SSA will exhibit two parallel socio-

demographic dimensions: on the one hand a dense, growingly industrial 

and wealth core; on the other, a sparse but very significant periphery 

where a large share of the first necessity products consumed in cities are 



Giacomo Falchetta                                                                                                 PhD Dissertation 

23 

produced and – at the same time – where dwellers still pursue 

subsistence and development.  

 

• Thirdly, the region is also growing robustly from an economic point of 

view. Several potential new economic powers such as Kenya, Ghana, 

and Tanzania are quickly emerging (all growing faster than 5% per year, 

World Bank 2019). The region-wide growth rate is at 2.4% per year, but it 

is projected to accelerate dramatically. It must be however remarked that  

so far this growth has been highly unequal both within (with skewed 

distribution among population groups) and across countries (with a 

prominent growth in natural resource exporting or industrialising 

countries and, conversely, other areas still stagnating).  

 

Whilst necessary, economic growth is however insufficient for increasing local 

well-being and ensuring development for everyone. Diffused well-being requires 

access to secure and reliable services, including healthcare, education, safe 

and reliable energy, a job market, business opportunities, and all those assets 

which people in higher income regions consider guaranteed in their lives. As a 

result of the unequal economic growth (both between and within countries) vis-

à-vis a relatively more homogeneous demographic growth, most social 

indicators of the quality of life - such as those designed by the targets of each 

Sustainable Development Goal (United Nations, 2015) - are the lowest in the 

world in most countries of SSA, and in some instances the situation is even 

deteriorating, with little or very unequal progress.  

In addition, a quick and unequal socio-economic development coupled with a 

growing population demanding good and services is likely to translate into a 

growing pressure on the environment. Energy – the core resource assessed in 

this dissertation – is one of the most crucial determinants of both development 

opportunities and environmental impact at different scales (see §1.2). Other 

crucial environmental assets involved in the process include local air and water 

pollution, agricultural intensification, or land degradation. Crucially, greenhouse 

gas emissions from the regional energy and land sectors which today are 

marginally compared to the global yearly flows could grow substantially in the 

coming decades. 

Together, the demographic pressure, the generally poor quality of life, and a 

skewed economic growth will increasingly trigger migratory dynamics, internally 

(and chiefly rural → (peri)urban), within the continent – from one country to the 

other – , and globally (mainly towards North Africa, the Mediterranean, and 

continental Europe). Migration is pushed by different but often interrelated 

drivers, including conflict, disease, seeking prosperity, political issues, a 

changing climate, and so forth. Crucially, economic growth per se can itself be a 
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contributor to migration – as different studies have pointed out –because it can 

provide the sufficient income for a household to set on a journey and look for 

new opportunities (Falchetta and Frixa, 2019). Evidence shows that it is access 

to services and well-being opportunities that holds people in their countries, not 

income per se (Gabanelli and Ravizza, 2019). Thus, as witnessed over the last 

decade in Mediterranean countries, migration is one of the hottest issues of the 

political agendas of Europe, as well as a dramatic humanitarian challenge.  

Altogether, the growing sources of socio-environmental and economic pressure 

and the inequality in access to services highlight why decisions and processes 

– and chiefly the infrastructure put into place and the policies enforced – taken 

in the present and in the near future in the region will affect the livelihoods of the 

African and global populations for many decades ahead.  

 

 Energy in sub-Saharan Africa 
The essays presented in this dissertation puts energy at the core. Energy is a 

key enabler of human activities. The provision of energy services underpins the 

socio-economic development of nations and their growing prosperity (Fouquet, 

2016): not only is energy required by all industrial activities, but it is also 

essential for the provision of clean water, sanitation and healthcare, as well as 

efficient lighting, cooling, cooking, use of mechanical power, transportation and 

telecommunication services (McCollum et al., 2018; Nerini et al., 2018). Thus, 

providing access to affordable modern energy services represents a key 

requirement for eradicating poverty and reducing inequalities.  

This dissertation analyses a number of different and yet interrelated aspects in 

the context of the sub-Saharan African region putting at the core the challenges 

ahead for meeting the SDG 7’s targets of achieving universal access to modern 

energy to all by 2030 and of ensuring the sustainability of the energy sector in 

compliance with several other SDGs and primarily SDG 13 on climate action.  

To benefit the reader, here I briefly summarise the key energy-related elements 

and issues in the region, with a particular focus to those questions that are 

assessed and discussed in the next chapters.  

 

 

The most recent statistics on energy in sub-Saharan Africa (IEA, 2019) reveal 

that the region hosts more than 570 million people without access to electricity 

(Fig. 1.1A) and nearly 800 million people without access to clean cooking 

solutions. The numbers show a large prevalence of fuelwood, straw and other 

waste in rural areas, and a key role of charcoal in urban areas, where only over 
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the last decade have LPG and natural gas started gaining prominence in 

selected countries (Fig. 1.1B). Overall, this means that modern energy is a 

scarce service in the region, despite the growing efforts over the last decade 

and the huge regional resource availability (IEA and IRENA, 2019). The 

predominant situation is thus one of economic scarcity (as opposed to physical 

scarcity).  

 

Figure 1.1: Evolution of the regional electricity access levels in sub-Saharan Africa 

(panel A) and share of cooking fuels in selected countries over urban and rural areas 

(panel B). Source: author’s elaboration on IEA (2019). 

 

Providing universal access to electricity and clean cooking would greatly 

enhance the living standards as well as the development prospects of the 

people currently lacking access. The case of electrification is illustrative of why 

the lack of energy access represents a major stumbling block for socio-

economic development. Any developed country lists among its key priorities a 

secure access to electricity to foster its economic development. Electricity 

access to households, services, and productive activities is key to improve 

health conditions, increase labour and agricultural productivity, enhance overall 

economic competitiveness and ultimately promote economic growth and 

poverty reduction (refer to Chapter 3). Empirical studies have shown that 

expanding electricity access indeed increases time spent in income generating 

activities (Bernard, 2010; Bos et al., 2018; Rathi and Vermaak, 2017; Van de 

Walle et al., 2013), especially outside of the agricultural sector. Electrification 

also increases the number of manufacturing firms, their productivity and 

revenues (Bonan et al., 2017). 

Even when considering current energy use where access is available, most 

countries in the region have levels of per-capita primary energy consumption of 

less than 20 GJ, with the main exceptions being South Africa (at about 100 GJ) 

and Nigeria (at almost 35 GJ). Moreover, 75% of the total primary energy 
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demand – TPED – (which sums to about 21 EJ) in countries of sub-Saharan 

Africa is originated from biomass, as a result of the two thirds of the entire 

population collecting or purchasing, and burning daily considerable amounts of 

organic fuels. It must be remarked that a significant part of this thermal energy 

is dissipated because of the very low efficiency in use of solid biomass, also 

caused by the design and usage practices of traditional cookstoves. The 

remainder 25% is dominated by oil (about 15%) and natural gas (5%), and little 

residual shares for coal and hydropower (combined they reach 5% of TPED). 

Non-hydropower renewables (solar, wind, geothermal, and tidal energy) still 

account for roughly only 1% of those 21 EJ.  

On the top of low current consumption levels, energy consumption has so far 

grown very slowly compared to the economic growth rates experienced over the 

last ten years in the region, with countries experiencing regular issues of lack of 

electric generation capacity, transmission and distribution infrastructure (for 

both power and liquid and gaseous fuels), reliability, and – of course – access 

to energy services and appliances to exploit them in the first place.  Yet, over 

the long-run the energy system of the continent will necessarily need to expand 

if economic and human development are to be pursued because energy shows 

strong interconnections with virtually all the SDGs. 

 

 

The Sustainable Development Goal 7 sets the objective of ’ensuring access to 

affordable, reliable, sustainable and modern energy for all’ by year 2030 (United 

Nations, 2015). In particular its indicators 7.1.1 and 7.1.2 evaluate the 

proportion of population with access to electricity and the proportion of 

population with primary reliance on clean fuels and technology. But what does 

energy access mean in factual terms and how is it defined? The concept of 

energy access does not have a unique, widely-agreed, definition (IEA, 2019). 

Generally, it is mostly referred to as household access to minimum levels of 

modern energy, for both electric appliances and clean cooking needs. However, 

a heated debate over the quantification of those minimum levels and their 

measurement is ongoing (Nussbaumer et al., 2012; Pachauri, 2011; Pachauri 

and Rao, 2020, p. 7). The most widespread metric of access to electricity and 

clean cooking solutions is the share of a country’s population that benefits from 

each energy service. However, much criticism has been raised towards this 

measurement approach, because it is inherently limited by a strong aggregation 

and mono-dimensionality, which disregards crucial questions such as reliability 

of supply, and the effective use beyond nominal access provision (Bhatia and 

Angelou, 2015). These discussions have spurred the establishment of 

measurement schemes, such as the World Bank Multi-Tier Framework, suitable 
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for providing a multi-dimensional indicator of energy access. One of the crucial 

arguments emerging from these frameworks is that energy access and energy 

poverty are not mutually exclusive. These issues are at the core of Chapter 2. 

At the same time, energy access is not a static concept, but it should 

considered as a dynamic process following a ‘ladder’ (Bensch et al., 2017; 

Chattopadhyay et al., 2015; Grimm et al., 2016; Monyei et al., 2018), where 

different technologies and solutions gradually replace the previous ones 

providing greater power and supporting more appliances and uses. 

Numerous initiatives have been promoted to keep track of electricity access 

progress. Major recent developments include the Tracking SDG 7 report, 

published yearly by a consortium of international organisations including 

IRENA, the IEA, and the World Bank ESMAP, and household surveys carried 

out by the World Bank (World Bank, 2019), which however are infrequent, 

scattered in a limited number of countries, and scarce of detailed information on 

energy use and expenditure. Recently, ESMAP has started1 carrying out 

energy-access specific surveys in a number of pilot areas to provide some 

empirical evidence over the current status of energy access as defined and 

measured by the World Bank Multi-Tier Framework (WB-MTF) (Bhatia and 

Angelou, 2015). 

The WB-MTF (Figure 1.2) is a matrix encompassing seven key dimension of 

energy access, namely both clean cooking and electric energy. This multi-

dimensional classification is crucial step forward from the conventional definition 

of electricity access as a binary variable. It creates tier of quality of access to 

electricity defined not only on the amount of power available, but also looking at 

reliability, affordability, and safety indicators. A recent body of literature has 

shown that providing access to electricity is per se not a sufficient condition to 

ensure a sustained uptake and use of consumptive and productive appliances 

that can boost human and socio-economic outcomes (Burgess et al., 2020; Lee 

et al., 2020a, 2020b; Taneja, 2018). This evidence points at the importance of 

capturing the broad array of dimensions that characterise electricity access, 

both in research and in the policymaking. 

 
1 For instance, as of late 2019, microdata has been released for Rwanda (https://datacatalog. 

worldbank.org/dataset/rwanda-multi-tier-framework-mtf-survey-2018) and Zambia (https: 

//microdata.worldbank.org/index.php/catalog/3527) 

https://datacatalog.worldbank.org/dataset/rwanda-multi-tier-framework-mtf-survey-2018
https://datacatalog.worldbank.org/dataset/rwanda-multi-tier-framework-mtf-survey-2018
https://datacatalog.worldbank.org/dataset/rwanda-multi-tier-framework-mtf-survey-2018
https://datacatalog.worldbank.org/dataset/rwanda-multi-tier-framework-mtf-survey-2018
https://microdata.worldbank.org/index.php/catalog/3527
https://microdata.worldbank.org/index.php/catalog/3527
https://microdata.worldbank.org/index.php/catalog/3527
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Figure 1.2: Multi-tier Matrix for Measuring Access to Household Electricity Supply. 

Source: (Bhatia and Angelou, 2015) 

 

 

But how can a currently lacking demand be inferred, so as to plan infrastructure 

and policies to provide energy access? This question has long been puzzling 

researchers and practitioners at rural electrification agencies and energy 

Ministries because of the large number of local factors and assumptions that 

can play a role in defining communities’ energy needs. While it has been show 

that a plausibly bi-directional link binds income and household power 

consumption (Hossain and Saeki, 2012), it has also been shown that the 

income elasticity is not linear (Poblete-Cazenave and Pachauri, 2019), but it 

varies at different levels of power consumption and it can also be different in 

different countries due to behavioural and cultural factors. 

Previous studies aiming at estimate energy demand have followed a plethora of 

approaches, which can be clustered depending on the underlying methodology: 
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(i) ex-post empirical analysis (econometrics); (ii) ex-ante thermodynamic and 

life-cycle assessment analysis; (iii) scenario analysis. While it is beyond the 

scope of this introductory chapter to offer a systematic review, some of the most 

recent or seminal contributions screened during the time of the writing of this 

dissertation include the following.  

Filippini and Pachauri (2004) used microdata to measure the seasonal price 

and income elasticities of electricity demand in the residential sector in India 

and derived electricity demand functions. They show that while demographic 

and geographical variables are significant in determining electricity demand, 

electricity demand is income and price inelastic. This finding supports the use of 

heterogeneous demand profiles dependant on the local socio-economic and 

geographical situation when planning energy access.  

Poblete-Cazenave and Pachauri (forthcoming) measured the heterogeneity in 

the elasticities of households in Brazil, Ghana and India and showed that 

household response in electricity consumption to income changes varies greatly 

relative to their current income and consumption level. Using these estimates 

and data on the current distribution of income and power consumption, they 

estimate the total latent electricity demand (the hypothetical demand that would 

exist if access to electricity services were made available) of achieving universal 

access to electricity services. This result underpins the importance of not 

assuming a linear relationship between income and power demand. A similar 

result is found by Fabini et al. (2014), who develop a predictive model for 

mapping induced (i.e. latent) residential demand for electricity and apply it on 

Kenya using high-resolution geospatial data.  

Adeoye and Spataru (2019) build an hourly model of electricity demand for 14 

West African countries. They characterise demand heterogeneously and use an 

appliance-based approach and validate their model with real data. The 

methodology allows simulating seasonal variability in the demand and 

forecasting the 2030 demand, including newly electrified households. The 

authors underline the importance of carefully considering household appliance 

ownership and usage patterns.  

Kotikot et al. (2018) present a geospatial framework for estimating household 

electricity demand that could inform infrastructure-planning tools. They use a 

gridded population dataset together with survey data on appliance ownership 

This enables them to estimate the current generation capacity deficit in South 

Africa, Nigeria, Kenya, and Uganda, their case study countries.  

In a seminal contribution, Louw et al. (2008) studied the determinants of 

electricity demand for newly electrified low-income African households. Based 

on field data, they find that income, cooking fuel usage, appliance ownership 
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and credit obtained are significant in determining consumption levels within 

households.  

Finally, it is worth including in this review the recently introduced concept of 

decent living energy (by Rao, Min, and Mastrucci, 2019), an approach which 

enables synthetizing energy needs starting from the energy embedded in the 

materials and services that people need to satisfy a set of basic human needs. 

This approach draws from life-cycle assessment methodology (i.e. it considers 

the entire supply chain) and is particularly useful to understand the true energy 

requirements of countries to tackle energy poverty, beyond indicators that are 

limited to the final use of energy. In this thesis, and in particular in Chapter 3, I 

refer to a similar bottom-up, service and appliance-oriented approach, to 

estimate energy requirements to provide access to electricity to those without 

access. 

 

Once a certain demand has been calculated on the basis of either bottom-up 

assessments or top-down political objectives, it is necessary to assess the 

optimal infrastructure to satisfy those targets. Broadly speaking, the literature is 

here divided into the economic literature performing ex-post modelling of data 

on energy carrier choice, and the energy engineering literature building cost-

minimisation planning models. In the latter research strand, traditional energy 

models, such as TIMES (Loulou and Labriet, 2008), or integrated assessment 

models, e.g MESSAGEix (Huppmann et al., 2019)  or WITCH (Bosetti et al., 

2007), are designed to satisfy an aggregate demand based on an existing grid 

infrastructure. Conversely, energy access planning requires a detailed account 

of the basket of different solutions that exist to provide access to electricity, 

namely both centralised and decentralised solutions. The latter include, for 

instance, mini-grids and standalone photovoltaic modules. Recent evidence 

(IEA, 2019) has shown that these could account for nearly one third of new 

electrification in sub-Saharan Africa until 2030. Moreover, a correct 

representation of the cost of expanding both the transmission and distribution 

gird is of crucial importance in determining the optimal electrification mix. 

To fit these needs, a number of bottom-up cost assessment and comparison 

tools have been developed. These include OnSSET (Korkovelos et al., 2019; 

Mentis et al., 2017) and the related online Global Electrification Platform, the 

Reference Electrification Model (REM) (Ellman, 2015), Network Planner 

(Kemausuor et al., 2014), the EC-JRC model (Moner-Girona et al., 2019; Szabo 

et al., 2011), the Energy Access module of the IMAGE integrated assessment 

model (Dagnachew et al., 2017; van Ruijven et al., 2012). These tools calculate 

and compare the levelised costs of electricity (LCOEs), defined as 
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𝐿𝐶𝑂𝐸 =  
∑

𝐼𝑡 + 𝑂&𝑀𝑡 + 𝐹𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

 

(Eq. 1.1) 

 

where, for each technology, It represents the investment cost in year t, O&Mt are 

operation and maintenance costs, Ft are fuel costs, Et is the electricity 

generated, r is the discount rate, and n is the lifetime of the technology in 

question. In particular, the cost of each technology is defined based on an array 

of parameters which include both local potential (for RE) and infrastructure and 

terrain barriers (e.g. distance to the existing and planned grid, elevation, slope, 

land cover). 

 
 

Figure 1.3: Example of the result of a least-cost spatially-explicit electricity access 

assessment tool. Source: Mentis et al. (2017). 

These modelling instruments are thus able to generate high-resolution spatially-

explicit maps of energy least-cost energy supply technologies to meet certain 

demand objectives (see an example in Fig. 1.3.) Of course, their results are 

highly sensitive to a number of parameters (see Morrissey 2019), and to the 

demand formulation (Leea et al., 2019). An application of these bottom-up 

supply-side electricity assessment tools is offered in both Chapters 4 and 5. 
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The energy sector presents both challenges which are common to all heavy 

infrastructure sectors, and issues which are unique in their nature. In countries 

with electricity access gaps, it is often the case that the power generating 

capacity is limited. As a result, a share of the national demand remains unmet 

and electric distribution utilities are forced to adopt load shedding policies. 

Moreover, a large number of power plants in developing countries face 

maintenance and fuel provisioning security issues. Thus, on the one hand 

electricity access planners face supply-side constraints that make it challenging 

to broaden the consumer base (and thus the domestic demand) without 

ramping up the sources of supply. On the other hand, recurrent supply reliability 

issues are faced by grid-connected consumers (e.g. the World Bank reports that 

in sub-Saharan Africa firms have faced an average of 9 outages per month in 

2018), who thus are not benefitting from a secure access to energy.  

 

Concurrently, the national transmission and distribution network likely have a 

limited extent and coverage. Generally, the existing infrastructure connects 

power plants to the main urban areas, while the bulk of rural settlements (where 

most of the population lives) remain far-off from the network. The infrastructure 

supply inequality determines a situation of strongly unbalanced electricity 

access levels in urban and rural areas (International Energy Agency  et al., 

2019). This suggests that commonly reported national electrification levels are 

hiding wide disparities, especially considering that the bulk of the population of 

developing countries lives in rural areas (World Bank, 2018). Moreover, as a 

result of the rapid ongoing urbanisation trends, significant hotspots of people 

without access are emerging in the peri-urban areas surrounding cities, where 

either the local distribution network is lacking despite the geographical proximity 

to existing electric substations, or consumers simply cannot afford to pay for 

grid connection charges.  

The main economic roots behind the insufficient or poorly maintained 

generation capacity and the limited extent of grid networks include: 

1. The considerable upfront investment requirements and operation costs of 

power generation facilities. According to Enerdata (2016) the costs of 

new power plants in Africa range between 2,000/kW for hydropower, 

1,112 and 1,290 USD/kW for open and combined-cycle gas-fired 

turbines, respectively,  2,153 USD / kW for coal-fired plants, 2,011 USD / 

kW for utility-scale solar PV plants, 11,300 USD / kW for solar 

concentrated power plants, and 2,450 USD / kW for wind power plants 

below 100 MW in size. A steeply growing demand for power as a result 

of both economic development (e.g. 2.4% and 6.8% average in Africa 
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and South Asia in 2018) and population growth (2.7% and 1.2% average 

in Africa and South Asia in 2018) implies large capacity addition 

requirements, which in turn necessitate substantial investment, which in 

the past decades have not been adequately channelled due to the 

reasons discussed in the next sections of this section.  

 

2. The crucial role of running cost. The lack of maintenance and aging of 

power plants has led to a situation where 25% of the install capacity in 

the continent is unavailable (Findt et al., 2014). The supply security of the 

fuels necessary to power existing plants is another issue. For instance, 

the installed capacity in Nigeria (above 10 GW, USAID 2019) is 

theoretically adequate to satisfy the current national demand, and yet 

disruptions in the supply due to damages in the pipelines, geopolitical 

issues, or price volatility has led to their under-exploitation and thus to 

issues in guaranteeing a secure supply of electricity to grid-connected 

consumers (e.g. see Occhiali & Falchetta, 2018). Hydropower plants – 

which in many countries which electricity access gaps are the main 

source of power supply –  are also constrained by increasingly frequent 

and prolonged drought periods which force utilities to suspend 

generation or limit the operational capacity (Falchetta et al., 2019). 

Countries heavily relying on coal – such as South Africa, India, and 

China – are facing substantial socio-economic pressures. For instance, 

South Africa is water-scarce and faces recurrent droughts which require 

the Government to curtail residential water use. This is also due to the 

very large cooling water requirements of  coal-fired plants. In Asia, 

burning coal is perceived as increasingly costly for the social impact it 

has been exerting on public health.  

 

3. The high expansion costs of the grid, ranging from 3,000 USD per km of 

low-voltage distribution line to 30,000 USD per km of high-voltage 

transmission line, which in turn imply an average of 1,500 USD for each 

new household connected to the national grid (Rosnes and Vennemo, 

2009). These costs are even more difficult to bear considering that the 

central planner is facing high discount rates (medium-term government 

bonds average a 15% yield in sub-Saharan Africa), and thus the cost of 

capital is high. This, of course, discourages long-term infrastructure 

investment. 

 

4. The degree of dispersion of the population – particularly in rural areas – 

which results in low population densities (for instance, the average for 

sub-Saharan Africa is 51 inhabitants/km2 against 455 inhabitants/km2 in 

India, where most connections have indeed been achieved through direct 
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connection to the national grid), and thus render the investment often not 

economically profitable. 

 

5. The low ability-to-pay and little short-run consumption of new customers 

(Blimpo and Cosgrove-Davies, 2019; Jacome et al., 2019; Taneja, 2018), 

which together do not allow the national utility to recoup the large upfront 

investment borne to connect new households to the national grid.  

At the same time, the budgetary deficit of national utilities, investment 

unattractiveness for private capital, and the low ability-to-pay of households and 

the role of connection charges all constitute further barriers to the expansion of 

energy systems in sub-Saharan Africa. 

Firstly, traditionally, electricity systems are developed through investments 

made by national utilities, which allow the achievement of strong balance sheets 

through the sale of electricity produced at large-scale power plants. Earnings 

serve as the primary financing source for grid infrastructure expansion and 

strengthening, new capacity additions, and, in many markets, they allow utilities 

purchasing power from independent power producers (IPPs). In developing 

countries, most of the national transmission and distribution utilities are instead 

running on quasi-fiscal deficit. Figure 2 illustrates a comparison of electricity 

supply costs (capital and operational) with cash collected by the national electric 

utilities of sub-Saharan Africa. It reveals that the bulk of the utilities require 

yearly financial support from the Government and thus steadily contribute to the 

increase of national debts.  

 



Giacomo Falchetta                                                                                                 PhD Dissertation 

35 

 

Figure 1.4: National utilities of sub-Saharan Africa: comparison of electric supply costs 

with cash collected in 2014 ($/kWh billed). Source: Trimble et al. (2016). 

 

The key reasons behind the deficit include the significant transmission, 

distribution and bill collection losses, overstaffing and, most crucially, poorly 

designed customer subsidisation, which leads to excessively low electricity 

prices. Universal energy subsidies – which for decades have prevailed in 

developing countries – are inequitable, as they mostly benefit higher-income 

groups that consume the most (Vagliasindi, 2012). This type of subsidies is also 

regressive, because access to the electricity grid through the national grid is 

highly skewed toward higher-income groups. Second, universal electric energy 

subsidies are profoundly detrimental for the development of energy systems. In 

fact, they create a disincentive for maintenance and investment in the energy 

sector, perpetuating energy shortages and low levels of access. Subsidies are 

only efficiently design if they target at reducing connection charges and 

stimulating new connection to the national grid, rather than reducing marginal 

prices of electricity for customers. Together, budgetary deficit-related factors 
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represent an important concurrent cause to the limited expansion of the national 

grid, and thus the lack of electricity access. Secondly, historically, the 

fundamental cause for the lack of power supply infrastructure – i.e. of the limited 

installed capacity and extent of the transmission and distribution grid – has 

been the paucity of private investment (an issue at the core of Chapter 5) in the 

power sector of developing countries. Because of macroeconomic, political, and 

monetary instability, the cost of lending local capital is extremely high, with 

medium-run government bonds often yielding more than 15%, compared to – 

for instance 1.8% is the US or even -0.527% in Germany as of 2019. 

Independent-power-producers (IPPs) are crucial players in the development of 

the power sector of developing countries, because they complement and – on 

the road towards a competitive power supply market – gradually substitute the 

role of the national utilities. This is because of the lumpy nature of  electrification 

investment, which requires significant amounts of capital upfront, – which in turn 

the public funds of a developing countries cannot afford due to the large number 

of additional priorities to be met under tight budget constraints. A broad stream 

of literature has indeed highlighted that countries with policies, institutions, and 

general investment environment attracting IPPs are those which have exhibited 

the steepest improvement in electricity access levels (Eberhard et al., 2018, 

2017a; Eberhard and Gratwick, 2011). Kenya and South Africa are the two most 

prominent examples for the last decade. 

On the other hand, countries classified as insecure by investors and lacking a 

regulatory framework for private power and infrastructure suppliers (a good 

reference is provided by the Regulatory Indicators for Sustainable Energy 

database, RISE (2017)) have historically struggled to expand access and 

domestic supply capacity. More recently, international donors, financial banks 

and, pivotally, state-owned enterprises from China, have supplied significant 

investment even towards these countries, albeit to a lesser extent than in 

countries with a more suitable regulatory framework. As seen in Figure 4, the 

role of China is particularly crucial. Over the last decade, the country has 

become the first source of investment in power-generating infrastructure in sub-

Saharan Africa (Eberhard et al., 2017b). According to the International Energy 

Agency (2016), Chinese companies (90% of which state-owned) were 

responsible for 30% of new power capacity additions in SSA between 2010 and 

2015—with a total investment of around 13 bn. USD over the quinquennium. 

Chinese contractors have built or are contracted to build 17 GW of power 

generation capacity in SSA from 2010 to 2020, equivalent to 10% of existing 

installed capacity. These projects have hitherto targeted at least 37 countries 

out of 54 in the region. 
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Figure 1.5: Investment flows in power generation infrastructure in sub-Saharan Africa. 

Source: Eberhard, Gratwick, Morella, & Antmann (2016) 

 

Finally, roadblocks to electricity access do not only stem from the supply-side, 

but they also relate to the inability to pay of income-constrained households. 

The issue involves several dimensions, all of which can be tackled by an 

appropriate policy design. 

1. The first is determined by the charges levied by national utilities for new 

connections to the central national grid, which traditionally have been 

levied in a lump sum of an amount higher than the monthly income of 

most households.  

 

2. The second aspect concerns the running costs, i.e. the price of 

electricity, and the capacity of the national utility to enforce its regular 

collection.  

 

3. A third aspect is related to the reliability of the electricity provision from 

the national grid. An unreliable supply with frequent outages may induce 

households and, particularly, small business enterprises, hospitals and 

schools to purchase a back-up generator, which determines a double 

cost borne by the consumer for benefitting from the electricity service, or 

even the decision not to connect to the grid. 

 

 

In the context of the Paris Agreements and the global efforts to keep global 

warming “well below 2° C”, currently sub-Saharan Africa plays no major role. 
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The energy-related greenhouse gas emissions of the continent stood at about 

1.1 Gt CO2 in 2014 (World Resources Institute, 2017), which is roughly one 

ninth of China’s, irrespective of the two regions having a similar population. Of 

this 1.1 Gt, one third stems from electricity and heat generation, one additional 

fourth stems from the combustion of other fuels (i.e. chiefly cooking-related 

biomass combustion), and one further third alone is the result of fugitive 

emissions, such as gas flaring. Nevertheless, the long-run pathways of energy 

demand and of the carbon intensity of the economy might – over the medium 

and long-run – become very significant for global emission pathways.  

In this dissertation, substantial focus is put on analysing how to enable a 

universal, sufficient, and reliable access to electricity in the region. In this 

context, wide analysis and discussion space is devoted to the role of renewable 

sources of electricity generation, and in particular in the context of mini-grids 

and standalone access solutions. At the same time, the dissertation includes a 

specific analysis (Chapter 6) on the impact that climate change will exert on 

hydroelectricity – both structurally and through extreme hydroclimatic events. 

Hydropower is a key technology to guarantee a clean development of SSA 

power sector, both as a baseload power generation technology, and as a 

balancing and storage instrument through reservoir management (Hunt et al., 

2020), pumped-storage, and synchronisation with variable renewable sources 

of electricity (Sterl et al., 2018). It already plays a pivotal role in the region, with 

40% of total installed capacity, and its role is expected to gain prominence as a 

result of the construction of new, large-scale power generating dam exploiting 

the big techno-economic hydropower potential found in the region (Gernaat et 

al., 2017), and more than 95 GW installed by 2040 from the current 27 GW.  

Yet, it must be remarked that a comprehensive analysis of the energy system of 

sub-Saharan Africa across its demand sectors is outside of the scope of this 

dissertation. Relevant examples of recent work in this direction include (Taliotis 

et al., 2016), who modelled possible future paths for Africa's energy future and 

the related emissions finding that under the current energy policies and found 

that the universal access to modern energy will not be met by 2030 and thus 

policies to accelerate the changes in energy structure are required for 

sustainable development. 

 

 The feedback nexus between energy supply, 

economic development, and energy demand growth 
A broad stream of literature has investigated the socio-economic interactions 

following the provision of electricity to households and communities that 

previously lived without it.  
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Previous studies have shown that increasing affluence leads to growing 

electricity demand “at the extensive margin” after electricity infrastructure is 

provided, i.e. as low-income households buy and use durable appliances 

(Wolfram et al. 2012). Similar conclusions were reached by Louw et al. (2008), 

who assess the determinants of electricity demand for newly electrified low-

income African households, finding that along with asset ownership and market 

access, income is an important predictor of consumption level. At the same 

time, per-capita energy consumption is itself found to be statistically associated 

with economic growth, although the magnitude and direction of causality 

between the two is uncertain and context dependent (Belke et al., 2011; Wolde-

Rufael, 2009).  

However, the real challenge is to isolate and measure impacts at the local level. 

In fact, empirical research in Development Economics has been pursuing a 

variety of causal inference techniques to investigate the potential structural 

transformation, such as labour market and job creation, brought by the provision 

of electricity. In turn, structural transformation and economic development could 

initiate a feedback loop on electricity demand. Yet, the evidence over the 

welfare gains of electrification and the rollout of structural dynamics remains 

mixed and very dependent on the geographical, social, cultural and economic 

context in question (Jimenez, 2017) and producing sound causal inference 

studies in the context of rural electrification remains challenging (Bernard, 

2012).  

Among the recent or seminal literature, Riva et al. (2018) systematically review 

literature analysing the impact and feedback loop of electricity provision on rural 

development. They introduce causal loop diagrams of the underlying dynamic 

and endogenous complexities. Based on the reviewed studies, the author 

conclude that electricity provision is a necessary but not sufficient condition to 

unleash positive electricity-development dynamics, as complementary activities 

and infrastructural preconditions are required.  

In a seminal contribution, Barnes and Binswanger (1986) analyse the impact of 

rural electrification and infrastructure on agricultural changes between 1966-

1980 in India. They find a significant impact on the uptake and use of electric 

water pumps for irrigation, but they measure a only limited boost in agricultural 

productivity. 

Fried and  Lagakos (2021) provide evidence from a panel of rural Ethiopian 

villages during its recent expansion of electricity supply. They find that 

electrification raised irrigation rates, agricultural yields and non-agricultural 

business activity. Moreover, they highlight that electrified villages showed higher 

net positive migration flows.   
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Chhay and Yamazaki (2021) carry out a causal inference study in Cambodia 

based on nationally represented survey data between 1998 and 2008. They find 

that the provision of electricity triggered a labour shift away from agriculture, 

dominated by an increase in non-agricultural self-employment activities. 

Bensch et al. (2011) carried out an evaluation of electrification in Rwanda, 

finding mixed evidence over income or educational gains. Conversely, 

Dinkelman (2011) found a strong and positive short-run impact on electrification 

of female employment. The paper was however recently criticized for potential 

methodological pitfalls in Bensch et al. (2020). Tagliapietra et al. (2020) carried 

out an electrification impact assessment study in the context of Nigeria looking 

at labour market outcomes. They show a shift out of agricultural employment 

into non-agricultural employment with some evidence of a positive effect on 

overall labour participation. Akpan et al. (2013) examine the impact of rural grid-

based electrification on rural micro-enterprises in Nigeria, finding they tend to be 

more profitable, although with mixed statistical significance. Relatedly, an 

analysis by Vernet et al. (2019) in Kenya shows that rural electrification 

increases the rate of micro-enterprise creation, along with community income 

and expenditure, with a disproportionate positive impact on women.  

In the context of this complex literature background on the electricity provision-

economic development bidirectional nexus, it must be remarked that the Essays 

contained in this dissertation, and in particular Essay 2 (M-LED: multi-sectoral 

latent electricity demand assessment for energy access planning), are not 

explicitly modelling structural change dynamics. Nonetheless, these dimensions 

are in part accounted for implicitly: while the M-LED platform seeks to fulfil 

certain a-priori defined energy service needs, such as the uptake and use of 

given appliances in households, hospitals and schools, the estimated load 

profiles for agricultural uses (irrigation and crop processing) and small 

commercial and other productive uses (expressed as a mark-up on top of the 

residential demand) are implicitly assuming the resulting energy demand from 

certain structural changes, such as the mechanisation of agriculture and the 

uptake of productive activities by households.  

 

 The Nexus between climate, land, energy, water, 

and food  
Already from the subtitle, this dissertation makes explicit reference to the 

concept of the Nexus. The Nexus is a concept that was first introduced by Hoff 

(2011), which describes it as “an approach that integrates management and 

governance across sectors and scales”. More specifically, in this dissertation it 

refers to the analysis of sectoral interdependencies and impacts and the pursuit 
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of integrated assessments that are able to capture multiple challenges at the 

same time or the spillovers of actions in one sphere into the other spheres. In 

particular, given the scope of this work, I will narrow this approach to the 

climate, land, energy, water, and food sectors, which have been the key focus 

of a broad stream of literature (Johnson et al., 2019).  

Since the concept of nexus is very broad, in the context of this thesis it can be 

thought of as a tendency to think about the core energy-related challenges 

analysed with a broader view encompassing the interaction that energy shows 

with climate, land, water, and food and – ultimately – economic development. 

For instance, Chapter 3 addresses the challenge of understanding the energy 

requirements to provide electricity access to multiple sectors, including 

agriculture. This includes irrigation water needs and the related pumping 

energy, as well as the energy required for crop processing facilities. Chapter 4 

evaluates the role of (mostly exogenous) anthropogenic climate change for 

energy demand for air circulation and cooling services in a way that electricity 

access planning is synergetic with climate adaptation. Chapter 6 analyses the 

impact chain that goes from climate, through water, to energy in a large number 

of countries in sub-Saharan Africa where hydroelectricity is the primary source 

of power generation, with dams also constituting crucial pieces of infrastructure 

for irrigation purposes and creating geopolitical issues in the context of 

transboundary river basins. On the other hand, Chapter 7 analyses the impact 

chain that stems from economic growth and goes through behaviour and food-

related choices to eventually exert an impact on both the local and global 

environment. This includes land, water, and energy consumption, and the 

emission of greenhouse gases responsible for anthropogenic climate change. 

It is thus clear that all the aspects analysed in this work, including the energy 

access challenge  are deeply interrelated. While unavoidably constrained by a 

limited scope, this dissertation will thus pay particular attention in discussing the 

inter-sectoral interdependencies of every core issue from a nexus perspective.  

 

 Beyond aggregates: geospatial analysis and 

bottom-up modelling 
This ambitious workplan proposed in this thesis requires a rigorous 

methodology that can deal with the complex nature of the problem. In particular, 

the core methodological principle followed by this dissertation is to always go 

beyond aggregates, as long as the data is allowing for it. The underlying reason 

is that so far development indicators – in particular in the context of developing 

countries – have mostly been provided at national scales. Yet, often policies 

and conditionality agreements are based on such indicators, which however rely 
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overwhelmingly on simple averages and aggregates that mask underlying 

variations and distributions. National-scale analysis and regional modelling are 

likely to average out uneven patterns of changes and impacts across regions 

and groups within the same nation. The overall conclusion of this work is that – 

for instance – if benchmark is only based on national aggregates, there is no 

guarantee that everyone will benefit from the achievement of the Sustainable 

Development Goals. 

 

Figure 1.6.: Archetypical spatial data processing and integration pipeline as recurrently 

adopted in this dissertation. Source: Author’s elaboration. 

 

To tackle this pitfall, the essays presented in this dissertation share a mutual 

characteristic in their diversity: they perform sub-national analysis of spatially-

explicit data. Figure 1.6 highlights the archetypical spatial data processing and 

integration pipeline that is recurrently adopted in the essays part of this 

dissertation. A significant portion of the time spent working on this dissertation 

was employed to retrieve, process, and analyse georeferenced data useful to 

address the research questions. These data include satellite, survey, and 

model-based information on demographic, social, economic, environmental, 

and infrastructure aspects. As the essays part of this work will show, combining 

this information allows drawing insights that are simple invisible when looking at 

non-spatial data, and that often shed light on neglected or disregarded aspects, 

which can yet have a dramatic impact on public and private decision-making 

and the international view of crucial development challenges. 

In most instances, open-source GIS software and algorithms have been 

employed to process the data and carry out the analysis. A non-exclusive list 

includes QGIS, GRASS-GIS, SAGA-GIS; R packages raster and sf; and the 
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Google Earth Engine platform. A great acknowledgment from my side must go 

to the developers of these instruments, without which no portion of the work 

presented here could have been possible. 

 

 Scope of the thesis 
 

 

Figure 1.7: Scope of the thesis. 

 

Overall, the work collected in this Dissertation is an attempt at a better 

understanding of some key crucial aspects that are an integral part of the four 

pillars in the framework depicted in Figure 1.7: (i) the existing infrastructure, its 

planning, and its role for enabling development, (ii) the institutions and policies 

that underpin the energy-related choices, (iii) the flows of investment and the 

financing institutions that enable structural transformations of the system, and 

(iv) the deep links between energy, the environment, climate change, and the 

economy, which together drive human development across its variety of 

dimensions, which are encapsulated in the United Nations Sustainable 

Development Goals (SDGs) (United Nations 2015).  

The starting point assumed here is that energy systems analysis encompasses 

the two principal dimensions of demand and supply (Galarraga et al., 2011). In 

particular, in the case of energy in developing countries as it is the case in sub-
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Saharan Africa, energy supply is tightly linked to energy access (IEA, 2019), i.e. 

the availability of energy infrastructure and services to the population. The 

effective (or met) demand is conditional to the availability of energy supply 

(Bhatia and Angelou, 2015), but it is mediated by human and social choices 

(Wang and Li, 2016) and behaviour (Stephenson et al., 2010). Finally, a 

bidirectional relationship links energy to the sustainability dimensions of climate 

change (with energy being both a driver (Rogelj et al., 2015) and a system 

undergoing feedback impacts (van Ruijven et al., 2019) and the broader 

environment, encompassing land (Roe et al., 2019) and water (Van Vliet et al., 

2016) resources.   

In this context, the final objective of this dissertation is to quantitatively assess 

some crucial aspects at the interplay of sub-Saharan Africa’s development and 

its global impacts. The first aspect is access to modern energy, and in particular 

to electricity. In 2020, more than 500 million people are still without access to 

electricity in SSA. This means that they have no access to the most essential 

residential services, while they are deprived of the opportunity to seek income 

growth. The second is the reliability of the energy system and the role that 

climate change can exert on both the demand and the supply sides. The third 

bears greater complexity, because it encompasses the intersectoral nexus 

interdependencies between ensuring universal access to electricity and socio-

economic development. Each essay of the dissertation exploits a set of 

methodologies and analytical tools to examine and provide insight into aspects 

that African policymakers should consider putting at the heart of their agendas 

because they will exert a strong impact on the prosperity and livelihoods of their 

peoples.  

Overall, the thesis inserts itself in different research fields, which cannot be 

restricted to Energy Economics or Integrated Assessment, but encompass 

different aspects linking the energy, environmental, and human dimensions of 

energy in sub-Saharan Africa. A non-exclusive list of the research questions 

addressed by this dissertation is the following: 

 

 

 

 



Giacomo Falchetta                                                                                                 PhD Dissertation 

45 

• How is the energy access situation changing in sub-Saharan Africa?  

• What is the role of a bottom-up, multi-sectoral assessment in planning 

energy access compared to more aggregated assessments? 

• What role will governance and regulatory quality in the energy sector of 

countries of sub-Saharan Africa in attracting private investment and 

defining the technologies that can most efficiently provide access to 

everyone? 

• What implications does the need to adapt to future heat stress have for 

energy demand and electricity access planning? 

• How could climate change render the African power sector more 

vulnerable, in particular given its large reliance on hydropower? 

 Structure of the thesis 
The remainder of this work is structured as follows: 

 

The first essay introduces the reader to the matter of electricity access. This 

illustrates the role of satellite data in providing an improved understanding of 

the electricity access situation with respect to the existing statistics provided by 

international organisations and national governments. It presents the 

methodological approach, including the validation of the estimates and the 

comparison with other global sources, as well as the main results in terms of 

inequality in the current electricity access and use levels in the sub-Saharan 

African region. 

The second essay builds on this analysis by developing a complex energy 

modelling framework to estimate the community energy needs where access is 

currently lacking, in particular in rural areas. This assessment is not restricted to 

residential use of electricity, but it includes a detailed, device-based account of 

power needs for agricultural irrigation, crops processing, small and medium 

enterprises, schools, and healthcare facilities. The estimated demand profiles 

are used to simulate a number of scenarios of electricity access planning in 

Kenya to show the importance of considering multiple demand sources beyond 

residential in order to provide an electrification strategy which truly overcomes 

energy poverty.  

The third essay analyses a specific aspect at the interplay between electricity 

access planning, household energy demand and climate change: indoor air 

cooling. In fact, the lack of power at home prevents households from 

autonomous adaptation to ensure thermal comfort. In this essay, I combine 

climate, demographic and satellite information to produce a spatially-explicit 
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estimate of the distribution of the global unmet air cooling demand for ensuring 

thermal comfort among communities lacking access to electricity, I evaluate the 

power requirements for currently unelectrified households to guarantee 

residential thermal comfort and the country-specific feedback CO2 emissions. 

Finally, I evaluate the impact of the estimated cooling energy needs on the 

system configuration and investment requirements for an effective, adaptation-

capable electricity access planning among energy poor households. 

The fourth essay brings the technical analysis closer to the governance and 

regulatory dimensions. It introduces an Electricity Access Governance Index 

based on multiple indicators and implements it into the IMAGE spatial 

electrification model through its modifier effect on national discount rates. The 

purpose is showing that the quality of policy is crucial in attracting private and 

international investors, and that a poor regulatory framework will not only render 

electrification objectives more costly, but also affect the optimal technological 

mix.  

The fifth and final essay focuses on a related but distinguished issue: the fact 

that a large number of countries in sub-Saharan Africa currently rely very 

largely on hydroelectricity for their domestic supply, and some large projects 

might exacerbate the dependency. In turn, this renders the power sectors of 

these countries very exposed to the impact of hydroclimatic extremes. A 

systematic review of the situation, of previous modelling work on the topic, and 

a comprehensive analysis of relevant data is offered to draw conclusions on 

how to implement a more resilient power sector.  

A conclusive discussion section concludes the dissertation by linking the main 

findings from each essay and putting them into perspective, with specific 

reference to the methodological novelties introduced in the dissertation and the 

key implications for decision-makers at different levels. 
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2. Tracking of progress towards universal access to 

electricity and the related inequalities with satellite 

data in sub-Saharan Africa 

 Introduction 
In 2019, the International Energy Agency (IEA) reported that the global 

population without access to electricity had dipped below 1 billion for the first 

time (IEA, 2018). Yet, the numbers released in the Tracking SDG 7 Energy 

Progress Report 2019 (IEA et al., 2020) and additional global assessments 

(Aklin et al., 2018; Marwah, 2017) highlight that this progress has been uneven 

both across and within different macro-regions of the world. The bulk of the 

improvements have been observed in Central and Southern Asia and few areas 

of Africa. In fact, nearly two thirds of those still without access to electricity – 

about 570 million people – are located in sub-Saharan Africa. The continent is 

home to 30 countries with electrification levels below 50% (IEA et al., 2020). At 

the same time, while recent evidence shows that falling costs might soon make 

electricity an attractive alternative for satisfying cooking needs (Batchelor et al., 

2018; Dagnachew et al., 2019), most cooking activity in the region still relies on 

solid-biomass (IEA et al., 2020) (with the notable exception of South Africa, 

where electricity has gained a prominent role, Dinkelman, 2011), contrary to 

what is targeted by SDG7’s indicator 7.1.2. 

 

While these statistics provide a clear picture of global trends, fundamental 

uncertainties remain. Firstly, electricity access is still measured in a mostly 

binary fashion, as the share of a country’s population that has access to an 

electric energy supply source. Binary indicators are inherently limited by a 

strong aggregation and mono-dimensionality and disregard crucial questions 

such as reliability of supply, and the effective use beyond nominal access 

provision (Nussbaumer et al., 2012; Pachauri, 2011). Such dissatisfaction has 

spurred the development of new measurement frameworks – a leading one 

being the World Bank Multi-Tier Framework (Bhatia and Angelou, 2015) –, but 

little data based on these approaches has emerged (survey results for Zambia, 

Ethiopia and Rwanda have been published online (World Bank, 2019a) as of 

early 2020). Moreover, according to SDG7’s energy abundancy and mobility 

requirements (Monyei et al., 2018), only populations with access through the 

national grid or mini-grid solutions are compliant with sufficient energy access 

standards, while standalone decentralised solutions (IEA, 2019) such as solar 

kits, can be inadequate (although the surge in their installation Bensch et al., 

2018; Grimm and Peters, 2016) and their role as a first step up the energy 

ladder (Grimm et al., 2017; Lay et al., 2013 must be acknowledged). Secondly, 

the most common electricity access statistics are expressed at the national 

scale and thus fail to reflect sub-national heterogeneity. More spatially-detailed 
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information is, however, essential for clearly determining the electrification 

status of a country and tracking its progress towards the Sustainable 

Development Goals. Thirdly, electricity access measurement relies 

predominantly on expensive and unwieldy household surveys that are labour-

intensive and rapidly outdated. Finally, it has been shown (Numbers, 2013) that 

in African countries official statistics and  statements and numbers on progress 

towards universal and reliable energy supply (Trotter and Maconachie, 2018) –  

can be affected by statistical growth. This is defined (Jerven, 2013) as growth of 

development indicators occurring by assumption in the lack of reliable 

information, or with the deliberate objective of attracting more foreign 

investment. Yet, information provided by Governments and Ministries is the 

same that becomes readily accessible from international databases.  

 

Satellite data have been employed in earlier studies (Andrade-Pacheco et al., 

2019; Doll and Pachauri, 2010; Dugoua et al., 2018; Min et al., 2013) to quantify 

electricity access levels by assessing the presence of radiance with a 

wavelength compatible with that of electric light during nighttime hours 

(Falchetta et al., 2019; Levin et al., 2020). Previous seminal applications have 

shown that combining nighttime lights and human settlement datasets can 

proxy electricity access levels and track the rollout of electrification even at a 

local scale (Burlig and Preonas, 2016; Min and Gaba, 2014). These data have 

also been used to model changes in electricity consumption within provinces (in 

countries where disaggregated data is available for validation purposes) (Hu 

and Huang, 2019; Jasiński, 2019), detect power supply disruptions (Falchetta et 

al., 2020) and outages (Román et al., 2019; Wang et al., 2018), map the power 

transmission and distribution infrastructure (Arderne et al., 2020), and measure 

economic development and inequality sub-nationally (Michalopoulos and 

Papaioannou, 2014). Yet, the main limitations of the literature exploiting 

nighttime lights to keep track of electricity access in developing countries 

include the fact that light has been considered mostly in a binary fashion, 

without exploring the effective level of radiance detected and exploiting it to 

derive and validate proxy measures of electricity access quality for electrified 

households in data-scarce regions.  

 

Moreover, little is known of how well satellite nighttime lights imagery can be 

used to assess access through different technological solutions – which is 

crucial due to the surge of mini-grids (Peters et al., 2019) – and predict 

inequalities in electricity access progress and effectiveness (i.e. the quality of 

access provided) at sub-national scales. In fact, there seems to be no previous 

attempt of province-level assessment and validation. Hitherto, the focus has 

been mainly on static snapshots that did not explore the interdependencies of 

changing demography, growing urbanisation, and nighttime light distribution for 
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electricity access assessment. The relationship between within-country 

electrification trends, the distribution of wealth within countries, and statistics 

about appliance ownership represent further unexplored questions. Finally, 

published studies exploiting nighttime lights to assess electrification have not 

provided means and code to update results or transpose the analysis to other 

scales. Today, new and improved satellite data products that are being 

frequently updated allow for considerably greater precision through improved 

sensitivity and spatial resolution (Elvidge et al., 2017; Facebook Connectivity 

Lab and Center for International Earth Science Information Network - CIESIN - 

Columbia University, 2016; Pesaresi and Freire, 2016). Cloud-computing 

platforms help leverage these data and make analysis accessible to those 

without high-performance computational facilities (Gorelick et al., 2017).  

 

In this essay I capitalize on these developments and assess the potential of 

satellite data to support institutions devoted to tracking electricity access (i.e. 

progress towards SDG7’s target 7.1.1) by complementing and validating a 

variety of household derived information on electricity access, consumption, and 

appliance ownership at a community and country-level with a low-cost 

geospatial indicator that can be updated easily and in near-real-time. To 

achieve this, I analyse remotely sensed nighttime light radiance data for sub-

Saharan Africa combined with georeferenced demographic distribution and 

settlement type information, and other spatially explicit layers for the period 

2014-2019. I estimate sub-national indicators of electricity access inequality that 

provide insight into the progress towards SDG7 targets at a provincial scale and 

across rural and urban regions. Crucially, the analysis goes beyond 

conventional binary measurement by linking electricity use to luminosity to 

define tiers of access based on the World Bank Multi-Tier Framework (Bhatia 

and Angelou, 2015). This enables estimating energy poverty even where 

electricity infrastructure is available. I confirm the recent increase in the pace of 

electrification in sub-Saharan Africa, with >115 million people gaining access 

over the 2014-2019 period. Yet, I reveal wide inequalities in the quality of 

electrification, with a vast distribution across access tiers which cannot be 

observed in the existing statistics. These results suggest the need to critically 

evaluate the success of electrification programs beyond their role in boosting 

the national electricity access statistics. 

 
 

 Materials and methods 
 

The Google Earth Engine platform (Gorelick et al., 2017) is used to process 

spatially-explicit imagery and extract data which is used to calculate trends, 

inequality measures, and to produce plots in the R scientific computing 
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environment. The Data and Software Availability section links to the repository 

that hosts the JavaScript and R and allows for results reproduction, alteration of 

parameters for sensitivity analysis, and further improvements. All the datasets 

used in the analysis are openly accessible and retrievable under the references 

reported in Table 2.1, ensuring full replicability of the analysis. 

 

Table 2.1: Datasets used in the modelling framework 

Dataset Unit Source 
Time 
step 

Spatial 
resolution 

High-resolution 
settlement layer  

People 

(Facebook 
Connectivity 

Lab and 
Center for 

International 
Earth 

Science 
Information 
Network - 
CIESIN - 
Columbia 
University, 

2016) 

1 year 30 m 

Global Human 
Settlement Layer – 
built up areas and 

settlement type 
layers 

Class 
(Pesaresi et 

al., 2013) 
5 years 250 m 

VIIRS-DNB 
nighttime light 

radiance 
μW · cm-2 · sr-1 

(Elvidge et 
al., 2017) 

1 month 450 m 

GADM shapefile -  
(Hijmans et 
al., 2018) 

-  -  

DHS surveys 
% of people with 

access 
(USAID, 
2009) 

Multiple 
years 

Province-level 

IEA Energy Access 
database 

% of people with 
access 

(IEA, 2019) 1 year Country-level 

Tracking SDG7: 
The Energy 

Progress Report 
database 

% of people with 
access 

(IEA et al., 
2020) 

1 year Country-level 

Atlas of the 
Sustainable 

Development 
Goals from World 

Development 
Indicators database 

% of people with 
access 

(World 
Bank, 2018) 

1 year Country-level 

ESMAP Multi-tier 
Framework 

Surveys 
kWh/household/year 

(World 
Bank, 

2019a) 
1-2 years 

Household-
level 

 

The data sources include: VIIRS stray-light corrected monthly composites 2014-

2019 (Elvidge et al., 2017), the High-Resolution Settlement Layer 30 m ambient 
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population (Facebook Connectivity Lab and Center for International Earth 

Science Information Network - CIESIN - Columbia University, 2016), and the 

Global Human Settlement Layer (Pesaresi et al., 2013) – including built up 

areas and settlement type layers – used for rural and urban areas classification. 

I select the High-Resolution Settlement Layer as the reference population 

dataset because it represents the highest-resolution publicly available Africa-

wide gridded population layer. This refers to year 2015 and it is based on recent 

census data and high-resolution (0.5m) satellite imagery from DigitalGlobe. The 

settlement extent data were developed by the Connectivity Lab at Facebook 

using computer vision techniques to classify blocks of optical satellite data as 

settled (containing buildings) or not. CIESN used proportional allocation to 

distribute population data from subnational census data to the settlement 

extents. Note that as of late 2019 the HRSL lacks information for four countries 

in the Horn of Africa: Ethiopia, Somalia, Sudan and South Sudan. I rely on the 

250m resolution 2015 GHSL data, downscale it to a 30 m resolution imposing a 

constraint such that the sum of the pixels remains constant after the 

downscaling (to avoid generating biased population counts due to the 

interpolation process), and mosaic it over the HRSL for the four countries in 

question to produce a comprehensive 30m resolution layer for sub-Saharan 

Africa. Refer to the Demographic growth and migration trends section below 

describing how the HRSL population counts have been re-projected to previous 

or following years. 

  

National electrification levels for comparison with my estimates are drawn from 

the ESMAP/World Bank Tracking SDG7 portal, i.e. the data underpinning the 

Tracking SDG 7 Energy Progress Report 2019 (IEA et al., 2020), the Atlas of 

the Sustainable Development Goals From World Development Indicators 

database, and the IEA Energy Access database, while province-level figures 

are drawn from an array of field surveys through the DHS Program 

STATcompiler (USAID, 2009) for subnational benchmarking. For validating 

electricity access tiers, World Bank / ESMAP Multi-tier Framework surveys for 

households are retrieved from the Microdata Library for countries with recent 

information on the distribution of consumption across urban and rural areas, 

and this information is used to classify households across consumption tiers. 

For defining countries and provinces, I adopt the global administrative 

boundaries (GADM) dataset v3.6 as the standard (Hijmans et al., 2018). 

 

 

Urban and rural settlements are identified at the grid-cell level using the GHS-

SMOD 2015 settlements classification to classify populations cells either as 

urban (GHS-SMOD≥2), or as rural (GHS-SMOD≤1, or as not inhabited (GHS-

POP=0). Classification details are detailed in (Pesaresi et al., 2013). In general, 
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urban areas include both cities or large urban areas, i.e. “contiguous cells with a 

density of at least 1.500 inhabitants per km2 or a density of built-up greater than 

50% and a minimum of 50.000 inhabitants” and towns and suburbs or small 

urban areas, namely “contiguous grid cells with a density of at least 300 

inhabitants per km2 and a minimum population of 5.000 inhabitants”. The 

inhabited pixels that do not satisfy these criteria are marked as rural areas. To 

assess the consistency of the classification criteria with the country-level urban 

population share reported by the World Bank (World Bank, 2019b) for year 

2018, I sum the total GHS-POP 2015 population in cells classified as urban and 

divide it by the sum of total population. This yields a regional value of 0.42, 

which is very much in line with the fraction of urban population in sub-Saharan 

Africa of 0.4. An exploration of the county-level predicted urbanisation levels 

reveals that consistency with the World Bank/UN population division figures is 

mixed across countries. Nevertheless, I deem the remotely-sensed 

classification of the GHSL more homogeneous than the national figures 

provided by statistical offices, for which the definitions vary across countries. 

 

 

To estimate the role of demographic growth and migration on the electrification 

process over the 2014-2019 period considered and implement it into the High-

Resolution Settlement Layer gridded population dataset, I adopt an approach 

relying on the official statistics from World Bank Data over the yearly country-

level population growth rate and share of the total population living in urban 

areas. Algebraically, this can be expressed as: 

 

𝑃𝑜𝑝t
i  = 𝑈(𝑃𝑜𝑝t−1

𝑖 𝑢𝑟𝑏(1 + 𝑃𝐺𝑅𝑡
𝑐(1 + Δ𝑈𝑅𝐵𝑡−1

𝑡 𝑐 )), 𝑃𝑜𝑝t−1
𝑖 𝑟𝑢𝑟(1 + 𝑃𝐺𝑅𝑡

𝑐(1 + Δ𝑅𝑈𝑅𝑡−1
𝑡 𝑐 ))) 

(Eq. 2.1) 

 

where 𝑃𝑜𝑝t
i is the population of pixel i in year t,  𝑃𝑜𝑝t−1

𝑖 𝑢𝑟𝑏 and 𝑃𝑜𝑝t−1
𝑖 𝑟𝑢𝑟 are the 

urban and rural populations at pixel i in the year previous to year t, 𝑃𝐺𝑅𝑡
𝑐 is the 

yearly population growth rate in country c at year t, and Δ𝑈𝑅𝐵𝑡−1
𝑡 𝑐  and Δ𝑅𝑈𝑅𝑡−1

𝑡 𝑐  

are the rates of change of urban and rural populations, respectively, in country c 

between years t and t-1. The resulting gridded population layers are therefore 

given by the union raster layer of the urban and rural populations layers in year 

t, each calculated as the product between the population in each cell i and the 

population growth rate PGR in the same year in each country c weighted by the 

change in the share of urban or rural population with respect to the previous 

year in each country c, respectively. The approach allows to integrate the 

heterogeneity in the demographic change across urban and rural areas and 

across each country, respectively. The main limit is that – within each country – 

population dynamics are homogeneous across all urban and rural areas, 

respectively.  
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Figure 2.1: Validation plots for the electricity access estimates. Panel A: ESMAP/World 

Bank data; Panel B: IEA Access Database; Panel C: DHS province-level surveys. 

Source: Author’s calculations. 
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To estimate electricity access, I calculate the yearly median radiance value in 

each pixel of the NPP-VIIRS monthly composites within the Google Earth 

Engine Platform for each year between 2014 and 2019 using Google Earth 

Engine. Then, to remove calibration noise and ephemeral lights as discussed in 

the relevant literature (Levin and Zhang, 2017; Román and Stokes, 2015), I 

apply a lower-bound noise floor (0.25µW ·cm−2 ·sr−1 until 2016 and 0.35µW 

·cm−2 ·sr−1 from 2017; see (Falchetta et al., 2019) for a justification of the 

threshold values choice). I proceed subsetting populated pixels with stable 

positive radiance and identifying them as electrified, while I classify populated 

pixels with zero radiance as not electrified. Zonal statistics are calculated within 

each administrative unit to obtain the sum of the population with access to 

electricity and total population counts. The ratio between the two numbers is 

calculated to derive local electricity access levels. To conclude, I validate the 

estimated electrification levels against an array of sources providing official 

electrification statistics, as seen in Table Table 2.2 in the Results section. 

 

 

I assess inequality by calculating the Gini index of electricity access among 

urban and rural areas in each province within each country. The Gini index 

measures inequality and ranges between 0 and 1, where 0 expresses perfect 

equality and 1 extreme inequality. In this calculation, provinces are weighted by 

their (urban or rural) population as a share of the national (urban or rural) 

population for the Gini index to reflect inequality in terms of the relative number 

of people in each region. A country with equal electrification levels across its 

provinces is in fact not equal per se, as equality is contingent on the distribution 

of the population across provinces. Repeating this procedure for the data 

between 2014 and 2019 allows us to calculate the change in the distribution 

over the 6-year period examined, as well as the corresponding change in the 

Gini index of within-country residential access tier inequality. The index is 

defined as: 
 

 

𝐺𝑖 =

∑ ∑ |𝑝𝑖𝑐𝑥𝑖 − 𝑝𝑖𝑐𝑥𝑗|
𝑛

𝑗=1

𝑛

𝑖=1

2𝑛 ∑ 𝑝𝑖𝑐𝑥𝑖
𝑛
𝑖=1

 

(Eq. 2.2) 
 

where x is the electricity access level and p is the share of population of 

province i in country c, j are all the remaining provinces in the country, and n is 

the total number of provinces. The definition of the Gini index is strictly related 

to that of the Lorenz curve (Lorenz, 1905), defined as a continuous piecewise 
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linear function L(F), where F that defines the cumulative fraction of the 

population in the distribution (and is usually represented on the horizontal axis) 

and L represents the cumulative portion of the total response variable (in this 

case electricity access) and is plotted on the vertical axis. 

 

 

 

 

 

Figure 2.2: Distribution of nighttime light radiance and thresholds identified to define 

electricity access tiers for national, urban, and rural areas. Source: Author’s 

calculations. 
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Based on the distribution of the quartile values of non-zero light radiance across 

SSA countries (Figure 2.2), I define four tiers of residential access to electricity 

for those estimated to live in areas with electricity access, with thresholds set at 

the median value of each quartile distribution. To account for the strong urban-

rural discontinuity in terms of lighting, this is done separately for urban and rural 

settlements. I validate the distribution of population across the four tiers against 

survey data collected from ESMAP in three countries (Rwanda, Ethiopia, and 

Zambia) where this information is available. These surveys provide a measure 

of the distribution of households across access tiers in both urban and rural 

areas. Estimates are thus matched with the World Bank Multi-tier Framework 

(Bhatia and Angelou, 2015). Here MTF tiers 0 and 1 and 4 and 5, respectively, 

are considered jointly because the MTF’s tier 1 and 5 (<0.2 kWh/household/day 

and >8.2 kWh/household/day, respectively) corresponds to electricity 

consumption levels that are either too high or too low to be distinguished from a 

lack of access or an abundant and reliable level of access.  

 
 

 
Figure 2.3: Share of the national, urban, and rural population with access to electricity 

in each access tier  according to this paper estimates and the World Bank Multi-Tier 

Framework field data for Ethiopia, Rwanda, and Zambia. Source: Author’s calculations. 

 

 

To provide a further layer of validation and estimate the relationship between 

recent progress, the estimated access tiers, and an array of information 

collected through household surveys, I match province-level statistics on the 
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distribution of wealth across households and information about the share of 

households owning four basic electric appliances. These are mostly 

Demographic Health Surveys (DHS) carried out by USAID in the 2014-2019 

period analysed. The survey data is provided at a province-level with the 

province name identifying each observation. Province names are fuzzy-merged 

with the province names reported in the GADM shapefiles in the R scientific 

computing environment and linked through a survey-year – estimate-year 

matching. Then, regression analysis via OLS (ordinary least squares) with the 

inclusion of country-fixed effects is performed to identify statistical associations.  

 

 

To identify hotspots - areas with the fastest growing number of people without 

access - a regular 10-km grid is generated over the shapefile of sub-Saharan 

Africa. Within each 1-km grid cell, I estimate electrification for both 2014 and 

2019. The two layers are then subtracted to obtain the difference between the 

two years, and the number of people without access is summed within each 10-

km grid cell. Finally, the grid cells in the top decile (i.e. above the 90th percentile 

of the distribution) are filtered to determine which are classified as hotspot. To 

assess the location of areas where it is plausible to assume that significant 

latent demand exists, the electrification level and the mean tier of consumption 

within each 10-km grid cell is calculated. Then, only those grid cells which 

exhibit an electrification level of at least 50% and an estimated mean access tier 

lying below the 25th percentile of the distribution are retained. To explore the 

significance of proximity to urban areas for the identified hotspots, I plot pixel-

level empirical cumulative distribution curves of the population living in the 

identified hotspots against the travel time to the nearest 50,000+ inhabitants 

city. The latter information is derived from (Weiss et al., 2018) and is calculated 

exploiting a friction surface raster layer that expresses at each pixel the average 

time to move by one meter given the local road and railway infrastructure, 

terrain characteristics, and administrative boundaries.  

 

 

To estimate the road to full electrification by 2030, I refer to the most recent 

estimates of population growth from the United Nations Population 

Division(United Nations,  Department of Economic and Social Affairs, 2017). I 

assume that the newly added population is split among electrified and non-

electrified households proportionally to the electricity access rate in 2019. Thus, 

I estimate the number of people without access in 2030 if the electrification 

rollout keeps the same pace observed in the 2014-2019 period as: 

 

𝑛𝑜𝑎𝑐𝑐2030 =  (𝑛𝑜𝑎𝑐𝑐2019  +  (𝑝𝑜𝑝2030 − 𝑝𝑜𝑝2019) × (1 − 𝑒𝑙. 𝑟𝑎𝑡𝑒2019)) − 20 × 10 

(Eq. 2.3) 
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Where 𝑛𝑜𝑎𝑐𝑐2030 is the projected number of people without access to electricity 

in 2030; 𝑛𝑜𝑎𝑐𝑐2019 is the number of people without access to electricity in 2019; 

𝑝𝑜𝑝2030 and 𝑝𝑜𝑝2019 are the (projected) regional populations in years 2030 and 

2019, respectively. 𝑒𝑙. 𝑟𝑎𝑡𝑒2019 is the share of the population with access to 

electricity in year 2019. 20 is the historical average number of people who have 

gained access to electricity every year, and 10 refers to the number of years 

until 2030. To estimate the average number of people who need to gain access 

every year to achieve universal electrification by 2030 (𝑛𝑒𝑤𝑎𝑐𝑐𝑡 ), I instead 

adopt the following formula:  

 

𝑛𝑒𝑤𝑎𝑐𝑐𝑡 =  
(𝑛𝑜𝑎𝑐𝑐2019  + (𝑝𝑜𝑝2030 − 𝑝𝑜𝑝2010) × (1 − 𝑒𝑙. 𝑟𝑎𝑡𝑒2019))

10
 

(Eq. 2.4) 

 

 

Before the analysis of the effectiveness of mini-grids, it is imperative to validate 

the appropriateness of NTL data in capturing electrification occurring through 

the installation of mini-grids. To estimate electricity intensity in proximity of the 

mini-grid sites coordinates, we extract the sum of yearly median (noise 

threshold corrected) radiance value of the VIIRS monthly composites for the 

years between 2014 and 2019 for pixels falling within the 1000 meter radius 

buffer around the mini-grid coordinates. The mini-grid database is collected by 

the African Association for Rural Electrification (CLUB-ER). As part of the Green 

Mini-Grid Market Development Program (GMG MDP), CLUB-ER in partnership 

with CARBON TRUST develops a map of the mini-network for 27 countries in 

SSA. Besides subnational geographical information (i.e. province, region, 

district, county) and geo-coordinates, the mini-grid database provides 

information on the capacity of mini-grid (in MW), technology (i.e. hydro, solar 

PV, diesel), operational status (i.e. not/operating, under construction/project), 

ownership model (i.e. private, community, public-private partnership), and the 

year of commissioning.  We consider sites as satellite-detected if the NTL 

measurement is strictly greater than zero. Figure 2.4 displays the percentage of 

operating mini-grids detected by NTL data for each country covered in the mini-

grid database. On average about 70% of mini-grids are captured by the NTL 

data in the entire sample. There is however quite a large heterogeneity across 

countries. While Botswana, Ghana and Tanzania rank among the highest with a 

100% detection rate, Ethiopia, Mozambique and Zimbabwe rank the lowest with 

a rate below 20%. The  reason for the low rate of detection might be due to the 

dominance of sparsely populated rural areas in those countries. 



Giacomo Falchetta                                                                                                 PhD Dissertation 

64 

To assess whether if estimates can be considered inclusive of mini-grid 

solutions, I retrieved the only (to my awareness) public georeferenced database 

of currently operating mini-grid facilities. The data - maintained and published 

by the World Resources Institute (Odarno et al., 2017)- report all the mini-grids 

located in Tanzania. Specifically, I test the presence of radiance with a 

wavelength compatible with that of electric light during the nighttime hours in the 

2.5 km radius buffer around the exact coordinate of the mini-grid, when 

considering the median radiance observed in year 2019 across monthly 

observations. Irrespective of the limited scope of this dataset, the observation of 

nighttime light radiance in the proximity of the geographical coordinates where 

the mini-grid is reported to be installed can be considered a direct empirical 

confirmation of the successful detection of most mini-grid solutions. In turn, this 

result provides an interpretative guideline of my electricity access estimates. 

Namely, it suggests that the estimates are broadly inclusive of populations 

served by mini-grid facilities. As a result, any residual discrepancy with the 

official statistics can be attributed to a narrower set of causes, namely: (i) the 

failed detection of standalone household-level generation solutions by nighttime 

lights; (ii)  the 1000-meter resolution of the nighttime light data and the 

underlying assumption that in each pixel where electricity use exists everyone is 

benefitting from electricity access; (iii) biases and statistical growth in the official 

statistics.  As discussed in greater detail in the main paper, questions of the 

definition of electricity access must be raised.  

 

Figure 2.4: Chart reporting the effectiveness of the nighttime light-based methodology 

to detect operational mini-grid systems in countries of sub-Saharan Africa. Source: 

Author’s calculations. 
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 Results 
 

 
Figure 2.5: Electrification level change (in percentage points) and population change (in 

relative terms) in sub-Saharan Africa in 2014-2019. Results are grouped at the national 
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(panel A), urban (panel B) and rural (panels C) scales. Colours describe the 

electrification level in 2019 (in percentage points), while the size of circles is 

proportional to the population size in 2019 (in million people). The classification method 

for urban and rural areas, achieved at a 250m resolution, is discussed in the 

Experimental Procedures and is consistent with the urbanisation level reported by the 

World Bank. ISO code labels identify countries as clarified in the codebook in the 

Appendix. Source: Author’s calculations. 

 

A country-level aggregation of the bottom-up high-resolution estimates reveals 

that over the 2014-2019 six-year period, electricity access in sub-Saharan 

Africa has grown robustly, with more than 115 million newly electrified people. 

This has led to about a 5 percentage points increase in the regional electricity 

access level (growing from 42% to 47%) despite a growing population (by 14%, 

i.e. +144 million). The remotely-sensed estimates are not dissimilar from the 

aggregate numbers found in the SE4ALL Global Tracking Framework database, 

which reports a 6.3 p.p. decline in the share of the population without access 

between 2014-2017, with the regional electricity access level growing from 

38.3% to 44.6%. This represents a significant acceleration with respect to the 

electricity access growth rates observed in the previous decades (e.g. 

according to the SE4ALL Global Tracking Framework database, in the 2000-

2009 ten-year period the regional electricity access level grew by only 8 p.p.). 

Potential reasons behind this recent surge may include the momentum created 

by the introduction of the SE4ALL initiatives and the SDGs, and are discussed 

in the paper. 

 

Figure 2.5 includes three panels (for national, urban, and rural scales, 

respectively), each plotting the 2014-2019 progress (in percentage points) of 

the estimated electricity access levels on the x-axis, and the relative change  (in 

%) in the population over the same time period. The graphs thus depict the 

trade-off between demographic change (encapsulating both population growth 

and urban-rural migration; see Experimental Procedures) and electrification 

rollout. Each country is represented by a bubble, with its size proportional to the 

total population and its colour describing the estimated level of electricity access 

level reached at the end of 2019.  

 

When looking at the results at the national level, a picture of a heterogeneous 

and yet general improvement throughout the continent emerges. The only 

country where I estimate a quasi-negative electricity access growth is Ethiopia. 

Ethiopia, Nigeria, and the Democratic Republic of the Congo are in fact the 

three countries with the largest absolute number of people without access to 

electricity, accounting together for 231 million people, i.e. nearly 40% of those 

without access on the continent. In general, I find that countries with the largest 

rural electrification deficit are characterised by a very fast rural population 
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growth (for instance: Niger, Uganda, the Democratic Republic of the Congo, 

Chad, or Burundi), which perpetuates a vicious circle that is then reflected in 

limited national access and progress levels. Conversely, a set of countries 

showing rapid electrification growth at the national scale also show the highest 

increases in electrification levels in rural areas, for instance Kenya, Togo, 

Benin, and Guinea. While rural electrification remains the first concern (with 

notable exceptions in South Africa, Botswana, eSwatini, and an increasingly 

improved situation in Kenya, Cote d’Ivoire, Senegal, and Togo), in some 

countries urban areas are a growing source of concern. For instance, I estimate 

the urban electricity access level of Ethiopia to have remained nearly constant 

over the last six years as a result of a near 15% growth of the population living 

in cities – and therefore an urban electricity access deficit of 56 million people. 

Other countries with urban electricity access issues include Eritrea, South 

Sudan, the Democratic Republic of the Congo, Burundi, Sudan, Rwanda, the 

Central African Republic, and Madagascar. In these cases, migration to cities 

and population growth dynamics in peri-urban and urban areas are likely to 

contribute to these trends, nearly out-pacing electrification.  

 

To evaluate the quality of the estimates, I compared them with the most recent 

available electricity access statistics from multiple sources (see Figure 2.1 for 

scatter plot comparisons). In particular – as summarised in Table 2.2 – these 

sources include the Tracking SDG7: The Energy Progress Report and the Atlas 

of the Sustainable Development Goals and the IEA Access, which reports 

slightly different country-level figures; and the DHS Statcompiler household 

surveys (USAID, 2009), through which a multiannual province-level electricity 

access dataset was compiled including all countries with information available 

between 2014 and 2019 and then parsed to my province-level estimates for the 

corresponding survey year. Table 2.2 shows the results of the correlation 

analysis for the electricity access levels. The results reveal that my estimates 

are highly consistent with the most recent available yearly estimates (ρ between 

0.81 and 0.86) at both the country-level and when assessing provinces within 

countries. Yet, when evaluating the consistency with the percentage points 

change, i.e. the improvement in access in recent years, the correlation sinks (ρ 

between 0.08 and 0.28). That is to say, estimates are consistently in agreement 

with the latest measurements, but not in agreement for all countries about the 

improvements that have occurred in recent years. 

 

 

Table 2.2: Comparison of estimates with multiple electrification statistics databases. 

Data source 

Time 
interval 
of 
access 

Correlation (ρ) with 
most recent 
measurement 

Correlation (ρ) of  
progress  
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data 
points 

Tracking SDG7: The Energy 
Progress Report (2019) / 
Atlas of the Sustainable 
Development Goals (2018) 

1990-
2017 

0.86 
0.28 
(2014-2017) 

IEA Access Database (World 
Energy Outlook 2018) 

2000-
2017 

0.81 
0.08 
(2010-2017) 

DHS Statcompiler household 
surveys (various years, 
province-level) 

2014-
2017 

0.82 - 

 

 

The potential reasons behind the measured discrepancy in the progress and yet 

the high consistency in the current situation estimates are multiple. First, the 

nighttime light radiance is a metric of electricity access that is only able to detect 

electricity use that: (i) is overnight, when the satellite overpass takes place; (ii) 

is resulting in some form of visible light radiance (which might include indoor 

and/or public lighting); (iii) has a sufficient intensity to be detected by the 

satellite sensor, i.e. is above some very low threshold of final use. The 

implications of this point are discussed in greater detail in the uncertainty and 

limitations section. From a conceptual point of view, a missed detection of 

populations with access to electricity (which results in an underestimation of 

recent progress compared to the official statistics) is likely to be the result of a 

very low final use, i.e. of a hitherto low effectiveness of electrification. For 

instance, in those countries where the strongest most recent electrification is 

reported by official statistics, I observe the greatest discrepancies, namely 

Kenya, Ethiopia, of the Republic of the Congo, while in many others near-

perfect validation is achieved.  

 

Second, and relatedly to the previous point, in related ongoing research I find 

that populations served by mini-grids are well captured by satellite-imagery but 

that satellite-based information might not be able to capture standalone 

decentralised solutions such as household-scale diesel gensets and solar home 

systems, which have been a strong driver of the recent surge in electricity 

access level throughout sub-Saharan Africa (Dalberg Advisors and Lighting 

Global, 2018). Yet, this limitation is linked to the fact that the concept of access 

to electricity does not have a unique, widely-agreed, definition (see IEA, 2017a). 

A heated debate over the quantification of the minimum levels of electric energy 

use deemed necessary to define access is ongoing (Bhatia and Angelou, 2015; 

Nussbaumer et al., 2012; Pachauri, 2011). One of the crucial arguments is that 

energy access and energy poverty are not mutually exclusive. At the same time, 

energy access is not a static concept, but instead should be considered as a 

dynamic process following a ‘ladder’ (Bensch et al., 2017; Chattopadhyay et al., 

2015; Grimm et al., 2016; Monyei et al., 2018), where different technologies and 
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solutions gradually replace the previous ones, providing greater power and 

supporting more appliances and uses. In this paper, I make an explicit choice in 

excluding standalone solutions from the definition of energy access because of 

the very limited amount of energy (and in turn of appliances) they are able to 

supply (although I acknowledge their role as a first step up the energy ladder 

(Grimm et al., 2016; Lay et al., 2013), e.g. by saving costs and health burdens 

associated with kerosene use and allowing for more education through 

nighttime study and access to telecommunications).  

 

Third, it must be highlighted that inconsistencies and discontinuities across 

different years are evident in the official statistics. These issues are compatible 

with the notion of statistical growth, i.e. growth occurring by assumption in the 

lack of reliable information (e.g., with statistical extrapolations performed by 

Governments or from development agencies publishing the numbers) or with 

the deliberate objective of attracting more foreign investment. Refer to the 

Appendix, where the existence of a linear time-trend in official electrification 

statistics is statistically confirmed, while that of higher-order polynomial 

relationships is ruled out. Together, these considerations suggest that caveats 

are required in the comparison with official statistics (which depending on each 

country’s statistical office can include different types of access solutions, 

including solar lamps or standalone diesel generators) with interannual satellite-

based estimates, which are mostly able to capture access through the national 

grid and mini-grids. Yet, this also implies that the poor results of the recent 

progress estimates with the official statistics have specific underlying reasons 

which might not be related to an ineffective methodology, but just to the 

assumptions it encapsulates and what is actually measured. 

 

 
To understand the heterogeneity at the province-level in the recent progress 

with electricity access, it is crucial to disentangle the interplay between the 

electrification rollout and the growth in the population without access induced by 

demography and migration. In Figure 2.6 I map the ratio between the change in 

the absolute number of people with and without access in each province 

between 2014 and 2019. The metric suggests the geographic position and 

density of areas where electrification roll-out has surpassed (or been slower 

than) the growth in the population without access to electricity. It also indicates 

provinces where I estimate that no electrification is taking place (no or negative 

growth in the population with access to electricity) and those areas where – 

conversely – a negative or null growth in the population without access to 

electricity was experienced in the period examined. The latter are classified as 

on a pathway to full electrification. Yet, it must be remarked that they might also 
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identify areas where little electrification has been implemented and yet the 

electricity access rate has increased due to a decline in the population without 

access. These situations include provinces experiencing emigration towards 

other provinces or countries. The analysis reveals significant electrification 

progress over large parts of Southern Africa (in South Africa, Namibia, and 

Botswana, and several regions of Angola and Zambia), throughout Kenya and 

in most provinces of Tanzania and Sudan, and in most West African provinces 

surrounding the Gulf of Guinea (in Ghana, southern Nigeria, Cote d’Ivoire, 

Benin, Togo, and Cameroon). At the same time, the map reveals much slower 

electrification progress in Ethiopia, in most provinces of Central Africa (and 

chiefly in the Democratic Republic of the Congo), over large parts of Uganda 

and Burundi, in Chad, and in multiple areas of the Sahel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Provincial changes in the number of people gaining access and the number 

of new people with access to electricity between 2014 and 2019. The colour scheme 

categorizes the data across two dimensions: the growth in the population without 

access and the growth in the electrified population. Two additional categories identify 

provinces where the population with and without access have declined. Source: 

Author’s calculations. 
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The analysis also indicates that in provinces where income is more unevenly 

distributed, today’s electrification access levels tend to be lower (Appendix A 

tables, model 1).  In particular, I find each p.p. increase in the province-level 

Gini index of wealth inequality estimated using DHS survey data is associated 

with an average 1.46 p.p. lower satellite-measured local electricity access level 

(with P<0.01). This suggests that these provinces might have historically been 

less targeted by electrification expansion programs (Trotter, 2016) or even 

where the grid exists, households in such provinces have had insufficient 

income to afford connection (Golumbeanu and Barnes, 2013) and running 

costs, so only few have benefitted from electricity use. On the other hand, there 

is a likelihood that for those with electricity, they may have become wealthier 

from having access. In contrast to the results for electricity access per se, my 

province-scale estimates of electrification progress over the last six years are 

found to be positively correlated (Table A1.1, model 2) with the Gini index of 

wealth inequality (P<0.01). While the magnitude of this association is still very 

small, close to 0, this result could indicate that in recent years a trend change 

has occurred, and electrification efforts are now concentrating in areas where 

today income is more unevenly distributed.  

 

National-scale urban and rural electricity access Lorenz curves for 2014 and 

2019, and the forward difference (Figure 2.7) provide further insight into the 

inequalities in electrification progress. The results show, for example, that in 

2014 electricity access inequality was similar in urban and rural areas of 

Rwanda. Since then, robust progress has been made in the country, particularly 

among low electrified provinces and rural areas, while urban electrification 

levels stagnated. Conversely, in rural Kenya progress has been more 

concentrated in provinces with electrification levels above the second quartile, 

with a focus on universalizing access in already connected areas and 

stagnation in several provinces with low access levels. Overall, the select 

countries represented show heterogeneity in inequality, with unequal 

distributions in provincial-level electricity access in Ethiopia and the Democratic 

Republic of the Congo. Calculation of a population-weighted Gini index of 

electricity access inequality G reveals that while urban inequality in electricity 

access has been declining throughout countries of sub-Saharan Africa, in rural 

areas inequality has increased over the six-year period in some countries, e.g. 

Namibia, Sudan, Niger, and the Democratic Republic of the Congo. The 

countries with the highest provincial inequality in urban electricity access growth 

are the Central African Republic, Liberia, Chad, and Uganda (0.72 ≤ G ≤ 0.81). 

Low urban inequality is found in Rwanda, Sierra Leone and Benin (0.24 ≤ G ≤ 

0.35). On the other hand, in rural areas inequality is prevalent in the Democratic 

Republic of the Congo, Chad, Ethiopia, and the Republic of the Congo (0.65 ≤ 
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G ≤ 0.73). Lowest rural inequality is estimated in Togo, Ghana, Zambia, and 

Mozambique (0.07 ≤ G ≤ 0.21). However, crucially, low inequality may 

encompass situations where everyone lacks access. 

    

 

 
Figure 2.7: Electricity access Lorenz curves for 2014 and 2019, and the forward 

difference, for selected countries. Results are grouped for urban (panel A) and rural 

(panel B) areas. The closer the 2014 and 2019 Lorenz curves to the 1:1 line, the lower 
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the access inequality. Larger spaces between the curves represent greater change 

between 2014 and 2019, which is also visualized by the red difference curve. Source: 

Author’s calculations. 

 

 

A binary access indicator does not provide any information on whether 

populations in an electrified area benefit equally from the same level of access 

(Riva et al., 2018). Recent empirical evidence (Taneja, 2018) has shown that a 

significant issue related to electricity access expansion is that low consumption 

levels may persist among those that are connected due to limited power 

availability and affordability and reliability issues (Blimpo and Cosgrove-Davies, 

2019), thus causing a first-order problem for the sustainability of utilities and the 

development prospects of communities. To distinguish between different levels 

of electricity use among those that have electricity access, I create four per-

capita light intensity categories (see Methodology section and Figure 2.2) to 

proxy residential electricity use and validate them on recent household survey 

data  building on the World Bank’s Multi-tier Framework (MTF) for measuring 

electricity access quality. In the validation exercise, tiers 0 (no access) and 1 

correspond to the MTF’s tiers 0 and 1 (i.e. access via pico-scale access 

solutions) and are grouped together. This is because very low levels of 

available power, final electricity use, and reliability are here regarded as a lack 

of access. Conversely, tier 4 is coupled with the MTF’s tiers 4 and 5 together, 

because at higher levels of electricity use nighttime light becomes a marginally 

worse predictor of final consumption (see (Falchetta and Noussan, 2019) for 

empirical evidence for this statement). Refer to the Methodology section for a 

detailed account of the underlying reasoning and data processing steps.  

 

Table 2.3 illustrates the results of the validation procedure, which is carried out 

for the three countries for which multi-tier data is available thanks to field data 

collection efforts by ESMAP. These are Ethiopia, Zambia, and Rwanda. As 

seen more in detail in the by-tier, by-settlement type, and by-country validation 

plots in Figure Figure 2.3, the method is effective in reproducing the distribution 

of people among tiers of electricity access reported by ESMAP. In particular, the 

validation is very precise for the total population and the rural areas in every 

country, while the main source of mismatch is found in urban areas of Ethiopia 

– where I underestimate the proportion of people at higher tiers.  

 

Table 2.3: Comparison of access tier estimates with multiple household surveys 

Survey 
Surveying 
period(s) 

Correlation (ρ) between the 
distributions for survey data 
and the NTL-based estimate 

ESMAP MTF Survey 
Zambia 

2018-19 0.92 
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ESMAP MTF Survey 
Ethiopia 

2017-18 0.65 

ESMAP MTF Survey 
Rwanda 

2017-18 0.87 

 

Having provided a proof-of-concept of the general effectiveness of the 

approach, I generalise the analysis of the distribution of populations among 

electricity access tiers across all countries in SSA. Figure 2.8 summarises the 

results of the assessment for national, urban, and rural populations, 

respectively.  

 

 
Figure 2.8: Barplots representing the estimated residential electricity access tiers in 

national, urban, and rural areas. Column A: frequency of population in each tier relative 

to the national, urban, and rural population. Column B: absolute number of people in 

each tier for national, urban, and rural populations of each country. Source: Author’s 

calculations. 

 

When examining distributions at a national scale, the assessment reveals that 

the countries where people with access to electricity are classified among the 

highest tiers of access include Angola, Botswana, Cote d’Ivoire, the Republic of 

Congo, Gabon, Ghana, Equatorial Guinea, and South Africa. Lower tier access 

is prominent among Benin, Ethiopia, Guinea, Guinea-Bissau, Kenya, Liberia, 

Nigeria, eSwatini, and Togo. In general, countries with large shares of the 
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population at tier 0 of electricity access also exhibit more inequality in the 

distribution across tiers, with many without access and few concentrated in high 

consumption tiers (presumably in the main cities, where the bulk of electrified 

people are located): these include Burundi, the Central African Republic, Chad, 

the Democratic Republic of the Congo, Malawi, Niger, and Uganda. 

 

Restricting the analysis to urban areas shows that in a large number of 

countries, most grid-connected consumers benefit from relatively high levels of 

electricity access. Electricity supply reliability is however an issue in many 

cities(Cole et al., 2018), irrespective of the average yearly final consumption. 

Exceptions include – for instance – Burundi, the Central African Republic, 

Eritrea, Ethiopia, Guinea-Bissau, Liberia, Madagascar, Malawi, Niger, Rwanda, 

Sierra Leone, Somalia, and South Sudan. In these countries, I estimate that 

less than 25% of electricity consuming urban households benefit from access at 

tier 4 or above. Conversely, it is evident how the bulk of the electricity access 

deficit is in rural areas, with rural access levels below 25% in most countries 

except the few wealthier nations. In particular, I estimate rural access levels 

greater than 50% only for Botswana, Gabon, Ghana, Equatorial Guinea, 

Swaziland, and South Africa. Interestingly, all these countries are characterised 

by a strong role of the natural-resource extractive sector.   

 

So what about the link between wealth inequality and electricity access? I 

calculated the province-level association between the estimated average tier of 

electricity access (obtained by a pixel-level weighted multiplication of population 

with access to electricity and the local estimated prevalent access tier) and the 

local Gini coefficient of wealth inequality obtained from the DHS survey data. I 

control for country fixed effects. The strongly negative result (Appendix A, 

model 3) shows that an average increase of about 0.21 points in the Gini 

coefficients is associated with a 1-tier shift in the locally prevalent access tier. 

This result – albeit not causal – is consistent with assessments in the literature 

linking electricity use with poverty and inequality51–56. The theoretical reasons 

underlying this empirical finding include the political and economic factors 

affecting the propensity of policymakers to concentrate their electrification 

investment towards certain regions (Khennas, 2012; Scott and Seth, 2013; 

Sovacool, 2012), the uneven load shedding policies which have been shown to 

disproportionately hurt the poor (Aidoo and Briggs, 2019), and the fact that 

provinces where there is a high income inequality are more likely to be less 

electrified – as empirically observed in this paper – and thus the existing 

distribution grid is likely to be serving only the few rich people, who are also 

more likely to have electricity through standalone solutions. To provide a further 

line of validation, using data on appliance ownership, I assess the association 

between the province-scale estimated average tier of electricity access among 
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people with access to electricity and ownership of different electric appliances 

derived from the DHS surveys, including radio, mobile phone, television, and 

refrigerator. The results, summarised in the Appendix A (models 4-7), suggest a 

strong and positive correlation between access tier and ownership for each of 

the four appliances. In particular, on average, advancing by one access tier (as 

estimated with my methodology) implies a 21 p.p., 13.2 p.p., 10 p.p., and 6.8 

p.p. average increase (at P<0.01) in the propensity of a representative 

household at province level to own a television, a refrigerator, a mobile 

telephone, and a radio, respectively. These results provide a further layer of 

validation to my nighttime-light based approach to assess electricity access 

multi-dimensionally.  

 

 

To identify potential hotspots of high unelectrified population and unmet 

demand density, I distinguish two types of areas: (i) regions where the latent or 

unmet demand is likely to rise, i.e. where use remains very low despite 

relatively high nominal access levels (see Experimental Procedures for details); 

and (ii) areas that have exhibited the fastest growth in population without 

access to electricity (Figure 2.9A). Overlaying these two separate regions, helps 

us to identify five major hotspots: (i) in West Africa, in proximity to the coastal 

areas of Côte d'Ivoire, Liberia, Sierra Leone, and Guinea (a macro-area hosting 

nearly 57 million people without access); (ii) in the Gulf of Guinea, over Togo, 

Benin, and Nigeria (where I estimate 100 million people with no electricity 

access); (iii) in large parts of Ethiopia and the Horn of Africa (additional 100 

million people without access); (iv) across densely populated Burundi, Rwanda, 

Uganda, and southern Malawi (around 130 million without access); and (v) in 

the eastern regions of Madagascar (nearly 15 million without access). Other 

regions with a high density of people without access include the Democratic 

Republic of Congo and Angola. In addition, regions in West Africa, North-East 

of Lake Victoria, between Uganda and Kenya, and in Southern Africa include 

areas with high potential for latent demand growth. These include regions 

where the number of people without access to electricity has not increased 

much, but there are several electrified areas with low current use.  
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Figure 2.9: Hotspots of growing populations without access and future latent (unmet) 

electricity demand. Panel A: Map of hotspots in sub-Saharan Africa where rural and 

urban access hotspots are categorized separately as the top 10% of the respective 

spatial distributions across all provinces. Urban and rural latent demand hotspots are 

defined as areas with electrification above 50% but an estimated consumption level 

below the 25th percentile of the distribution. Panel B: empirical cumulative distribution 

curves of the fraction of people without access as a function of remoteness to urban 
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areas in the identified hotspots. The x-axis describes the travel time to the nearest 

50,000+ inhabitants city in each country derived from (Weiss et al., 2018). The y-axis 

describes the cumulative fraction of the population of the hotspot who is living at a 

travel time equal or smaller to the corresponding x value. The curves thus describe two 

dimensions of inequality, namely both between and within the selected hotspots. 

Source: Author’s calculations. 

 

Figure 2.9B shows the empirical cumulative distribution curves of the population 

living in the identified hotspots against the travel time to the nearest 50,000+ 

inhabitants city. The analysis reveals that more than half of the growth in 

populations without access between 2014 and 2019 has taken place in 

settlements that are less than two hours away from the nearest city, while only 

about 20% of the total are in regions four or more hours away. The picture is 

even more striking  when looking at hotspots of latent demand: I find that over 

three quarters of these populations are within a one-hour journey to a city, 

meaning that latent demand among households formally classified as with 

access to electricity is predominantly a peri-urban issue. Finally, I also observe 

that the areas that I identify as hotspots of lack of electricity access and latent 

demand are largely overlapping with areas which are exposed to vulnerability to 

climate hazards ((Byers et al., 2018)). Recent evidence has suggested a surge 

in the future demand for cooling (Mistry, 2019) – and in turn for energy (van 

Ruijven et al., 2019) –  in an array of climate scenarios. It is clear that a lack of 

sufficient, reliable, affordable access to electricity would impair the provision of 

cooling services, and thus negatively affect socio-economic outcomes, chiefly 

health (Glaser et al., 2016) and cognitive performance (Kjellstrom et al., 2016).  

 

 

An explicit account of the limitations must necessarily supplement studies 

based on remote-sensing and geospatial data analysis that aim at measuring 

information that ideally would be collected in the field. While the validation of 

estimates that are generated in a bottom-up fashion against official aggregates 

is a first-order approach to quantify potential errors, the specific case under 

examination – namely developing countries with sparse and infrequent 

collection  of information –  is characterised by a substantial degree of 

uncertainty.  

 

First, I have shown that my approach is likely to capture a substantial share of 

the electrification occurring through the expansion of national grids or larger-

scale decentralised systems, but I are likely unable to detect smaller-scale 

solutions, such as solar home systems and standalone diesel generators. Yet, 

the deployment of these is rapidly gaining pace (Dalberg Advisors and Lighting 
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Global, 2018) and it has been estimated (IEA, 2019) that these could cover 

around one fourth of new connections until 2030. While these limited-scale 

solutions are excluded from the definition of energy access that I explicitly adopt 

in this paper (consistent with the account provided by the IEA in (IEA, 2017b)), 

they could nevertheless represent a first step up the energy ladder, for instance 

by saving household costs for kerosene. In turn, at a later stage savings can be 

spent on larger-scale systems or to cover national grid connection charges 

(Chattopadhyay et al., 2015; Grimm et al., 2016). 

 

Second, my approach is weak in distinguishing households who live “under the 

grid” and yet are lacking access to electricity, which – in particular in peri-urban 

areas – represent a significant share of the population (Lee et al., 2016). The 

spatial resolution of 30 m of settlement data only allows for an assessment of 

settlements where the infrastructure necessary to provide electricity access is 

lacking. Thus, a caveat is that this essay’s estimates measure the infrastructural 

dimension of electricity access, more than the policy and financing-related 

issues that Governments and electrification programs must tackle to enable 

new connections of households living in the proximity of the grid but facing 

financial and behavioural barriers (Jacome et al., 2019).  

 

Finally, nighttime lights data largely capture radiance between 0:00 and 

4:30 AM, when most residential indoor lights are turned off. Thus, the approach 

is effective in those settlements where at least minimal amounts of street or 

public lighting is available (Li et al., 2019). For these reasons, my estimates are 

correctly interpreted only if considered as a cheap, rapidly updated geospatial 

indicator of electricity access to provide snapshots of the access situation in a 

province or in a country, rather than precise estimates of the share of 

households benefitting from access within a specific village or settlement. Thus, 

the approach is not meant to replace field data collection efforts, but rather to 

provide a valuable complement to these efforts. For instance, properly validated 

satellite-based estimates could help overcome issues of statistical growth when 

no or infrequent data collection is carried out.  

 

 Discussion 
 

Satellite-based nighttime lights and population distribution datasets allow for 

analysis of electrification at scales not previously possible and benefit from 

frequent updates from remotely sensed measurements. I demonstrate that a 

dataset derived from publicly available global satellite imagery can accurately 

detect electric light at sub-national scales in sub-Saharan Africa and, more 

importantly, that light intensity can proxy the tier of residential electricity access, 

allowing for an estimation of inequalities in electricity supply, use, and reliability 
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beyond binary access indicators. The study provides evidence that these 

analyses can complement existing survey-based assessments, particularly for 

regions where data is scarce, sporadically collected, or where there may be 

inconsistencies in existing data sources. Moreover, unlike household surveys, 

the approach illustrated here captures rapidly accelerating electrification and 

changing population settlement patterns in near real-time. The main issues 

identified are summarised in Table 2.4, together with their spatial extent, and 

magnitude. Refer to the Appendix A for an ISO code - country name codebook. 

 

Table 2.4: Summary of the main issues identified, their spatial extent, and magnitude 

Issue Regions 

Estimated 
affected 
population 
(million) 

High-density  
electrification deficit 
hotspots 
(local access level 
<25%) 

 
Large parts of East Africa (MWI, UGA, 
BDI, RWA, SSD, TZA, MDG)  
and Central Africa (CAF, TCD, COD). 
Specific areas in MLI, BFA, and ZWE. 
 

300 

“Under the grid” 
electrification deficit 
hotspots 
(local access level 
>50%) 

 
Several countries in West Africa (SEN, 
GHA, CIV; southern NGA, eastern 
CMR). Specific provinces in southern 
KEN, central ZMB, southern NAM, 
northern SDN. 
  

77 

Growth in population 
without access 
(2014-2019) 

 
Most provinces of ETH, DRC, COD; 
large parts of UGA, BDI, TCD; vast 
areas of the Sahel. 
 

50 

Low (tier 1-2) 
electricity use 
despite high local 
access level >50% 

 
Large parts of West Africa (GHA, CIV, 
SEN, GAB) and Southern Africa (ZAF, 
BWA); specific areas in KEN, TZA, 
COD, UGA, MWI, SDN, CMR, AGO, 
NAM. 
 

70 

 
I highlight that vast disparities characterise electricity access and use within 

sub-Saharan African nations. In particular, this analysis helps identify and 

monitor regions where electricity infrastructure provision is not keeping pace 

with population growth (such as in large parts of Central Africa and of the 

Sahel), where a high-density of electricity access deficit  exists (in Ethiopia, the 

Gulf of Guinea, and in the countries surrounding Lake Victoria in East Africa), or 

where use remains very low despite relatively high nominal access levels (such 

as in rural Ghana and Kenya, or in urban Ethiopia). These results suggest that, 

even under a scenario where universal access in terms of availability of 

electricity supply is achieved, inequalities may persist, undermining the 
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achievement of several of the SDGs, and - potentially - driving internal 

migration. Recent literature (Bayer et al., 2019; Bos et al., 2018; Chaplin et al., 

2017; Lee et al., 2019; Lenz et al., 2017; Peters and Sievert, 2016) has 

highlighted how dimensions other than physical access to electricity, such as 

reliability, have important impacts on the benefits of access, particularly for 

small and medium businesses that drive much of the growth in developing 

countries (Cole et al., 2018; Gannon et al., 2018). The use of light intensity data 

to derive metrics related to the electricity access tier, as done here, can thus 

also illuminate important qualitative dimensions of electricity access. 

 

Electricity access and use are key components of a broader, multi-dimensional 

concept of poverty. Where there are regions of large unmet electricity demand, 

these are likely to correlate with those deprived of other key infrastructural 

services for decent living, such as sanitation (2.3 bn. lacking access) (World 

Health Organization, 2018) and internet connectivity (nearly 4 bn. without 

access) (Lerner et al., 2017). Not only is a lack of access likely to stunt progress 

towards other development objectives, but households living in regions deprived 

of such basics, are also more vulnerable and likely to lack adaptive capacities, 

essential for reducing risk to natural hazards and climate change impacts 

(Byers et al., 2018; Castells-Quintana et al., 2018), as aimed by SDG13. Mobile 

technologies and information services are so pervasive that access to electricity 

and a smartphone, often achieved long before basic sanitation, opens the 

possibility of not only life improvements but also vulnerability reduction, through 

banking, health services, insurance, agricultural training, trading, electoral and 

social services. 

 

 

According to my high-resolution estimates, electricity access in sub-Saharan 

Africa has grown significantly over the last six years, with >115 million newly 

electrified people. This development resulted in a 4.7 percentage points 

increase in the regional electricity access level (from 42.2% to 46.9% of the 

population), despite strong demographic changes (with about 145 million 

additional people) between 2014 and 2019. However, if electrification rollout in 

the coming decade keeps the same pace observed in the 2014-2019 period 

(with an average 22 million new electrified people per year), regional population 

grows according to the most recent estimates of the United Nations Population 

Division (United Nations,  Department of Economic and Social Affairs, 2017) 

(thus reaching 1.4 bn. in 2030), and the share of new population that is born 

without access is assumed to be proportional to the regional electricity access 

level (see Experimental Procedures), then the regional access level in 2030 will 

only be 62.5% (16 p.p. above today’s level). Thus, to fulfil SDG7’s indicator 

7.1.1, progress must ramp-up immediately for the coming decade. On average, 
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this implies that almost 75 million people need to gain access each year till 

2030, as compared to the average of 22 million/year over the 2014-2019 period.  

 

The underlying trends analysed in this paper reveal that additional dimensions 

and dynamics must be considered. First, urban and rural areas are changing at 

different rates, in both electrification rollout and demographic terms. 

Electrification has moved faster in rural (5.7 p.p. growth between 2014-2019) 

than in urban areas (4 p.p. growth between 2014-2019) in relative terms, and 

yet the bulk of progress took place in urban settlements (75 million of the total 

115 million who gained access are urban dwellers). Cities are growing rapidly, 

with the urban population having risen from 540 to 615 million over the six-year 

period analysed. In turn, high population density and existing distribution 

infrastructure make it easier and more affordable to increase electricity access 

in urban areas.  

 

On the other hand, the definition of SDG7 makes only loose mention (“reliable 

energy services” (United Nations, 2015)) to the effective electricity access 

quality, or to specific power availability targets. This analysis shows that even 

among households who currently benefit from electricity access, in particular in 

rural areas, only a fraction benefits from at least tier 3 access, a threshold below 

which it is challenging to power continuous or medium appliances such as 

refrigerators or provide air cooling. Previous studies based on computer models 

have quantified the investment for bridging the electricity access gap in the 

region (Bazilian et al., 2012; Mainali and Silveira, 2013; Mentis et al., 2017; 

Pachauri et al., 2013; Szabo et al., 2011; Szabó et al., 2016), showing that 

there is an abundance of energy resources and local generation solutions, 

which are technically sufficient to guarantee universal modern energy access in 

sub-Saharan Africa. However, the required investments and the optimal 

technology split between national grid connection and decentralised solutions 

are highly dependent on the modelling assumptions (Morrissey, 2019) 

(including the level of risk perceived by private players (Milne, 2019) involved in 

electricity access infrastructure investment) and the assumed demand levels, 

which – I have shown – needs substantially more consideration in planning 

towards SDG7. 

 

 

Sub-Saharan Africa is already witnessing rapid urbanization. This analysis 

suggests that providing secure, sustainable access even to urban centres with 

relatively high population densities may be increasingly challenging. 

Infrastructure expansion in slums is particularly tricky due to the geographical 

configuration of such areas, legal, regulatory and markets risks for investors 

(Ahlborg et al., 2015; Onyeji et al., 2012; Trotter, 2016; Williams et al., 2015), 
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and the low ability-to-pay of the peri-urban poor (Golumbeanu and Barnes, 

2013; Kojima and Trimble, 2016; Trimble et al., 2016; Vagliasindi, 2012). 

Focused efforts on identifying best-practices, lessons learnt and barriers in 

urban electrification roll-out are urgently needed to aid implementation in key 

locations that are falling behind. 

 

Policies aiming to achieve the SDG7 target of universal electricity access need 

to facilitate longer-term planning and provide for a decent level of electricity 

service to all beyond just connections. This requires planning for infrastructure 

expansion that is commensurate and scalable to subsequent demand growth as 

incomes rise (Poblete-Cazenave and Pachauri, 2019). Acknowledging the 

significant geographical dimension to electricity access puts remote regions at a 

distinct disadvantage(Korkovelos et al., 2019). However, high grid-connection 

charges, along with other barriers (Lee et al., 2014), can limit the expansion of 

access, even for households under reach of existing national grids. Overcoming 

these barriers requires smart payment schemes and innovative business 

models (Mazzoni, 2019). Challenges with extending central grid infrastructure to 

remote regions has resulted in an increasing market penetration of 

decentralized energy solutions that are forecasted to be the least-cost option to 

bring electricity to households currently without access in many locations across 

the continent (Dagnachew et al., 2017; Deichmann et al., 2011; Mentis et al., 

2017). Care is required in the sizing of such distributed solutions because if 

under-scaled they may be insufficient to meet growing demand from different 

sectors and thus exacerbate inequalities, while an over-sizing could make the 

system economically unsustainable for both users and the companies 

managing the infrastructure (Blodgett et al., 2017).  

 

Finally, universal access to modern, affordable, reliable, and sufficient energy 

shows key interlinkages with most SDGs (Nerini et al., 2018), and in particular 

education (for studying at night, information, communication), health (vaccines 

storage and medical devices), hunger (food storage and greater nutritional 

diversity of fresh goods). With regards to SDG13 on climate action (Casillas and 

Kammen, 2010), previous research has shown that while universal electricity 

access has very little impact on global greenhouse gas emissions (Calvin et al., 

2016; Dagnachew et al., 2018), the electricity requirements for adaptation are 

instead substantial (Parkes et al., 2019; van Ruijven et al., 2019) and thus need 

greater consideration in electrification planning. An insufficient supply might 

leave populations with electricity access exposed to droughts and heat waves, 

whereas a more resilient and abundant supply could provide the means for 

essential services, e.g. water pumping and cooling. 
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 Conclusion  
This paper analysed six years of spatially-explicit electrification data for sub-

Saharan Africa based on an open-access cloud-computing framework using 

remotely-sensed sources. My estimates are consistent with previous global 

analyses, but crucially I show wide hidden disparities of changes in access and 

tier-measured electricity use within countries and provinces. The analysis 

confirms that recent progress towards universal electrification has been made, 

but it shows that nominal access levels are inherently limiting. Focusing solely 

on maximising nominal access levels might even jeopardise the achievement of 

other SDGs, because connections alone do not ensure   actual use of 

electricity, reduce related inequalities, or help achieve co-benefits across 

several other SDGs.  

 

Crucially, I find that among those with access to electricity, a vast distribution 

across access quality tiers exists. I also find that in some countries, where 

recently strong electricity access growth (the main ones being Kenya and 

Ethiopia) has been reported, the estimated final use remains very limited among 

newly electrified households. This is consistent with previous studies finding 

e.g. that per-grid-connected domestic customer power consumption in Kenya 

has declined by almost 70% over the last ten years due to the very low 

consumption of newly connected customers (Taneja, 2018), and that recent 

large-scale national grid electrification investment in Rwanda has hitherto led to 

very low use of newly connected households, with a median of 6 kWh/month 

and limited appliances uptake (Lenz et al., 2017).  

 

Together, these results raise questions over the effectiveness of those 

electrification plans and suggest the need to critically evaluate the success of 

electrification programs beyond their role in boosting the national electricity 

access statistics. This implies that large gaps in unmet demand might remain 

both across and within countries even under a scenario of universal 

electrification by 2030. In turn, this unequal service provision could have serious 

implications for achieving nearly all SDGs, including SDG10 that specifically 

targets the reduction of inequalities, and SDG13 since energy poverty limits the 

capacity of households and productive facilities to adapt to a changing climate 

(Mastrucci et al., 2019; van Ruijven et al., 2019), constrains access to health 

and education services (Bos et al., 2018; Kanagawa and Nakata, 2008), and it 

might affect food security (McCollum et al., 2018) Moreover, I estimate that if 

the electrification pace witnessed in the last six years remains constant, in 2030 

the progress to full electrification in sub-Saharan Africa would be only about 

63%, leaving 520 million still without access. This means that progress must 

ramp-up in the coming decade, and on average 75 million people must receive 

access to electricity each year until 2030. I have shown that the strong 
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demographic growth and migration flows play a very significant role in this 

process. 

 

I argue that electrification projects and monitoring initiatives need to consider a 

broad array of aspects and implications of electrification, and not focus 

exclusively on maximizing electric connections alone. Insufficient power might 

leave many households without the capacity to benefit from productive uses of 

energy, or to adapt to new conditions, even when they are formally classified as 

with electricity access. To this end, properly validated satellite-based estimates 

can be an effective, readily-updated, and low-cost means to complement 

surveying efforts targeted at tracking electrification progress and planning its 

expansion.  
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3. M-LED: multi-sectoral latent electricity demand 

assessment for energy access planning 

 Introduction 
Electricity is a direct input to virtually every economic sector. An abundant, 

affordable, and reliable provision of power is a necessary condition for human 

livelihoods to thrive. This involves the achievement of nearly all the UN 

Sustainable Development Goals (SDGs) (McCollum et al., 2018; Nerini et al., 

2018). Recent statistics on electricity access show that globally just under 800 

million people (about 10% of the global population) live without access to 

electricity, more than two-thirds of which are in sub-Saharan Africa (IEA et al., 

2020). Even in areas reached by electricity infrastructure, a large latent demand 

often persists (Fabini et al., 2014; Falchetta et al., 2020; Poblete-Cazenave and 

Pachauri, 2019). 

In the context of energy planning to eliminate energy poverty, the assessment 

of the long-run electricity demand plays a crucial role (Leea et al., n.d.). 

Namely, the choice of the most efficient electricity supply option and the size of 

the local generation capacity and storage system strongly depend on the 

assumed local demand. In turn, this demand is defined both by the hourly load 

curve and its peaks, and by the total energy consumption. The link between the 

target demand and electricity supply planning becomes very evident when 

carrying out country or regional scale studies with Geospatial Electrification 

Models (GEMs). GEMs are data-intensive computer-based tools that can 

support policymakers in the integrated evaluation of the most suitable and cost-

effective technology for providing electricity access to all settlements (Adkins et 

al., 2017; Cardona and López, 2018; Kemausuor et al., 2014; Korkovelos et al., 

2019; Mentis et al., 2017; Moner-Girona et al., 2019, 2016; Morrissey, 2019; 

Ohiare, 2015; Parshall et al., 2009; Sanoh et al., 2012; Szabo et al., 2011; van 

Ruijven et al., 2012). Thanks to growing data collection and management 

facilities, bottom-up techno-economic electrification analysis has become widely 

available (refer to the Global Electrification Platform and the WRI’s Energy 

Access Explorer). Differently from approaches based on linear programming, 

GEMs do not aim at locally optimising energy systems for specific communities. 

Their main characteristic is that they allow to identify – country or region-wide – 

the optimal set-up (i.e. the technology with the lowest local levelized cost of 

electricity) for providing electricity access at each settlement, along with the 

generation capacity and investment requirements. The cost-optimal set-up 

depends on the local energy resources and existing infrastructure.  
 

Yet, most of the GEM-based literature has been strongly supply-side oriented 

(Morrissey, 2019). Studies have focused mainly on residential energy services 
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when defining the demand of settlements lacking electricity access, and have 

so far exhibited limited capacity of accounting for the electricity demand from 

services and productive uses driven by the presence of farms, small 

businesses, commercial activities, healthcare facilities, and schools. In these 

studies, the residential demand itself has mostly been calibrated with regional 

average residential electricity consumption levels of urban and rural consumers 

(Mentis et al., 2017; Szabo et al., 2011; Szabó et al., 2016; van Ruijven et al., 

2012), with little within-country heterogeneity. Archetypical demand targets 

include – for instance – values for sub-Saharan Arica from the World Bank 

Multi-Tier Framework (Bhatia and Angelou, 2015) or specific per-capita 

consumption levels defined by decision makers under a medium-run time 

horizon (usually 2030, the Sustainable Development Goals target year). 

Many studies exploiting GEMs based on such top-down characterisation of the 

demand have concluded that decentralised energy solutions will play a 

prominent role in guaranteeing that SDG 7.1.1 (the universal electricity access 

target) is met. For instance, the Africa Energy Outlook 2019 (IEA, 2019) argues 

that mini-grids and stand-alone systems will serve 30% and 25% of those 

gaining access, respectively. This means that for more than half of the 

households, the electricity access problem could be solved thanks to 

decentralised energy technologies. Yet, care is required in the interpretation of 

these results. The number and size of non-residential consumers in a 

community can have a crucial effect (Peters et al., 2019) on the total long-term 

energy demand, the peak loads, and consequently a direct effect on the optimal 

energy technology mix (diesel generator, PV, wind, biomass, hydro or hybrid 

technologies), on the optimal technology set-up (i.e. the choice between grid 

extension, mini-grid, or standalone solutions) and on the overall cost-benefit 

analysis of electrification (“A New Nexus Approach to Powering Development,” 

2020; Brüderle et al., 2011; Morrissey, 2018). An inadequate or generic 

formulation of the demand might lead to inefficient allocation of budget and 

sizing of electricity infrastructure (Riva et al., 2019). Moreover, enabling 

services for the community and productive uses of electricity beyond basic 

household needs – such as energy use in agriculture, small businesses, and 

healthcare and education facilities –  is crucial to unleash local economic 

development (Riva et al., 2018). While substantial uncertainty persists over the 

structural welfare impacts of household electrification programs (Urpelainen, 

n.d.), there is robust evidence of the positive effect of electricity provision on 

time spent by household members in income-generating activities (Bernard, 

2010; Bos et al., 2018; Rathi and Vermaak, 2017; Van de Walle et al., 2013). In 

turn – provided a set of conditions is satisfied – the electricity input might 

improve the income of the whole community (Peters and Sievert, 2016). 
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Different approaches have been introduced so far to tackle these limitations. 

For instance, the adoption of more detailed and heterogeneous household 

consumption profiles (Trotter et al. 2017), the use of system dynamics (Riva et 

al., 2019), or the life-cycle assessment of embodied energy in goods and 

services that contribute to providing what is defined decent living energy (Rao et 

al., 2019). Yet, only few (Moner-Girona et al., 2019, 2016; Narayan et al., 2018; 

Zhang and Zhang, 2019) of the existing GEM-based studies have so far taken 

into consideration field-validated load profiles or accounted for the existence of 

services and productive activities to estimate local energy demand 

requirements. To tackle these challenges, it has been argued that planning 

tools need to be improved, and evidence-based projections of electricity 

consumption need to be used (Blodgett et al., 2017; Moner-Girona et al., 2018). 

The main roadblock to deliver a standard methodology to estimate electricity 

demand stems from the data-intensiveness of the estimation, the uncertainty 

over the quality of the existing data and about the different scenarios that 

forecast the energy demand growth over time, as well as the computational 

challenge to produce a high-resolution output.  

To advance the state-of-the art in the characterisation of the demand for 

electricity and ensuring that insights drawn from GEMs are suitable to empower 

communities in the context of electrification planning, here we introduce the 

open-source Multi-sectoral Latent Electricity Demand (M-LED) geospatial data 

processing and assessment platform, developed and maintained by FEEM and 

the Polytechnic University of Milan. M-LED enables an estimation of electricity 

demand in communities that live in energy poverty. The key novelty of the 

platform is its multi-sectoral, bottom-up, high spatio-temporal resolution 

evaluation, which altogether advances the state-of-the-art on latent electricity 

demand characterisation. Here, by latent demand, we refer to demand which 

would exist if the infrastructure and techno-economic conditions to supply it 

would be met. Secondly, besides modelling different non-residential sectors 

including the agriculture, service, and productive activities, the platform includes 

a more detailed assessment of residential demand – representing 

heterogeneous appliances ownership and usage patterns and allowing for 

stochastic variability in the demand. Thirdly, the M-LED platform enables a 

characterisation of the seasonal and hourly variation in the demand from 

different sectors is of crucial importance for properly planning the energy 

system and assessing the complementarity of variable renewable energy 

sources supply curves with the demand.  Finally, the multi-sectoral approach 

includes an assessment on the water-energy needs and the nexus implications 

for agriculture-related activities. This encompasses an analysis of the potential 

revenues and costs from the potential agricultural productivity growth thanks to 

artificial irrigation as a result of the provision of electricity.   
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The remainder of the paper is structured as follows. Section 2 introduces the 

methodology of the M-LED platform to carry out the multi-sectoral, bottom-up, 

high spatio-temporal resolution electricity demand evaluation. Section 3  

presents an application of the platform for country-study of Kenya. Section 4 

discusses the relevance of the results and highlights potential future 

applications of the M-LED platform.  

 Materials and methods 
 

An integrated electrification plan must identify and target population catchment 

areas (in this study defined as clusters; refer to the Appendix 2) and the 

different local electricity consumption drivers. These include residential 

demand, productive activities, and several service-provisioning facilities. The M-

LED platform is an open-source, bottom-up platform designed to characterise 

power requirements across different sectors. The platform combines openly 

available geospatial information, modelling instruments, and scenario analysis 

to support a sectoral-inclusive electrification planning (see the Appendix 2 for a 

detailed description of the underlying Materials and Methods). The input data 

sources are openly accessible and are reported in Table A2.1. The data 

processing procedure collates field and remotely sensed observations. The lack 

of data or uncertainty over future evolutions over certain sectors is tackled with 

explorative modelling. Figure 3.1 offers an overview of the workflow. The 

methodology is based on an array of Python-based open-source GIS algorithms 

(from Quantum-GIS, GRASS-GIS, SAGA-GIS, and GDAL) complemented by 

intermediate R scripting.  
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Figure 3.1: Conceptual framework of the M-LED platform. (a) Residential demand: 

clustering and appliance baskets generation and parsing; (b) Healthcare and 

educational demand: geolocation and classification of facilities and appliance baskets 

generation and parsing; (c) Agricultural uses (irrigation and crop processing) loads (see 

Figure 3 for further details), micro enterprises and commercial demand: drivers of 

energy demand assessment and sectoral demand calculation; (d) Model Output: 

Cluster and Sector -specific yearly Load Curves with month level seasonality and 1-

hour resolution. (e) Assessment of costs and revenues of increased agricultural 

productivity. (f) The produced output is intended to be fed in geospatial electrification 

models for more effective energy planning: this is not included in the present work. 

Source: author’s elaboration. 

 

The platform exploits the RAMP (Remote-Areas Multi-energy systems load 

Profiles) model (Lombardi et al., 2019), which supports the creation of stochastic, 

seasonal-heterogeneous energy demand profiles. The underlying stochastic 

process lies in the structure of the bottom-up model adopted for load profile 

generation (Figure 3.2). The structure consists of three different layers of 

modelling: the User Type, the User and the Appliance layer. “The first layer 

consists in the definition of a set of arbitrary User types (e.g. Household, 

Commercial activities, Public offices, Hospitals, etc.). Each User Type is 

subsequently characterised in terms of the number of individual Users 

associated to that category (second layer) and in terms of Appliances owned by 

each of those Users (third layer). The three-layer structure allows to 

independently model the behaviour of each jik-th Appliance, so that each 

individual ji-th User within a given i-th User Type will have a unique an 

independent load profile compared to the other Users of the same Type. The 

aggregation of all independent User profiles ultimately results in a total load 

profile, which is uniquely generated at each model run. Multiple model runs 

generate different total load profiles, reproducing the inherent randomness and 

unpredictability of users' behaviour and allowing to obtain a series of different 

daily profiles” (quoted from ref. (Lombardi et al., 2019)).  
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Figure 3.2: Schematic framework of the RAMP stochastic load generation model. 

Source. Lombardi et al. (2019).  

The M-LED platform generates instantaneous electricity demand load curves 

(rendered at a one hour time step) and then derives the monthly (seasonal-

varying) and yearly-aggregated consumption levels. The outputs consist of 

georeferenced layers for the estimated latent (i.e. currently unsupplied) 

electricity demand within population clusters from a set of residential, 

productive activities, and services. Residential, health, and education load 

profiles are computed following a probabilistic distribution starting from field 

campaign or literature-validated appliance ownership and use patterns under 

an array of scenarios. Agricultural (irrigation and crop processing) and micro 

enterprises loads are assessed combining techno-economic modelling and 

literature estimates. 

An applicative example for Kenya is provided (with accurate country-specific 

data and a comprehensive assessment on the water-energy needs for 

agricultural activities). The key added value of the M-LED methodology is 

that its results will allow carrying out supply-side planning of energy access 

systems according not only to the energy resource availability but also to the 

local specific community and productive load profiles, including daily, weekly, 

and seasonal variation, which can significantly affect system design (Huld et 
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al., 2017). On top of that, the M-LED geospatial analysis allows to identify 

agricultural productivity growth hotspots where investment can be prioritized 

to leverage the strongest welfare impact. For instance, the platform estimates 

the increase in the revenues from the potential boost in the per-hectare yield 

due to artificial irrigation, which in turn might compensate for the low ability-

to-pay for energy services of rural dwellers (Blimpo and Cosgrove-Davies, 

2019). 

The code and data for the M-LED platform are hosted at the public repository 

https://github.com/giacfalk/M-LED, which also includes a maintained 

documentation at https://github.com/giacfalk/M-LED/wiki.  

 

 

Residential electrification plays a crucial role for human wellbeing, for 

instance by enabling telecommunications, conserving food fresh, indoor air 

circulation and cooling, and night-time activities. In fact, most electrification 

efforts and targets, including SDG 7.1.1, focus on bringing electricity to all 

households. Yet, also a large number of healthcare and education facilities 

face significant constraints in their activity because they are unable to 

operate appliances that are crucial for guaranteeing the wellbeing and 

development prospects of local population (Adair-Rohani et al., 2013; 

Sovacool and Vera, 2014). Finally, the provision of electricity can foster small 

entrepreneurial activities such as small shops, mini-markets, handcraft and 

telecommunication services retail (Bose et al., 2013; Kariuki, 2016; Manggat 

et al., 2018) which can represent a significant leverage for broader socio-

economic development (Kongolo, 2010).  

With regards to residential electrification, to tailor infrastructure efficiently it is 

necessary to distinguish among different household types. A relevant 

example is the introduction of ESMAP’s Multi-Tier Framework for Measuring 

Energy Access (Bhatia and Angelou, 2015). To estimate household demand 

in a flexible way, the M-LED framework is designed to ensure a large degree 

of heterogeneity in residential power demand. We construct 5x2 = 10 

archetypical types (five in urban areas, and five in rural settlements) of 

households by electrical appliance ownership and use patterns. These are 

designed starting from a systematic screening of the literature (Adeoye and 

Spataru, 2019; Blodgett et al., 2017; Kotikot et al., 2018; Lee et al., 2016b; 

Monyei et al., 2019; Monyei and Adewumi, 2017; Sprei, 2002; Thom, 2000) 

about electricity consumption in developing countries and parametrised 
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based on data from recent field visits in Kenya by the authors and their team 

(2019). The empirical screening provides the rationale to compile tables of 

appliances and usage patterns (refer to Appendix 2) for each household 

type. A total number of 22 appliances is selected and modelled across 11 

dimensions (ownership, number of appliances per user, appliance power, 

number of daily functioning windows, windows start and end times, 

percentage of variability of windows start and end times, daily functioning 

time, percentual of random variability of daily functioning time, minimum time 

the appliance is kept on after switch-on event, percentage of occasional use, 

weekend or weekday use). These dimensions are summarised in Table 1. In 

order to account for seasonality of the load in the residential sector, the 

climate variable is taken into account and the months of January and 

December are considered the hottest in the country, while June and July the 

cooler. The appliances related with thermohygrometric well-being inside the 

households, namely fans and air conditioning systems, are modelled 

according to this climatic variability. In detail June and July are assumed to 

have no use of such appliances, and the other months gradually increase 

their use up to a full use in the months of January and December. Given the 

proximity to the equator of the country, dusk and dawn times are considered 

to not vary significantly enough to justify seasonal variation of time of use of 

appliances and lights. The entire set of modelled appliances, users and user 

types with relative parameters are reported in Supplementary File F3.1. 

 

Table 3.1: Dimensions considered in the stochastic demand assessment.  

Source: Lombardi et al. (2019).  

Dimension Description Range 

Ownership 
Category of User that owns the 

appliance 

User 

Type 

Number of 

appliances 

per user 

Number of that specific 

appliance owned by the user 

Non-

negative 

[-] 

Appliance 

power 

Nominal power of the specific 

appliance, allows for a random 

variability in a defined range for 

thermal appliances 

Non-

negative 

[W] 

Number of 

daily 

functioning 

Number of time “windows” in 

which the appliance is used 

during the day 

1-3 [-] 
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windows 

Window 

start and 

end times 

Hours of start and end of time 

windows in which the appliance 

can be used 

00:00 – 

23:59 

% 

variability 

of window 

start and 

end times 

percentage of allowed random 

variation of the length of the 

usage windows 

0-100 

[%] 

Daily 

functioning 

time 

total amount of time that the 

appliance is used during one 

day 

0-1440 

[min] 

% of 

random 

variability 

of daily 

functioning 

time 

percentage of allowed random 

variation of the total daily time 

of use 

0-100 

[%] 

minimum 

time the 

appliance 

is kept on 

after 

switch-on 

event 

minimum amount of time the 

appliance stays on after has 

been switched on 

0-1440 

[min] 

percentage 

of 

occasional 

use 

probability that the appliance is 

used on a single day 

0-100 

[%] 

Weekends 

or 

weekdays 

use 

allows to constrain the usage of 

the appliance only in weekdays 

or in weekends periods 

we / wd 

/ none 

 

Thereafter, the RAMP stochastic demand model (see Figure 3.2) is used to 

simulate for each of the ten household classes a representative community 

of n=100 households (to ensure sufficient stochasticity). For each cluster i, 

The RAMP model generates 12 month-specific load curves (in W), at a 
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minute time-step for 365 days, from which it is easy to calculate the total 

residential power consumption (in kWh). 

To parse the simulated energy demand profiles with each population cluster 

(see Appendix 2), we firstly evaluate the statistical association between the 

distribution of the population with electricity access across electricity access 

tiers (based on validated, satellite-derived data on the prevalent tier of 

electricity access at each pixel (Falchetta et al., 2019) and with reference to the 

World Bank Multi-Tier Framework for measuring energy access (Bhatia and 

Angelou, 2015)) and the type of settlement (urban or rural prevalence (A.J. et 

al., 2019)), the local population density and the distribution of wealth within of 

sub-Saharan African countries (based on household survey data from the 

USAID DHS StatsCompiler (USAID, 2009)). Then, based on the regression 

coefficients we allocate each household without access to electricity 

enclosed in each cluster to each of the RAMP-generated demand profile 

archetypes. The process therefore assumes that the distribution among 

electricity access tiers of those who already today benefit from electric 

services at home in each cluster will also apply to households that will gain 

electricity access in the future. 

The service infrastructure energy demand is modelled in a similar fashion to 

the residential assessment, we design baskets of appliances ownership and 

use for tiers of each category of facility (detailed in Supplementary File F2.2). 

Scientific (Giday, 2014; Olatomiwa et al., 2018) and grey (Action, 2013) 

literature on the theme exists, but is often generic and usually scarce when it 

comes to sub-Saharan Africa. Thanks to a field campaign  conducted under 

the supervision of the authors in primary schools and rural healthcare 

facilities of Kenya and based on a survey and empirical observation of the 

appliance ownership and use, energy consumption, and pupils or hospital 

beds hosted, we are able to reconstruct the field energy demand data in the 

RAMP model and allocate it to the (latent) demand of clusters where similar 

facilities are located. Information on operational healthcare facilities is based 

on open-data on the location and characteristics of public2 healthcare 

facilities (Maina et al., 2019). Similarly, open-data for the position and size of 

schools is retrieved (“Kenya Open Data Initiative - Humanitarian Data Exchange,” 

 
2 To date there is no comprehensive publicly available dataset of private healthcare facilities in sub-
Saharan Africa.  
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n.d.). We classify healthcare facilities into five tiers following the criteria 

presented in the Appendix 2 and the facility type explicated in the original 

dataset (Maina et al., 2019). Once information about the location and typology 

of healthcare and education facilities is compiled, we calculate the density of 

facilities of each tier in each cluster. Based on this information, we estimate 

the total local sectoral demand exploiting the 1-minute resolution, tier-

heterogeneous, monthly-seasonal demand profiles calculated in RAMP. The 

seasonality of school facilities is indeed dependent on the national school 

calendar3, and has been modelled accordingly. 

 

Approximating the residual productive demand from microenterprises (in the 

context of developing countries defined as small businesses employing few, 

generally household-related, people and with a limited turnover) is 

challenging task because of the lack of granular country or region-wide data, 

which makes it impossible to model at an appliance, plant, or facility level. 

Proxy estimation approaches have been introduced (Moner-Girona et al., 

2019; Parshall et al., 2009). Here (Appendix 2) we propose a model based 

on employment, infrastructure proximity, and wealth to create a bottom-up 

residential demand multiplier factor ranging between +30% and + 60% 

(Moner-Girona et al., 2019). In particular, we carry out a PCA (principal 

component analysis) to create a composite index based on relevant drivers 

of productive activities (such as road density, accessibility, employment 

levels and wealth distribution). The composite index is used to define the 

local residential demand multiplier factor, which is used to derive the yearly 

productive demand on top of the residential demand. The baseline load 

curve (share of demand at each hour of the day over the total daily demand) 

of micro productive activities is assumed to follow the same path of that 

described in ref. (Moner-Girona et al., 2019) for Kenya, which in turn is 

derived on real metered data. A seasonal variation is imposed on the 

baseline load curve, so that each monthly curve follows the same monthly 

relative mark-up observed in the residential demand.  

 

 
3 https://publicholidays.co.ke/school-holidays/2020-dates/ 
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Currently in sub-Saharan Africa more than 90% of total cropland is rainfed 

(Xiong et al., 2017), with the figure standing at about 95% in Kenya (The World 

Bank, 2019). Together with the lack of fertilisation, the unmet irrigation water 

demand implies a situation of sub-optimal production, in what has been 

defined the yield gap (GYGA, 2017; Mueller et al., 2012). Moreover, the bulk of 

the production is either for subsistence purposes or is sold to wholesale 

markets unprocessed. This is because of the lack of crop processing 

facilities in most small and medium farm businesses (Sims and Kienzle, 2017, 

2016), also because of the lack of energy supply to power those plants, as 

well as due to market accessibility issues. Most farms thus sell their 

production to few large processing plants or supply it directly to wholesale 

markets, where crops are shipped abroad for overseas processing in larger-

scale and more efficient plants. The transition from rainfed to artificially 

irrigated agriculture through surface or groundwater electrical pumping thus 

provides a relevant example of how an electricity input could dramatically 

boost rural productivity. Moreover, generating value added through local crop 

processing (Kyriakarakos et al., 2020) and retaining it among farms would 

considerably boost local socio-economic prospects, with the potential to set a 

positive feedback involving the entire local rural community. To enable these 

uses, the provision of energy is necessary (Barnes and Floor, 1996; Cabraal 

et al., 2005; Kirubi et al., 2009; Pueyo and Maestre, 2019), along with the 

purchase of machineries and infrastructure. In fact, currently 85% of the 

global population without electricity access is concentrated in rural areas 

(IEA et al., 2020). While planning energy solutions which can 

comprehensively enable agricultural uses might increase the required power 

capacity and upfront investment, it might also render them economically 

attractive because of the significant reduction in the payback time of those 

investment thanks to the increased rural productivity (Kyriakarakos et al., 

2020). 

Following this paradigm, here (Figure 3.3) we estimate the energy 

requirements to enable sufficient artificial irrigation (see Appendix 2 for the 

detailed methodology) and raw crop processing to more refined crop 

products, with the final objective of evaluating the potential local economic 

gains. For irrigation modelling, Agricultural land, hydroclimatic factors, and 

cropping patterns information is conveyed in a set of agroclimatic equations 

to estimate daily irrigation water requirements in each cluster. Then, a 
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groundwater pump model estimates the required power and flow rate of the 

pump as a function of the groundwater dwell characteristics and of the 

irrigation requirements.  

 

For crop processing energy, an extensive literature review of crop processing 

energy requirements in the context of developing countries is carried out and 

associated to crop-specific cropland extent and average yield in each cluster. 

Finally, the most recent database of wholesale prices for a large basket of 

crops in Kenya relative the location of each wholesale market is multiplied to 

the local potential for yield increase of each crop, net of transportation and 

total (installation, operation, and maintenance) pumping costs. 
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 Figure 3.3: Workflow of the agricultural sector in the M-LED framework. (c1) Water 

pumping electricity requirement estimation procedure. (c2) Crop processing electricity 

demand estimation. (c3) Agricultural revenues calculation. Source: author’s 

elaboration.   

 

 

 Results 
 

We select Kenya as a country-case study to provide a proof-of-concept of the 

implementation of the M-LED framework to evaluate sectoral, spatial and 

temporal energy demand heterogeneity. The selection is the result of two 

factors. First, data and geospatial information availability in Kenya is remarkable 

compared to most of SSA countries, which renders the platform implementation 

comparatively more accurate. Second, a large number of assessments have 

been carried out on electricity access planning in Kenya (Berggren and 

Österberg, 2017; Fabini et al., 2014; Moksnes et al., 2017; Moner-Girona et al., 2019; 

Parshall et al., 2009), and thus there are significant opportunities for better 

understanding the impacts of our multi-sectoral, bottom-up electricity demand 

modelling on the outputs of several electrification planning models. On top of it, 

the lack of available and complete field energy profile data in Kenya offers the 

opportunity to the M-LED to evaluate and intercompare the significance of the 

different demand scenarios. A selected list of these studies – all focusing on 

geospatial electrification analysis for Kenya but applying different tools and 

assumptions – include refs. (Lee et al., 2016a; Moksnes et al., 2017; Moner-Girona 

et al., 2019; Parshall et al., 2009).  

The panels of Figure 3.4 provide the resulting spatially-explicit (the original 

results are at a polygonal cluster-dependent resolution; here to ensure a more 

immediate understanding, they are plotted on a 1x1 km grid) sectoral electricity 

latent demand generated for Kenya with the M-LED platform. The estimated 

demand encompasses multiple dimensions: sectoral granularity; monthly 

seasonality in the demand; hourly profile; and spatial distribution of the demand.  
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Figure 3.4A shows the distribution over space of yearly sectoral latent electricity 

demand density (MWh/year/km2). Note that white pixels identify areas with 

either no population or no sectoral latent electricity demand, such as natural 

parks, protected areas, or cropland (for sectors different from agriculture). The 

results show that substantial heterogeneity is observed in the residential and 

commercial and micro-enterprise demand: both are highly correlated with 

population density, with significantly higher latent demand in south-western 

Kenya. Yet in some areas (e.g. in northern Kenya) commercial and micro-

enterprise demand is comparatively lower than the residential demand because 

of lower employment and market accessibility. Irrigation and crop processing 

electricity demand are concentrated in the agricultural districts in the south-west 

of Kenya, while healthcare and education demand are more scattered across 

the country, although with higher density in higher density populated areas. In 

particular, healthcare facilities are highly sparse but at the same time exhibit a 
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high demand density, while schools are relatively more distributed but less 

electricity intensive. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4B depicts the hourly and monthly distribution of the demand across 

sectors.  Residential demand shows a curve with three peaks, during wake-up, 

lunch, and evening times. A similar polymodal distribution characterises 

commercial and micro-enterprise demand Most of the seasonality is explained 

by the variation in the use of air circulation and cooling appliances, since 

residual uses are rather invariant throughout the year given the proximity of 

Kenya to the equator. Educational centres show variation in months of year and 

term breaks with energy demand bimodal distribution with peaks in the morning 

and in the afternoon. Healthcare results show  relatively little seasonal variation, 

with unimodal normal distribution with a peak at midday for healthcare. 

Agricultural-related activities show high seasonal variance in the monthly 

profiles, but the load of the two curves are however flat throughout the energy 

use windows, 5 am – 9 am and 9 – 11 pm for irrigation and 6 am – 6 pm for 

crop processing machinery.   
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Figure 3.4C summarises the yearly aggregated latent demand across sectors in 

Kenya and its repartition among the eight regions of (visualised on a map in 

Figure 3.4D). The country-wide aggregation shows that the supply requirements 

are unevenly split into the residential (at about 1.5 TWh/year, or 48% of the total 

3.1 TWh/year), commercial activities and micro-enterprises (nearly 0.75 

TWh/year, about one quarter of the total), healthcare (about 0.22 TWh/year, or 

7%), education (0.18 TWh/year, 5.7%), irrigation (0.42 TWh/year, 13.5%), and 

crop processing sectors (about 0.07 TWh/year, only about 2%). Additional 

insights are drawn when considering the repartition of those aggregate energy 

requirements across the eight main regions of Kenya, as well as the shares of 

each sector within each region. The Rift Valley region is the region with the 

largest latent demand (about one third of the total latent demand), driven mainly 

by the residential and productive sectors; it is followed by the Western region 

(about 25% of the country latent demand), with a similar repartition. Notably, in 

the Central region irrigation latent energy is by far the first sector (>two thirds of 

the total).   
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Figure 3.4: Sectoral demand loads in population clusters of Kenya estimated with the 

M-LED methodology. (A) Maps of Kenya representing: (i) the estimated residential 

demand density for households that require electrification (MWh/year/km2); (ii) the total 

healthcare and education demand density for facilities requiring electrification 

(MWh/year/km2); (iii) the water pumping and crop processing demand density 

(MWh/year/km2); (iv) the micro-enterprise and commercial activities electricity demand 

density (MWh/year/km2); (B) Total (country-wide) typical daily sectoral load profiles, by 

month (MWh/hour in each demand cluster); (C) Barplots comparing the yearly total 

regional and country-level sectoral latent electricity demand (TWh/year); (D) Map of the 

corresponding regions in Kenya. Source: Author’s calculations. 

 

 

A systematic comparison of our results with previous demand estimates found 

in the literature (in most cases used to parametrise geospatial supply-side 

electrification models) is not straightforward. This is because of the differences 

in both how this demand is formulated (e.g. yearly sectoral consumption in kWh 

or representative day load curves in W) and how it is parsed to settlements 

(urban/rural, poor/non-poor). Nonetheless, a number of insights can still be 

drawn.  

For instance, Moksnes et al. (Moksnes et al., 2017) adopt tier-based values of 44 

and 423 kWh/capita/year for rural households and of 423 and 599 

kWh/capita/year for urban households in the two scenarios they consider. This 

yields to average demand values of 141 and 468 kWh/capita/year for 

D 

 



 

111 

households to be electrified. Yet, the study considers neither the temporal 

variability in the demand nor additional demand sectors. 

Parshall et al. (Parshall et al., 2009) allocate household demand to a range of 

360-1800 kWh/hh/year depending on their urban or rural status and the 

prevalence of poverty in the region where they are located. Productive demand 

is fixed across the same categorisation, with values between 50 and 340 

kWh/hh/year. This results in an average yearly productive to residential demand 

ratio of 0.18  Irrespective of the model not encapsulating an explicit temporal 

dimension of the demand, a peak load is assumed across productive, service, 

and institutional uses of energy through a peak coincidence factor. The authors 

assume the following yearly total electric consumption for different facilities: 

clinic – 360 kWh/year, dispensary – 600 kWh/year, health centre – 2400 

kWh/year, primary school (day) – 1200 kWh/year, secondary school – 2400 

kWh/year, boarding school – 15,000 kWh/year. Hospitals were not included 

because they were assumed to already have adequate access to electricity.  

Moner-Girona et al. (Moner-Girona et al., 2019) define a different load profile for 

each energy demand sector. each load profile is the same all year round 

without seasonal variability but different load peak depending on the location 

(i.e. number of population) year. In particular, for productive activities small-

scale industrial infrastructures with a range of 1500 kWh/year to 3100 kWh/year 

and commercial activities with a range of 1200 kWh/year to 1800 kWh/year year 

are considered, while for household demand they follow the approach of 

(Parshall et al., 2009) to allocate Tier 3 and Tier 4 yearly consumption values, 

i.e. 365 and 1020 kWh/hh/year.  

In the M-LED platform application for Kenya we estimate average urban and 

rural residential electricity demand of 62 and 842 kWh/hh/year, respectively. 

Yet, it must be remarked these values do not represent the heterogeneity in the 

demand that characterised our methodology. The country-wide average yearly 

productive (commercial and agricultural) to residential demand ratio of our 

assessment is of about 0.8, while the services (healthcare and education) to 

residential demand ratio is of 0.25. We calculate average healthcare facility 

consumption values of 2,200 kWh/year for dispensaries, 10,900 kWh/year for 

health centres and 124,886 kWh/year for sub-district hospitals. For schools, we 

estimate a value of about 6,000 kWh/year for a 700 pupils institute.  

In general, this comparison suggests that the detailed characterisation of our 

study leads to significant differences with a number of previous studies. Firstly, 

including productive sectors in our characterisation increases notably both the 

total load of settlements and the productive-to-residential demand ratio. 

Secondly, it leads to a larger spread in the residential demand between urban 

and rural areas. Yet, when encapsulating activities such as artificial irrigation 
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and crop processing, the gap in the demand between settlement types is 

reduced.  

On the other hand, a visual comparison of demand maps suggests that the 

spatial distribution of demand hotspots is identified similarly through different 

approaches, provided sectors additional to the residential demand are 

considered. This is because the key non-residential demand drivers considered 

in these studies are often similar and highly correlated among each other, such 

as population density, urban/rural prevalence, poverty density or wealth 

distribution, and the geographical position of service and productive 

infrastructure and of crop fields. Yet, studies focussing on achieving universal 

electrification based on residential demand only flatten the heterogeneity in the 

demand. For instance, by setting a top-down rural demand they significantly 

underestimate the demand of rural settlements compared to urban areas;  

 

 

The M-LED platform allows the cost-benefit analysis at (partial) local micro-

economic level (Appendix 2). The cost-benefit analysis of the increased 

agricultural yield due to groundwater pumping serves as an applicative example 

to show one of the many aspects of local development that could be triggered 

by electrification. The analysis estimates the irrigation needs to close the yield 

gap by calculating the current yield (in t/ha) of each crop in each agricultural 

cluster and comparing it with the mean yield of the same type of crop in global 

areas falling in the same irrigated agro-ecological zone. The workflow then 

evaluates the potential local economic value added. The potential revenues for 

local producers are calculated by subtracting transport and total pumping costs 

to revenues (in turn calculated assuming the wholesale crop price in local 

markets). It is crucial to remark that these revenues are direct revenues to the 

producers, so they do not include so does not include export, taxes, and 

additional cost components. For the Kenyan case study, each crop wholesale 

price is assumed to be the 2019 price observed at the nearest wholesale 

market to each functional agricultural cluster (obtained from NFAIS, the National 

Farmers Information System of Kenya; http://www.nafis.go.ke). The 

transportation costs of crops from field to wholesale markets are calculated 

including the fuel consumption, truck rental, and time cost of carrying the extra 

agricultural production to the market following the shortest path based on recent 

accessibility maps (Weiss et al., 2018). The pumping costs are calculated 

estimating a multivariate regression of total pumping costs (including 

installation, operation, and maintenance components) on the well depth, the 
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pump yield, and their interaction based on real field data from ref. (Xenarios and 

Pavelic, 2013).  

Figure 3.6A shows the maximum theoretical yield gap in current cropland for 

each specific crop. These aggregated values express the national yield gain 

potential if cropland was optimally irrigated, fertilised and managed (the latter 

two components are not modelled in this study). The results show that 

significant increase in the crop production exists for maize (>6 million 

tons/year), potatoes (>2 million tons/year), sugarcane (about 2.5 million 

tons/year), and bananas and fresh vegetables (both at about 2 million 

tons/year). Yet, the effective profitability of this potential yield gains is a function 

of several factors: crop prices at wholesale markets, groundwater pumping 

costs, and transportation distance and time (and thus costs) to these markets. 

In electrification supply-side analysis, agricultural revenues can be compared to 

the local electrification investment requirement to assess what would be the 

payback time of the local electricity access investment if it was covered by the 

additional agricultural yield generated thanks to electrification itself. 
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Figure 3.6: Potential revenues from the increased agricultural yield thanks to artificial 

irrigation. (A)  Maximum theoretical yield gap for each deployed crop in Kenya (yield 

comparison with and without artificial irrigation) (B) Map of Kenya showing the total 

revenue gain (in USD/ha/year)  at current crop-specific market prices including 

subtraction of field to market transportation costs and groundwater pumping total costs. 

Source: Author’s calculations. 

Figure 3.6B summarises the results of the model-based assessment with a map 

of Kenya plotting the potential revenues (net of transportation and pumping 

costs) from the increased agricultural yield thanks to artificial irrigation at each 

cluster. The map shows that in rural Kenya there are vast areas with gain 

potential of up to 2500 USD/ha (especially in the already comparatively more 

profitable agricultural district in western Kenya), and even larger areas with 

more modest but widespread revenue growth potential. These potential gains 

are very relevant especially if compared to the current income levels of rural 

Kenya. The proportion of Kenyans living on less than the international poverty 

line is in fact at 36.1% (“Poverty Incidence in Kenya Declined Significantly, but 

B 
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Unlikely to be Eradicated by 2030,” n.d.). The poverty line is set at 1.90 USD per 

day in 2011 PPP; thus, assuming an average household size of 3.5 (United 

Nations, Department of Economic and Social Affairs, Population Division, 2019), as an 

yearly household income of 2,427 USD. Overall, summing all the potential 

revenues in the country, a total potential of $4.9 billion/year results, about 5% of 

the 2019 Kenyan GDP. 

 Discussion and conclusions 
A detailed formulation of electricity demand is a crucial factor in energy access 

planning. This is also reflected in the outcome of supply-side electrification 

models.  Here we have introduced M-LED, a flexible platform for generating 

electricity demand curves based on a multi-sectoral bottom-up device-based 

approach. We have then applied the platform to the country-study of Kenya.  

The analysis provided an array of novel insights, the crucial ones being that 

modelling electrification based on residential demand only is likely to strongly 

underestimate the total demand of settlements (and chiefly rural areas), 

confirming recent assessments in the literature (Moner-Girona et al., 2019). In 

particular, including healthcare, education, commercial and micro-enterprise, 

and agricultural energy uses implies (country-wide) a more than doubling of the 

estimated yearly latent demand vis-à-vis residential only. This mark-up is even 

greater in agriculture-intensive rural areas where energy uses for irrigation and 

crop processing might be significant higher in relative terms. Another crucial 

insight is given by our hourly and seasonal-variant formulation of sectoral load 

curves, which could have a significant impact on the optimisation of energy 

systems, in particular when paired with variable renewable energy supply 

curves.  

This paper introduces the demand estimation methodology and results. Yet, 

future functionalities, currently in the design stage, will link the high-resolution 

hourly, seasonal, and sectoral demand estimates into an array of electricity 

supply planning models. The new functionality will allow to carry out an 

independent assessment for several electrification planning models and 

understand the significance of considering the new multi-sectoral and seasonal 

dimensions.  

Concerning the specific country-study of Kenya, our analysis reveals that the 

sectors considered in this study as additional to the residential sector constitute 

a very relevant share of the total latent demand in areas electricity access 

deficit. In aggregated terms, they account for ~53% of the yearly latent 

electricity demand, or 1.65 TWh/year. The ratio between residential and non-

residential demand is even more pronounced in the Central region, where 
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although the household electricity access levels are already quite high, 

agriculture-related activities necessitate significant electricity input which today 

is largely missing. Additionally, in population-dense areas productive and 

commercial demand also has a significant impact on the final regional demand.  

On top of the detailed latent electricity demand results, the M-LED platform 

enables an analysis of the potential economic returns from the agricultural 

sector as a result of the artificial irrigation. This reveals an untapped revenue 

potential (net of transportation and groundwater pumping costs) of about $4.9 

billion/year (about 5% of the 2019 Kenyan GDP). This suggests significant 

untapped potential that in many areas may quickly pay back the electrification 

investment if properly accounted by decision makers in the cost-benefit analysis 

and supported by policies stimulating improved land management and 

fertilisation. Yet, it must be remarked that additional relevant dimensions that 

might affect the results of the analysis in the future include the price change of 

products owing to crop processing and local value creation and the efficiency 

gains in transport from improved road or rail transportation and logistics. 

The M-LED platform is open-source and fully customisable to let the user define 

the bulk of the technical and economic parameters, the devices ownership and 

usage patterns, and the overall infrastructure. Irrespective of the large amount 

of work involved in the development of the M-LED platform and in the 

formulation of its assumptions, limitations remain. Firstly, a limited number of 

sectors is estimated; secondly, the data-intensiveness of the analysis implies 

growing uncertainty over the reliability of the database, as (despite a careful 

data selection and wrangling) some sources such as infrastructure and facilities 

location and characteristics might be outdated or biased; thirdly, while the 

appliance ownership and use baskets are designed after a careful literature 

screening supported by field campaign experience of the authors, residual 

cultural, service, and economic heterogeneity might not be captured in the 

analysis; moreover, in the supply-side analysis a relevant role is played by the 

techno-economic characterisation of technologies, which might however be 

affected by future policies such as subsidies and taxes or specific regulatory 

frameworks; finally, the water and agricultural analysis stands on the 

assumption of an optimal irrigation scheduling and local crop processing based 

on current cropping patterns. 

Another important aspect concerns the complex dynamics that link the provision 

of electricity, the potential structural transformation that will follow, e.g. labour 

market reallocations or the creation of new income generating activities, 

discussed into depth in Chapter 1.3 of this Dissertation. While the M-LED 

platform seeks to fulfil certain a-priori (i.e. policy driven) defined energy service 

needs, such as the uptake and use of given appliances in households, hospitals 
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and schools, part of the energy demand as a result of potential structural 

change is accounted for. In fact, the estimated load profiles for agricultural uses 

(irrigation and crop processing) and small commercial and other productive 

uses (expressed as a mark-up on top of the residential demand) are implicitly 

assuming the resulting energy demand from certain structural changes, such as 

the mechanisation of agriculture and the uptake of productive activities by 

households. Nonetheless, established methodologies to estimate energy 

demand growth (e.g. Stevanato et al., 2020) should be coupled with empirical 

structural change assessments (Chapter 1.3) to explicitly evaluate these 

dynamics in frameworks such as the M-LED platform. 

Overall, our results are potentially beneficial for policy makers, researchers, 

consultants, and other stakeholders involved in the electrification planning. For 

instance, the results could contribute to the prioritisation decisions for the 

allocation of limited governmental funding by leveraging consumers who are 

likely to have the greatest impact on increasing economic growth thanks to the 

provision of electricity to existing productive activities or attracting private 

investments in the most productive areas.  

We encourage further research on the topic and improvements to the state of 

the M-LED platform introduced at the time of the writing of this paper.   A better 

characterisation of potential industrial demand and a dynamic formulation of 

demand  (with intertemporal growth based on income and other determinants) 

represent potential first-order improvements.  
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4. The role of residential air circulation and 

cooling demand for electrification planning: 

implications of climate change over sub-

Saharan Africa 
 

4.1. Introduction 
About 800 million people (>10% of the global population) live without access to 

electricity at home (IEA et al., 2020). Energy poverty prevents households from 

meeting fundamental needs, such as taking actions to autonomously adapt to 

changing environmental conditions. A major adaptation action concerns indoor 

thermal discomfort mitigation. In fact, , at different periods in the year, 

residential buildings are already major drivers of air circulation and cooling 

(ACC) services demand in large parts of the world. Moreover, anthropogenic 

climate change is projected to increase the absolute amount of heat in air, land, 

and water and skew its distribution over space and time. In turn, this will very 

likely boost the demand for ACC services (De Cian et al., 2019; van Ruijven et 

al., 2019) and therefore increase the thermal discomfort exposure of energy 

poor households (Mastrucci et al., 2019; Randazzo et al., 2020). It is estimated 

that over 1.1 billion people globally face immediate risks from lack of access to 

cooling (SEforALL, 2018), including almost half a billion people in poor rural 

areas. On top of that, 2.3 billion people may only be able to less expensive and 

less efficient cooling devices irrespective of having access to electricity 

(SEforALL, 2018). 

 

The use of ACC services has multiple socio-economic implications, and 

especially health benefits, as indoor temperature affects health status 

(Deschenes, 2014; Tham et al., 2020; Vicedo-Cabrera et al., 2018; White-

Newsome et al., 2012), night-time sleep quality (Lan et al., 2017, 2016; 

Obradovich et al., 2017; Pan et al., 2012), and work productivity (Akimoto et al., 

2010; Cui et al., 2011; He et al., 2019; Lorsch and Abdou, 1994; Tanabe et al., 

2007; Yu et al., 2019; Zivin and Kahn, 2016). This broad stream of literature 

agrees upon the fact that ACC services can mitigate large part of the current 

and future indoor thermal discomfort, which is shown to disproportionately affect 

the poor and most vulnerable population groups (Biardeau et al., 2020; Byers et 

al., 2018). 

 

On the other hand, a steeply growing ACC demand has major implications for 

energy systems, both on the demand and supply side (Ciscar and Dowling, 
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2014; Khosla et al., 2020). Currently, cooling energy already accounts for nearly 

20% of the total electricity used globally in buildings (IEA, 2018). In turn, as 

highlighted by SEforALL (2018), cooling is responsible for about 10% of global 

warming and growing rapidly. According to that study, space cooling is also the 

fastest growing energy service in buildings, with their estimates suggesting that 

by 2050 the global cooling electricity demand will rise by 66-180%. Crucial 

factors determining this broad range of uncertainty include the efficiency of 

technologies adopted and of building materials. 

 

Previous studies have quantified global-warming induced amplification of 

energy demand in both seminal (Barker et al., 1995; Hekkenberg et al., 2009; 

Scott et al., 1994; Taseska et al., 2012) and recent (De Cian and Wing, 2019; 

van Ruijven et al., 2019) applications. Related investment requirements for 

adaptation (Davide et al., 2019), including thermal comfort (De Cian et al., 

2019) and costs (Parkes et al., 2019; Rao et al., 2019), have also been 

assessed. In particular, a number of contributions have evaluated the 

residential sector energy demand for heating and air conditioning under 

different climate change scenarios both globally (Isaac and Van Vuuren, 2009) 

and with specific attention to developing countries (Mastrucci et al., 2019 ; 

Wolfram et al., 2012). These assessments have shown that the future climate 

will be a strong driver of energy demand growth.  

 

In spite of the rich background literature (reviewed in Section 2), the lack of a 

planning-oriented analysis explicitly linking potential household ACC demand to 

the large electricity access gap affecting nearly one billion people worldwide, is 

a research gap to be filled. This issue is at the core of Sustainable Development 

Goal 7 (SDG 7), the energy-related goal in the UN’s 2030 Agenda (United 

Nations, 2015). Efficient and effective electricity access infrastructure planning 

strongly depends on local energy demand targets and projections (Lucas et al., 

2017), because the energy demand density over space and time has a major 

impact on the optimal energy system set-up, including technology, generation 

capacity, and investment requirements. Therefore, it is crucial to understand to 

what extent ensuring the possibility to use ACC services at different level of 

appliances adoption and under different climate futures can affect inclusive 

electricity access plans. Namely, planning approaches that ensure thermal 

comfort on top of the baseline household electricity needs. Without accounting 

for these requirements, electrification programs might leave many households 

in deprivation even after they get an electricity connection because of an 

insufficient availability of power for meeting needs such as ACC (e.g. refer to 

Poblete-Cazenave and Pachauri's, 2019 analysis on latent energy demand and 
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IEA's, 2017 focus on the appliances compatible with different types of energy 

access solutions). 

 

Assessing the interplay between ACC needs and electrification planning 

requires quantifying the thermal discomfort that cannot be met because of the 

lack of electricity access and how the situation may exacerbate over time due to 

anthropogenic climate change. In turn, this necessitates an integrated 

understanding of the spatial distribution of populations living in energy poverty, 

of the variability of ACC needs across space and time, and of a modelling 

approach to estimate local electricity requirements. To address these questions, 

we build on the methods introduced in studies examining the linkages between 

temperature, climate change, income, air conditioning ownership and use – and 

therefore the future potential electricity consumption. We calculate spatially-

explicit monthly cooling degree days (CDDs) – a reference metric for space 

cooling needs (CIBSE, 2006; Heating et al., 2009) –, for both the present and 

the post-SDGs horizon (2041–2060) based on Coupled Model Intercomparison 

Project – Phase 6 (CMIP6) climate simulations (Eyring et al., 2016) – a 

consortium of Global Climate Models (GCMs) underlying the reports of the 

Intergovernmental Panel on Climate Change (IPCC). Building on the estimated 

ACC needs, we develop and implement a spatially explicit framework to 

estimate the electricity requirements (on top of archetypical baseline demand 

targets) for a variety of scenarios of appliance adoption, efficiency, and use to 

guarantee thermal comfort in settlements currently without access to electricity. 

The assessment encapsulates assumptions on building and appliance 

characteristics and geo-referenced climate, solar irradiance, human settlement, 

and survey-based wealth distribution data. These steps culminate in the 

calibration of a geospatial electrification model for sub-Saharan Africa – the 

global hotspot of energy poverty – to evaluate the role of ACC for an 

electrification strategy inclusive of adaptation by 2030, the SDG 7 target year. 

Namely, we identify universal electricity access scenarios suitable for 

accommodating current and future indoor cooling needs. The analysis seeks to 

improve the understanding of the role of climate change adaptation actions in 

policies targeting the elimination of energy poverty. Particular attention is 

devoted on the potential of decentralised energy access systems – identified by 

several sources (Dagnachew et al., 2017; IEA, 2019a) as a fundamental 

contributor to closing the energy access gap – to enable ACC services use. 
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4.2. Literature review 
 

Energy poverty does not have a unique definition, because a universally valid 

understanding of what it means to live below the energy poverty line is missing 

(Culver, 2017; Pachauri, 2011). In fact, the definition of energy poverty depends 

on the socio-economic, cultural, and environmental factors at stake at each 

context. Moreover, energy poverty is not a prerogative of low-income countries: 

for instance the EU Energy Poverty Observatory measures the share of income 

spent by households on energy bills and by the inability to keep thermal comfort 

at home in EU countries, finding major issues in different countries where 

income inequality is also prevalent (Thomson and Bouzarovski, 2018). Yet, 

seminal inquiries into its definition in high-income regions, such as the UK 

Government’s Fuel Poverty Review (Hills, 2011) or Thomson et al. (2016)’s 

evaluation of fuel poverty in the EU simply cannot be applied to the context of 

low-income, developing regions. While some similarities can be traced, such as 

the fundamental economic nature of the problem, stark differences exist. In the 

developing world, nearly 800 billion people live without access to electricity and 

2.8 billion lack access to clean cooking (IEA et al., 2020). In these areas the 

lack of infrastructure is the primary cause of energy poverty, while high prices of 

modern energy services relative to income levels are also important.  

 

The lack of a unique, unambiguous definition of energy poverty directly affects 

the capacity to measure it: energy poverty can be evaluated in terms of energy 

access, energy inputs (e.g. energy consumed or income spent on energy), 

outcomes (e.g. adverse socio-economic impacts), and the quality of energy 

delivered (Culver, 2017). In our paper we pay explicit attention to the concept of 

energy poverty in the context of developing countries, namely to questions of 

electricity access, latent energy services demand (Poblete-Cazenave and 

Pachauri, 2019), and energy access infrastructure planning.  

 

Recent contributions have examined energy poverty measurement in the 

context of developing countries to overcome mono-dimensional evaluations and 

allow for a more comprehensive understanding of the challenges involved (Pelz 

et al., 2018). For instance, the IEA developed the Energy Development Index 

(EDI) by calculating an evenly weighted average of three normalized 

components: (i) per capita commercial energy consumption; (ii) the share of 

commercial energy in total final energy use; and (iii) the electrification rate. The 

EDI was criticised by Nussbaumer et al. (2012) because it neglects household 

energy deprivation. The authors introduced the Multidimensional Energy 

Poverty Index (MEPI), which focuses on household energy poverty only. The 

Energy Poverty Index (EPI) (Mirza and Szirmai, 2010) pays strong attention to 
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the issue of opportunity costs as a consequence of energy poverty. In a seminal 

contribution, Bhatia and Angelou (2015) introduced the World Bank Multi-Tier 

Framework, a matrix for measuring and planning energy access across different 

dimensions such as availability, affordability, reliability and consumption. 

Samarakoon (2019) built on this literature to create another framework with 

focus on the justice and wellbeing aspects, crucial to eliminating energy 

poverty. A recent update of the debate on advancing energy poverty 

measurement for SDG 7 is offered by Pachauri and Rao (2020), who criticise 

the complex nature of most multi-dimensional energy poverty measures, and in 

response propose an alternative framework based on energy supply conditions 

and the status of household energy poverty. 

 

The implications of energy poverty for livelihoods and wellbeing are huge, both 

in developing countries and in high-income regions. In the global south 

pervasive energy poverty and lack of energy access determine detrimental 

outcomes for development prospects, public health, gender empowerment, 

education, and the degradation of the natural environment (Sovacool, 2012). A 

discussion paper by Casillas and Kammen (2010) highlighted the crucial nexus 

linking energy poverty and climate change. Thermal comfort and indoor air 

cooling – at the core of the analysis presented in this paper – fall under the 

umbrella of the implications of energy poverty (and the lack of electricity access 

infrastructure) in developing countries and elsewhere. For instance, empirical 

evidence suggests that wellbeing is strongly affected among those living in fuel 

poverty: analysing data from Australia, Churchill et al. (2020) found that fuel 

poverty lowers subjective wellbeing substantially, which large social shadow 

costs. A similar result was observed by Biermann (2016) in Germany, who 

highlighted that the impact found is beyond the effect of mere income poverty. 

Finally, analysing 32 European countries, Thomson et al. (2017) found a higher 

incidence of poor health (both physical and mental) amongst the energy poor 

populations of most countries, compared to non-energy poor households 

 

 

The expanded energy demand (including from the growing need for ACC) as a 

mean to adapt to climate change has been analysed by an at least two decade-

long literature. Early studies came from governmental reports in Germany and 

in the United States that quantified – on aggregate building stock terms – 

moderate decreases in heating energy and similar increases in cooling energy. 

An important advancement was introduced in the work by Scott et al. (1994), 

who evaluated the effects of climate change on commercial building energy 

demand and discussed the importance of considering disaggregated data in 
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impact assessment studies. They highlight that increased humidity could be a 

significant factor in total building energy use.  

More recent studies include the work by Hekkenberg et al. (2009), who highlight 

the importance of socio-economic dynamics in mediating the energy demand 

response to changes in the outdoor temperature. Ciscar and Dowling (2014) 

carried out a systematic review of how integrated assessment models (IAMs) 

have estimated the impacts of climate in the energy sector, including the 

modelling of adaptation. They argue that modelling possible adaptation 

measures and assessing the effects of climate extremes on the energy 

infrastructure are topics that require further attention. Another relevant 

contribution is offered by van Ruijven et al. (2019), who build on empirically 

estimated responses of energy use to income and hot and cold days globally 

and project – for an array of scenarios – very substantial increases in global 

climate-exposed energy demand before adaptation on top of baseline energy 

demand growth. Similar results are found in De Cian and Wing (2019).  

 

Specific focus on the impact of future air conditioning adoption and use is found 

in the work of Davis and Gertler (2015), who used high-quality micro-data from 

Mexico to describe the relationship between temperature, income, and air 

conditioning. Based on the estimated empirical model – where income is found 

to be the main driver of ACC systems adoption – they projected the future 

energy demand growth. The authors concluded highlighting the important role 

of energy efficiency and of cooling technologies. Isaac and van Vuuren (2009) 

carried out a global integrated assessment modelling study of residential sector 

energy demand for heating and air conditioning in the context of climate 

change. They project income growth to be the key driver of energy demand for 

air conditioning throughout the 21st century. The authors assume availability of 

air conditioners as a function of income following a logistic function, with a 

threshold point beyond which ownership increases rapidly. They estimate the 

function using data over economic development and appliance adoption from 

different countries utilizing McNeil and Letschert (2008). Isaac and van Vuuren 

(2009) then define yearly household electricity consumption from air 

conditioning as a function of CDDs and the natural logarithm of income and they 

estimate the equation parameters based on consumption data from the 

literature. Another contribution comes from Gupta (2012), who estimates the 

climate sensitivity of electricity demand in Delhi using daily data on electricity 

demand and apparent temperature through a semi-parametric variable 

coefficient model. The author finds a electricity demand is a U-shaped function 

of temperature, with a steeper slope in the rising part growing over the years 

analysed, implying an increase in cooling demand per unit increase in hot 

months.  
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Mastrucci et al. (2019) estimated the current location and extent of populations 

potentially exposed to heat stress in the Global South applying a variable 

degree days method to estimate the energy demand required to meet these 

cooling needs. They account for spatially explicit climate, housing types, access 

to electricity and air conditioning ownership and find that covering the estimated 

cooling gap entails a median energy demand growth of 14% of current global 

residential electricity consumption. Similarly, Parkes et al. (2019) utilize the 

apparent temperature and humidex metrics to calculate current and future heat 

stress in Africa. They find that climate change is projected to increase the 

intensity of heat stress events in Sahelian Africa and introduce new heat stress 

events in Northern and Central Africa, with consequent increase in energy-

intensive cooling. As the intensity of heat stress increases, they project that 

energy-intensive cooling will increase, with the most affected country being 

Nigeria. They estimate the total increase in energy costs to prevent heat stress 

in Africa at $51bn by 2035 and $487bn by 2076. Finally, the authors highlight 

the issue of supplying this cooling energy demand in poor countries with low 

electrification rates, a topic at the core of our paper.  

De Cian et al. (2019) analysed household survey data across eight temperate 

industrialized countries to explore how households have been adopting air 

conditioning and thermal insulation to cope with different climatic conditions 

(also through their interaction with socio-economic and demographic 

characteristics). Their findings stress the crucial role of income and urbanisation 

in ACC uptake and adoption. Examining the same primary data and countries, 

Randazzo et al. (2020) evaluated household air conditioning adoption and use 

patterns. The authors find that households on average spend 35%–42% more 

on electricity when they adopt air conditioning. They predict adverse impacts of 

climate change on energy poverty through this dynamic, with increasing 

population shares spending significant proportions of their income on electricity 

for ACC purposes. Finally, Colelli and De Cian (2020) carried out a systematic 

review of the methodologies adopted in IAMs to estimate cooling demand for 

thermal adaptation in commercial and residential buildings. They highlight that 

models lacking extensive margin adjustments (i.e. long-term demand responses 

driven by an increase in the penetration of ACC appliances) systematically 

underestimate the additional cooling needs of the building sector. They suggest 

future research to look more in detail into ACC appliances adoption modelling.  

 

Global modelling exercises carried out by the IEA (2019b, 2018) have estimated 

that by 2050 the global cooling electricity demand will rise by 66-180%, with the 

global air conditioner stock reaching about 5.5 billion units from the current ~2 
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billion. The IEA argues that efficient cooling technology and building materials 

use scenario would imply an ACC electricity demand about half compared to a 

Reference Scenario, and one third less power generation investment (about $3-

$2tn globally, respectively). To conclude, Laine et al. (2019) evaluated the 

potential of the increased electricity demand from growing AC adoption and use 

to boost solar PV capacity expansion, in particular because areas of high 

cooling requirements tend to coincide with areas of high PV generation 

potential. They argue that a majority of the rapidly increasing cooling demand 

could be met with PV and small-scale distributed storage.  

 

Building on this rich literature background, our study is unique in its kind as it 

explicitly draws the line between poverty, climate change, future ACC energy 

demand and electricity access planning. 

 

 Materials and methods 
 

Figure 4.1 summarises the analysis carried out in this paper. The methodology 

is divided into four main parts, also highlighted in dedicated sections below: 
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Figure 4.1 | Methodological framework of the analysis. (1) General workflow; (2) CDDs 

calculation; (3) Electricity demand estimation; (4) Electrification modelling. 

 

1. Calculation of cooling degree days (CDDs) based on both historical data 

and future climate change projections; assessment of the distribution of 

CDDs among households without electricity access; 

2. Empirical modelling to define ACC appliances adoption based on 

household wealth and its evolution and urban/rural prevalence; design of 

additional appliance adoption scenarios to appraise potential ACC policy 

objectives;  

3. Energy demand modelling to estimate potential ACC-driven energy 

consumption among households without electricity access under different 

scenarios;  

4. Geospatial electrification modelling to evaluate the role of potential ACC 

energy demand in electricity access infrastructure planning; results on 
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system configuration, power generation capacity requirements, and 

investment needs.  

 

 

We calculate the average monthly CDDs – defined as the degrees that the 

average day of each month’s temperature is above an arbitrarily defined 

comfort temperature (Tbase) – at each 0.5° grid cell. To derive CDD from 

average monthly minimum, mean, and maximum temperature values, we 

implement the CDD methodology developed by the UK Met Office (Spinoni et 

al., 2018), which is reported in Table 4.1. The methodology represents a step 

forward from the traditional CDD calculation as the difference between the daily 

or monthly mean temperature and Tbase, because it explicitly accounts for the 

temporal distribution of heat during the average day of a given month. The main 

limitation of the methodology is that it does not directly account for humidity, 

which can alter the amount and perception of heat in the air. Yet, humidity is 

considered in the sensitivity analysis where we use wet-bulb temperature CDDs 

(Appendix D). These are not used as the reference variable because relevant 

data is still lacking for the latest CMIP6 climate projections.  

 

Table 4.1: CDDs calculation methodology 

 

In the analysis, a base temperature (Tbase) of 26° C is considered. While most 

global assessments use a Tbase of 18.3° C, we calculate CDDs at a base of 26° 

C because the electricity access deficit is concentrated in areas with tropical 

and equatorial climates where the mean yearly temperature is significantly 

higher than the global mean temperature. This base temperature is also 

adopted in the literature on cooling needs in the Global South (Mastrucci et al., 

2019). Tbase values of 22°, 24° and 28° are also utilized for examining the 

sensitivity of the results to the choice of comfort temperature (Tbase) following 

Dongmei et al. (2013). 

 

CDDs are calculated on both historical and projected future climate data for the 

2041–2060 horizon. The calculation of historical CDDs is based on 1970-2000 

Condition CDDs 

𝑇𝑚𝑎𝑥 ≤ 𝑇𝑏𝑎𝑠𝑒 𝐶𝐷𝐷 = 0 

𝑇𝑎𝑣𝑔 ≤ 𝑇𝑏𝑎𝑠𝑒 < 𝑇𝑚𝑎𝑥 𝐶𝐷𝐷 =
(𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒)

4
 

𝑇𝑚𝑖𝑛 ≤ 𝑇𝑏𝑎𝑠𝑒 < 𝑇𝑎𝑣𝑔 𝐶𝐷𝐷 =  [
(𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒)

2
 - 

(𝑇𝑏𝑎𝑠𝑒 − 𝑇𝑚𝑖𝑛)

4
] 

𝑇𝑚𝑖𝑛  ≥  𝑇𝑏𝑎𝑠𝑒 𝐶𝐷𝐷 = 𝑇𝑎𝑣𝑔 − 𝑇𝑏𝑎𝑠𝑒 
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monthly average data from WorldClim (Fick and Hijmans, 2017), while future 

(potential) CDDs are projected based on the median of CMIP6 downscaled, 

bias-corrected climate change simulations produced from eight GCMs (BCC-

CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, IPSL-CM6A-LR, 

MIROC-ES2L, MIROC6, MRI-ESM2-0) for the period 2041–2060. For the future 

climate change, we refer to the CMIP6 scenarios SSP245 (the update of 

RCP2.6 based on SSP1) and SSP370 (the update of RCP4.5 based on SSP2) 

scenarios. These integrated scenarios describe interactions between global 

socio-economic development pathways, namely the Shared Socio-Economic 

Pathways (SSPs), namely the drivers of greenhouse gas (GHG) emissions from 

anthropogenic activities, and the Representative Concentration Pathways 

(RCPs), i.e. the resulting GHGs concentrations in the atmosphere. The logic 

and construction of SSP-RCP integrated scenarios are described in detail in 

O’Neill et al. (2016). Scenarios SSP245 and SSP370 represent intermediate 

emission variants that assume sustainability-focused and middle-of-the road 

socio-economic trajectories, respectively. SSP245 is more likely than not to 

result in global mean temperature rise between 2-3° C by 2100, while SSP370 

represents the medium-to-high end of the range of future emissions and 

warming, and it is a baseline outcome rather than a mitigation target (Pachauri 

et al., 2014). 

 

 

First, the spatial distribution of populations currently living without access to 

electricity is approximated based on the methodology described in Falchetta et 

al. (2019). The approach combines the 2019 NOAA Suomi NPP-VIIRS 

(National Oceanic and Atmospheric Administration, Suomi National Polar-

orbiting Partnership satellite, Visible Infrared Imaging Radiometer Suite sensor) 

night-time light imagery (as a proxy of electricity access infrastructure proximity) 

– calculated as the median raster of monthly composites (with a 0.3 μW · cm-

2 · sr-1 noise threshold), and the WorldPop 100 m resolution gridded population 

dataset (Tatem, 2017). The approach estimates populations living in areas that 

are dark at night, and thus considered without reliable electricity access. The 

estimation methodology produces a global total of ~880 million people without 

access to electricity, which is quite consistent with recent assessments of global 

electricity access deficit (IEA et al., 2020). As discussed in Falchetta et al. 

(2019) this estimate is highly correlated with field measured electricity access 

levels at both national and sub-national levels. Note that in the electrification  

modelling exercise, the population is then projected to 2030 with heterogeneous 

urban-rural population growth based on UN-DESA (2018) projections. 

Then, we estimate potential ACC demand (PACC), defined as the CDDs that 

cannot be mitigated at time t because of the lack of electricity access, but which 
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would drive energy consumption if households had both an electricity 

connection and an ACC appliance available. We calculate PACC at each grid 

cell i as a weighted sum:  

 

𝑃𝐴𝐶𝐶𝑖 = ∑
𝑃𝑂𝑃𝑖𝑡

𝑛𝑜𝑎𝑐𝑐

𝐻𝐻𝑠𝑖𝑧𝑒𝑖
× 𝐶𝐷𝐷𝑖𝑡

𝑇=12

𝑡

 

(Eq. 4.1) 

where: 

• POPnoacc is the population without electricity access estimated with 

nighttime light data; 

• 𝐻𝐻𝑠𝑖𝑧𝑒𝑖 is the local average household size (calculated at each grid cell 

using UN-DESA, Population Division (2019) data on country-level 

average household size and a urban-rural adjustment factor); 

• CDDs are the local cooling degree days (CDDs) for each month of the 

year t for both the present and future climate change scenarios. 

 

 

 

AC penetration occurs mostly at the extensive margin, i.e. in response to 

changing income and climate conditions (Colelli and De Cian, 2020; IEA, 2020), 

while also urbanisation is shown to play a significant role (De Cian et al. 2019). 

In particular, following seminal empirical two-stage model of AC adoption based 

on country-level analysis worldwide (Isaac and van Vuuren, 2009; McNeil and 

Letschert, 2008), we define AC penetration 𝑃𝑖
𝐴𝐶 as: 

 

𝑃𝑖
𝐴𝐶 = 𝐴𝑉𝑖  × 𝐶𝑀𝑆𝑖 

(Eq. 4.2) 

 

where 𝐴𝑉𝑖 is availability (a function linking income and the potential to purchase 

AC units),  defined through the following empirical logistic function (from Isaac 

and van Vuuren, 2009): 

 

𝐴𝑉𝑖 =
1

1 + 𝑒4.152 × 𝑒
(−0.237 ×

𝑃𝑃𝑃𝐺𝐷𝑃𝑖
2030

1000 )

 

(Eq. 4.3) 
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where:  

• 𝑃𝑃𝑃𝐺𝐷𝑃𝑖
2030 is the purchase-power-parity per-capita GDP in year 2030 

in 1995 US Dollars at grid cell i 

• e is the exponential function 

• 𝐶𝑀𝑆𝑖 the climatic maximum saturation (a function linking local CDDs 

with the probability of purchasing AC units), defined from McNeil and 

Letschert (2008). 

 

In turn, 𝐶𝑀𝑆𝑖 (also from Isaac and van Vuuren, 2009) is defined as: 

 

𝐶𝑀𝑆𝑖 = 1 − 0.949 × 𝑒(−0.00187×𝐶𝐷𝐷𝑖
𝑦𝑒𝑎𝑟𝑙𝑦

) 

(Eq. 4.4) 

where:  

• 𝐶𝐷𝐷𝑖
𝑦𝑒𝑎𝑟𝑙𝑦

 are the cumulative CDD experienced each year at each grid 

cell i.  

 

Since our analysis looks at future adoption and use of AC, we estimate future 

sub-national income level change with respect to the present. Here, future PPP 

per-capita GDP at year 2050 (𝑃𝑃𝑃𝐺𝐷𝑃𝑖
2050) at each grid cell i is calculated as: 

 

𝑃𝑃𝑃𝐺𝐷𝑃𝑖
2050 = ∑ 𝑊𝑄𝑘

𝐷𝐻𝑆 ×  (1 + 𝐻𝐺𝑅𝑘
𝐷𝐻𝑆)

30
 × 𝑃𝑃𝑃𝐺𝐷𝑃𝑘

2020 × (1 + 𝐻𝐺𝑅𝑐
𝑊𝐵)30

𝐾=5

𝑘

 

 (Eq. 4.5) 

 

where: 

 

• 𝑊𝑄𝑘
𝐷𝐻𝑆 is the share of the population in each wealth quintile k according 

to the latest available DHS survey. Wealth distribution, expressing the 

share of households in each wealth quintile compared to the national 

distribution, is a proxy for household income.  

• 𝐻𝐺𝑅𝑘
𝐷𝐻𝑆is the assumed yearly average rate of change in the share of 

people living in wealth quintile k. It is used to (linearly) project future 

wealth distribution. It is calculated based on the historical evolution of the 

distribution of wealth at sub-national scale from DHS surveys. Virtually all 
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provinces have been surveyed more than one time in the last twenty 

years, so we can calculate the average historical shift in the distribution 

of wealth (based on the number of years between the different survey 

waves). 

• 𝑃𝑃𝑃𝐺𝐷𝑃𝑘
2020 is each country’s PPP per-capita GDP in year 2020. 

• 𝐻𝐺𝑅𝑐
𝑊𝐵 is the average per-capita PPP GDP growth rate for the 2020-

2050 period based on the SSP2 projections (Riahi et al., 2017).  

 

In the calculation, we assume that the 𝑃𝑃𝑃𝐺𝐷𝑃𝑘
2020 approximates the average 

income level of people in the third wealth quintile (50% richest share of the 

population), and therefrom we derive PPP per-capita GDP at other wealth 

quintiles for both the present and the future. Conversion to 1995 PPP constant 

USD of current GDP is carried out with the World Bank GDP deflator (indicator 

NY.GDP.DEFL.ZS). Moreover, since DHS surveys are urban-rural stratified, the 

AC penetration assessment is inclusive of urban-rural heterogeneity.  
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Figure 4.2 | Map of the modelled air conditioning penetration rates in 2050 in the 

empirical appliance adoption scenario for SSP2-45. 

Figure 4.2 plots the estimated AC penetration rate around year 2050 at the pixel 

level for SSP2. The results show significant variability, with southern and 

western African countries achieving significant AC penetration, while in broad 

areas of central and eastern Africa, with the exception the main urban centres, 

AC penetration remains below 5% even after 2050. These results are 

consistent with the modelling results of country-level AC ownership in 2050 

carried out in IEA (2020), with most SSA countries still showing generally low 

levels of AC adoption. Alternative estimates under other SSP scenarios can be 

found in Figure B.3 in the Appendix. 
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In the empirical AC penetration modelling, large shares of rural populations 

remain without AC. Yet, given the possibility that the historical relationship 

between income, climate and AC adoption considered in the assessment will 

not hold in the future or in the context of SSA, we also simulate two 

representative scenarios of ACC appliances adoption. These scenarios can be 

thought of as archetypical policy objectives where more people are able to 

mitigate the CDDs they experience. In these representative scenarios, we 

consider separate adoption rates for rural and urban households (HHs) and we 

link them to the most recent provincial wealth distribution across households 

from DHS surveys. Urban and rural areas are identified based on the GHS-

SMOD 2015 settlements classification to classify populations grid cells either as 

urban (GHS-SMOD≥30), or as rural (11≤ GHS-SMOD≤23), or as not inhabited 

(GHS-POP=0) (see Pesaresi et al., 2015 for classification details). We then 

refer to the United Nations’ statistics on the average household size in urban 

and rural areas of each country (United Nations, Department of Economic and 

Social Affairs, Population Division, 2019) to define the number of households in 

each rural and urban cell of each country.  

Based on this information, we design two representative technology adoption 

scenarios additional to the empirical scenario (named S0): 

• S1 (lower AC penetration): the 80% wealthier urban HHs use AC, the 

20% wealthier rural HHs use AC; the remaining HHs use fans; 

• S2 (higher AC penetration): 100% of urban HHs use AC; the 50% 

wealthier rural HHs use AC; the remaining HHs remaining use fans; 

 

How can these significantly more ambitious targets than estimated from the 

empirical AC penetration modelling based on historical global trends be 

framed? Currently total AC penetration rates in some rapidly developing 

countries with a warm climate, such as Mexico, Brazil, and Indonesia, stands 

between 10-20%. But in China they reach 60%, irrespective of similar PPP per-

capita GDP levels to those countries, highlighting the crucial role of policy. 

According to Goldstein Market Intelligence (2020), air conditioner stocks will 

reach 1.5 billion units in Africa by 2030, more than doubling the stock in 2015. 

For instance, in Nigeria, more than half a million air conditioning units are 

bought each year and the number is increasing by 4-5% annually (SEforALL, 

2018). Recent reports (Anderson et al., 2020) discuss how upcoming cost-

effective and efficient units might boost the policy support for AC.  

 

In the analysis, this appliance adoption classification is relative to HHs facing 

unmet CDDs, i.e. currently lacking electricity access. Consistently with the 



 

141 

literature, even in these scenarios adoption is conditional on the geographical 

distribution of wealth and on the urban or rural status of HHs (Davis and Gertler, 

2015; Isaac and van Vuuren, 2009) and electricity consumption in recently 

electrified areas (Lenz et al., 2017; Taneja, 2018).  

 

 

 

Once AC adoption is modelled, we estimate electricity consumption at each 

location. ACC electricity requirements are firstly modelled technically, namely 

as the physical energy that would be required to mitigate all the CDDs at each 

location. As a second step, demand is modelled  economically, i.e. as function 

of the expected income growth at each location and of the electricity demand 

response based on literature-derived empirical estimates of the income 

elasticity of electricity demand. The technical modelling of the AC demand is 

described in detail in Appendix A. This section focuses on the energy-economic 

modelling.  

 

Since we are analysing households currently without electricity access and thus 

with no energy consumption, we modulate the effect of income on future AC 

use. We assume baseline consumption at the representative values of WB-MTF 

Tiers 2-3 and 3-4 in urban and rural areas, respectively (depending on the 

scenario considered and to match the baseline electricity consumption values 

considered in the geospatial electrification analysis; see Section 4.3.7) to 

estimate the future electricity consumption (𝐸𝐿𝐶𝑂𝑁𝑆2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

). The projection is 

based on empirical estimates of the income elasticity of electricity demand 𝜖𝑑 in 

developing countries from the literature (Table 2) coupled with average and 

(future) estimated income level change to estimate growth in consumption of 

electricity: 

 

𝐸𝐿𝐶𝑂𝑁𝑆2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

= 𝑓(𝜖𝑑) 

(Eq. 4.6) 

 

In particular, consistently with Poblete-Cazenave and Pachauri (2019) and 

Fouquet (2014), a non-constant income elasticity of electricity demand schedule 

is considered, with declining elasticities as income (in our analysis based on 

income quintiles) grows.  
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Table 4.2: Literature estimates of the income elasticity of electricity consumption in 

developing countries considered in the current analysis 

 

 

 

 

 

 

 

Based on these elasticities, we then define the effective AC consumption that 

could be achieved at a given income level (𝐴𝐶𝑖
𝑐𝑜𝑛𝑠) as 

 

𝐴𝐶𝑖
𝑐𝑜𝑛𝑠 = {

𝐴𝐶𝑖
𝑡𝑒𝑐ℎ𝐷 𝑖𝑓   𝐴𝐶𝑖

𝑡𝑒𝑐ℎ𝐷 < 𝐸𝐿𝐶𝑂𝑁𝑆𝑖2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

𝐴𝐶𝑖
𝑡𝑒𝑐ℎ𝐷  × 𝑟𝑎𝑡𝑖𝑜𝑖 𝑖𝑓  𝐴𝐶𝑖

𝑡𝑒𝑐ℎ𝐷 ≥ 𝐸𝐿𝐶𝑂𝑁𝑆𝑖2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

 

(Eq. 4.7) 

where: 

• 𝐴𝐶𝑖
𝑡𝑒𝑐ℎ𝐷 is the estimated technical electricity demand (without the income 

constraints, just based on the physical cooling needs), as detailed in the 

Appendix. 

• 𝐸𝐿𝐶𝑂𝑁𝑆2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

 is the total electricity consumption i (inclusive of ACC 

use) that household i can achieve by 2030 based on its projected income 

and the associated income elasticity of electricity demand 𝜖𝑑. 

Thus, If 𝐸𝐿𝐶𝑂𝑁𝑆2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

 is sufficient to accommodate 𝐴𝐶𝑖
𝑡𝑒𝑐ℎ𝐷, then we assume 

that the technical energy demand will be met. If it insufficient, it is modulated by 

𝑟𝑎𝑡𝑖𝑜𝑖, defined as 

𝑟𝑎𝑡𝑖𝑜𝑖 =
𝐸𝐿𝐶𝑂𝑁𝑆2030

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

𝐴𝐶𝑖
𝑐𝑜𝑛𝑠  

(Eq. 4.8) 

 

Namely, 𝑟𝑎𝑡𝑖𝑜𝑖  applies to those cases where 𝐴𝐶𝑖
𝑡𝑒𝑐ℎ𝐷 cannot be met because it 

is greater than 𝐸𝐿𝐶𝑂𝑁𝑆2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

. 𝑟𝑎𝑡𝑖𝑜𝑖 expresses the share of potentially 

Study Country εd Linked to 

Maria de Fátima et al., 2012 Mozambique 0.69 Wealth Q1 

Filippini and Pachauri, 2004 India 0.637 Wealth Q2 

Tiwari and Menegaki, 2019 India 0.41 Wealth Q3 

Anderson, 2004 South Africa 0.32 Wealth Q4 
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achievable demand 𝐸𝐿𝐶𝑂𝑁𝑆2030
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

 over the locally estimated technical ACC 

energy consumption (𝐴𝐶𝑖
𝑐𝑜𝑛𝑠).  

 

Note that this income constraint to is only applied to 𝐴𝐶𝑖
𝑡𝑒𝑐ℎ𝐷 in S0 (the empirical 

AC adoption scenario). For this scenario, Figure B.6 in the Appendix shows the 

residual unmet cooling energy demand gap as a result of income constraints. 

For the representative scenarios S1 and S2, the whole estimated technical 

energy requirement to ensure thermal comfort is considered. For the purpose of 

our analysis, this decision enables quantifying the economic barrier to the 

achievement of indoor thermal comfort.  

 

 

In both the empirical and the representative technology adoption scenarios, 

fans are assumed to be adopted by all households who do not own AC. The 

monthly hours of fan use are set to range between a minimum of 0 and a 

maximum of 16 hours × 30 days = 480 hours per month. The variation in use is 

proportional to the CDDs experienced at location i in month m relative to the 

mean monthly CDDs in the entire year. The fan is modelled as a 70W appliance 

absorbing continuous peak power, and thus consuming 0.07 kWh/hour of use. 

Note that a fan is not a perfect substitute to an AC system. Fans do not cool the 

surrounding space and thus do not truly mitigate CDDs. They however move air 

and disperse humidity, which still help dealing with high temperatures.  

 

 

Sensitivity of the electricity requirements and potential CO2 emissions is carried 

out over two crucial parameters: the base temperature Tbase and the energy 

efficiency ratios (EERs) of the representative urban and rural houses. The 

parametric space of the sensitivity analysis is summarised in Table 3. The 

baseline value is listed in bold.  

 

Table 4.3: Parameters considered in the sensitivity analysis  

 

 

 

 

 

 

Parameter Values 

Tbase (°C) 22, 24, 26, 28 

EER (urban) 2.2, 2.9, 3.2 

EER (rural) 2, 2.2, 2.9 
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We implement the Open-source Spatial Electrification Tool (OnSSET) 

geospatial electrification model introduced in Mentis et al. (2017) and updated in 

Korkovelos et al. (2019) to evaluate the ceteris paribus relevance of considering 

different demand scenarios, both with and without ACC and based on different 

baseline values, for: (i) the optimal electricity access planning technological set-

up; (ii) the power generation capacity requirements; and (iii) the investment 

needs.  

OnSSET is a bottom-up electrification planning tool that estimates the locally 

least-cost energy access system (namely, the technology with the lowest 

levelized cost of electricity) at every geographically defined location of a region 

for the achievement of electricity access goals. The tool takes as inputs 

spatially-explicit datasets (reported in detail in Table C.2 with the corresponding 

sources for the data used in this analysis), including the local renewable energy 

potential, the price of diesel in every settlement, additional information such as 

distance from the currently existing transmission grid, and – crucially to the aims 

of the current analysis – the electricity demand at each grid cell. The technology 

choice space includes central grid expansion and densification, mini-grids 

powered by solar PV, wind, hydro or diesel, or standalone PV systems and 

diesel generators. Details about the functioning of the model are reported in the 

official documentation of the model at https://onsset.readthedocs.io. In this 

paper, the analysis is carried out at a 1 km resolution, meaning that optimisation 

is carried out recursively for each real unit.  

 

Table 4.4 summarises the parametric space for the scenarios considered in the 

electrification analysis, which are derived from the interplay of (i) the baseline 

demand, differentiated in urban and rural settlements and imposed top-down 

referring to the electricity consumption levels from the World Bank Multi-Tier 

Framework (Bhatia and Angelou, 2015); (ii) the ACC appliances adoption 

scenario, which as described above determines the share of households at 

each grid cell adopting either air conditioning systems or fans for air circulation 

purposes; and (iii) the underlying climate change scenarios, based on the 

monthly local CDDs and expressing the location-specific energy need to 

mitigate excess heat. NoAC scenarios only consider the baseline demand; the 

other variants add the estimated ACC demand on top of baseline demand 

based on the technology adoption (determining ACC and fans adoption) and 

climate change scenarios (determining the CDDs experienced) interplay.  

 

A necessary remark concerns the intertemporal dimension of the analysis: the 

electrification modelling aims at achieving 100% access by 2030 for the 

simulated scenarios. Yet, apart from the baseline climate scenario, the SSP245 
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and SSP370 scenarios are relative to warming levels for the 2040-2060 period. 

This is a deliberate choice because the objective of the analysis is assessing 

the planning of energy access solutions that can prove effective in mitigating 

future heat stress, at least over the medium-run and the systems lifetime. It is 

also worth mentioning that in the electricity access Tiers from the Bank Multi-

Tier Framework (see Bhatia and Angelou, 2015, Conceptualisation Report) AC 

use is only considered in Tier 5, so there is no concern over double accounting 

of consumption. Conversely, fan use is already accounted for in Tier 2 

(minimum 29.2 kWh/hh/yr), Tier 3 (minimum 87.6 kWh/hh/yr) and Tier 4 

(minimum 175.2 kWh/hh/yr). These values are therefore subtracted to avoid 

double fan consumption accounting.  

 

Table 4.4: Parameters considered in the geospatial electrification analysis 

Baseline demand 

(kWh/hh/yr) 

Tech. 

adoption 

scenario 

Climate change scenario 

 

U: 1250; R: 365; 

U: 365; R: 73 

 

noAC,  

Empirical 

(S0),  

S1, S2 

Baseline,  

SSP245,  

SSP370 

 

Finally, Table C.1 details the assumed average techno-economic specific 

parameters, which refer both to the general analysis (such as the discount rate, 

which is set in line with the yield of long-run governmental bonds of SSA 

governments as reported at https://www.investing.com/rates-bonds/african-

government-bonds), the specific electrification technologies represented in the 

model.  
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Figure 4.3 | Average monthly CDDs for the 2020 and 2040-2060 period in areas 

with electricity access deficit. (A) Historical CDDs based on WorldClimate 1970-

2010; (B) Projected % change in CDDs for CMIP6 output from the eight CMIP6 GCMs 

considered forced on SSP245; (C) Projected % change in CDDs from the eight CMIP6 

GCMs considered forced on SSP370. 

 

Figure 4.3 summarises the results of the calculation for both the present and 

future climate change scenarios. Globally, CDDs in areas currently without 

electricity access exhibit considerable spatiotemporal variation across regions 

and seasons (Figure 4.3A). On average, at Tbase = 26 °C households without 

access to electricity are currently experiencing 450 CDDs/yr of unmet cooling. 

Notably, three quarters of the populations without access experience only about 

one sixth of the global unmet CDDs due to electricity access deficit. Conversely, 

nearly half of the CDDs are faced by just about 10% of the population without 

access. This implies that in those areas it is particularly crucial to plan for 

technological solutions to provide electricity access that are compatible with the 

provision of ACC services.  

 

In the first months of the year, unmet CDD hotspots are observed in the regions 

near the Equator and in Southern Africa. In the following months, a strong 

intensification is observed in the Sahel and South-East Asia (e.g. India, 

Bangladesh) until the onset of the rainy season. The last months of the year 

display a less extreme but also more widespread diffusion of unmet CDDs 

across global hotspots of electricity access deficit. In absolute terms, the Sahel 

stands out as the region with the absolute highest number of unmet CDDs. On 

the other hand, East Africa is the region with an electricity access deficit that 

displays the least ACC requirements throughout the year. Additional details on 

the country-level yearly distribution of unmet CDDs is found in Figure B.1 in the 

Appendix, both in terms of the absolute number of CDDs (Panel A) and relative 

to the number of people living without access to electricity (Panel B). 

 

Concerning the future evolution driven by anthropogenic climate change (using 

data from the CMIP6 simulations for 2041-2060 under the SSPs 245 and 370 

scenarios), CDDs will grow robustly worldwide. If assuming ceteris paribus 

climate change, households currently without electricity access might become 

exposed to 715 CDDs/yr by 2050; the strongest intensification will likely be 

observed in large parts of Southern and East Africa in June-August. The maps 

in Figures 3B and 3C also provide evidence of the difference between the two 

warming scenarios considered in terms of the relative change from a today’s 

baseline in terms of unmet CDDs in current electricity access deficit hotspots. 

Finally, Figure B.1C in the Appendix plots the absolute change in the CDDs in 
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the current situation with the potential growth to 2041-2060 under SSP370. The 

results reveal that the harshest consequences of anthropogenic global warming 

on cooling needs (thus also depending on the exposed population without 

electricity access) are expected in Nigeria (+25,000 million CDDs)1, the 

Democratic Republic of Congo (+15,000 million CDDs)  and India and Sudan 

(both at about +10,000 million CDDs). Greater detail on the distribution of CDDs 

across months of the year across the three scenarios considered can be drawn 

from Figure B.2 in the Appendix. Sensitivity analysis results based on daily 

historical data and wet bulb CDDs, both at a higher resolution of 0.25° (Mistry, 

2019a, 2019b), are reported in the Appendix D. A csv file containing the 

monthly estimated country-level CDDs in areas without electricity access for the 

three primary data sources of historical temperature considered is provided as a 

Supplementary File. 

 

 

 
1 These figures refer to the CDDs times the population experiencing them.  
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Figure 4.4 | Average yearly potential ACC electricity demand from households 

currently without electricity access in sub-Saharan Africa under the assumed 

parameters for three technology adoption scenarios and three climate scenarios 

(baseline, SSP245, SSP370). (A) Results under different Tbase (comfort temperature) 

targets; (B) Results under different AC-unit EERs (energy efficiency ratios) variants, 

where U and R are the assumed EERs of AC units of urban and rural households, 

respectively. 
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The summary of the results of the energy demand assessment for the different 

technology adoption and global warming forcing scenarios are displayed in 

Figure 4.4 for a set of Tbase comfort temperature targets (the baseline value 

being 26 C°) and AC-unit EERs (energy efficiency ratios). The numbers refer 

exclusively to households currently without access to electricity in the sub-

Saharan African region. Grid-cell scale maps of the results are visualised in the 

Appendix B.  

 

The assessment reveals that the empirically modelled appliance adoption and 

electricity demand scenario implies significantly lower demand than what would 

be needed to meet the policy targets of S1 and S2, where higher AC 

penetration rates are simulated and their use is not bounded by household 

income but only by the physical needs to mitigate indoor thermal discomfort. 

The results for the current climate and an indoor temperature objective of 26 C° 

range from about 25 TWh/yr to nearly 100 TWh/yr, highlighting this large 

cooling gap. Tbase is found to exert a significant impact on energy demand 

across all scenarios, while climate change becomes a significant driver of 

energy demand only in S1 and S2, as S0 displays too low AC penetration rates 

to observe a large impact. The same pattern is observed for the sensitivity 

analysis over the efficiency of AC units adopted, where for S1 and S2, at 

constant Tbase, the key role of AC unit efficiency stands out as a pivotal factor in 

determining energy demand outcomes. Overall, the results suggest that the 

electricity requirements are very sensitive to appliance adoption and thus 

income. If AC penetration is bounded by the global historical income-adoption 

relationship and AC use is restricted to the range of income elasticity of 

electricity demand in developing countries, then thermal discomfort will persist 

for decades even if universal electrification is achieved. Conversely, if different 

pathways are followed, e.g. pushed by policy support, technology cost reduction 

or faster economic growth, outcomes similar to those described by S1 and S2 

could be witnessed, with a significantly greater energy demand. To complement 

the analysis, in the Appendix B we report the estimated CO2 emissions from 

ACC use in each scenario considered.  

 

The results of our bottom-up calculations are in line with the recent regional 

estimates (IEA, 2018), that project Africa will witness an increase in air 

circulation and cooling electricity demand from the current 11 TWh to 112-223 

TWh/yr by 2040 depending on the efficiency of appliances and their use and of 

buildings. Yet, it must be remarked that the numbers reported in those studies 

also include air cooling energy needs from household who have electricity at 

home but lack ACC appliances at home, while our estimates are a subset of 
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those comprehensive figures, as they are only relative to households currently 

without electricity access at home. Another comparison can be made with the 

regional estimates from Mastrucci et al. (2019), that project a consistent cooling 

energy gap of 135 TWh/yr for sub-Saharan Africa.  

 

 

Energy demand is a crucial variable in electrification planning, and in particular 

in defining the outcome of the trade-off between central grid expansion and the 

uptake of decentralised solutions (mini-grids or standalone generation 

technologies), the power generation capacity requirements, and therefore the 

overall investment requirements. Previous regional-scale assessments over the 

optimal electrification strategy in sub-Saharan Africa have highlighted a relevant 

share of standalone solutions : the IEA’s Africa Energy Outlook 2019 (IEA, 

2019a) argues that mini-grids and stand-alone systems will serve 30% and 25% 

of those gaining access by 2030, respectively. Namely, for more than half of the 

households currently without electricity access, the problem could be solved 

thanks to decentralised energy technologies. According to Dagnachew et al. 

(2017), depending on the consumption target, standalone systems (dominated 

by solar home systems with battery storage) account for between more than 

40% (at Tier-1 target) and less than 5% (at Tier-5 target), with mini-grids in all 

scenarios accounting for less than 10% of the new connections. Levin and 

Thomas (2016) find that that given current technology costs, central grid 

expansion is extensively required to enable higher levels of consumption, but 

they express confidence that technological cost reduction trends will disrupt the 

paradigm, with a potential leapfrog of the centralized electrification paradigm.  

 

Our ACC-related potential electricity demand estimates allow to explore the 

tight interconnections between SDG 7’s electricity access target and ACC 

needs. We calibrate a geospatial electrification model for sub-Saharan Africa, 

the global hotspot of electricity access deficit (hosting over 75% of the global 

population without electricity access, IEA and IRENA, 2019), and add the local 

ACC electricity requirements for the different warming and technology adoption 

scenarios on top of a set of baseline yearly household electricity consumption. 

The model is forced to provide universal household access to electricity by 2030 

under the different demand scenarios considered. Note that the model projects 

heterogeneous urban-rural population growth to 2030 (Table C.1) and thus also 

total ACC energy demand. 

 

Recent empirical evidence (Bensch et al., 2019; Chaplin et al., 2017; Hoka 

Osiolo et al., 2017; Lenz et al., 2017; Taneja, 2018; Tesfamichael et al., 2020) 
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suggests that communities gaining access generally consume little electricity, 

with most household consuming between Tiers 2-3 in rural areas and between 

Tiers 3-4 in cities, with reference to the World Bank Multi-Tier Framework for 

Measuring Energy Access (WB-MTF). Tiers 4, 3 and 2 imply consumption 

levels of 423, 160, and 44 kWh/HH/yr, respectively. Our baseline consumption 

targets are therefore set around these values – as policymakers and companies 

will likely be prone to invest their resources optimally when sizing electrification 

solutions – , on top of which we add ACC energy needs according to our ACC 

appliances adoption and climate scenarios. Detailed information about the 

electrification analysis approach, the techno-economic assumptions, and the 

data sources is provided in the Materials and Methods section. The final aim of 

the assessment is to evaluate the role of the estimated ACC energy 

requirements on the optimal technology set-up and investment requirements to 

achieve universal electrification.  

 

Our results (Figure 4.5A) show that accounting for the estimated ACC needs on 

top of baseline residential consumption targets implies a 4.5 [0.4 – 9.3]% 

scenarios-mean reduction in the share of decentralised systems as the least-

cost electrification option by 2030. The mainly regards the trade-off between 

central grid extension and standalone energy access systems. The shift is 

mapped in Figure 4.6 for a representative shift between scenarios of equally low 

baseline demand but differentiated ACC appliances adoption (noAC and S2). 

While the impact of considering cooling energy on the optimal electrification 

systems set-up is relevant, the most remarkable impact is observed on the 

investment requirements to achieve universal electrification (Figure 4.5B).  
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Figure 4.5 | Results of the geospatial electrification analysis under a universal 

electrification by 2030 target. (A) Optimal technology set-up (% of new connections) 
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across a variety of demand scenarios and electrification systems under different ACC 

appliances adoption scenarios. (B) Cumulative investment requirements for 

electrification (bn. USD) under different ACC appliances adoption scenarios; (C) 

Investment mark-up (% increase) as a result of climate change compared to historical 

climate conditions.  

 

As a result of both the different optimal electrification technology set-up to 

supply the required energy demand itself, and – to a much larger extent – of the 

growing load and power consumption under growing AC adoption, the scenario-

mean investment ramps up considerably (+65.5 [18 – 118]%) with growing AC 

adoption. Cumulative investment requirement to 2030 range from a low of about 

$146 bn ($14.6 bn./yr) under t32 baseline demand and no AC needs inclusion, 

and nearly $1,058 bn ($106 bn./yr) for a scenario of high baseline demand 

(t43), substantial air conditioner systems uptake (S2), and a warmer climate 

(SSP370). Finally, as shown in Figure 4.5C, climate change alone increases the 

scenario-mean investment requirements by 4 [1 – 8.7]%.  

 

Figure 4.5C is particularly insightful because it allows disentangling the role of 

future climate change scenarios (by comparing the two coloured bars within 

each facet of the graph, bearing in mind that the graph expresses the 

percentage investment growth compared to the historical climate) and the role 

of income or policy in driving ACC appliances adoption and use with ceteris 

paribus climate (comparing bars of the same colour across facets).  

 

Due to the variety of assumptions, scenarios, baseline years, and demand 

targets it is challenging to directly compare these investment requirements with 

figures reported in previous studies. Yet, they are in the same range of 

variability of seminal findings (Mentis et al., 2017; Pachauri et al., 2013; PBL 

Netherlands Environmental Assessment Agency, 2017), suggesting that 

plausible techno-economic assumptions are made.  

 



 
Giacomo Falchetta                                                                                                              PhD dissertation 

157 
 

 

 

 

Figure 4.6 | Map of sub-Saharan Africa showing the ceteris paribus shift in the 

least-cost electrification set-up when considering baseline and ACC-inclusive 

demand scenarios.  

 

The results of our analysis confirm that planning electricity supply effectively 

depends on energy demand. In turn, the results suggest that if thermal 

discomfort in SSA is to me mitigated, ACC services need to become much more 

pervasive than under a baseline scenario. In turn, in this scenario ACC use 

would drive a very strong increase in energy demand in the residential sector, 

and in particular among households that will gain access to electricity over the 

next decade (if SDG 7 will be achieved).  

Yet, several modelling and policy inputs suggest that in many areas electricity 

access plans based on large-scale uptake of standalone solutions or those 

based on conservative demand targets appear to be the only financially viable 

option in the medium-run. Policymakers should however be aware that such 

electrification strategies will likely leave many without indoor ACC adaptation 
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options (and therefore in persistent energy poverty), with potential 

repercussions on welfare and development prospects. On top of that, adjusting 

adaptation needs based on baseline climate conditions or future warming plays 

a major role in the required power generation capacity for ACC and therefore in 

the total investment needs. We argue that these hidden costs and benefits 

should receive more relevant consideration in electrification policy.  

 

 Discussion and conclusions 
 

In this paper we carried out a planning-oriented assessment of energy-poor 

household exposure to thermal discomfort. The ultimate aim is to estimate the 

energy requirements to meet ACC services needs among energy-poor 

households. We considered both an empirically grounded scenario based on 

expected income growth and climate change and the consequent future ACC 

appliance adoption and use, along with a set of archetypical, policy-descriptive 

scenarios.  

 

The results from climate-energy ACC modelling show that the mix of air 

circulation and cooling technologies adopted by households is the single most 

impactful driver of energy demand: the penetration of AC systems will play a 

disproportionately larger role than a universal adoption of fans, even at very 

high intense use of the latter (as recently discussed in IEA, 2020, 2018). Our 

empirical modelling suggests that income is a severe constraint to AC use, 

unless a cost, priority, or policy-induced shift is observed in the demand-side 

relatively to the historical global relationship between income, AC adoption, an 

electricity demand. The representative scenarios model these archetypical 

pathways, whereby the estimated energy consumption levels are those which 

would be necessary to guarantee universal indoor thermal comfort. The gap 

between the empirical and representative scenarios is a major reason for 

concern for decision-makers, because it highlights the risk of persistent thermal 

comfort discomfort even under the expected rise in affluence of SSA countries.  

 

Finally, irrespective of the base temperature considered, the efficiency of the 

installed AC units will have a very substantial impacts on energy consumption in 

scenarios of significant AC penetration. The topic is indeed already at the 

centre of recent institutional reports aiming at minimise the social impacts of 

future AC use (Anderson et al., 2020; IEA, 2018). Some countries, such as 

Ghana, Nigeria, Kenya, and South Africa, have minimum performance 

standards for new AC units or have banned the import of second-hand, 

inefficient units.  
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Based on the wide range of ACC energy demand scenarios estimated, we 

carried out an SSA-wide (the global hotspot of energy poverty) spatially-explicit 

electricity access planning analysis. Our results show that providing universal 

electricity supply compatible with different ACC technologies adoption and use 

scenarios requires significantly larger investments than under baseline demand 

(+65.5 [18 – 118]%). This mark-up grows further when quantifying the impact of 

future climate change on energy demand for ACC: compared to the historical 

climate, considering SSP245 and SSP370 for the 2040-2060 period impacts the 

technical energy requirement  to meet all CDDs experienced by energy-poor 

households by 4 [1 – 8.7]%. 

 

Moreover, when adding ACC-related energy needs on top of conservative 

demand targets, the optimal technology set-up shifts away considerably from 

decentralised energy access systems. This is because decentralised energy 

access systems (and in particular standalone and home systems) might not be 

suitable to meet the high peak power requirements of air conditioning, unless 

very efficient appliances are adopted (IEA, 2017). In addition, a higher demand 

can make decentralised solutions economically inefficient compared to 

extending the national grid for the economy of scale dynamics involved 

(Deichmann et al., 2011). 

 

They key lesson learned from this study is that planning universal household 

electrification without explicitly accounting for thermal comfort needs might 

therefore result in large energy supply deficits and persistent energy poverty 

even with nominal universal electrification, which might be achieved even with 

small-scale low-power systems. In turn, leaving millions of households with 

unmet (and growing) CDDs could negatively affect the broader socio-economic 

development of low-income countries as a result of the negative repercussions 

on health (physical and mental) and productivity. 
 

These findings are not arguing against decentralised energy access systems, 

as these have the major advantage of allowing for minimum levels of electricity 

access at relatively lower price (and chiefly in areas where the grid extension 

would require very large investments). The relevance of decentralised systems 

is in fact becoming even greater thanks to emerging innovative business 

models (Mazzoni, 2019) allowing to abate upfront cost barriers. Energy-ladder 

(Chattopadhyay et al., 2015) and energy-development nexus (Riva et al., 2018) 

theories argue that basic energy access can provide the spark to initiate socio-
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economic development and allow households to ‘climb the ladder’ towards 

more robust energy supply systems. The empirical evidence testing the validity 

of these claims is however still mixed (Grimm et al., 2017; Urpelainen, n.d.). 

Yet, from a public policy perspective, regions receiving standalone electricity 

access might become less significant for policymakers in terms of investment 

and central infrastructure expansion priority. Therefore, irrespective of being 

nominally electrified, they could remain for long time in a condition of energy 

poverty and be unable to operate ACC services and other autonomous 

adaptation measures.  

 

Overall, we encourage decision-makers (and in particular the interface between 

energy access institutions, such as, SE4ALL, ISA, ESMAP, Power Africa, 

RES4Africa; and cooling planning institutions, including Cool Coalition, KCEP, 

United for Efficiency, Global ABC, PEEB, Solar Cooling Initiatives) to consider 

ACC and other energy-consumptive adaptation actions in policies targeted at 

expanding electricity access and in power generation capacity planning, as 

these will likely be strong drivers of electricity demand growth from the 

residential sector in the coming years. These needs should also be reflected in 

national greenhouse gas mitigation policies.  

 

 

The key limitations of this study include: (i) the uncertainty over the distribution 

of the population without access to electricity. This uncertainty comes both from 

the quality of the primary census data on which gridded population products are 

based, and the proxy nature of the global spatially-explicit electricity access 

assessment based on nighttime lights (Falchetta et al., 2019). (ii) The 

consideration of the CDD metric. Standard CDDs are useful for their simplicity 

and standard use in the climate and energy engineering fields. Yet, they 

overlook important dimensions affecting the perceived heat such as relative 

humidity and wind chill. Given the large spatiotemporal scale of the analysis, 

CDDs were preferred as climatic indicators. Additional results considering wet-

bulb CDDs that account for relative humidity are reported in Appendix D. (iii) 

The unavoidable degree of uncertainty or arbitrariness in the ACC appliances 

adoption and use scenarios. While we modelled both empirically-grounded and 

archetypical policy-descriptive scenarios, each comes with data and scenario 

uncertainty. The estimates cannot be validated on real data for SSA countries, 

as there is no extensive data on household ACC appliance ownership and use 

for the countries considered in the analysis. It must be remarked that while the 

seminal model of McNeil and Letschert (2008) is only fit on 64 data points 

between 1991 and 2007, an African-specific calibration based on more recent 

data (e.g. from the Integrated Public Use Microdata Series) would not be 
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meaningful in the context of the current analysis. In fact, projected income 

levels for 2050 would mostly fall outside of the calibration range (the current 

distribution of income levels in SSA counties) and the estimate would thus rely 

on a highly uncertain extrapolation. To mitigate these concerns, data and code 

to facilitate ready replication of the analysis, including modifications in the 

scenario assumptions and future ad-hoc calibration upon availability of survey 

data, is provided as supplementary material.  (iv) The lack of consideration of 

alternative technologies such as evaporative cooler technologies and other 

passive buildings and urban planning options that can mitigate CDDs while 

requiring less energy. Note however that most of the electricity access deficit is 

concentrated in rural areas, where these architecture and urban planning 

options are less viable. Further research examining the interlink between 

energy poverty and ACC needs could consider these important aspects. An ad-

hoc decomposition analysis – beyond the scope of this paper – could help 

shedding light on the degree of significance of each determinant in the optimal 

system outcome. 

 

A final remark concerns the necessary consideration of aspects related to utility 

capacity to plan the power system and regulatory quality of the energy sector, 

which as benchmarked by the RISE (Regulatory Indicators for Sustainable 

Energy) is still lagging behind in several SSA countries. Institutional and 

regulatory quality are fundamental conditions for the expansion of generation, 

transmission and distribution capacity – including enabling private investment in 

standalone and mini-grid solutions (Ahlborg et al., 2015; Emery, 2003; Sergi et 

al., 2018). Our geospatial electrification analysis is purely techno-economic and 

therefore it does not specifically embed these dimension (an ongoing 

application in this direction is found in Falchetta et al. (2020). 
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5. The role of regulatory, market and governance 

risk for electricity access investment in sub-

Saharan Africa 
 

5.1. Introduction 
Achieving the sustainable development goals requires a substantial ramp-up of 

baseline investment flows (McCollum et al., 2018). The financing gap is even 

larger in developing countries, where progress towards several SDG targets is 

still lagging behind (Ritchie and Mispy, 2018). A relevant share of the estimated 

capital requirement is linked to the targets of universal energy access, as nearly 

800 million people worldwide live without access to electricity and 2.6 billion 

lack access to clean cooking facilities (IEA et al., 2020). The bulk of the energy 

access deficit is concentrated in sub-Saharan Africa (SSA), a region 

emblematic of how an abundance of energy resources is not a sufficient 

condition for eliminating energy poverty.  

 

Different sources have estimated the required additional annual power sector 

investments (including T&D lines) in SSA at $30 to $55 billion (IEA, 2019; Lucas 

et al., 2017) to provide electricity to the ~575 million without access in SSA. 

These large requirements derive from the capital-intensiveness of generation, 

transmission, and distribution infrastructure and its operation and maintenance 

costs. For instance, a renewable-based mini-grid to serve a local community 

can require an upfront investment of between $1,250-5,000/kW (Nerini et al., 

2016); adding a kW of generation capacity to the national grid ranges between 

$1,000-2,500/kW, depending on the technology implemented and the plant size 

(according to a survey by Enerdata (2016) for projects implemented in SSA 

over the last decade); medium-voltage power transmission lines are estimated 

to cost an average $25,000/km (Karhammar et al., 2006). However, according 

to the available estimates, between 1990 and 2013 only $31 billion has been 

invested in power generation in SSA (excluding South Africa), with less than 16 

GW of generation capacity added (Eberhard et al., 2016).  

 

Several studies (Dagnachew et al., 2020; Simone and Bazilian, 2019) have 

argued that a set of institutional, market-related, and financial barriers are the 

main factors responsible for the lack of energy supply infrastructure investment. 

As a result of these barriers, fundamental uncertainty remains over the sources 

of the required financing flows to the energy sector. This uncertainty is partly 

due to limited governmental investment in SSA, due to both low public revenues 

as share of GDP (World Bank, 2018) and high yielding national bonds (in most 

countries long-run bonds yield >15%, Investing.com, 2020). Lending large 
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amounts of money at these rates would determine an escalation of public debt, 

which simply cannot be guaranteed. Given the limited opportunity of 

governments in providing finance, a crucial question is what the role of the 

private sector could be. The propensity of private players in the energy sector to 

seek business opportunities and thus meet the local demand for investment 

crucially depends on their perception of the local investment environment, 

which is influenced by – among others – regulatory and institutional quality and 

political stability (Iyer et al., 2015; Schmidt, 2019). Companies internalize a 

discount rate in their investment decisions (Schleich et al., 2016) which is 

strongly affected by the degree of risk that they perceive in a given setting 

(Ryan and Gallagher, 2006). In turn, this discount rate also mirrors the (implicit) 

discount rate of households when they decide upon their energy-related 

investment (Reddy, 1996). By implicit discount rate we broadly mean 

“preferences, predictable (ir)rational behaviors and external barriers”, quoting 

the energy-related definition provided in (Schleich et al., 2016). 

 

An example can clarify what this type of private (energy-related) discount rate 

refers to in the context of this paper. Suppose investor X wants to invest in an 

energy project in country Y and can lend money at an interest rate i of 10%. 

However – given the local governance structure and other political and market 

risks – the implicit discount rate r of the investor at which the project is 

discounted throughout its lifetime is higher (say, 20%). As a result, even though 

the expected rate of return (ERR) of the project is e.g. 12% (greater than the 

lending interest rate), the investor decides not to invest because 𝑖 < 𝐸𝑅𝑅 < 𝑟. In 

principle, functioning capital markets should internalize all risk components in 

the lending interest rates and 𝑖 = 𝑟 should hold. Yet, in the context of 

developing countries and development investments, the market interest rate 

could be of a country or source different from the project’s location. 

Alternatively, even when capital is lent from the national capital market, in the 

case of private, small-scale energy access investments, the private discount 

rate is generally not equivalent to generic lending rates, as companies need to 

internalise the array of additional, project-specific risks in their project cost-

benefit analysis. Historical lending rate data for specific private energy access 

investments could offer a picture of these private discount rates, but these data 

are simply not accessible in a systematic way. 

 

In this context, this paper proposes a methodology to explicitly account for 

investment risk perceived by private players and it applies the approach to 

determine its impact on the optimal technological mix and investment 

requirements for universal electrification in SSA. We introduce a composite 

index of regulatory quality – the Electricity Access Governance Index (EAGI) – 

based on a large array of information on regulatory quality, governance, and 
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stability. This index is used to estimate the energy access investment discount 

rate and applied in the bottom-up electricity planning model TIMER 

(Dagnachew et al., 2017; Stehfest et al., 2014; van Ruijven et al., 2012) within 

the framework of the IMAGE integrated assessment model (Stehfest et al., 

2014, p. 0) for the SSA region. The EAGI embeds the role of the energy sector 

regulatory quality, as well as the general governance, investment environment, 

and political stability, and it determines the implicit energy investment discount 

rates.  

 

The main objective of the paper is therefore to explore the impact of adjusting 

the baseline discount rate to country-specific sources of investment risk on the 

cost-efficient technology set-up (and primarily the trade-off between central grid 

expansion and decentralised solutions procurement) and investment 

requirements for achieving universal electricity access in SSA. The study aims 

at filling the literature gap found in recent model-based research assessing 

optimal electricity access supply options and investment requirements with a 

spatially-disaggregated approach. The latter research has focused largely on 

techno-economic dimensions (Dagnachew et al., 2017; Ellman, 2015; Mentis et 

al., 2017), without explicitly encapsulating the heterogeneity in the investment 

environment quality. The only notable exercises that have begun taking this 

direction are the recent work in (Korkovelos et al., 2020), (Spyrou et al., 2019), 

and (Patankar et al., 2019), who modelled the role of conflict in electrification 

and power systems planning.  

 

The remainder of the paper is structured as follows. Section 2 carries out a 

targeted literature review of the key dimensions assessed in the proposed 

methodology, namely private sector electricity access investment in SSA, the 

role of governance for private sector investment, and – more specifically – the 

significance of the discount rate as a measure of investment risk. The literature 

screening provides an understanding of the key drivers and consequences of 

risk for investors in the electricity sector in the context of developing countries. 

These factors are then embedded in the empirical analysis in Section 3, where 

we introduce the data and the methodology, which is divided into the EAGI 

index formulation and its implementation in the electrification model through its 

conversion into an implicit discount rate. Section 4 and 5 present and discuss 

the results, respectively. Section 6 concludes. 
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5.2. Background and literature review 
 

Between 1990 and 2013, only 16 GW of generation capacity were added 

throughout SSA (Eberhard et al., 2016). These power plants have been 

predominantly procured by independent power producers (IPPs) (Eberhard and 

Gratwick, 2013) and financed by governments and multilateral development 

banks. While over the last ten years Chinese funding (enabled mostly through 

Chinese state-run banks lending to Chinese state-run companies; see 

(Powanga and Giner-Reichl, 2019) has become the first source of investment 

after direct governmental investment in the power sector of SSA (Eberhard et 

al., 2016), in the same period there has been only a moderate upward trend in 

IPP investment flows.  

 

One of the most notable attempts to collect information and shed light on 

investment flows is (Eberhard et al., 2017). The authors show that while IPPs 

(Independent Power Producer) have invested growing amounts of capital in 

energy project in SSA (more than 0.7 billion USD in 2014), the bulk of the 

recently added new generation capacity procured by private or foreign players 

has been concentrated in only 15 of the nearly 50 countries of SSA, notably in 

Nigeria (about 1.5 GW), Kenya (1.1 GW), Ghana (about 1 GW), and Cote 

d’Ivoire (900 MW). These statistics offer a glance of the ongoing investment 

trends, but the lack of a public and systematic database of private sector 

investment flows into the energy sector of countries in SSA hinders a clear and 

up-to-date understanding of the situation and its evolution. In turn, this lack of 

information is reflected in the paucity of academic literature analysing energy-

related investments flows in SSA to understand their drivers and impacts.  

 

Another crucial factor to consider  is the substantial evidence of an important 

role of peering dynamics in investment decisions (Zaighum and Karim, 2019), 

where companies follow companies and systematically target their infrastructure 

projects towards certain countries and regions where there is already a vivid 

investment environment. This can be described as a way to reap the positive 

externality of the information collection costs previously incurred by the 

company itself or by its competitors (Chen and Ma, 2017). 

 

 

 

In the context of the power sector of SSA, investment can be represented as a 

function of uncertainty and reward, with the financial risks and barriers to 

electricity infrastructure emerging at different scales [32). Namely,  through 

micro factors – which include factors at the project or infrastructure level –, 
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meso factors, encompassing national aspects such as regulation or assets, and 

macro factors, which are linked to global dynamics such as exchange or interest 

rates. Meso-factors are the crucial ones for the scope of the analysis we 

present in this paper, because the quality of governance and the political 

stability directly affect the amount and nature of investment in a country through 

their impact on the degree of uncertainty for business and thus the final costs 

they incur in (Eifert et al., 2005; Emery, 2003; Ramachandran et al., 2009).  

 

A broad stream of literature has engaged with the analysis of the role of 

governance for attracting private-sector investment. Eberhard et al. (2017) 

(Eberhard et al., 2017) discussed how planning, competitive procurement and 

contracting, risk mitigation, credit enhancement, power markets, and regulation 

are the crucial explanatory factors for the level of private investment. Sergi et al. 

(2018) (Sergi et al., 2018) showed that national institutions and governance 

have a considerable impact on the development of different electricity access 

technologies. They compared the example of Kenya, where power sector 

unbundling and privatization efforts have mostly attracted private investment in 

on-grid projects, with the case of Tanzania, where less tight regulations for off-

grid power producers are in place, including clearer regulatory framework for 

imposing cost-reflective tariffs to households connected to mini-grids. They 

argue that the latter regulatory environment creates a more supportive 

environment for niche innovation, which is reflected in the thriving mini-grid 

sector in Tanzania, which not by chance counts the most mini-grid customers 

(ESMAP, 2019).  

 

Empirical evidence from pay-as-you-go (PAYG) solar home system contracts 

subscribed in Benin shows that PAYG service providers target credit-worthy 

consumers with the implicit objective of reducing their investment risk. The 

authors argue that these results cast doubts as to whether PAYG (and in 

general privately-provided decentralised energy access solutions) bridges the 

"last mile" electrification gap. These doubts are also fed by the fact that nearly 

all PAYG customers in the country are within short physical distance from the 

grid but choose the PAYG services because of service reliability and 

affordability.  

 

Afidegnon (2019) investigated the success factors for power project 

development businesses in SSA. He collected data from semi-structured 

interviews to explore the strategies used by executives of four companies in 

SSA who successfully developed power projects within the last 5 years. His 

results show that the interviewed CEOs attached great significance to the 

development a deep knowledge of the target market and aligning the 

stakeholders’ expectations using a combination of local partnership and 
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international consultants. Moreover, CEOs attributed a foremost role to ensuring 

the commercial viability of the project through bankable project agreements and 

the implementation of appropriate risk management and credit enhancement 

tools. 

 

The evidence and arguments collected in this literature screening provides the 

basis for the data collection for the construction of the EAGI discussed in 

Section 3. 

 

 

To factor qualitatively perceived risks – such as those stemming from a low 

regulatory quality – into structured models of investment decisions, these risks 

have to be translated to a quantitative measure. A seminal contribution by 

Hirshleifer (1961) (Hirshleifer, 1961) introduced a market theory of risk, 

proposing to expand the theory of present value maximisation by modifying the 

discount rate to account for the risk component of investments. According to 

this theory, investments are discounted by a baseline risk-free rate (Lintner, 

1969) that accounts for the pure value of time – i.e. the trade-off between 

consumption in the present and the future –, on top of which a risk premium is 

added. The latter takes into consideration the additional sources of risk that the 

investor perceives in the context of the project under examination, but which not 

always are encapsulated in the market interest rate.  

 

Yet, there is no standard methodology to translate a qualitatively perceived risk 

– such as political instability, corruption, low regulatory quality, currency inflation 

and consumer debt repayment issues – into a risk-adjusted discount rate. This 

is because of the large variety of potential sources of risk, which are often 

project-specific. Also for the specific case of private infrastructure investment, 

there are no set guidelines for determining the discount rate (Short et al., 1995). 

A 2015 survey on valuation methodology in Africa (PWC, 2015) inquired into 

how the private sector incorporates risk in the valuation of an investment. This 

analysis showed that most respondents incorporate risk associated with 

infrastructure projects in Africa in the discount rate. For capital-intensive 

projects, it is often the case that multi-national or foreign companies have 

access to capital in markets with significantly lower interest rates than in most 

countries of SSA, and yet they must encapsulate the risk of investing in a 

foreign country into their investment decisions.  A survey carried out in 2018 

(Grant Thornton, 2018) among utility-scale renewable energy developers in 

SSA in Kenya, Nigeria, and South Africa inquired on the discount rate used in 

potential ground-mount solar and onshore wind market projects, finding values 

in the range of 14.75-18%.  
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Yet, when considering  smaller-scale energy investments carried out by private 

actors, the role of additional sources of risk becomes crucial and is likely not 

encapsulated in the capital market. Private discount rates include both sector-

specific risks and the implicit discount rates of households when they decide 

upon their energy-related investment (Train, 1985), i.e. the payback time they 

are willing to accept. Empirical evidence has shown that the applied discount 

rates for fuel choices are much higher for low income households (up to 80%) 

that for affluent households (down to 10%) (Daioglou et al., 2012). Seminal 

contributions specific to the role of the discount rate in energy access and 

energy carrier choices decisions include the work of Reddy (1996) (Reddy, 

1996), who modelled the relationship between household income and energy 

carrier choices, showing that households shift from one energy carrier to 

another if their income increases and that the consumer discount rates 

decrease exponentially with household income.  

 

 

5.3. Materials and methods 
 

 
Figure 5.1: Conceptual framework for the methodology adopted in this study. The 

framework illustrates the data inputs (in blue), the data modelling steps (in white), the 

intermediate outputs (in green), the electrification analysis (in yellow), and the final 

results (in orange). Source: author’s elaboration. 
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Building on the evidence found in the literature on the key sources of risk 

affecting private discount rate in energy access investment, here we enrich a 

conventional electrification analysis with regulatory, governance, and political 

factors (Figure 5.1). Factors that are strong predictors of electricity access 

(Bonan et al., 2017; Khennas, 2012) and private sector investment (Asongu and 

Nwachukwu, 2015; Drogendijk and Blomkvist, 2013; Hornberger et al., 2011; 

Ndikumana and Verick, 2008) are summarized into an Electricity Access 

Governance Index (EAGI; Section 5.3.1) which is then used to simulate the role 

of regulatory quality on investment decisions via the discount rate (Section 

5.3.2). For selected countries, an in-depth country exercise is carried out to 

characterize sub-country heterogeneity in the propensity of private players to 

invest in different regions of a country. These are detailed in Section 5.3.3. As 

detailed in Section 5.3.4, The EAGI index is then fed into the TIMER simulation 

model, which yields results over optimal technological mix and investment 

requirements in every grid cell. Section 5.3.5 describe the data and scenarios 

considered in the current analysis, while Section 5.3.6 highlights the underlying 

mechanisms through which changes in the discount rate affect the optimal 

electrification planning.   

 

 

Based on literature screening, we consider socio-economic factors that are 

correlated to the levels of electricity access in SSA and regulatory and 

governance-related factors that are specific to private sector investment 

decision making, with a particular focus on renewable energy and off-grid 

technologies. Indicators are chosen based on data availability and quality; only 

indicators with recent (post 2010) data available are considered suitable due to 

the rapidly developing nature of the electricity sector in SSA. Table 5.1 

summarizes the input data sources used for the EAGI formulation. These are 

explored in greater detail with descriptive statistics and graphs in the 

Supplementary Materials.  

 

Table 5.1: Input data sources for the country-level EAGI formulation 

Data 
Variable(s) 

considered 
Category 

Temporal and 

spatial 

resolution 

Source 

Regulatory 

Indicators for 

Sustainable 

Energy 

(RISE) 

Multiple KPIs 

(see SI) 

Energy 

sector 

governance 

1 year, 

country-level 
(RISE, 2019) 

Transparency 

International 

Corruption 

Perceptions 
Politics 

1 year, 

country-level 

(Transparency 

International, 
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– CPI Index (CPI) 2019) 

The 

Worldwide 

Governance 

Indicators 

(WGI) 

Government 

Effectiveness 
Politics 

1 year, 

country-level 

(Kaufmann et 

al., 2011) 

Ibrahim Index 

of African 

Governance 

Sustainable 

Economic 

Opportunity 

Market 
1 year, 

country-level 
(Ibrahim, 2013) 

Euler Hermes 

– Country 

Risk Reports 

Country 

short and 

medium term 

risk 

Market 
1 year, 

country-level 
(Hermes, 2017) 

 

The indicators are aggregated using a principal component analysis (PCA). 

PCA is a multivariate statistical method that is used in development research to 

reduce the number of variables in a dataset and construct composite indices. 

This technique was first used by Ram (1982)  (Ram, 1982) in the construction 

of a ‘physical quality of life index’ and has been used in various fields of 

development and environmental research since (e.g. (Lai, 2003);  (Cahill and 

Sanchez, 2001); (Khatun, 2009)). The different variables are weighted 

according to the amount of their variance explained by the first principal 

component (Booysen, 2002). PCA is only applicable when the variables used 

are correlated with each other. Rather than a simple mean calculation, PCA 

gives a more representative score by analyzing correlations between different 

variables (indicators in this case). The decision to use a PCA in the context of 

this study is justified by the necessity to come up with a univariate measure 

summarizing different indicators (the EAGI) that can then be translated into a 

private discount rate proxy. 

 

Algebraically, a PCA is carried out with the following routine: first, the 𝑑 × 𝑑 

covariance matrix of the selected variables for the EAGI is calculated as in 

Equation 1: 

 

 

𝑐𝑜𝑣(𝑋, 𝑌) =  
1

𝑛−1
∑ (𝑋𝑖 − 𝑥̅)(𝑌𝑖 − 𝑦̅)𝑛

𝑖=1    

(Eq. 5.1)  

 

where 𝑛 is the number of observations in the data (i.e. in our case the number 

of countries), 𝑋𝑖 and 𝑌𝑖 are each couplet of variables at the 𝑖𝑡ℎ observation, and 

𝑥̅ and 𝑥̅ are the mean values of each couplet of variables, respectively. 
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Then, eigenvalues 𝜆s (roots of the characteristic equation det(𝐴 − 𝜆𝐼) = 0, 

where 𝐴 is the original data matrix and 𝐼 is an identity matrix) and eigenvectors 

from the covariance matrix are calculated and sorted by decreasing 

eigenvalues. Finally, only the k eigenvectors with the largest eigenvalues to 

form a 𝑑 × 𝑘 dimensional matrix 𝑊 are retained, i.e. those that bear the most 

information about the distribution of the data. To conclude, the matrix 𝑊 is used 

to transform the initial observation onto the new subspace via the equation 𝑦 =

𝑊′ × 𝑥, where 𝑊′ is the transpose of the matrix 𝑊. The results of the EAGI 

calculation are included in the Supplementary Materials.  

 

 

 

Poor governance increases both the perceived and the actual risk of investment 

in a given project, which can have negative consequences on the profitability of 

an investment (Jensen, 2003). In Equation 5.2 (source Investopedia.com), the 

annuity factor 𝐴𝐹 reflects the present value of future income from a given 

investment after i periods. Here, the discount rate r reflects the risk of an 

investment: the higher the discount rate, the riskier the project, and the lower 

the 𝐴𝐹 (which defines the expected return): 

 

 AF =  
1−(1+r)−i

r
        

(Eq. 5.2) 

 

Here we aim at describing a similar dynamic in the electrification process – with 

a particular focus on the decision of private actors to perform capital-intensive 

investment in electricity access technologies. We have fully integrated  the 

modelling approach for the discount rate in the context of electrification and 

energy carrier choices introduced in (Reddy, 1996; Train, 1985) into the TIMER 

model (Dagnachew et al., 2018, 2017; Daioglou et al., 2012). In doing so, we 

define boundary discount rate values (Figure 5.2A).  
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Figure 5.2: Data processing procedure to derive the EAGI-adjusted discount rates. (A) 

Definition of regional boundary discount rates; (B) Definition of country-specific EAGI-

adjusted discount rates; (C) Downscaling of the country-specific EAGI-adjusted 

discount rates to the grid-cell level EAGI-adjusted discount rates for the case-study 

countries. Source: author’s elaboration. 

 

These values are based on the highest and lowest quintiles of household 

income, for urban and rural areas separately.  In the TIMER model, SSA is 

divided in to four sub-regions: Western & central Africa, Eastern Africa, the 

Republic of South Africa, and the rest of southern Africa. The boundary discount 

rates are identified for each of these sub-regions. These are derived with the 

following equation: 

 

ln(𝐶𝐷𝑅) = 6.3822 − 0.0082𝐼      

(Eq. 5.3) 

 

where ln(𝐶𝐷𝑅) is the natural logarithm of the private discount rate, and I is 

income (in the original specification of Reddy (1996) expressed in Indian 

rupees/capita/month as of 1996). Thus, CDRmax and CDRmin are derived as: 

 

𝐶𝐷𝑅𝑚𝑖𝑛/𝑚𝑎𝑥  =
𝑒

(6.3822−
0.0082 𝐼𝑞𝑘

𝑚
 )

100
    

(Eq. 5.4) 
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where 𝐼𝑞 are the first and fifth income quintiles of households in each region of 

SSA, k=29.756 is a conversion factor from 2011 US dollars (which are the unit 

of reference for the per-capita average monthly GDP of SSA used in this study) 

into the original currency2. Note that given the lack of availability of income data, 

we refer to per-capita GDP quintiles. Once boundary discount rate values for 

each region are derived, the EAGI is linearly normalized (Figure 2B) between 

this interval (with higher values of the EAGI corresponding to lower values of 

the discount rate) via the following formula: 

 

𝐷𝑅𝑖
𝑢𝑟 = (𝑏𝑟

𝑢𝑟 − 𝑎𝑟
𝑢𝑟) 

𝑥𝑖−min 𝑥

max 𝑥−min 𝑥
+ 𝑎𝑟

𝑢𝑟    

(Eq. 5.5) 

   

where a and b are the lower and upper discount boundaries for the region to 

which country i belongs, respectively, x is the corresponding EAGI, and the ur 

superscript identifies urban and rural discount rates, respectively. The input 

numbers for each of the calculation steps are reported in the Supplementary 

Materials. The result of the modelling yields a set of country and urban-rural 

heterogeneous discount rates which are linked both to the country-specific 

regulatory risk and to the region of belonging. These are reported and 

discussed in Section 5.4.1.  

 

The calculated discount rates differ from the global discount rate of the energy 

system model (which in IMAGE-TIMER is set at 10%). The latter expresses the 

cost premium at which society is willing to defer today’s benefits in the future, 

or, equivalently, to accept tomorrow’s cost in the present. The EAGI-adjusted 

discount rates calculated here, on the other hand, refer to the private discount 

rates in the energy sector of SSA, namely the rate of return that private 

companies and households are seeking in order to make an investment in the 

present. Poverty, poor regulatory quality, political instability, and market risk all 

contribute to increasing the risk of making an investment in the present with 

returns in the future, and therefore imply the necessity of higher expected return 

in order to accept that risk.   

 

 

The methodology introduced mostly focused on a characterisation of the 

between-country differences in regulatory quality and the relative impact on 

electricity access investment. This is because generally, the investment 

 
2 Based on https://www.historicalstatistics.org/Currencyconverter.html. 
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environment is determined by national regulation, institutions, and governance 

that are effective throughout a sovereign country. Yet, it is often the case – and 

not only in developing countries – that even within a country, there is substantial 

heterogeneity in the capacity to attract investment. This is a consequence of 

regional differences in risks. In an attempt to characterise this sub-national 

differentiation in the context of electricity access investment in SSA, we select 

four country-studies, namely Nigeria, Tanzania, Uganda, and Malawi, which 

together host more than 160 million people without access to electricity (IEA et 

al., 2020) and where highly unequal distribution of electricity access is observed 

(Falchetta et al., 2020). Given the continental scale of this paper and of the 

energy investment model considered, we do not implement the sub-national 

inputs because a geospatial electrification model operated at a higher-resolution 

(generally < 1 km2) would be required to appreciate the characterisation of the 

sub-national heterogeneity in the EAGI discount rate. 

 

We retrieve a set of spatially-explicit data (detailed in Table 5.2) which – 

consistently with the screened literature presented in Section 5.2 – are deemed 

strong drivers of the perception of investment risk by private players. These 

include the PRIO Conflict Site georeferenced dataset on the historical incidence 

and size of armed conflict in 1989–2008 (Dittrich Hallberg, 2012); the WorldPop 

poverty maps derived from cell phone and satellite data coupling to household 

surveys, which report the proportion of people per grid cell living in poverty 

(Tatem et al., 2013); a measure of accessibility derived from Weiss et al. (2018) 

for estimating the travel time to the nearest city from any given settlement; and 

a dataset of excluded ethnic groups in each grid cell (Vogt et al., 2015), which 

has been shown to be strongly correlated with infrastructure investment in 

Africa (De Luca et al., 2018). The variables are plotted in Figure 3 for Uganda, 

one of the four case-study countries selected. Altogether, these spatially-

disaggregated factors are deemed effective predictors for the propensity of a 

private actor to select a given site for infrastructure investment within a country.  

 

Based on a PCA on the spatially-explicit datasets, we operate an adjustment 

(Figure 5.2C) to the baseline country discount rate estimated via the national 

EAGI to describe within country-heterogeneity in the potential perceived risk by 

private investors, and we analyse the results of the electrification analysis with 

and without the adjustment to understand its implications. The adjustment is 

within a ±25% range for rural areas and a ±15% range for urban areas, and it 

follows a grid-cell level PCA and normalisation approach in the same fashion as 

described in Section 5.3.2. We distinguish between urban and rural areas 

based on the GHS-SMOD classification. Refer to the Supplementary Materials 

for a detailed account of the calculation of the sub-national EAGI-adjusted 

discount rate. 
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Table 5.2: Input data sources for the within-country case studies 

Data 
Measured 

variable(s) 
Category 

Temporal and 

spatial 

resolution 

Source 

PRIO Conflict 

Site 

Count of 

armed conflict 

events; radius 

of affected 

area 

Political 

stability 

Exact date in 

1989–2008 

range; 50 km 

buffer 

(Dittrich 

Hallberg, 2012) 

WorldPop 

poverty maps 

% of people 

living below 

poverty 

threshold 

Socio-

economic 

indicators 

1 year; 1 km 
(Tatem et al., 

2013) 

Travel time to 

the nearest 

250,000+ 

inhabitants 

city 

Minutes of 

travel time 

Centrailty 

and 

accessibility 

1 year; 1 km 

Major cities 

data: ESRI; 

algorithm: 

Weiss et al. 

(2018) 

GeoEPR 
Excluded 

ethnic groups 

Political 

stability 
0.5° 

(Vogt et al., 

2015) 

GHS-SMOD 
Urban/rural 

prevalence 

Centrailty 

and 

accessibility 

5 years; 250 

m 

(Pesaresi and 

Freire, 2016) 

 

 
Figure 5.3: Visual representation of selected input data to the sub-national EAGI 

(normalised range) for Nigeria. From the left to the right: historical propensity to violent 

conflict; travel time to the nearest 50,000 inhabitants city; fraction of population living in 
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poverty; density of excluded ethnic groups; prevalent settlement type (1=urban, 

0=rural). Source: author’s elaboration. 

 

 

The Targets IMage Energy Regional (TIMER) model is an energy model that 

forms part of the IMAGE 3.0 framework, developed at PBL Netherlands 

Environmental Assessment Agency (Stehfest et al., 2014, p. 0). IMAGE 3.0 is 

an integrated modelling framework that represents interactions between human 

and natural systems to investigate sustainability issues such as climate change, 

biodiversity and human well-being. IMAGE is used to analyze large-scale and 

long-term interactions between human development and the natural 

environment; hence, it is a data-intensive model. IMAGE has 26 world regions 

that enables it to capture spatial and multi-scale differences. TIMER is a 

simulation model that explores long-term trends in demand and supply of 

different energy carriers, energy access and the possible transition pathways 

towards low-carbon energy systems. Within the context of IMAGE, TIMER also 

describes energy-related greenhouse gas emissions (introduced in De Vries et 

al., 2002).  

 

TIMER model is used in several studies in the past, for instance, to explore 

residential energy use in developing countries (Van Ruijven et al., 2008), to 

assess future trends in rural electrification and the associated investment needs 

in developing countries (van Ruijven, Schers et al. 2012), and to analyze 

possible future developments of residential energy use in developing regions 

(Daioglou, van Ruijven et al. 2012). Research carried out by (Dagnachew et al., 

2018, 2017) used an extended version of this model to investigate the cost and 

benefits of various pathways towards universal electricity access in SSA, 

specifically including several off-grid electrification options. The latter studies 

were carried out on a 0.5° x 0.5° grid-cell level, allowing results to be 

aggregated into countries. The SSA Electrification model that forms part of 

TIMER model is the main instrument of this study. The electrification model 

incorporates a custom-designed decision tree (see Figure 4) to determine the 

least-cost electrification option based on the proximity of the grid-cell to an 

existing power line, the household electricity demand, the population density of 

the grid-cell, and the cost and availability of local energy resources. 

 

The model provides the least-cost electrification option for each grid-cell in SSA. 

The input data (population, electricity consumption, grid infrastructure in place, 

solar/wind/hydro potential, etc.), along with the underlying optimization formulas 

and full list of parameters used in the model are given in the SI of Dagnachew 

et al. (2017). The applied model considers different technology options for mini-

grid and standalone systems. Standalone systems are isolated systems that 
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can be adopted by individual households and provide up to 250 Wp. These 

systems do not require transmission and distribution network. Mini-grid systems 

provide power to a community or small town and comprise low-voltage 

distribution network. They can be designed to be connected to the national grid 

with no limit on peak power. Central grid expansion requires high investments in 

extending the transmission and distribution network and scaling up of 

generation capacity. The specific characteristics of each technology used in the 

model, the grid expansion options, and the cost data used can be found in 

Dagnachew et al. (2017). 

 

 
Figure 5.4: Decision tree for the IMAGE-TIMER Sub-Saharan Electrification model. 

Source: Dagnachew et al. (2017) 

 

For the purpose of this study, the model is updated with gridded nighttime light 

data for electricity access and consumption as developed by (Falchetta et al., 

2019). In addition, EAGI-adjusted discount rates are used instead of the 

standard discount rate used in the model in the previous studies. The model 

determines the least-cost technology for each grid cell, based on the 

consumption levels reached in 2030, when universal access in SSA is set to be 



 
Giacomo Falchetta                                                                                                              PhD dissertation 

184 
 

achieved. The model results visualize and quantify what the cost-optimal 

technology is for each grid-cell, identifying grid-cells that are viable for off-grid 

systems, which can be procured by the private sector.  

 

 

A brief theoretical discussion of how EAGI-adjusted discount rates affect 

energy-related investment decision is useful for understanding the results of the 

analysis.  In general, the TIMER model selects – at each grid cell – the 

technology with the lowest levelized cost of electricity (LCOE). The LCOE of 

technology i is defined as: 

 

𝐿𝐶𝑂𝐸𝑖 =

𝐼𝑖𝑡

(1 + 𝑖)𝑡 + ∑
𝑂𝑀𝑖𝑡 + 𝐹𝑖𝑡

(1 + 𝑟)𝑡
𝑛𝑖
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡

𝑛𝑖 
𝑡=1

 

(Eq. 5.6) 

 

where, for each technology i, 𝐼𝑖𝑡 represents the upfront capital invested (the 

CAPEX) which is lent at a market interest rate of i, 𝑂𝑀𝑡 are operation and 

maintenance costs and 𝐹𝑡 are fuel costs (together, the OPEX or running costs), 

𝐸𝑡 is the electricity generated, r is the discount rate (which in a risky investment 

context is usually >i, as i might be obtained from less risky capital markets or 

from development banks), and n is the lifetime of the technology in question. 

 

What happens if a consideration of the EAGI implies a ceteris paribus higher 

discount rate r? The upfront component (CAPEX) does not depend on the 

discount rate in the LCOE calculation, while the OPEX does. Therefore, given 

two technologies i and j with (discounted) 
𝐶𝐴𝑃𝐸𝑋𝑖

𝑂𝑃𝐸𝑋𝑖
>

𝐶𝐴𝑃𝐸𝑋𝑗

𝑂𝑃𝐸𝑋𝑗
, a higher discount rate 

implies that the net present value (NPV) of the OPEX becomes lower and 

therefore both ratios increase, albeit the ratio of technology j diminishes at a 

faster rate. This discrepancy is in turn reflected in the LCOE of each technology: 

while the upfront component 𝐼𝑖𝑡 remains fixed, the OPEX varies with the 

discount rate.  

 

Given the prevalent cost-structure of central grid expansion (generally grid 

connections are characterised by lower per-connection CAPEX and higher 

OPEX)  relative to decentralised solutions (higher per-connection CAPEX, lower 

OPEX), a growing discount rate r (i.e. a riskier investment context) tends to 

imply increasing share of national grid-based electrification. This is the result of 

the fact that a higher discount rate fosters the deployment of investment at t = 0 

in technologies that have higher running costs throughout their lifetime (fuel and 
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operation and maintenance), since the present value of such future costs 

becomes comparatively smaller. Thus, in a number of settlements, too high 

discount rates imply decreasing investment in energy access solutions that 

have a higher per new connection CAPEX to OPEX ratio (such as solar PV-

based decentralised systems) relative to the national grid because lending 

capital today is relatively more expensive if future costs are more heavily 

discounted. 

 

 

To explore the pathways for universal access in 2030, we use demographic and 

economic projections from the Shared Socioeconomic Pathway (SSP)  (Riahi et 

al., 2017). SSPs are a set of alternative futures of societal development used by 

climate change research community to investigate climate impacts as well as 

options for mitigation and adaptation. For the purpose of this study, we choose 

SSP2 scenario since it represents moderate population growth and economic 

growth, along with acceptance for all energy conversion technologies that do 

not shift considerably from historical patterns. Historical household electricity 

demand is calibrated based on (Falchetta et al., 2019). The approach calibrates 

real historical electricity consumption information based on night-time satellite 

imagery and other spatially-explicit data. The high-resolution consumption data 

gives a good indication of current electricity access and consumption levels in 

SSA and is used to calibrate the model.  

 

Table 5.3 summarizes the scenarios considered in the electrification analysis. 

We implement a baseline scenario based on the original TIMER regional 

consumer discount rates that only consider household income inequality as 

discussed in (Daioglou et al. 2012). We then run the model implementing our 

novel EAGI-adjusted discount rate scenario, with country-level urban/rural 

heterogeneous discount rates. We also test two scenarios simulating the 

improvement of the EAGI index (as a result of e.g. regulatory and market 

reform) and thus lowering the discount rates. The moderate case assumes 25% 

improvement in rural areas and 50% improvement in urban areas, while the 

substantial case displays 75% improvement in urban areas and 50% 

improvement in rural areas from the current EAGI values. 

 

Table 5.3: Table of the scenarios considered in the electrification analysis 

Scenario Discount rates EAGI 

Baseline 
TIMER baseline 

(regional) 
- 

Baseline-EAGI EAGI-adjusted Baseline 

Moderate 

improvement in 
EAGI-adjusted 

25% improvement in rural 

areas; 50% improvement in 
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EAGI urban areas 

Substantial 

improvement in 

EAGI 

EAGI-adjusted 

75% improvement in urban 

areas; 50% improvement in 

rural areas 

 

 

5.4. Results 
 

Figure 5.5 summarizes the calculated EAGI-adjusted discount rates which are 

considered in the electrification analysis. The underlying numbers are also 

reported in a tabular form in the Supplementary Materials. The results suggest 

that there is a significant range of variability across countries, with EAGI-

adjusted discount rates of less than 20% in urban areas of Botswana up to rates 

of more than 80% in rural Somalia. Investing in urban areas is always less risky 

(i.e. costly) than in rural areas, although the difference decreases as discount 

rates increase. Among the countries with the lowest EAGI-adjusted discount 

rates are Botswana, Rwanda, Namibia, Kenya, Tanzania, Ghana, South Africa, 

and Ethiopia, which all share urban and rural EAGIs lower than 40% and 50%, 

respectively. Not by chance, according to the recent national statistics reported 

in (IEA et al., 2020), these countries are among those with the steepest growth 

in electrification levels since 2010. Conversely, the risk premium is deemed very 

high in Somalia, South Sudan, Chad, the Central African Republic, Eritrea or 

the Republic of the Congo.  
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Figure 5.5: Country-level EAGI-adjusted private discount rates in rural and urban areas. 

The x-axis describes EAGI-adjusted private discount rates; colours report the TIMER 

region of belonging of each country; the symbol size describes PPP per-capita GDP; 

the shape of the symbol distinguishes between rural and urban areas. Source: author’s 

calculations. 

 

As expected, most of these countries have some of the lowest-ranking figures 

for both electricity access levels and their growth rates. Yet, notable exceptions 
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exist, such as for the case of the Republic of the Congo, where a risky profile 

driven by poor performance in the energy access regulation and corruption 

indicators has not prevented the country from experiencing a significant growth 

in electricity access. This shows that there is not necessarily a linear 

relationship between private discount rates and electricity access progress. One 

reason for this is that public investment in infrastructure is sometimes not well 

balanced into market mechanisms and can be driven by political objectives 

rather than market considerations. This is mostly the case for public-owned and 

controlled infrastructure, such as expansion of the national grid. Conversely, the 

market for off-grid electrification is dominated by private players which are more 

responsive to economic considerations. Our paper is mainly looking at the latter 

players, namely at the challenges faced by companies in their electricity access 

investment decisions.  

 

As detailed in Figure 5.6, we fine-tune our methodology in four selected case-

study countries where we consider sub-national heterogeneity in the EAGI-

adjusted discount rates. The results provide a more detailed layer of information 

on how the potential sources of risk for investors are located within a country. 

Not only the maps make the urban-rural divide evident, but also, they put 

considerable weight on remoteness, poverty, and the historical conflict record 

and ethnical exclusion.  
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Figure 5.6: Sub-national results for the estimated private discount rates (based on the 

EAGI and adjusted via sub-national covariates) in the selected case-study countries. 

Source: author’s calculations. 

 

 

Figure 5.7 presents the results of the electrification analysis in terms of the 

optimal share of electrification systems among households in 2030. As 

discussed in Section 5.3.6, it compares two main scenarios: a baseline 

(calibrated on historical electrification progress and investment) and a universal 

electricity access variant (imposing universal electricity access by 2030). Each 

scenario is simulated both with a default discount rate configuration (regional 

DR) and with country-specific, urban-rural heterogeneous DRs (EAGI-adjusted 

DR).  
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Figure 5.7: Results over the optimal technology mix in baseline and EAGI-adjusted 

scenarios. Source: author’s calculations. 

 

The results show that in the baseline scenario standalone energy access 

systems (e.g. diesel gen-sets and solar home systems) display a comparatively 

higher penetration relative to the central grid extension when running an 

analysis based on EAGI-adjusted DRs. This is because the baseline scenario 

implies the persistence of electricity access gaps in 2030 precisely in areas with 

high discount rates (where historically electricity access progress has lagged 

behind). Conversely, areas gaining electricity access are likely to display better 

governance performance and therefore are more attractive for private 

developers of decentralised systems, resulting in a switch from central grid 

access to standalone system access. The more detailed spatial distribution of 

risk increases the proportion of sites that can be successfully electrified by 

private energy access solutions providers.  

 

In the universal electricity access scenario (where – by design – even areas 

with poor governance receive electricity access), the heterogeneity in the 

characterisation of risk through the EAGI-adjusted DRs emerges as a relative 

aversion to standalone and mini-grid systems. The main reason behind this 

finding is that in general, these energy access solutions (and in particular solar 

PV-based decentralised systems) have a higher per new connection CAPEX to 

OPEX ratio (capital upfront costs to operational costs, i.e. fuels, maintenance…) 

relative to the national grid. Thus, a higher discount rate (i.e. a higher cost of 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Regional DR EAGI-adjusted DR Regional DR EAGI-adjusted DR

Baseline Universal access

Optimal technological set-up

Central grid Mini-grid Standalone No access



 
Giacomo Falchetta                                                                                                              PhD dissertation 

191 
 

capital) tends to favour systems with comparatively lower CAPEX to OPEX 

ratios (and therefore LCOEs), as lending capital today is expensive and future 

costs are more heavily discounted. Coincidentally, areas with the largest energy 

access deficit (i.e. which remain without electricity access in the baseline 

variant) are likely areas with poorer performance of the EAGI index. Thus, a 

more detailed characterisation of risk sheds light on the intrinsic difficulty of 

decentralised systems to have a substantial role under a risky environment for 

private investors. In fact, in high risk countries, access through the central grid 

does not guarantee access. It just shows that the private sector is reluctant to 

invest in decentralized systems leaving the central grid as the least expensive 

solution to expanding access. 

 

Figure 5.8 reports the results of the same scenarios in terms of the system-

specific yearly average investment requirements. The annual investment gap 

under standard DR characterisation is ~30 bn, which is indeed similar to 

(Dagnachew et al., 2017). Applying the EAGI-adjusted discount rates leads to 

an additional investment gap of 25 bn/year. This is the result of different trends: 

on the one hand, investment in all access systems becomes ceteris paribus 

more costly. In addition, the technological shift observed in Figure5. 7 – namely 

the crowding out from decentralised systems – implies the need to expand the 

central grid even in areas where it is very costly to do so (because of 

remoteness, low demand density, and risk encapsulated in the EAGI).  
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Figure 5.8: Results over the electrification investment requirements in baseline and 

EAGI-adjusted scenarios. Source: author’s calculations. 

 

 

 

To evaluate the sensitivity of the results, we explore the significance of 

improvements in the EAGI index as a result of political and economic reform. 

The moderate case assumes 25% improvement in rural areas (R) and 50% 

improvement in urban areas (U), while the substantial case displays 75% 

improvement in urban areas and 50% improvement in rural areas from the 

current EAGI values.  

 

Figures 5.9A-B show the results for respectively the share of new connections 

and the investment requirements. As expected, gradually increasing regulatory 

quality leads to growing shares of decentralised (and mainly standalone) 

systems and lower investment requirements, due to both structural capital cost 

reduction and to CAPEX/OPEX ratio variations which in turn reshape the 

optimal energy access technology set-up. Yet, mini-grids and standalone 

systems remain limited in terms of the number of new connections. Even in the 

substantial EAGI improvement case, their penetration is altogether <20%.  
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Figure 5.9: Results of the sensitivity analysis across scenarios. (A) Sensitivity of the 

optimal electrification technology set-up by the share of new connections; (B) 

Sensitivity of the electrification investment requirements, by electrification technology. 

Source: author’s calculations. 

 

 

Together, the results from the TIMER model suggest that the uptake of 

decentralised systems for achieving universal energy access requires 

governance reform to lower the discount rate. In the lack of such institutional 

transformations, the key risk incurred by countries with electrification deficit is 

that areas which would be cost-optimally served by decentralised systems such 

as mini-grids and standalone systems do not get technologies installed because 

of the high DRs pushing away private investors. At the same time, the 

government would likely face financial barriers in connecting those areas to the 

national grid because of their distance to the existing grid or the low local 

demand which would not allow recouping the investment. 

 

In addition, the results presented in this section are likely to vary with the 

consideration of different demand targets and technology-specific cost variation. 

Yet, these additional sensitivity runs are beyond the scope of this paper. The 

results show that varying perceived risk have a ceteris paribus significance for 

electricity access planning. The most prominent effect is on the total investment 

requirements, but a significant effect is also observed in the optimal technology 

mix.   
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5.5. Discussion 
Recent literature based on stakeholder interviews and institutional analysis 

(Dagnachew et al., 2020; Simone and Bazilian, 2019) has discussed how 

energy resource abundance is not a sufficient criterion to ensure elimination of 

energy poverty because of the existence of a variety of barriers. These barriers 

include market failures (e.g. due to a bundled, highly centralised energy sector) 

such as a lack of competition and high transaction costs; market distortions 

such as regressive subsidies hampering investment decisions; economic and 

financial barriers driven by risk perceptions for private system developers as a 

result of a multitude of causes (political, regulatory, monetary, conflict risks). 

  

Building on this qualitative understanding of the main challenges to universal 

electrification in SSA, our paper has developed and implemented a 

methodology to quantitatively and explicitly account for the role of regulatory, 

political, and market risk factors in electricity access modelling. This analysis 

led us to a key finding: the results of the electricity supply analysis change 

substantially compared to a pure, conventional techno-economic assessment. 

Namely, accounting for different risk factors crowds out investment in 

decentralised systems which – compared to a conventional analysis – shrink 

their share on new connections when pursuing a universal electricity access 

policy. This contraction is the result of risks increasing private discount rates, 

and therefore the willingness of private actors to invest in decentralised energy 

access systems (which have higher CAPEX-to-OPEX ratios). 

 

With regards to the interpretation of the modelling exercise results, it is 

important to note that the universal electrification scenarios quantify the 

technological and investment requirements to achieve SDG 7.1.1 under a set of 

given conditions – including the current risk –, but it does not provide any 

specific evidence that those outcomes identified as optimal will actually 

materialize. What does this mean? For instance, the significant growth in the 

share of connections via central grid expansion in the EAGI-adjusted DRs 

variants (and therefore the growth in the overall investment requirements) casts 

doubts on the actual possibility of deploying large-scale public infrastructure 

with considerable governmental expenditure to reach sparse communities with 

low demand loads.  These findings are in agreement with the results from the 

stakeholder interviews of Dagnachew et al., (2020), who claim that ‘achieving 

universal access to electricity through the integration of off-grid systems 

requires innovative revenue schemes, financial and fiscal incentives and 

elimination of market distortions’. 

 

How can these barriers be overcome, and decentralised systems realise the 

potential that they are claimed to have (Dagnachew et al., 2017; IEA, 2019)? 
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The keyword here is reform. Reform of the regulation of the energy sector to 

enable a competitive and attractive environment for private and foreign 

investors; reform of the bureaucracy mechanisms to ensure accountability, 

efficacy and the reduction of corruption and clientelism among decision makers; 

market reform, to ensure the reduction of frictions in the labour and capital 

markets; fiscal reform, to ensure tariffs (including energy taxation) are 

progressive and development investments, such as energy access, meet 

favourable conditions; monetary policy aimed at ensuring the minimisation of 

exchange rate fluctuations which might otherwise lead to fast appreciation or 

depreciation of the currency, with potential losses for foreign investors. 

Regulatory reform is not solely a task for governments in SSA, as policies 

implemented in countries of the Global North (where most donors and investors 

are based) also have a relevant weight. For instance, competitive subsidies 

such as results-based financing from developed economies can support private 

companies in SSA to invest.  

 

In the meantime, private companies in the energy access sector are seeking 

strategies to minimise their operational risk and maximise value to be able to 

invest in new infrastructure even when facing relatively high discount rates. 

Pay-as-you-go (PAYG) schemes among communities served by decentralised 

energy access solutions are gaining growing relevance, in particular when 

combined with ‘over the counter’ electrification products such as plug-and-play 

solar kits and solar home systems. From the companies’ perspective, these 

innovative models can be seen as a hedging investment. PAYG business 

models in fact allow companies to set high interest rates – and thus make profit 

from quasi microfinancing investments – while at the same time lifting poor 

communities from the burden of simply unsustainable high upfront costs such 

as national grid connection charges or standalone systems purchase.  

 

While central grid infrastructure investment has also recently received the 

attention of large-scale foreign (in most cases Chinese, e.g. GEIDCO) 

corporations in the context of pan-sectoral market development operations such 

as the prospect of a global grid, these developments are likely to be strongly 

biased towards certain regions and neglect others, because they are not driven 

by explicit energy access objectives. Contrarily, these CAPEX-intensive 

investments target large demand hotspots such as industrial areas or 

metropolitan cities because they have the specific objective of ensuring the grid 

natural monopoly and then be able to import power from abroad. 

 

To conclude, it must be remarked that the assumptions made in this application 

of the model inevitably result in simplification. The main limitation include (i) the 

data-availability dependent selection of the factors included in the EAGI; (ii) the 
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simple mechanism linking the EAGI to the discount rates; (iii) the intrinsic 

limitations of the TIMER electrification model, detailed in (Dagnachew et al., 

2017); (iv) the lack of consideration of investors peering dynamics – found to be 

important in the literature on investment in developing countries and yet 

challenging to implement due to the lack of granular historical data on 

investment flows in the energy access sector. Future research should aim at 

tackling these key limitations to evaluate the robustness of our results over the 

sensitivity of electrification investment to different sources of investment risk.  

 

5.6. Conclusions 
We have shown that regulatory quality and governance can have a significant 

impact on the optimal investment strategy for private companies involved in 

energy infrastructure in developing countries. Our results are directly relevant to 

policymakers, because they show that targeting specific domestic issues by 

means of better governance and regulation can increase incentives to attract 

more private-sector investment. This diminishes the required investments by 

the central government to expand the central grid in the short run.  

 

With poor regulation, it is likely that the expansion of the national grid is the only 

way to bring electricity to communities that are currently without access, 

because decentralised systems developers do not have the sufficient economic 

incentive to develop a decentralised energy access solution. In the model, this 

is reflected by the fact that operational costs become less relevant and capital 

costs more relevant for energy investment decisions with  higher discount rates. 

Investors therefore tend to prefer systems with lower capital costs to operational 

costs ratios. Since decentralised systems have comparatively higher upfront 

costs per new electricity connection  than extending the central grid, their 

development becomes less and less attractive under higher discount rates. In 

turn, under poor regulatory quality and therefore energy sector governance, the 

government is itself also less likely to invest in the grid, locking the country into 

an energy poverty trap and reinforcing electricity access inequality (Falchetta et 

al., 2020).  

 

We recommend future research assessing electrification to give more prominent 

role to governance, regulation, and risk dynamics. Assessing what is the least-

cost technology is not enough to have this installed if there are no market 

conditions to attract players that can actually put the infrastructure into place on 

a large scale. This is crucial to achieve SDG 7.1.1 timely. 
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6. Hydropower dependency and climate change 

in sub-Saharan Africa: a nexus framework and 

evidence-based review 
 

6.1. Introduction 
In sub-Saharan Africa3 (SSA), the installed hydropower capacity stands at 27 

GW (39% of the total), with additional 15 GW planned or under construction 

(International Hydropower Association, 2018). In 2016, hydropower generation 

stood at 98.6 TWh (US EIA, 2017). A gross technical untapped potential of 7.7 

PWh/year (Hoes et al., 2017) has been estimated, of which between 1.4 (below 

a cost of $0.10/kWh) (Gernaat et al., 2017) and 2.9 (below a cost of $0.09/kWh) 

PWh/year (Zhou et al., 2015) remaining and techno-economically feasible. The 

(IEA, 2017) forecasts that hydropower capacity in SSA will increase at a rate of 

6% per year during the 2020s (and thus be the fastest-growing technology in 

terms of capacity additions), reaching 95 GW by 2040 (IEA, 2014). Currently, 

total generation capacity in the continent amounts to around 70 GW (Figure 

6.1a), although around 25% is currently unavailable because of obsolete plants 

and poor maintenance (Findt et al., 2014). In many countries - and chiefly in 

Central and East Africa - the electricity generation mix is weakly diversified 

(Figure 6.1b), with hydropower accounting for a large part of total generation 

and few back-up options available. Together, hydropower-dependent countries - 

defined as countries where hydropower represents more than 50% of total 

electricity generation - host 45% of the total SSA population, or 160 million grid-

connected users. 

In the last decades (in particular during the wet season in unimodal rainfall 

climates, where rain falls only during one period per year) prolonged droughts 

have resulted in severe power crises in several hydropower-dependent 

countries (including for instance, in Kenya, Tanzania, Ghana, Zimbabwe and 

Zambia during the 2015-16 El Niño period, characterized by oceanic and 

atmospheric shifts in the Pacific Ocean which affect weather and climate across 

the tropics, and in Malawi in 2017), with frequent outages, power rationing (M. 

T. van Vliet et al., 2016), adverse business experience (Gannon et al., 2018) 

and switching to emergency (and costlier) IPP (independent power producer)-

provided diesel-fired generators (Karekezi et al., 2012). Water availability issues 

represent a growing source of risk in different areas, also due to an increasing 

 
3 Throughout this essay, excluding South Africa. 
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competition between water use for power generation, irrigation, and municipal 

water supply (Kling et al., 2014; Zeng et al., 2017). 

 

Figure 6.1: Maps of sub-Saharan Africa representing (a) the total installed hydropower 

capacity in 2016 and (b) the share of hydropower over the total power generated 

domestically in 2016. Data source: (US EIA, 2017). Source: author’s calculations. 

A vivid debate is taking place in the academic literature and in decision-making 

spheres on whether and how in the coming years anthropogenic climate change 

- and thus changing precipitation and evaporation patterns - will affect 

hydropower potential and reliability, next to additional demographic and 

socioeconomic stressors. A number of studies have been carried out to assess 

the impact of past extreme events (including both droughts and floods) on 

hydropower at different geographical scales in SSA (Gannon et al., 2018; Kabo-

Bah et al., 2016; Loisulie, 2010; Stanzel et al., 2018; Uamusse et al., 2017) and 

to model projections for future trends in water availability and hydropower 

output (Cervigni et al., 2015; Conway et al., 2017; Sridharan et al., 2019; Turner 

et al., 2017a; M. T. H. van Vliet et al., 2016). However, there appears to be a 

lack of a systematic review paper focusing on the specific issue of hydropower 

dependency in SSA, building on a robust theoretical framework, and analysing 

relevant data to account for the current capacity expansion plans and for 

different climate change scenarios. 

 

To address the gap, this paper adopts an analytic approach to provide a state 

of-the-art picture of the issue of hydropower dependency across SSA under the 

projected impacts of climate change. The review is carried out in three steps, as 

described in Figure 6.2a. First, the relevant literature is collected and screened. 
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Figure 6.2: (a) Schematic of the review approach. An initial literature screening 

underpins the design and discussion of a framework of relationships for the climate-

water-energy nexus considered. Data evidence supports the findings of the literature 

reviewed and addresses conclusions and policy implications. (b) Schematic of the data 

evidence section. Drought data is used to assess the trends in frequency and intensity 

of drought events recorded over nine major river basins throughout the twentieth 

century. Hydropower data is analysed to assess past trends and current pathways of 

hydropower dependency and diversification. CMIP5 climate projections are reported to 

discuss implications for the coming decades. Source: author’s elaboration. 

An explicit decision to assess studies focusing on the relationship between 

climate change and hydropower in SSA, rather than water resources in general 

or in other specific contexts is made. At the same time, the review adopts a 

forward-looking perspective on the status quo and on projected future pathways 

and impacts, rather than systematically reviewing past drought-induced 

disruptions. Subsequently, a framework to highlight the range of relationship 

linking hydropower generation, water availability, GHG (greenhouse gas) 

emissions, climate impact, and energy system development is derived and 

represented. Specific implications for the three main types of hydropower plants 

(run-of-river, reservoir and pumped-storage) are discussed. Thirdly, based on a 

selected number of aspects of the conceptual framework (focusing on 

hydropower, droughts, and climate change) and on the literature screening, the 

review is supported by data evidence (Figure 6.2b). Data sources include the 
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US IEA International Energy Statistics database (US EIA, 2017), the SPEI 

(Standardized Precipitation-Evaporation Index) global droughts database 

(Beguería and Vicente-Serrano, 2017), the African Energy Atlas 2017-18 power 

infrastructure data (Cross-border Information, 2017), and CMIP5 (Coupled 

Model Intercomparison Project - phase 5) climate projections (Taylor et al., 

2012). Lastly, insights from the three analytical steps are presented in the 

discussion section, where the key implications of the review are highlighted to 

the research community, the private sector, and public decision makers. 

The remainder of the paper is structured as follows: in Section 2, a theoretical 

framework of the interlinkages between the power sector, the climate system, 

and the broader economy is presented, with specific focus on hydropower 

generation and water availability. Sections 3 and 4 report the results of the 

literature review process and of the data evidence on (i) the historical evolution 

of hydropower installed capacity, generation and capacity factors, (ii) current 

and planned generation capacity additions, (iii) the trends in the frequency and 

intensity of drought events, and (iv) future climate change projections. Section 5 

discusses the most relevant findings and the key implications for energy-water 

systems planners and researchers. Section 6 concludes the paper. 

 

6.2. Theoretical framework 
Figure 6.3a represents the diagram of relationships derived from the initial 

literature screening. This is aimed at highlighting the key elements of the 

climate-water-energy nexus (Frumhoff et al., 2015) which is taken as a 

reference throughout the review. These include drivers, impacts, their linkages, 

and feedbacks. The focus is put on the power sector, and the framework is 

designed so as to be particularly suitable to analyse the case of SSA. 

The following considerations characterise the conceptualised relationships: 

(i) Demand for power is strongly associated with economic growth. Despite the 

direction of the causal link between the two being a controversial question in the 

literature (Dlamini et al., 2016; Eggoh et al., 2011; Inglesi-Lotz and Pouris, 

2016, p.; Iyke, 2015; Louw et al., 2008; Wolde-Rufael, 2006), with some studies 

pointing at the simultaneous causality hypothesis, and others suggesting a 

mono-directional or a less clear link, it is acknowledged that a strong correlation 

exists. Other drivers include population, urbanisation, and employment levels 

(Ubani, 2013). Power demand contributes to determining energy policy, which 

drives supply-side decisions. 

(ii) Power can be generated in several ways, and chiefly: (i) with thermal-

generation, i.e. fossil fuel-fired plants and nuclear units, but also geothermal 
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and biomass power generation, or CSP (concentrated solar power); (ii) 

mechanically, from kinetic energy, including hydropower facilities (hydropower 

plants and pumped storage), wind turbines, or tidal energy; (iii) through solar 

photovoltaic (PV) units. Thermal generation from fossil fuels results in multiple 

externalities, as it is associated with greenhouse gas emissions and (together 

with nuclear energy) it implies the consumption of substantial volumes of water 

for cooling purposes (albeit consumption largely depends on the technology 

installed, Macknick et al., 2012). 

(iii) GHG emissions from fossil fuels combustion contribute to climate change 

(Pachauri et al., 2014), raising mean temperatures and affecting precipitation 

and evaporation patterns. Modelling studies show that climate change could 

exert substantial impacts on water availability in SSA (Faramarzi et al., 2013), 

although large uncertainty exists regarding the magnitude of these changes in 

different regions. In turn, climate change may impact virtually every sector of the 

economy, affecting productivity, energy demand, and infrastructure (through 

increasing the likelihood of extreme events). The adaptive capacity of each 

country determines the effects of such linkages. 

(iv) Water availability is key for many economic sectors, and primarily for 

agriculture. This is of great importance to SSA, where agriculture accounted for 

17.5% of value added to GDP (gross domestic product) in 2016 (World Bank, 

2018), with the figure standing at more than 30% in several countries largely 

reliant on subsistence agriculture. Hence, increased water pressure can have 

substantial impacts on food security and on economic growth as a whole. 

(v) Hydropower generation is tightly linked to water availability, since turbines 

require the streaming of large volumes of water to generate power. At the same 

time, artificial reservoirs can affect both the seasonal flow (releasing more water 

during the dry season and holding it back during the wet season), and the 

overall flow because of increased evaporation (Bakken et al., 2013; Mekonnen 

and Hoekstra, 2012). Again, this depends on the hydrological basin in question, 

the type of hydropower facility, and the other prevalent water uses in the region. 

Moreover, an important upstream-downstream coordination dimension also 

exists and is highly relevant to the case of SSA, in particular for transboundary 

water resources management (Namara and Giordano, 2017). 
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Figure 6.3: (a) The climate-water-energy nexus framework considered in this review. 

Solid lines express direct drivers and impact, while dashed lines describe indirect 

relationships, where mediating factors play a role. Arrows express whether effects are 

uni- or bidirectional. (b) Schematic of the key channels of climate change impact on 
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hydropower schemes reliability. (c) Example framework of greenhouse gas emissions 

mitigation via VRE-hydropower complementarity. 

 

(vi) Non-hydro RE (renewable energy) sources can have the benefits of 

generating power without contributing to greenhouse gas emissions, while 

affecting the supply of water to a much lesser extent and of reducing 

greenhouse gas emissions. They can also serve to extract water (e.g. via water 

pumping) and mitigate competition over reservoirs in dry areas, and thus help to 

serve irrigation needs in the agricultural sector. Furthermore, if properly 

planned, hydropower can work in tight complementarity with intermittent RE 

such as solar and wind, serving as a technology for energy storage (as 

reservoir water) to accommodate demand peaks and seasonality (Barasa et al., 

2018; Francois et al., 2014; Rogeau et al., 2017; Sterl et al., 2019, 2018), and 

not solely as a source of baseload power (see also Fig. 6.3c) later. 

(vii) Finally, the treatment and distribution of water can require a considerable 

quantity of energy (Opperman et al., 2015). 

Figure 6.3b expands the framework of Figure 6.3a to explore the 

interdependencies between climate, water, and hydropower generation. In 

particular, it suggests that: 

(i) Hydropower generates electricity via falling water hitting a turbine connected 

to a generator. The power output is a function of both the flow impacting the 

turbine and the hydraulic head. As a result, changes in hydro-climate may affect 

hydropower generation (Lumbroso et al., 2015). The channels through which 

climate change affects hydropower capacity and effective output include 

alterations in the gross stream flow, shifts in the seasonality of flows and a 

greater variability (including flood and drought extremes), increased evaporation 

from reservoir lakes, but also changes in sediment fluxes (World Commission 

on Dams, 2000). 

(ii) Anthropogenic climate change determines changes in the long-term mean of 

hydroclimatic parameters - chiefly temperature and precipitative fluxes , as well 

as the seasonal shifts and the probability and intensity of extremes (droughts 

and floods) (Pachauri et al., 2014). 

(iii) The extent to which such changes affect power generation and the actual 

capacity factor of hydropower plants depends on multiple factors, including: the 

direction and magnitude of the change; the type of dam in question; and for the 

case of reservoirs, the features and size of reservoir; among multipurpose dams 

(which are usually also the largest), the withdrawal from concurrent uses and 

thus the use of shared water resources in the region by the agricultural sector, 
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the industry, and residential areas (Lee et al., 2009); and the transboundary 

basin management (Conway et al., 2015). Source: author’s elaboration. 

(iv) Hydropower includes plants of three main categories: RoR (run-of-river), 

reservoir-based, and pumped storage plants. Plants however often operate 

intermittently as RoR and reservoir-based. For example, plants with multiyear 

reservoir lake capacity can buffer inflow across multiple years, whereas plants 

with within-a-year capacity can only do it for several months before they would 

overflow. The first type utilizes the river’s flow to produce electricity without 

blocking water upstream; the second partially stops the flow of a river with a 

dam and floods an area upstream to create a reservoir lake. Reservoirs are 

capable of buffering fluctuations in flow over longer time periods, and 

hydropower plants with reservoirs can thus be well-suited for providing base 

power (relatively constant output) and peak power (increased power output at 

particular moments). Depending on the vulnerability of the plant’s technical 

equipment (such as the turbine equipment) to the impacts of variable discharge 

rates, it might be decided to operate only for baseload provision. Conversely, 

depending on the vulnerability of downstream ecosystem services to the 

impacts of constant discharge rates, it might be decided to operate plants 

mostly as run-of-river facilities (Liersch et al., 2019). As of 2019, no pumped-

storage facilities are in operation throughout SSA. Four schemes are operating 

in South Africa in conjunction with the constant generation. These facilities 

serve to meet the intra-daily variations in the electricity demand, but can also be 

used to store generation potential from other variable RE (such as solar and 

wind) during moments of overproduction from the latter, reducing curtailment 

rates. 

(v) Considerations related to the cooperative (or competitive) dynamics of 

water resources management are necessary. Transboundary river basins cover 

62% of the total surface of Africa, and water availability (and water infrastructure 

management) downstream is largely affected by political and infrastructural 

choices upstream (Grey et al., 2016). Cooperative governance can reduce 

water conflicts, increase efficiency in resource use including hydropower output 

- and create economic value by internalizing externalities stemming from a lack 

of coordination, and therefore boost investment and financing of shared water 

infrastructure (such as Pareto efficiently located dams, World Bank, 2017). 

(vi) The relationship between hydropower and irrigation in multipurpose 

reservoirs is pivotal: it has been evaluated that while today roughly 54% of 

global installed hydropower capacity competes with irrigation and 8% 

complements it, competition is expected to intensify under a warmer climate 

(Zeng et al., 2017). 
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(vii) Besides long-term alterations in the climate system, droughts and floods 

pose short-term disruption risks to the power sector, with statistically significant 

reductions in average hydropower utilization rates (-5.2%) and thermoelectric 

power generation (-3.8%) during drought years compared to the long-term 

average having been observed (M. T. van Vliet et al., 2016). Overall, water 

shortages from both long-lived changes in precipitation, evapotranspiration, and 

extreme events pose the risk of reducing electricity production in hydropower 

plants, while energy outages can themselves disrupt water distribution facilities. 

Co-integration of multiple RE (Figure 6.3c), - e.g. of variable sources like solar 

PV and wind and hydro used as a solution to increase flexibility and provide 

power storage (in particular to satisfy peak demand) has multiple benefits. It can 

trigger win-win solutions for emissions mitigation, renewables share increase in 

the generation mix, climate resilience of the power sector, and sustainability in 

the use of water resources. 

 

6.3. Literature review results 
The screened literature has been classified into three main categories: (i) 

studies assessing the potential impacts of climate change on hydropower 

supply and reliability, both at the global and at the river basin level; (ii) research 

contributions focusing on the impact of power generation on water availability as 

a result of withdrawals or consumptive uses e.g. for thermal plants cooling; (iii) 

the literature on the broad array of additional stressors for water availability, e.g. 

as a result of economic growth. Before introducing the results of the literature 

screening, I also report recent studies offering techno-economic analysis of 

hydropower and power mix expansion pathways for SSA carried out at different 

scales. 

 

A gross technical untapped potential of 7.7 PWh/year (Hoes et al., 2017) has 

been estimated for SSA, of which there remain between 1.4 PWh/year below a 

cost of $0.10/kWh (Gernaat et al., 2017) and 2.9 PWh/year below a cost of 

$0.09/kWh (Zhou et al., 2015), i.e. techno-economically feasible compared to 

other local generation options. These assessments mostly rely on spatially-

explicit digital elevation and river discharge information within a cost 

optimisation modelling framework. Discharge is based on historical long-run 

averages, although (Gernaat et al., 2017) also test the effect of climate change 

(under scenario RCP 8.5) on runoff and thus on the remaining technical 

potential. They observe a moderate increase (4 to 18%) consistently occurring 

in Africa. 
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A significant share of the potential is concentrated in sites with very large 

potential capacity, such as the Grand Inga, in the Congo River (up to 42 GW). 

(Taliotis et al., 2014) analyse the impact of the project of the continental energy 

system in a modelling framework, and found that - provided sufficient high-

voltage transmission interconnection infrastructure is put into place - the dam 

could satisfy a substantial part of the power demand in all power pools of SSA. 

However, the authors do not account for any externality of the project. Also, 

open questions remain on the continental impact of potential (including climate-

induced) generation disruptions at such large-scale projects. With regards to the 

issue, Deshmukh et al. (2018) assess the feasibility and cost-effectiveness of 

RE alternatives to the Inga 3 scheme. They find that under most scenarios, the 

hydropower project would be comparatively more costly than a mix of wind, 

solar PV, and some natural gas to meet future demand. Similar results are 

highlighted by (Oyewo et al., 2018). 

Irrespective of the large and cheap untapped hydropower potential, a number of 

studies show that cost-effective pathways that are alternative to heavily relying 

on new dams exist for SSA. For instance, Wu et al., (2017) claim that the 

current generation capacity expansion paradigm in SSA, which largely relies on 

domestic large-scale hydropower schemes, is dominating because of the 

insecurity and high costs of fossil fuels. The authors however highlight a large 

number of concerns related to this paradigm, including many aspects discussed 

in this paper. To provide an alternative, they create a framework for multicriteria 

analysis for planning RE and map and characterize solar and wind energy 

zones in the Southern African Power Pool (SAPP) and the Eastern Africa Power 

Pool (EAPP). They find that RE potential is several times greater than demand 

in many countries and mostly economically competitive, and thus it significantly 

contributes to meeting this demand. International interconnections are however 

necessary to render this potential economically feasible for the region as a 

whole. Also, interconnections that support the best RE options are different from 

those planned for a counterfactual scenario of domestic large-scale hydropower 

expansion. The same direction is pointed by (Barasa et al., 2018), who estimate 

electricity generation potential throughout SSA (divided into 16 sub-regions) at a 

hourly resolution according to four scenarios over the transmission grid 

development. They show that RE is alone sufficient to cover 866 TWh electricity 

demand for 2030, and that existing hydro dams can be used to balance large-

scale solar PV and wind integration. All scenarios represent pathways of 

substantial diversification away from hydropower, which compared to other RE 

would have a significant smaller share. The authors highlight that this finding is 

at odds with the New Policies Scenario of the IEA, which projects that by 2040 

hydropower may account for 26% of electricity generation in SSA. Similar 

results are highlighted in Schwerhoff and Sy (2019), who compare results from 
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Integrated Assessment Models (IAMs), finding that different sustainable energy 

supply pathways for Africa which are also compatible with the 2C climate target. 

Some scenarios determine a 100% switch to RE over the medium-run, provided 

sufficient transboundary transmission infrastructure is put into place. 

Another significant aspect concerns the small-scale hydropower potential and 

its role for delivering electricity access to remote communities. Several technical 

assessments have been carried out for SSA (Ebhota and Inambao, 2017; 

Kaunda et al., 2012; Korkovelos et al., 2018), highlighting the significant 

potential (e.g., 9.9 GW in the Southern African Power Pool, and 5.7, 5.6, and 

3.9 GW in the Central, Eastern, and Western African Power Pools, 

respectively). Least-cost techno-economic electrification models then show 

(Korkovelos et al., 2019; Mentis et al., 2017) that these technologies can be the 

cheapest option to provide power to mini-grids in a number of settlements 

throughout SSA. Yet, little research has hitherto been performed to assess the 

reliability and vulnerability of such small-scale technologies to long-lived 

changes in the discharge or short-lived disruptions. 

Finally, Szabó et al. (2016) show that in an array of settings the least-cost 

option for achieving electrification of local communities in SSA consists in 

transforming currently existing but non-powered dams into electricity-generating 

schemes. Overall, the authors calculate a potential of 243 MW at a moderate 

cost of $365.7 million, which could supply nearly 4 million people with electricity. 

 

Table S2 (in the Appendix) reports and briefly summarises the main reviewed 

studies covering the projected impacts of climate change on hydropower in 

SSA. The literature can be classified among three key dimensions: (a) the 

geographical scope, with 6 reviewed studies assessing the global scale, 5 

papers examining broad African regions, and 14 contributions analysing specific 

river basins or countries; (b) the methodology, mostly including integrated 

electricity-hydrology model-based studies, and (c) the climate scenarios 

considered, with most studies assessing the RCP (Representative 

Concentration Pathways) and SRES (Special Report on Emissions Scenarios) 

scenarios. 

Global or regional scale studies evaluating changes in global hydropower 

potential caused by potential changes in climate conditions include the 

following: 

Hamududu and Killingtveit (2012) use an ensemble of simulations of regional 

patterns of runoff changes and found that on a global scale the absolute 

magnitude of change is projected to be small and positive (>+1%) for the 

hydropower system in operation today, but substantial heterogeneity exists. 
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Most negatively affected SSA countries (in terms of percentage change of total 

currently operating hydropower output by 2050) include Mozambique (-9.5%), 

Namibia (-21.2%), South Africa (-11.6%), and Zimbabwe (-10.4%). Among 

countries potentially benefiting from climate change for hydropower generation, 

there figure Burundi (+13.1%), Rwanda (+15.1%), Uganda (+14.9%), and 

Tanzania (+12.9%). 

(Turner et al. (2017c) employ a coupled global hydrological and HPP 

(hydropower plant) model with downscaled, bias-corrected climate simulations 

(under RCPs 4.5 and 8.5), to explore consequent impacts on the power mix and 

associated emissions and investment costs using an integrated assessment 

model. They find significantly altered power sector CO2 emissions in several 

hydropower-dependent regions and estimate the global 21st century investment 

necessary to compensate for deteriorated hydropower generation caused by 

climate change at $1 trillion. For SSA, under the two RCP scenarios, they 

estimate an increase in the 0.07-0.13 EJ (exajoule) range in hydropower output 

in East Africa by 2100 with respect to today’s level, coupled with a decrease in 

carbon dioxide emissions (up to 2.79 MtC/year) and in required energy 

investments (up to -$72.6 billion), while for Southern and West Africa they find 

decreases in the hydro output of 0.01 and 0.03 EJ, respectively. These are 

associated with increase of 0.02-0.54 MtC/year on power sector emissions 

across the two regions, and a $4.4-13.4 billion impact on cumulative power 

sector investments. 

Turner et al. (2017b) further improve the model simulating HPP with a detailed 

dam model that accounts for plant specifications, storage dynamics, reservoir 

bathymetry and operations. They show that the inclusion of these features can 

have a non-trivial effect on the simulated response of the hydropower 

production to changes in climate factors. Here, results are expressed as the 

average country-level hydropower output change, considering A2 and B1 SRES 

scenarios and different models. The strongest negative change in hydropower 

output is found in West Africa: Togo (-14.4%), Ghana (-14.5%), Mali (-13.7%), 

Guinea (-12.9%), Cˆote d’Ivoire (-15.7%), Nigeria (-15.8%). 

Van Vliet et al. (2016) predict reductions in usable capacity for 61-74% of the 

hydropower plants and 81-86% of the thermoelectric power plants worldwide for 

2040-2069. For the African continent, they highlight moderate declines (around 

-0.9%) in hydropower output by 2050 for both RCP 2.6 and 8.5, and more 

substantial declines (around -5.2-17.8%) in thermoelectric power if no 

adaptation measures are implemented. 

M. T. H. van Vliet et al. (2016) carry out a multi-model assessment of global 

hydropower and cooling water discharge potential under RCP2.6 and RCP8.5 
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climate change scenario over five GCMs (general circulation models). For SSA 

they predict large increases of hydropower output (>20%) in Central Africa and 

considerable declines (<-20%) in North Africa and parts of Southern Africa. 

Cervigni et al. (2015) present a comprehensive analysis of the future of water-

related infrastructure (including both hydropower and irrigation in agriculture) 

under IPCC (Intergovernmental Panel on Climate Change)’s RCP warming 

scenarios. The authors focus on the question of how to design and build the 

essential infrastructure needed for Africa’s development, while factoring in and 

addressing the challenge of climate resilience. The study covers seven major 

river basins (Congo, Niger, Nile, Orange, Senegal, Volta, and Zambezi) and all 

four of SSA’s electric power pools (Central, Eastern, Southern, and Western). It 

is argued that failure to integrate climate change in power and water 

infrastructure could entail, in dry scenarios, losses of hydropower revenues in 

the 10-60% range with respect to a no-climate-change scenario (in part 

because the transmission lines and power trading agreements needed to bring 

the extra hydropower to the market could not be available). Threefold increases 

in consumer expenditure for backstop energy (e.g. diesel generation) are 

projected under the driest scenarios, with significant impact on infrastructure 

investment and future power mix configurations. Climate change is projected to 

have the largest impact on electricity consumer prices in the Southern African 

Power Pool, where transmission lines are limited and the percentage of 

hydropower in the total installed capacity is high. For instance, hydropower 

generation could decline by more than 60% in the Zambezi basin. On the other 

hand, an unexploited wetter climate (in terms of underdeveloped capacity) could 

imply forgone revenues of 20-140% vis-`a-vis the baseline. 

Cole et al. (2014) assemble an extensive spatial dataset for Africa from 

geographically based information on daily precipitation, soil conditions, power 

plants, and energy network grids. They find that while on average current plans 

for African dam building are well matched with river-flow predictions, in most 

countries a higher output variability would be witnessed, and a reduced 

hydropower production would still occur in some others, including Guinea, 

Mozambique, Sierra Leone and Niger. 

M. T. van Vliet et al. (2016) quantify the impacts of drought episodes and warm 

years on hydroelectric and thermoelectric available capacity. They show that 

hydropower utilisation rates were on average reduced by 5.2% and 

thermoelectric power by 3.8% during drought years compared to the long-term 

average for 1981-2010, while during major drought years, hydropower showed 

declines in the 6.1-6.6% range and thermoelectric power in the 4.7-9% range. 

Among the global regions considered, they observe the highest interannual 
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variability in utilisation rates of hydropower in Southern Africa (the only region of 

SSA considered in the study). 

Besides global and continental-scale studies, many regional analyses have also 

been carried out. (Sridharan et al., 2019) assess climate vulnerability of 

hydropower infrastructure in the Eastern African Power Pool. They find that 

failing to perform climate-resilient infrastructure investment (found to be a plan 

optimised for a slightly wetter climate compared to historical trends) can result 

in significant electricity price fluctuations, in particular in Uganda and Tanzania. 

Stanzel et al. (2018) apply climate data of an array of Regional Climate Model 

simulations in a water balance model for the case of West Africa, based on 

RCP4.5 and RCP8.5 until 2065. The results show mixed trends, with median 

results of the model ensemble for the relative change in rivers’ discharge in the 

range of ±5%. The ensemble agrees upon the significance of the results in a 

number of sub-regions, including stronger decreases in the north and east of 

West Africa and pronounced increases mainly in the southwest. 

Kling et al. (2015) and Kling et al. (2014) assess future climate change impacts 

in the Zambezi basin - hosting three of the largest hydropower schemes in SSA, 

the Kariba (1470 MW), Cahora Bassa (2075 MW) and Kafue Gorge (990 MW) - 

for existing and planned major hydro plants, based on global climate model 

projections from the CMIP5. The authors refer to RCP4.5 and account for 

moderate economic growth to factor in changes in withdrawals for agricultural 

irrigation. They downscaled climate change signals at the stations to construct 

future time-series of precipitation and temperature at a number of sub-basins. 

Their results - characterised by significant uncertainty in future precipitation 

levels - show that by 2050 annual discharge could decrease by 20%, with sub-

basin heterogeneity but diffuse negative changes. Such declining trends in 

discharge are predicted to worsen, with declines in the 40-55% range by the 

end of the century, posing a great risk for water resources management in the 

Zambezi basin. Runoff is found to be mostly sensible to changes in precipitation 

rather than in temperature, the former being however also the most uncertain 

variable. 

Spalding-Fecher et al. (2016) also assess the vulnerability of hydropower 

production in the Zambezi River Basin to the impacts of climate change, but 

they include in the analysis more specific focus on irrigation development. Using 

the Water Evaluation and Planning (WEAP) tool, they find that for both existing 

(Cahora Bassa) and planned downstream schemes (Mphanda Nkuwa) 

prioritising irrigation demand over hydropower could severely compromise the 

plant’s output and impair the feasibility or limit the cost-effectiveness of 

expansion plans. At the same time, the generation at upstream HPP (Karibe) is 
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highly vulnerable to a drying climate, while new projects (Batoka Gorge) and 

expansions may not reach the production levels forecasted in feasibility studies. 

Harrison and Whittington (2002) evaluate the relationship between climate 

change scenarios and the future technical and financial viability of hydro 

development. They elaborate on the case study of the not yet built 1,600 MW 

Batoka Gorge project on the Zambezi river, upstream of Lake Kariba. Their 

findings suggest that - under the examined climate change scenarios - 

significantly altered river flows and adverse power production and financial 

performance would occur (up to 19% of target production unmet, up to $3.8 

million per month of forgone revenues and up to +$0.40 in unit cost of 

electricity) vis-`a-vis a no climate change scenario. 

Conway et al. (2017) rely on cluster analysis to define regions of coherent 

rainfall variability in East and Southern Africa to illustrate exposure to the risk of 

hydropower supply disruption of current and planned hydropower sites. The 

authors forecast substantial increases in the exploited capacity in the Nile and 

Zambezi river basins, and find that by 2030, 70% and 59% of the total 

hydropower installed capacity (including HPP currently planned or under 

constructions) would be located in a single cluster of rainfall variability (i.e., 

areas experiencing similar rainfall patterns) in EA and SA, respectively. 

According to the authors, unless robust power interconnection infrastructure is 

put into place, this would increase the risk of concurrent climate-related 

electricity supply disruption and power rationing in the two regions because dry 

years will negatively affect water storage at all reservoirs and their ability to 

subsequently refill. 

Further regional or basin-level studies, heterogeneous in the methodology 

adopted, include the following: (Beilfuss, 2012) on the hydrological risks and 

consequences of climate change for Zambezi River Basin dams and (Spalding-

Fecher et al., 2016) on the vulnerability of hydropower production to the impacts 

of climate change and irrigation development in the same area; (Boadi and 

Owusu, 2017) on climate-induced hydro variability and disruptions in Ghana, 

and (Kabo-Bah et al., 2016) on climate trends in the Volta River Basin and their 

potential impact on hydropower generation; (Kizza et al., 2010) providing future 

hydropower scenarios under the influence of climate change for the riparian 

countries of the Lake Victoria Basin; (Loisulie, 2010) assessing the vulnerability 

of the Tanzanian hydropower production to extreme weather events; (Oyerinde 

et al., 2016) estimating the projected impacts of increased GHG emissions on 

the Niger basin at the Kainji hydroelectric plant and implications for local power 

production; (Bunyasi, 2012) studying the case of the Seven Forks Project to 

assess the climate vulnerability of hydroelectric resources in Kenya; (Mukheibir, 

2017, p. 201) adopting a similar approach for large hydroelectricity schemes in 
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Southern Africa. (Uamusse et al., 2017) focusing on the case of Mozambique, 

where the Cahora Bassa dam provides an important share of the domestic 

power supply - in particular in the northern provinces - despite 65% of the total 

power generated at the dam being exported to South Africa, projecting a 

capacity reduction in all hydro plants in the country, with Cahora Bassa falling 

from the current 2,075 MW to 1,822 MW; and (Karekezi et al., 2012) providing 

an assessment of the economic impact of recent droughts-induced hydropower 

capacity reduction and disruptions in the East and Horn of Africa region. 

A comprehensive assessment shows that irrespective of large uncertainty in the 

projected change in precipitation levels and patterns, agreement is found over 

projections that East Africa could positively benefit from a warmer climate in 

terms of hydropower output, West and Southern Africa would be subject to 

negative impacts, while Central Africa is prone to be less affected. For all the 

predictive studies under examination it must be remarked that substantial 

uncertainties emerge when modelling the impacts of climate change on 

hydrological variables and hydropower output. These uncertainties regard both 

the magnitude of projected climate alterations (in particular for precipitations), 

and the degree of potential water abstraction from planned future upstream 

dams. 

 

Power generation is itself a water-intensive activity in terms of both withdrawals 

(water removed from a source) and consumption (the volume withdrawn and 

not returned to the source due to evaporation or transport). The (IEA, 2016) 

estimates that, on a global scale, the power sector accounts for 10% of total 

water withdrawals and 3% of consumption, i.e., 88% of total water withdrawals 

and 36% of water consumption volumes of the energy sector. Fossil fuels are 

by far the thirstiest power generation sources, with 230 bcm (billion cubic 

meters) of water withdrawn worldwide for cooling purposes in 2014. However, 

withdrawals and actual consumption are largely variable across technologies 

and depend primarily on the cooling technology in question. 

The effective water consumption of hydropower varies depending on technology 

type (e.g. reservoir vs. RoR plants), reservoir size, local climate, and total 

demand from all water users (IEA, 2016). Reservoirs serve as a major source of 

global energy storage, and a majority of the water withdrawn is returned to the 

river after passing through turbines. As a result, the amount consumed is highly 

site-specific. Nonetheless, this does not imply that water availability is neutral to 

hydropower, and vice versa. Short-lived droughts, as well as seasonality and 

long-term changes in water supply induced by climate change or other 

anthropogenic drivers can have a considerable impact on effective generation 

capacity. 
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Table S3 (in the Appendix) reports the reviewed studies (Bakken et al., 2017; 

Davies et al., 2013; Fricko et al., 2016; Mekonnen et al., 2015; Mekonnen and 

Hoekstra, 2012; Meldrum et al., 2013; Mouratiadou et al., 2016) on the impact 

of power generation - both from fossil fuels and hydropower - on water 

resources. The focus is on studies at the global or SSA scale, while I 

acknowledge but do not include similar studies on the UK (Byers et al., 2014), 

the US (DeNooyer et al., 2016) and China (Zhang and Anadon, 2013). 

The literature suggests that 96.4% of the consumptive water footprint of 

electricity and heat production in Africa stems from hydropower, with peaks of 

average 450,000 - 496,800 l·MWh−1 in hydropower-dependent countries 

(Mekonnen et al., 2015). To put the figures in perspective, the median water 

withdrawals from combined cycle once-through-cooled gas-fired plants stands 

at 43,100 l · MWh−1, and that of general once-through-cooled coal-fired plants is 

at 137,600 l · MWh−1, with a very similar value for steam gas-fired plants 

(Macknick et al., 2012). Concerning withdrawals (which include all water 

diverted) from its source, the figures stand at 669,600 l·MWh−1 at Cahora 

Bassa and at 2,239,000 l · MWh−1 at Lake Kariba (Mekonnen and Hoekstra, 

2012). 

 

According to the UN (United Nations Population Division, 2017), the population 

of SSA is expected to reach the 2.75-5.5 billion range by 2100 from the current 

1 billion, and hence to undergo a quasi-threefold growth in the most 

conservative scenario. This means that - assuming constant per-capital 

withdrawals and efficiency in water use - consumption, industrial use and other 

withdrawals would increase. However, if this assumption is released, two effects 

will work in opposite directions: on the one hand the potential (by know-how, 

technology and infrastructure) to increase water use efficiency, which as of 

today is relatively low; on the other, the concrete chance that increasing 

development and well-being result in rising per-capita water demand, through 

both higher water use and increased consumption of products with large water 

footprints (such as meat). The link has been previously investigated by several 

studies, among which (Buitenzorgy and Ancev, 2013; Cole, 2004; Duarte et al., 

2014; Flörke et al., 2013; Katz, 2015). Most assessments agree on an inverted-

U shape statistical relationship between per-capita income and water use, with 

the estimated turning points found at income levels that have only been reached 

in the developed regions. (Cole, 2004) projects developing regions’ (including 

SSA) per capita and total water use to increase in the coming decades, while 

they argue that the current extreme inefficiencies in use might be mitigated with 

sound policy and technological advances. 
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6.4. Data evidence results 
Here, I investigate the historical evolution of hydropower capacity, generation, 

and capacity factors in hydropower-dependent countries, to understand the 

heterogeneity in the diversification trends observed. I also collect extensive 

information on capacity currently under construction or having secured finance, 

to understand how regional power mixes may evolve in the near future. Then, 

drawing from a long-run drought database, I evaluate if and to what extent the 

frequency and intensity of extreme events has evolved throughout the twentieth 

century. Lastly, I illustrate the potential evolution of hydropower under the 

downscaled CMIP5 climate projections under different warming scenarios to 

provide evidence of future potential stress on hydropower. 

 

 

Figure 6.4: Evolution of share of hydropower over total capacity. Elaboration on data 

from (US EIA, 2017). 

Figure 6.4 and Figure 6.5 plot the evolution of the share of hydropower over 

total capacity and generation, respectively, for the period between 1980 and 

2015. The figures are reported for hydropower-dependent countries of SSA 

under examination. Here, both countries with a hydropower share > 50% of total 

generation, and further countries deemed potentially affected by the issues 

discussed in the paper are included. Countries are grouped by region (Central, 

East, West, Southern), so as to highlight the different trends of diversification 

that have been followed across neighbouring countries. Refer to the Appendix 

to Essay 6  for a map showing the regional classification adopted in this paper. 
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The numbers on the share of hydropower generation show that only some 

countries have successfully pursued a diversification strategy over the last three 

decades. These include Tanzania (panel B), where hydropower fell from 95% in 

year 2000 to a low of 37% in 2015 thanks to the installation of 700 MW of gas-

fired plants over the last decade; the Republic of Congo (panel A), where the 

delivery of a 300 MW gas-fired power plant in 2011 led to a temporary 

diversification (but further 1,600 MW of new hydropower capacity are planned); 

Ghana (panel D), where hydropower fell from a share of 80% in 2000 to around 

50% in 2015. However, in the case of Ghana diversification via gas-fired 

capacity addition tells only part of the story for the reduction of the share of 

hydropower over total generation. Droughts and consequent water level 

reductions of Lake Volta over the last decade have in fact been significant 

contributors to the observed drop in hydro generation and consequent power 

supply issues experienced since (Boadi and Owusu, 2017), leading to 

deployment of emergency capacity. 

 

 

Figure 6.5: Evolution of share of hydropower over total generation. Elaboration on data 

from (US EIA, 2017). Source: author’s calculations. 

This and analogous trends are detected when examining the trend in the 

national hydropower capacity factors reported in Figure 6.6. Capacity factors 

are defined as the effective hydropower output over the total maximum 

theoretical output over a certain time period (here: yearly). Note that the dipping 

to a near-zero level in Mozambique between the early 1980s and the late 1990s 

is owing to the damaging of the dam during the civil war years. 
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Figure 6.7a shows the generation capacity currently under construction or for 

which financing has been already procured. The figures are clustered by region 

and technology. The figures exclude proposed or planned schemes which are 

still in the feasibility assessment or for which financing has not yet been 

secured. Information has been retrieved from (Cross-border Information, 2017), 

as well as from an extensive screening of recently published African news 

reports. Figure 6.7b shows the change in hydropower share over the total 

capacity that would result from the completion of those construction works (as 

compared to the current situation). 

 

Figure 6.6: Evolution of hydropower capacity factors. Elaboration on data from (US 

EIA, 2017). Source: author’s calculations. 

The figures reveal that the largest undergoing capacity additions are 

concentrated in a limited number of countries, and only in West Africa and 

partially in East Africa (mostly in Kenya) large-scale non-hydro expansions are 

undergoing. GW-scale hydropower capacity is being added in the DR Congo, 

Ethiopia, Tanzania, Angola, and Guinea. Gas-fired generation is the second 

technology by planned capacity, especially in Ghana, Nigeria, and Angola. 

However - crucially - a hydro-to-gas transition for baseload capacity would not 

be compatible with the Paris Agreement’s goals over the long run. Countries 

with strong, RE-based diversification away from hydropower currently include 

Kenya (with a prominent role of geothermal and wind) and Uganda (with 

substantial solar PV capacity additions). While Ghana is implementing 
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significant RE projects in solar PV, wind, and tidal power, the bulk of the 

planned capacity additions are based on gas. 

 

 

Figure 6.7: (a) Power generation capacity currently under construction or financed, by 

technology and region. (b) Change in the projected share of hydropower (in percentage 

points) in total capacity upon completion of the currently under construction/financed 
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power plants. The colour shading indicates each technology and the total installed 

hydropower capacity in (a) and (b), respectively. Source: author’s calculations. 

 

Overall, in the short-run diversification - at least in terms of domestic installed 

capacity - will be strongest in Namibia (-39%), Malawi (-23%), Ghana (-21%), 

Mozambique (-19%), and Kenya (-15%), all countries which over the last years 

have been affected by drought-related outages. On the other hand, hydropower 

dependency will become stronger in Tanzania (+36%), Angola (+31%), 

Cameroon (+20%), Guinea (+12%), Burundi (+10%), Sierra Leone (+9%), the 

Central African Republic (+8%), and Zimbabwe (+8%). 

 

 

 

 

Figure 6.8: Historical representation of droughts in SSA rivers, (a) drought (SPEI48 

≤−1) months per period (bars) and count of unique years with 1+ severe drought 

months (dots); (b) yearly average SPEI48. Elaboration on data from (Beguería and 

Vicente-Serrano, 2017), developed using monthly data from (University Of East Anglia 

Climatic Research Unit (CRU) et al., 2017). Source: author’s calculations. 

To assess the evolution of the incidence of drought events in the main river 

basins of SSA, I retrieved the World Resources Institute’s major watersheds of 

the world shapefile (World Resources Institute, 2006) and extracted the monthly 

time-series of the average SPEI48 (Standardized Precipitation-Evaporation 

Index) (Beguería and Vicente-Serrano, 2017) over each of the nine major 

basins in terms of current installed hydropower capacity. Here, 48 denotes the 
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scale of the index, in which dryness and wetness are defined as a function of 

the time scale over which water deficits accumulate. A long-term scale allows 

detecting long-lived, prolonged droughts, while short-term scales are better 

suited for droughts covering a limited period of time, such as the growing 

season in agricultural studies. The index is calibrated on precipitation and 

evapotranspiration data between 1950 and 2010. The 60-year calibration time-

scale allows accounting for natural variability and seasonality and allows thus 

detecting anomalies. Refer to the Appendix to Essay 6 for a map showing the 

location and extent of each basin. The data is then aggregated to produce: (i) 

counts of the number of drought months over 23-year periods (in order to have 

a consistent width across periods); (ii) counts of years that witnessed at least a 

drought month, and (iii) yearly average values for the SPEI48 (the classification 

of which is reported in the Appendix to Essay 6). The metrics shed light on the 

frequency of extremes, and on the general trend in the average 

wetness/dryness level, respectively. 

The results (Figure 6.8) show that the frequency of drought months (here 

defined as months with a SPEI48 < −1) has changed heterogeneously across 

river basins during the twentieth century. The number of drought months seems 

to have been gradually growing in the Sanaga, Turkana, Volta, and Zambezi 

river basins, although many of these trends are not linear. Furthermore, the 

Congo, Niger, and Nile basins - previously only mildly affected by droughts - 

have experienced a very significant drought incidence in the last decades of the 

twentieth century. The only main exception is found for the Rufiji basin, where 

the incidence of droughts has declined during the past century. At the same 

time, the dots in Fig. 8a show the number of years in each 25-year period where 

at least 1 month of drought was experienced, giving a clearer picture on the 

frequency of droughts, besides their total duration. Again, this reveals non-

linear, basin-specific trends. At the same time, the yearly average measured 

SPEI48 (Figure 6.8b) has witnessed a robust decline, implying a drying of the 

local climate, in the Niger, Nile, Sanaga and Volta river basins, while statistically 

insignificant changes characterise all the remaining basins assessed. 

 

Further evidence to support the discussion of the results of the review is derived 

from downscaled CMIP5 (Coupled Model Intercomparison Project - phase 5) 

data for two RCP scenarios (2.6 and 8.5) from the IPCC (corresponding to 1.5 

degree warming by 2100 and a business-as-usual trajectory, respectively). Data 

is averaged across the output of the 19 models in the CMIP5 consortium on 

country-level. Figure 6.9 and Figure 6.10 show the seasonal charts (i.e., the 

monthly profile) of the projected change in the mean precipitation and 

temperature across East, West, Central, and Southern Africa with respect to the 

historical mean of each specific month. 
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Figure 6.9: Seasonal plot of projected temperature change (compared to long-term 

historical averages) under two RCPs (CMIP-5 models median) over the 21st century 

for (A) Central Africa, (B) East Africa, (C) Southern Africa, and (D) West Africa. 

Elaboration on data from (Taylor et al., 2012). 

 

Figure 6.10: Seasonal plot of projected precipitations change under two RCPs (CMIP-5 

models median) over the 21st century for (A) Central Africa, (B) East Africa, (C) 

Southern Africa, and (D) West Africa. A solid line is drawn at 0, to separate positive 

from negative change. Elaboration on data from (Taylor et al., 2012). 
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Figure 6.11: plot of projected severe drought (SPEI12 < -2) likelihood change change 

under two RCPs (CMIP-5 median) for (A) Central Africa, (B) East Africa, (C) Southern 

Africa, and (D) West Africa. Elaboration on data from (Taylor et al., 2012). 

Concerning the projected shifts in the monthly profile of mean temperature (in 

◦C) vis-`a-vis a RCP 2.6 of mitigated climate change, an average increase of 

3.5◦C and up to 5◦C by 2090 would occur across the different regions in a rather 

similar fashion (Figure 6.9). The largest temperature increase would emerge 

after 2040 under an RCP 8.5 scenario. However, in countries that already have 

higher-than-average temperatures at the continent level, such as Congo, 

Sudan, Ghana, Togo and Mali, those changes might exert an ever stronger 

effect on evapotranspiration. 

Predicted changes in the monthly profile of mean precipitations under the two 

RCPs (Figure 6.10) provide instead a general picture of countries that could be 

more or less resilient to different degrees of warming in terms of water 

availability via direct rainfall. Trends are more heterogeneous than for 

temperature, and yet they show that in some regions (in particular in East and 

Central Africa) a larger change in radiative forcing could also have a wetting 

effect on the local climate with respect to a heavy abatement scenario. The 

most consistent declines in rainfall under unmitigated climate change are 

forecasted in Southern Africa, where rainfall could drop of up to 20mm/month in 

the wet season months (October to March) compared to the historical average 

in those months. 

Finally, the annual severe drought likelihood change with respect to the average 

recorded between 1986-2005 describes the projected change in the likelihood 

of an extreme drought (defined as a SPEI < −2) to take place under the RCP 

scenarios 2.6 and 8.5 with respect to the historical incidence (Figure 6.11). 
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Irrespective of the predicted direction and magnitude of change in monthly 

precipitation patterns, in West, East, and Southern Africa RCP 8.5 is projected 

to lead to a consistently higher likelihood of extreme drought events to occur. 

While in East Africa the relative discrepancy between the predictions for two 

RCPs by 2100 is more limited (around +7.5%), in others the spread is 

substantial, and chiefly in Southern (+25%) and in West (+20%) Africa. Central 

Africa shows instead very little discrepancy in the probability of SPEI12 < -2 

periods to occur, and for the region the RCP2.6 results in an even slightly 

higher likelihood for severe drought incidence than RCP8.5. 

 

6.5. Discussion 
A large number of scenarios project hydropower as the main technology for 

procuring the on-grid capacity expansions helping to satisfy the growing 

demand for power in SSA, and achieving the SDG 7 of universal access to 

modern energy. HPP are deemed key assets thanks to the large untapped 

potential throughout SSA and the low running costs. Furthermore, international 

development institutions and national governments have been supporting 

hydropower thanks to its low carbon intensity. For instance, hydropower is 

considered eligible for the credits of the Clean Development Mechanism (CDM), 

an emissions reduction program launched under the Kyoto Protocol (although 

life-cycle assessment studies have found instances where biogenic methane 

and carbon dioxide emissions stemming from artificial reservoir systems are 

significant, Hertwich, 2013; Kumar and Sharma, 2012; Zhang and Xu, 2015). 

Recently completed large schemes include the 250 MW Bujagali dam in 

Uganda, a 300 MW plant in Tekeze canyon in Ethiopia, and the 120 MW 

Djibloho dam in Equatorial Guinea. Significant expansion plans exist with 

different HPP under construction and massive projects proposed, such as the 

39 GW Grand Inga Dam in DR Congo, expected to cost at least $50 billion and 

which has recently regained momentum (Financial Times, 2018). Other large 

ongoing or planned projects include the 6 GW Grand Renaissance dam on the 

Blue Nile river and the 1.8 GW Gibe III dam on the Omo river, both in Ethiopia, 

a 1.6 GW scheme on the Zambezi river basin between the Zambia-Zimbabwe 

border on the Batoka Gorge, and the 1.5 GW Mphanda Nkuwa project 

downstream of the Cahora Bassa reservoir in Mozambique. 

As a result of those potential large-scale expansions, the climate-water-energy 

nexus is prone to become increasingly important in SSA. Water is a key node in 

development and economic growth dynamics of the continent owing to its 

strong interconnections it presents with a number of economic sectors, in 

particular where adaptive capacity is constrained. Climate change is expected 
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to affect water availability for several end-uses, including hydropower and 

cooling in thermal power plants. Projected impacts (in particular those on 

precipitations and drought events occurrence) are, however, spatially and 

temporally heterogeneous and multiple sources of uncertainty exist at different 

scales as a consequence of modelling and parametric uncertainty (Arnell and 

Gosling, 2013; Schewe et al., 2014). 

The results of our review show that the problem is highly basin-specific: some 

countries could face harsher issues due to structural long-run declines in 

generation potential (mostly in West and Southern Africa, although even within 

regions there can be large discrepancies between different river basins, see 

(Stanzel et al., 2018), while others (chiefly in East Africa) would benefit from 

increased yearly aggregate potential but also be more affected by extreme 

events, and some may not be substantially impacted. Changing seasonality 

patterns can also play an important role in the energy-water nexus, both in 

terms of streamflow and of electricity prices, and thus of revenue fluctuations 

(Gaudard et al., 2018). Therefore, dam planning must be careful and take into 

account the potential changes in river discharge and the increasing 

evapotranspiration trends among reservoirs as a result of a warmer climate 

(also depending on the global emission pathway followed in the coming 

decades). 

Given the already high reliance on hydropower of a number of countries, risks 

of severe power disruptions (or of inter-sectoral competition for water 

resources) are likely to intensify if sound energy policy aimed at diversification, 

co-integration of different sources, and resilient and adaptive dam management 

(Kim et al., 2017) over multiple future scenarios is not implemented. In 

particular, hydropower generation is associated with the highest risks in 

countries where little alternative generation capacity is available and 

transboundary high-voltage transmission infrastructure for exchanging power is 

weakly developed. Combined, these could result in declining long-run hydro 

generation as well as in occasional outages in periods when multiple stressors 

overlap. This is particularly challenging in countries where the bulk of new base-

load power additions will also be hydropower, which, if failing, may lead to 

substantial under-provision issues. 

It is therefore crucial to design long-run strategies including power mix 

diversification for many SSA countries. Care must be taken in designing 

diversification pathways in the coming years: heavily expanding gas, coal, and 

diesel-fired plants - which could be considered less insecure than hydropower 

irrespective of resources price fluctuations - may set countries on a higher 

carbon-intensive pathway than those agreed in their Nationally Determined 

Contributions (NDCs). Different options exist, such as the possibility that part of 
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the back-up stems from decentralised generation solutions (e.g. off-grid PV 

installed by grid-connected consumers), and planning power systems to 

integrate diverse zero-carbon sources (solar, wind, water, etc.) and 

technological advancements for balancing and storage. The success of these 

options depends on their strategic integration in the governmental energy 

planning. Energy security objectives and policy must be developed hand in 

hand with potential emissions mitigation and through the adoption of climate-

resilient infrastructure and projects. Renewables can contribute to breaking the 

feedback loop between fossil fuels combustion, water withdrawal and 

consumption, and climate change, and in turn positively impact on water, food 

and energy supply, as well as boost economic growth prospects (refer to the 

framework presented in Fig. 6.3a). At the core of these linkages lie an 

integrated and effective energy and climate policy capable of recognising 

interdependencies, including those that will become stronger in the coming 

years 

Multidisciplinary research plays an important role in quantifying potential climate 

change impacts on power generation security so as to provide policy makers 

with figures to inform their cost-benefit-analysis and infrastructure investment 

decisions (Frumhoff et al., 2015). Concerning the specific case of the impact of 

climate change and extremes on hydropower generation in SSA, both an 

analysis of energy, economic, and social impacts of short-lived extremes 

jeopardising generation in hydropower-dependent countries (e.g. (Falchetta et 

al., 2020)), and model-based research on long-term water supply under 

different energy, economic, climate, and demographic scenarios (e.g. 

(Sridharan et al., 2019; Vinca et al., 2019)) are deemed of great significance. 

Ever more openly available, accurate, and standard-quality remotely-sensed 

and modelled river discharge data are likely to allow a new level of insight in this 

sense. Energy-climate-economy IAMs, and in particular regional-scale nexus-

oriented ones, can provide additional insights. Their coupling with basin-level 

hydrological models under different potential futures could yield greater and 

more detailed information on water stress risks in different regions, and thus 

inform policy makers on the consideration of hydropower capacity expansion as 

well as on the climate-induced supply disruption risks. 

 

 

Recent years have witnessed a steep increase in the construction of 

hydropower dams, including in SSA (Zarfl et al., 2015). At the same time, the 

remaining techno-economical potential in the continent is large. An effective 

implementation of new schemes requires the adoption of a nexus approach (de 
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Strasser, 2017), including within the modelling tools adopted by energy 

planners. These should be able to co-optimise energy-water-food systems at a 

transboundary scale in order to assess complementarities beyond the 

surroundings of the scheme being planned. This is crucial to avoid dam 

planning based only on energy-system optimisation, which can easily lead to 

strong impacts on livelihoods, the agriculture sector, and local livelihoods, which 

might render the overall project’s cost-benefit-analysis negative. Transboundary 

planning thus requires bringing the energy planning dialogue at a regional 

scale, also because the technical hydropower potential is defined at the 

watershed, and not at the country level (de Souza et al., 2017). 

Furthermore, moving to more flexible dam management strategies, where 

hydropower is not only a baseload technology but also a balancing solution for 

VRE integration, may be a very meaningful prospect for promoting a low-carbon 

energy development in parts of SSA (Sterl et al., 2019, 2018). This could 

prevent a significant share of the uptake of gas and coal-fired thermal plants. 

The approach could also reduce the need for very large-scale hydropower 

schemes (Deshmukh et al., 2018), which often are associated with substantial 

environmental and social impact. 

Finally, as this review has highlighted, hydropower planning should necessarily 

account for the potential non-stationarity of runoff under different climate 

futures, and consider the incidence of disruptions or temporal as well as 

structural declines in the production. 

 

6.6. Conclusion 
This paper developed a nexus framework for the energy-water-land nexus in 

SSA, and carried out an extensive screening of the most recent literature on the 

projected impacts of climate change on hydropower. These have been linked to 

the issues that a significant number of countries largely or entirely depend on 

hydropower generation and currently have little back-up options available, 

implying risks for supply reliability. Evidence from the literature pointed at a 

number of key facts. First, the state-of-the-art on climate-induced risks for 

power supply - and in particular on hydropower generation - finds heterogeneity 

in projected trends across the SSA region, while it also identifies some 

consistent trends at the regional level. Irrespective of uncertainty in the 

expected change of precipitation levels and patterns, different studies that 

adopted different methodologies seem to be rather consistent in pointing out 

that countries in East Africa could positively benefit from a warmer climate in 

terms of its hydropower output, while West and Southern Africa would be 

subject to negative impacts. Central Africa would be the least affected sub-
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region in terms of precipitation change and drought incidence. However, the 

magnitude of these changes displays large uncertainty ranges, sometimes 

covering positive as well as negative changes. 

An observation of the relevant data shows that only some countries have 

successfully pursued a resilience-building strategy to prevent hydropower 

disruptions over the last three decades. Even in those countries, power mix 

diversification was however hitherto mostly based on natural gas, such as in 

Tanzania, the Republic of Congo, and Ghana. Other countries, including 

Malawi, Zambia, DR Congo, and Namibia, have remained entirely dependent 

on hydropower. Some virtuous examples of non-hydro RE-based diversification 

exist, such as Kenya, where significant capacity in geothermal and wind has 

been and will be added. At the same time, capacity expansions under 

development will lead to an even higher dependency on hydropower in 

Tanzania, Angola, Cameroon and Guinea, at least in the short term. An 

assessment of the long-run evolution of the SPEI48 index reveals that hitherto 

the frequency of drought events and the general dryness have evolved non-

linearly and heterogeneously across the major river basins of SSA. 

Nonetheless, some of the major basins (i.e., the Niger, Nile, Sanaga, and Volta) 

have witnessed a significant drying. Current and future strategic energy 

decisions will thus have a major impact on the resilience of energy systems in 

SSA. Countries - in particular those highly reliant on hydropower - should plan 

the mix of capacity additions accordingly and increase adaptive capacity under 

extremes to safeguard energy security. A missed diversification may hinder 

economic growth prospects. The adoption of nexus approaches and modelling 

tools able to consider sectoral and transboundary interdependencies in dam 

planning are recommended. Furthermore, new dam management paradigms in 

complementarity with a large penetration of VRE must be developed, as they 

allow for a greater balancing, supply security, and sustainability. 
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7. Summary and conclusions 
This final chapter summarises the focal outcomes of the dissertation. It aims at 

providing some general conclusions based on the six essays considered. This 

is no simple task, because the dissertation is wide-ranging in scope: energy in 

sub-Saharan Africa is per se a broad topic, and so are the aspects inquired: 

electricity access, economic development and the nexus between the 

environment, energy, and human society. To perhaps ease the challenge, the 

chapter is structured into sub-sections.  

First, the key research questions presented in Chapter 1 are restated and 

answered concisely. These first set of conclusions are specific to each essay. 

Secondly – in an attempt to “zoom out” and highlight some more general 

findings – the main insights and implications for policy that can be drawn from 

the empirical results of the dissertation are discussed. The general conclusions 

are presented based on their policy-relevancy. Already from its 

conceptualisation (and being a Doctoral Thesis submitted to a School of 

Institutions and Policies), this thesis has been focalised on delivering applied, 

policy-relevant pieces of analysis which can be informative for decision makers. 

Thirdly, being a data-intensive work, this dissertation provides novelties not only 

in terms of analytical results contributing to enriching the academic literature 

and policy insights, but also relatively to the methodologies developed and 

applied. Thus, in Section 7.3, an overview of the main methodological 

innovations found in the essays contained in the dissertation is offered.  

Finally, the chapter concludes the dissertation highlighting the research 

pathways that might be pursued building on the work and methods here 

introduced. Several analytical insights are in fact still required to tackle the 

plethora of complex energy-related challenges in sub-Saharan Africa. 

 

7.1. Key questions addressed and short summary of key 

answers identified 

 

1- How is the electricity access situation evolving in sub-Saharan Africa? Do 

official statistics provide a clear, realistic, complete picture of the situation? 

How might limitations in these statistics hinder effective policymaking? To 

what extent can satellite data complement or improve our understanding? 

What intrinsic limitation do they have? 

It is widely understood that energy poverty is still very diffused and persistent in 

sub-Saharan Africa. Yet, institutional statistics have struggled to capture the 

different dimensions of energy poverty and they have relied on rapidly outdated 
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and unwieldy household surveys. In other words, even national governments 

struggle to have a comprehensive picture of energy access in their countries. 

This is because energy access is a complex challenge. It is sub-divided into 

different energy carriers and fuels (electricity, biomass, LPG, natural gas, 

kerosene, and so forth); different indicators (household access; consumption 

level; reliability of supply); and it can be measured at different levels (household 

and business activities connected to the grid; conditional on a village or city 

being reached by the grid; as a provincial statistics; including or excluding 

decentralised energy access solution). Providing a comprehensive picture of 

these multiple dimensions necessarily requires an integrated effort of public 

authorities, energy companies and citizens. It requires both a “boots-on-the-

ground” view and a comprehensive picture from the authorities. Yet, in 

developing countries it is often the case that the bulk of the energy access 

deficit is concentrated in remote areas and public authorities struggle to keep 

pace with growing and moving populations or the uptake of decentralised 

energy access solutions to gain a comprehensive understanding of the energy 

access challenge. 

To support the acquisition of this information in a quick, near-real-time updated, 

cheap way, I processed high-resolution population distribution maps (including 

demographic and migration trends), satellite-measured nighttime light, and 

settlement information. This allowed me to derive multi-dimensional (proxy) 

estimates of electricity access over space and time and compare them with a 

set of published records. My results are largely consistent with aggregated 

official statistics, but they reveal wide inequalities in the pace and quality of 

electrification, which cannot be observed in existing statistics. I observe that 

even in areas that formally have electricity access, power consumption is likely 

to be largely inadequate. I furthermore evidence the existence of a number of 

hotspots of electricity access and latent electricity consumption in sub-Saharan 

Africa, which I locate, distinguish by prevalent type of deficit, and for which I 

estimate the exposed population. Based on the recent progress that I observe 

through nighttime lights in the region, I calculate that the pace of electrification 

must more than triple to fulfil SDG 7.1.1 and discuss why electrification policy 

could fall short if aimed solely at boosting electricity connections.  

Yet, I also argue that relying on satellite data alone to track electricity access is 

likely insufficient: firstly, it likely fails to detect electricity access in very sparse 

communities which rely on decentralised solutions capable of limited power 

provision; secondly, it may fail to distinguish among households with and 

without electricity in dense urban and peri-urban areas, where electricity access 

infrastructure is present and yet not all households are necessarily benefitting 

from electricity due to economic and social barriers. I however argue that when 

properly complemented and validated satellite-based methods have substantial 
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potential in supporting communities and infrastructure detection and lower 

monitoring and energy access planning costs. 

 

2- Are the current limitations in energy demand formulation for electricity 

access planning playing a major role in the electrification strategy? What 

sectors might be the most important beyond the residential one? What could 

be the local microeconomic value added of the energy input to agriculture in 

currently unelectrified rural areas? 

The bulk of (geospatial) electrification planning models have so far been 

strongly supply-side (i.e. electricity provisioning technology) focused and have 

been calibrated based at best on regional average target demand level of 

residential electricity consumption for urban and rural consumers, with little 

within-country heterogeneity.  

To contribute to the improvement of these tools and hopefully to enable a better 

and more comprehensive planning, I developed a data processing platform that 

based on a broad array of input data (most of which geospatial), scenarios, and 

equations, allows estimating the (potential, or latent) electricity demand across 

space (at different settlements of a country), time (at different hours of the day 

and months of the year) and – crucially – across a number of sectors beyond 

the residential one. Particular focus is put on the agricultural sector, because: 1) 

the bulk of the electricity access deficit in sub-Saharan Africa is found in rural 

areas; 2) the potential growth in agricultural productivity and therefore in local 

welfare from the input of electric energy is huge; 3) the analysis allows 

examining the nexus interactions between energy, water, food, and socio-

economic development, a key pillar of this dissertation. 

My assessment for the country-study of Kenya show that community, 

agricultural and productive uses – driven by the presence of farms, small 

businesses and commercial activities, healthcare facilities, and schools, – are 

important drivers of energy demand that need to be accounted for on top of 

residential demand in energy access infrastructure sizing and planning. The 

potential number and size of non-residential consumers in a community can in 

fact have a crucial effect on the total long-term energy demand, the peak loads, 

and consequently a direct effect on the optimal energy technology mix (diesel 

generator, PV, wind, biomass, hydro or hybrid technologies), on the optimal 

technology set-up (i.e. the choice between grid extension, mini-grid, or 

standalone solutions) and on the overall cost-benefit analysis of electrification. 

Moreover, a characterisation of the seasonal and hourly variation in the demand 

from different sectors is of crucial importance for properly planning the energy 
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system and assessing the complementarity of variable renewable energy 

sources supply curves with the demand.  

My findings suggest that a bottom-up approach to evaluating energy needs 

across space, time, and sectors is likely to improve the reliability and accuracy 

of supply-side electrification modelling and therefore of electrification planning 

and policy. I also estimate large potential farmer revenues (net of 

transportation and pumping costs) from the increased agricultural yield thanks 

to artificial irrigation rendered power by electrification.   

 

3- What are the implications of the lack of electricity access for thermal comfort 

at home of the people in sub-Saharan Africa? What are the electricity 

requirements to ensure a universal air circulation or cooling under different 

anthropogenic global warming scenarios? Does including the cooling energy 

needs on the top of baseline residential demand affect the optimal 

electrification planning in sub-Saharan Africa? 

Nearly one billion people live without electricity at home. Energy poverty hinders 

several autonomous adaptation actions, a key one being indoor thermal comfort 

decisions. It is therefore crucial that electricity infrastructure planning considers 

current and future air circulation and cooling (ACC) needs of energy-poor 

households on top of basic energy services. Without properly assessing these 

requirements, energy poverty might persist even after households get an 

electricity connection. At the same time, connecting to the previous essay, ACC 

services can become one of the first drivers of building energy demand in 

developing countries (and chiefly near the Equator). As a result, energy 

systems planning should explicitly account for these needs to deploy suitable 

infrastructure to avoid supply  

I combine climate, satellite, and demographic data and scenarios to produce a 

global spatially-explicit estimate of unmet ACC demand due to the lack of 

electricity access. The results of my analysis show that providing universal 

electricity supply compatible with different ACC technologies adoption and use 

scenarios and a warmer climate requires significantly larger investments than 

under baseline targets and conditions. Moreover, when adding ACC-related 

energy needs on top of conservative demand targets, the optimal technology 

set-up shifts away considerably from decentralised energy access systems. 

Planning universal household electrification without explicitly accounting for 

thermal comfort needs might therefore result in large energy supply deficits and 

persistent energy poverty even with nominal universal electrification. In turn, 

leaving millions of households with unmet (and growing) cooling demand could 

negatively affect the broader socio-economic development of low-income 
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countries as a result of the negative repercussions on health (physical and 

mental) and productivity.  

  

4- What impact does governance quality have on the optimal electricity access 

investment strategy? Are private investors willing to invest in decentralised 

solutions in risky contexts, and what is the risk premium? Does, for this 

reason, the cost-optimal electrification strategy change compared to a 

conventional techno-economic analysis?  

Several previous studies in the literature have estimated that achieving 

universal electricity access in sub-Saharan Africa – a milestone of SDG 7 – 

requires about $30bn annually until 2030 on the top of baseline investment. The 

private sector plays a key role in supplying these investment flows, given the 

governmental budgetary constraints. Yet, companies face numerous sources of 

risk in their infrastructure investment decisions. This risk is usually factored in 

using a discount rate.  

 

Yet, this risk has been so far poorly examined and accounted for in supply-side 

electricity access analysis. To allow for a more realistic evaluation of the role of 

the investment environment in financing energy access, here I introduce the 

Electricity Access Governance Index (EAGI), a composite index of energy 

sector regulatory quality, energy sector governance, and market risk. The index 

is implemented through a discount rate conversion into a bottom-up integrated 

electricity planning model (IMAGE-TIMER) to evaluate the role of different 

sources of risk for electrification investment dynamics.  

 

The results show that the adoption of decentralised systems for achieving 

universal energy access requires governance and institutional reform to lower 

discount rates faced by investors and mobilise private finance. Failure to reform 

investment environments will likely hamper the uptake of decentralised systems 

even in areas where they would be the least-cost electrification option, and thus 

likely leave many without electricity.  

 

5- Will climate change adversely hydropower – the main generation technology 

in sub-Saharan Africa? How can the impact of hydroclimatic extremes on 

power systems reliability be measured in situations of data scarcity? 

In sub-Saharan Africa, 160 million grid-connected electricity consumers live in 

countries where hydropower accounts for over 50% of total power supply. A 

warmer climate with more frequent and intense extremes could result in supply 

reliability issues. To investigate this complex topic, I carried out a systematic 
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review and analysis of the best available literature and data on hydropower, 

water levels, and droughts both for the past and for the medium-term future.  

With my analysis, I find that only few countries have pursued a diversification 

strategy away from hydropower over the last three decades, while others' 

expansion plans will reinforce the dependency. This will occur irrespective of 

the fact that some of the largest river basins have experienced a significant 

drying during the last century. I find agreement on likely positive impacts of 

climate change on East Africa's hydropower potential, negative impacts in West 

and Southern Africa, and substantial uncertainty in Central Africa. Irrespective 

of the absolute change in gross technical potential, more frequent and intense 

extremes are projected.  

I propose a possible paradigm to increase resilience and fulfil the pledges of the 

Paris Agreement: a synergetic planning and management of hydropower and 

variable renewables. According to this strategy, energy and water planners 

should together move to more flexible dam management strategies, where 

hydropower is not only a baseload technology but also a balancing solution for 

variable renewable energy integration. This may be a very meaningful prospect 

for promoting a low-carbon energy development in parts of SSA, as it could 

prevent a significant share of the uptake of gas and coal-fired thermal plants. 

The approach could also reduce the need for very large-scale hydropower 

schemes, which often are associated with substantial environmental and social 

impact. 

 

7.2. Integration of non-conventional, spatially-disaggregated data into 

energy and development research 

To the perception of the author of this dissertation, social sciences have 

traditionally privileged specific data types in empirical and forecasting analysis: 

institutional statistics, survey microdata, or systematic databases. The same 

goes for the energy modelling community, which still strongly underutilises 

available data that could allow improving the granularity, level of insights and 

accuracy of the analysis carried out. While on the one hand a partial justification 

is given by the computational intensiveness of handling geodatabases as 

opposed to conventional regional or country-level data, on the other it also 

stems from the lack of a good interconnection between the geospatial data 

analysis community (much more present in the environmental science field) and 

the social and sustainability science research. The use of data from sources 

that conventionally belong to other research fields, such as remotely sensed 

information on land, infrastructure or water has in fact only recently permeated 

the social scientific research.  
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While pioneering work highlighted this untapped potential (Blumberg and 

Jacobson, 1997), it was only in the last years that – partially thanks to the 

growing ease of access and processing of this data as a result of surging 

computational power and the release of tools and software that truly simplify the 

processing of this information (Gorelick et al., 2017) – that the use of this data is 

being consolidated in social scientific research fields. On the other hand, in the 

opinion of the author there is still a major under-exploitation of the potential of 

these data for hybrid hard scientific – social scientific research. The reasons 

include the lack of training in handling these data in most social scientific 

academic curricula and limited literature applying this data to social research.  

 

In this dissertation, I have tried to advance the use of earth observation and big 

data to address hybrid social and hard science questions in compliance with 

what described by Li et al. (2020) as geocomputation for social science, namely 

‘an interdisciplinary approach combining remote sensing techniques, social 

science, and big data computation. Driven by the availability of spatially and 

temporally expansive big data, geocomputation for social science uses 

spatiotemporal statistical analyses to detect and analyse the interactions 

between human behaviour, the natural environment, and social activities’ (p.0).   

 

The thesis analyses energy in a developing continent from different 

perspectives. A key challenge I faced in my work is the need for georeferenced 

databases to examine the research questions and apply the models and 

calculations required to address the research questions, which is at odds with 

the (generally, but with some virtuous exceptions) scarcity of granular 

government and institutional data. Such shortage of data has been the driving 

factor behind the methodological advancement in spatial data processing and 

analysis that characterise different stages of this study.   

 

Key geospatial and remotely-sensed data considered in this thesis include high-

resolution population distribution maps (the HRSL and GHS suites); nighttime 

light radiance data from the NPP-VIIRS satellite sensor; statistically downscaled 

cropland extent and yield data; groundwater availability, depth, storage raster 

data; historical climate data and downscaled climate projections from CMIP 

experiment models; sub-national wealth distribution information; renewable 

energy potential maps (solar, wind, hydropower) and terrain information (land 

cover, slope); georeferenced facility and infrastructure data to enable bottom-up 

evaluations, such T&D power grid, roads, markets, hospitals and schools; 

satellite-measured time-series of water level at important reservoir basins.  

 

In parallel with the data and to enable wrangling and collecting this multitude of 

information, my work has greatly benefitted from the large number of packages, 
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tools, and algorithms that are being made available openly in the sphere of GIS 

data processing. Some of the instruments that found the largest employment in 

this study are QGIS processing algorithm and R packages sf (Pebesma, 2018) 

and raster (Hijmans et al., 2017), which together enable programmatically 

integrating geospatial data wrangling (both vector data as simple features and 

raster data) into research script that eventually lead to the core numerical and 

graphical conclusions highlighted in this dissertation.  

 

In addition, many large-scale computations included in this thesis, such as 

continental scale high-resolution raster operations, would have been simply 

impossible without the use of Google Earth Engine, a free online cloud-

computing platform for spatial data. I devote a special acknowledgment to Nick 

Gorelick and his research team at Google for making this instrument freely 

available for research over the last years. Examples of how this dissertation 

benefitted from GEE are the processing of nighttime lights; the grid-cell (30 

meter resolution) population growth projection; the extraction of satellite-based 

climate data at specific sampling sites and region without the needs to 

download and process locally gigabytes of data; the assessment of accessibility 

to infrastructure.  

 

7.3. Insights and implications for policy 

Based on the findings of this dissertation, I recommend actions reported in 

Table 7.2 being considered or adopted. To each recommendation, I assign one 

or more target group number, as summarised in Table 7.1.  

Table 7.1: Dictionary of the recommendation target groups and codes 

Target group Code 

National governments of countries of sub-
Saharan Africa SSA_GOV 

Interregional and international institutions INST 

Development banks DEVBA 

Foreign governments and governmental 
organisations FOR_GOV 

Businesses and practitioners in the energy 
and environment industry BUSI_ENE 

Academics and researchers ACA 

Civil society in sub-Saharan Africa SSA_CS 

Civil society elsewhere in the world WORLD_CS 
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Table 7.2: Recommendations based on the results of this dissertation 

# Recommendation 
Target 
groups 

Cutting-edge 
literature 

References to success stories and 
recent implementations in the 

direction of the recommendations 

Steps forward required 
according to the author of this 

dissertation 

1 

Improving the 
measurement and 

reliability of data on energy 
access to enable better 
decisions and support 

investors. 

SSA_GOV,  
INST,  

DEVBA, 
ACA 

(Bhatia and 
Angelou, 2015; 
Culver, 2017; 
Monyei et al., 

2018; Pachauri 
and Rao, 2020; 

Pelz et al., 2018; 
Samarakoon, 

2019) 

The World Bank, with support from the 
Energy Sector Management 

Assistance Program (ESMAP), has 
launched the Global Survey on Energy 

Access, using the Multi-Tier 
Framework (MTF) approach. The 

survey's objective is to provide more 
nuanced data on energy access, 
including access to electricity and 

cooking solutions. The MTF approach 
goes beyond the traditional binary 
measurement of energy access to 

capture the multidimensional nature of 
energy access and the vast range of 
technologies and sources that can 

provide energy access, while 
accounting for the wide differences in 

user experience. 

The data collection is still at early 
stage, as raw data and statistics 
are hitherto only available for few 

countries. I recommend – like 
done in Chapter 2 of this 

dissertation – experimenting 
approach to use this high-quality, 
field-collected data for validating 
approaches that can approximate 
this information with higher time 

resolution, across broader 
geographical areas, and at a lower 

cost. 

2 

Accurately evaluating 
energy demand to enable 
productive, agricultural, 
social energy uses and 

promote socio-economic 
development. 

SSA_GOV,  
INST,  

DEVBA, 
ACA, 

FOR_GOV,  
BUSI_ENE 

(Burgess et al., 
2020; Fabini et al., 
2014; Falchetta et 
al., 2020; Kotikot 

et al., 2018; 
Kyriakarakos et 
al., 2020; Lee et 

al., 2016) 

OXFAM engaged in the question of 
whether there are complementary 

policies that can be pursued in tandem 
with electrification to increase the 
likelihood of generating productive 

uses. Different initiatives from 
international organisation (primarily the 

World Bank’s ESMAP and the 
UNDESA) fostered the consideration 
of the non-residential energy use in 
communities that still lack energy 

Empirical evidence of the 
economic sustainability of large-

scale decentralised energy 
systems  must be conveyed to 
private companies to provide 

sufficient incentives to invest. The 
analysis in Chapter 3 of this thesis 

aims at supporting decision-
makers in this direction. The 

techno-economic considerations 
need in fact to be supported by 
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access. Recent focus has been put on 
the potential payback of investing in 

systems capable of powering 
productive, social, and agricultural 
uses of energy, as opposed to the 

conventional ‘household electrification 
first’ paradigm.  

robust policy and well-targeted 
subsidies. In general, the public 
spending in electrification must 

increasingly turn into an economic 
development investment in both 

spirit and scale of system 
provided. Sound regulation and 

governance must ensure the 
sustainability of the systems over 

time and their uptake.  

3 

Accounting for energy 
demand for climate change 

adaptation in the Global 
South, with specific 

attention to indoor thermal 
comfort and agricultural 

needs. 

SSA_GOV,  
INST,  

DEVBA, 
ACA, 

FOR_GOV,  
BUSI_ENE 

(Davide et al., 
2019; De Cian et 

al., 2019; 
Mastrucci et al., 

2019; Van Vliet et 
al., 2016; Wang et 

al., 2016) 

The IEA recently released a seminal 
report on ‘The Future of Cooling’ 
where the key importance in the 

present and ever more in the future of 
indoor air cooling and the 

consequences for energy demand and 
the environment are evaluated. The 
report puts special emphasis on the 

significance of adopting efficient 
cooling appliances and building 

techniques to reduce energy demand. 
The bulk of the future demand will 
stem from developing countries.   

While globally the importance of 
cooling energy is increasingly 

being regarded by policymakers, it 
should also gain relevance in the 

agendas of energy and 
environment public decision 

makers of low and lower-middle 
income countries, as large 

fractions of the population will 
experience increasing distress and 

will demand more air circulation 
and cooling services. The 

assessment reported in Chapter 4 
put this question at the core. 

Policymakers should set standards 
and regulation to ensure the 

uptake of efficient appliances to 
minimise social impact.  

4 

Evaluating and mitigating 
the risks perceived by 

private actors in the energy 
access investment field to 

unleash large-scale 
infrastructure development, 

in particular in 
decentralised systems.  

SSA_GOV,  
INST,  

DEVBA, 
BUSI_ENE 

(Eberhard and 
Gratwick, 2011; 
Rafique et al., 

2019; Spyrou et 
al., 2019) 

The RISE (Regulatory Indicators for 
Sustainable Energy) initiative 

promoted by the World Bank rates 
countries along a broad range of 

indicators to reflect a snapshot of a 
country’s policies and regulations in 
the energy sector, organized by the 
three pillars of the SEforAll initiative: 

Regulatory assessment and 
tracking initiatives are an important 

source of information disclosure 
for private actors seeking new 
business opportunities and for 

governments to receive an 
external valuation of the sectoral 
situation in their country. Yet, this 
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Energy Access, Energy Efficiency, and 
Renewable Energy. The assessment 
is regularly updated to keep track of 

country’s changing policy and 
regulatory framework and monitor 

improvements in investment 
attractiveness. The initiative 

contributes to informing players in the 
energy access sphere in the 

investment conditions of different 
countries.  

information must be transferred at 
all levels to promote concrete 

investment: promoting efficiency 
and transparent competition; 

regulating the sector with a long-
run perspective; minimising 

structural risks in the political, 
social, and financial spheres; 
allocating public spending and 

subsidies with equity and 
efficiency principles. Many SSA 

countries still face numerous gaps 
in this sense, and these often 
coincide with countries with 

modest performance in energy 
access and development 

indicators. Chapter 5 of this 
dissertation introduced an analysis 
to explicit the significance of these 
sources of risk for energy access 

investment. 

5 

Developing a new 
paradigm for managing 
and further developing 
hydropower potential in 
sub-Saharan Africa with 

the objective of increasing 
power sector resilience to 

climate change, co-
optimising multiple water 
uses, and increasing the 
penetration of non-hydro 
renewables in the power 

mix. 

SSA_GOV,  
INST,  

DEVBA, 
ACA, 

FOR_GOV,  
BUSI_ENE 

(Deshmukh et al., 
2018; Han et al., 
2019; Sterl et al., 

2020, 2018) 

Recent pieces of research and reports 
by international organisation have 

highlighted the necessity to rethink the 
role of hydropower in sub-Saharan 
Africa. Currently the first generation 

technology in many countries but 
hampered by climate extreme events, 
and representing a very large source 

of untapped generation potential, 
hydropower management and 

planning should become resilient and 
minimise socio-environmental impact 

such as from mega-project. The 
dominant paradigm shift is that of 

implementing hydropower in 

The topic of climate impacts on 
hydropower in SSA has been at 
the core of recent attention from 

both academic research and 
international organisations (e.g. 
IEA’s report Climate Impacts on 

African Hydropower). Also Chapter 
6 of this thesis carried out an 
analysis of recent and future 

projected climate implications for 
SSA’s hydropower and propose a 

way forward.  These analyses 
have evidenced potential risks in 

different areas and have paved the 
way to resilience-building 
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complementarity with variable 
renewables and exploit it as a 

balancing generation technology, also 
in order to encourage the deployment 
of more moderately-sized plants and 
less invasive large schemes. It is also 
increasingly being acknowledged that 

hydropower potential exploitation 
should be planned with explicit 

consideration of the future climate in 
the basin and additional local sources 
of water withdrawal and consumption. 

strategies. The challenge is now 
on the implementation side: 

hydropower should be considered 
jointly with other power generation 
technologies and other water uses 

when planned and developed. 
Moreover, the socio-environmental 
and transboundary impacts should 

be better accounted for to avoid 
conflicts like the ongoing Egypt-

Ethiopia tension.  

7 

Integrating geospatial and 
earth observation data and 

GIS techniques into 
energy, economic and 
development research 

ACA, 
DEVBA 

(Li et al., 2020) 

The growing field of “open” and 
programmatic GIS analysis, with the 

release of libraries in the most popular 
programming languages (also used by 

social scientists) and the release of 
online interfaces with large 

communities and support material to 
handle big geospatial data are 

increasingly permeating the social 
scientific research. Bottom-up energy 

modelling is a growing field, also 
thanks to the increasing computational 

power of personal computers and 
availability of disaggregated open 

data. 

Traditional social scientific 
research and energy modelling still 

remain the predominant 
paradigms. Inclusion of GIS-based 
approaches and tools in university 

socio-economic curricula could 
increase, to the benefit of both 

hard and social-scientific 
communities. There is greater 

need to acknowledge the potential 
huge benefit of considering 
spatially-explicit data from 

academics, scientific journals, and 
policymakers – who should seek 

more geographically detailed 
results which would also enable 
them making better and more 

location-tailored decisions. The 
benefits of this paradigm are 

evident in most essays contained 
in this dissertation, which compare 
disaggregate result with the more 
limited level of insight that can be 

drawn with ‘conventional’ analysis. 
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8 

General conclusion 1: 
integrating the nexus 
dimension into energy 

access strategies 

All 

(Falchetta et al., 
2020; 

Kyriakarakos et 
al., 2020; World 

Resources 
Institute, 2020) 

Recent evidence is showing that jointly 
planning energy systems and 

technological solutions that together 
can stimulate agricultural productivity 

growth might render electrification 
investment more economically 

attractive because of the significant 
reduction in the payback time of those 

investment. In turn, the increase in 
local revenues might provide a major 

spark to local socio-economic 
development. The key condition to 

enable this paradigm is the formulation 
of valuable business models.  

See § 9.4. 

9 

General conclusion 2: 
increasing resilience to 

climate change in 
households, power system, 

agriculture sector, etc. 

All 

(Castells-
Quintana et al., 

2018; Cervigni et 
al., 2015; Conway 

et al., 2019; 
Sridharan et al., 

2019) 

While climate change mitigation has 
dominated the research and climate 
policy of the last two decades, recent 
reports (e.g. IPCC) are increasingly 
acknowledging that the impacts of 
climate change are already being 
experienced and they will harshen 

over the longer-run. As a 
consequence, adaptation and 

resilience building are gaining notable 
importance in research and 

international organisation narratives. 

Developing countries governments 
– sustained by the international 

community and private actors, the 
key responsible players for the 
ongoing global environmental 

change – have the responsibility to 
embark in investment and policy 

measures that can help preventing 
future shocks on their population’s 

livelihoods.   
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7.4. Steps ahead and future research roadmap 

According to the author, the key findings of this dissertation can contribute to 

highlighting a “master plan” for future research on energy, the nexus, and 

economic development in the context of sub-Saharan Africa. Namely, the study, 

assessment, and planning of the core challenges of energy access and of the 

water-energy-food-environment nexus as an integrated problem with integrated 

solutions.  

Altogether this dissertation has attempted achieving some milestones for 

advancing such an integrated understanding. This intuition was neither clear to 

me from “day zero” nor it was presented in the initial research proposal. It 

materialized as I started inquiring into the (apparently) distinct topics at the core 

of the essays in this dissertation. Yet, research on these two topics has often 

followed two separated strands with little interactions.  

Here below I present some aspects that explain the importance of future 

research on energy, economic, social and environmentally friendly development 

sub-Saharan Africa to look at these two major topics in an integrated fashion 

under the following starting points:  

• Electricity access deficit is affecting mostly rural areas;  

• 80% of agricultural production comes from small farmers, who however 

face constraints that reduce their productivity; 

• Extensive rain-fed agriculture (90% of all cropland) under the 

unpredictable and erratic rainfall pattern has been the leading cause of 

the low productivity and food insecurity in Africa, together with a low 

degree of mechanisation; 

• As a result of these factors, a poverty trap persists triggering cyclical 

famines and jeopardising local development opportunities; 

• Climate change will have a very harsh impact on agriculture while also 

affecting the density and quality of nutrients in plants;  

• Growing resources demand and changing consumption patterns (mostly 

in urban areas) will trigger increasing pressure on environmental flows 

and stress of environmental quality, mainly in rural areas; 

• Planning water and agricultural solutions such as water pumping, crop 

processing, and fertilisation requires the input of energy; 

• Energy access is a fundamental requirement for sustainable food 

cooking. 

• And so forth… 

To address these major challenges, there is a need for an integrated evaluation 

of infrastructure planning, policy making, and investment. For instance, access 

to affordable energy enables pumping groundwater, rainwater harvested and 
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stored in underground or surface storage tanks, and powering machineries that 

could significantly contribute in closing the yield gap. This would have positive 

consequences for food security (SDG 2), ensuring healthy life (SDG 3), 

ensuring equitable and inclusive education (SDG 4), access to water (SDG 6), 

access to energy (SDG 7) and local socio-economic development (SDG 8), thus 

contributing to the reduction of rural-urban and gender inequalities (SDG 10). 

The impact of rural energy access projects is already being experienced in 

many poor communities across Africa as private decentralised energy access 

companies see increasing demand as a result of falling technology costs and 

more refined business models.  

Future research should put together specialists who are pioneers in nexus 

integrated modelling and in developing commercial business models in these 

emerging markets. These research projects should aim at developing support 

tools that facilitate and streamline some of the hardest and most costly 

processes in the implementation of energy access and nexus business models, 

such as the process of site selection and technology evaluation. Useful tools to 

address this challenge include platforms integrating existing bottom-up solutions 

with regional and basin-scale. The modelling research should however 

necessarily be complemented by an extensive assessment of financing, 

governance, and policy mechanisms that can enable the identified solutions. 

This is crucial for the macro, national government-level regulatory perspective, 

via the energy access funding and investment landscape to the very micro 

validation of community-level business models. From design, through 

development, validation and implementation future work should also be guided 

by the core principle of commercial relevance.  

These intuitions, namely integrating energy access, nexus, and development 

research and combining modelling with business and policy research – is 

reflected by very recent contributions such as Kyriakarakos et al. (2020) or 

World Resources Institute (2020). The authors of these contributions namely 

highlight the need to “focus on gathering data to get a realistic picture of small-

scale demand and placing development-oriented service delivery organizations 

at the center of the solution” and they show that “agriculture related businesses 

[can] take the lead in the electrification activities of the surrounding 

communities. It is shown that the high cost of rural electrification can be met 

through the increased value of locally produced products, and cross-

subsidization can take place in order to decrease the cost of household 

electrification”.  
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Appendixes 

Appendix to Essay 1 
Figure A1.1 plots a map of Tanzania highlighting the position of the mini-grids. Of the 

107 facilities reported in the country, our satellite-based approach can detect 78, i.e. 

73%. Irrespective of the limited geographical scope of this dataset, the observation of 

nighttime light radiance in the proximity of the geographical coordinates where the mini-

grid is reported to be installed can be considered a direct empirical confirmation of the 

successful detection of most mini-grid solutions. In turn, this result provides an 

interpretative guideline of our electricity access estimates. Namely, it suggests that the 

estimates are broadly inclusive of populations served by mini-grid facilities. As a result, 

any residual discrepancy with the official statistics can be attributed to a narrower set of 

causes, namely: (i) the failed detection of standalone household-level generation 

solutions by nighttime lights; (ii)  the 450-meter resolution of the nighttime light data 

and the underlying assumption that in each pixel where electricity use exists everyone 

is benefitting from electricity access; (iii) biases and statistical growth in the official 

statistics.  As discussed in greater detail in the main paper, questions of the definition 

of electricity access must be raised.  

 

 
Figure A1.1: Map reporting the effectiveness of the nighttime light-based methodology 

to detect operational mini-grid systems in Tanzania.  

 

 

Figure A1.2 shows a line plot – by country – of the electrification levels reported by the 

Tracking SDG7: The Energy Progress Report 2019 (ref. 2). It reveals that a large number of 

countries seem to have kept quasi-linear changes in their reported electricity access level. 

Testing this hypothesis in a regression framework yields to a highly significance of the linear 

time trend (at a 1% level), but conversely it points to a rejection of the existence of a 

quadratic or cubic time trend at a 5% level of statistical significance.     
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Figure A1.2: Electricity access level progress (2010-2017) according to the database of the 

Tracking SDG7 report database (ref. 2).  
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Table A1.1: DHS surveys data regression results 

 Dependent variable: 

 Electr. access level 
2019 

Elect. progress 
2014-2019 

Average access 
tier 

`TV ownership 
`Refrigerator 
ownershup 

Mobile telephone 
ownership 

Radio 
ownership 

 (1) (2) (3) (4) (5) (6) (7) 

Wealth distribution: Gini 
coefficient 

-1.463*** 0.093*** -4.790***     

 (0.142) (0.034) (0.483)     

Average access tier    19.823*** 13.181*** 10.054*** 6.812*** 
    (0.923) (0.681) (0.830) (0.745) 

Constant 1.045*** -0.020 2.588*** 20.924*** 11.405*** 46.493*** 38.608*** 
 (0.067) (0.016) (0.226) (2.843) (2.098) (2.557) (2.293) 

Observations 188 188 188 216 216 216 216 

R2 0.579 0.412 0.464 0.828 0.780 0.780 0.670 

Adjusted R2 0.542 0.361 0.418 0.814 0.762 0.762 0.643 

Residual Std. Error 0.194 (df = 172) 0.047 (df = 172) 0.659 (df = 172) 10.257 (df = 199) 7.570 (df = 199) 9.225 (df = 199) 8.274 (df = 199) 

F Statistic 
15.776*** (df = 15; 

172) 
8.040*** (df = 15; 

172) 
9.945*** (df = 15; 

172) 
59.987*** (df = 16; 

199) 
44.016*** (df = 16; 

199) 
43.988*** (df = 16; 

199) 
25.236*** (df = 16; 

199) 

Country fixed-effects Yes Yes Yes Yes Yes Yes Yes 

 Note: *p<0.1; **p<0.05; ***p<0.01 
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Table A1.2: ISO3– country names codebook 

 

ISO3 Country name 

AGO Angola 

BDI Burundi 

BEN Benin 

BFA Burkina Faso 

BWA Botswana 

CAF 
Central African 

Republic 

CIV Côte d'Ivoire 

CMR Cameroon 

COD 
Congo (Dem. 

Rep. of) 

COG Congo (Rep. of) 

ERI Eritrea 

ETH Ethiopia 

GAB Gabon 

GHA Ghana 

GIN Guinea 

GMB Gambia 

GNB Guinea-Bissau 

GNQ 
Equatorial 

Guinea 

KEN Kenya 

LBR Liberia 

LSO Lesotho 

MDG Madagascar 

MLI Mali 

MOZ Mozambique 

MRT Mauritania 

MWI Malawi 

NAM Namibia 

NER Niger 

NGA Nigeria 

RWA Rwanda 

SDN Sudan 

SEN Senegal 

SLE Sierra Leone 

SOM Somalia 

SSD South Sudan 

SWZ Swaziland 

TCD Chad 

TGO Togo 

TZA 
Tanzania (United 

Rep. of) 
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UGA Uganda 

ZAF South Africa 

ZMB Zambia 

ZWE Zimbabwe 

 

 

 

Table A1.3: Datasets used in the modelling framework 

Dataset Unit Source 
Time 
step 

Spatial 
resolution 

High-resolution 
settlement layer 

People Ref. 3 1 year 30 m 

Global Human 
Settlement Layer 
– built up areas 
and settlement 

type layers 

Class Ref. 4 5 years 250 m 

VIIRS-DNB 
nighttime light 

radiance 
μW · cm-2 · sr-1 Ref. 5 1 month 450 m 

GADM shapefile -  Ref. 6 -  -  

DHS surveys 
% of people with 

access 
Ref. 7 

Multiple 
years 

Province-
level 

IEA Energy 
Access database 

% of people with 
access 

Ref. 8 1 year Country-level 

Tracking SDG7: 
The Energy 

Progress Report 
database 

% of people with 
access 

Ref. 9 1 year Country-level 

Atlas of the 
Sustainable 

Development 
Goals from World 

Development 
Indicators 
database 

% of people with 
access 

Ref. 10 1 year Country-level 

ESMAP Multi-tier 
Framework 

Surveys 
kWh/household/year Ref. 11 1-2 years 

Household-
level 
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Appendix to Essay 2 
Detailed materials and methods  

Population settlements clustering 

Population clusters are generated based on a processing algorithm which takes a 

gridded population raster layer as the main input and generates polygonal shapes 

as outputs. Previous applications of a similar approach are provided in refs. 

(Arderne, 2020; KTH-dESA/PopCluster, 2019). The algorithm selects high 

population density raster pixels (with a pop. >10 inhabitants / 900 m2 ≈ 1,110 

inhabitants / km2) and classifies them as ‘core’. The core pixels are converted to 

polygons and buffered by a 1 km radius to unify surrounding cores. The centroids of 

the resulting polygons are then extracted to identify a unique core for multi-core 

population areas. Finally, Voronoi polygons (the boundaries of the area closer to a 

given centroid than to any other centroid) are generated to cover the entire regional 

surface and include periphery and non-urban areas (e.g. cropland) within the 

reference polygon for each core centroid. The methodology allows grouping 

populations into boundaries that are heterogeneous in size and shape while 

collecting a set of neighbourhooding buildings and land. The algorithm is 

summarised in Figure A2.1.  

 

 

Figure A2.1: Schematic framework of the GIS algorithm to generate population 

clusters. The clusters represent the functional units of the GIS data processing and 

the demand nodes of the assessment. 

 

In this study, the High Resolution Settlement Layer (Facebook Connectivity Lab and 

Center for International Earth Science Information Network - CIESIN - Columbia 

University, 2016) dataset, providing population counts at a 30 m resolution based on 

statistical downscaling of census population based on a broad array of remotely-

sensed datasets, is used. The High Resolution Settlement Layer is based on the 

2015 census. Therefore, we estimate the change in the population of each grid cell 

from 2015 up to 2020 by applying the yearly country-level population growth rate 

and the share of urban population (ref. (The World Bank, 2019)). Algebraically, the 
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union raster layer (U) of the urban and rural population’s layers in year t is 

expressed by: 

 

 

𝑃𝑜𝑝t
i  = 𝑈(𝑃𝑜𝑝t−1

𝑖 𝑢𝑟𝑏(1 + 𝑃𝐺𝑅𝑡
𝑐(1 + Δ𝑈𝑅𝐵𝑡−1

𝑡 𝑐 )), 𝑃𝑜𝑝t−1
𝑖 𝑟𝑢𝑟(1 + 𝑃𝐺𝑅𝑡

𝑐(1 + Δ𝑅𝑈𝑅𝑡−1
𝑡 𝑐 )))  

(Eq. A2.1) 

where: 

 

▪ 𝑃𝑜𝑝t
i: the population in each cell (i)  in year t  

▪ 𝑃𝐺𝑅𝑡
𝑐: population growth rate in country c at year t  

Δ𝑈𝑅𝐵𝑡−1
𝑡 𝑐 increase of share of Urban population at year t respect to previous year in country c 

▪ ΔR𝑈𝑅𝑡−1
𝑡 𝑐 increase of share of Urban population at year t respect to previous year in country c 

 

The rescaling (Eq. A2.1) allows to integrate the heterogeneity in the demographic 

change across urban and rural areas and across each country. The main limitation 

in this approach is that – within each country – population dynamics are 

homogeneous across all urban and rural areas, taking the national value of the 

official statistics from the World Bank (The World Bank, 2019).  

 

Urban and rural settlements are identified at the grid-cell level using the ‘degree of 

urbanization’ method that delineates and classify settlement typologies via a logic of 

population size, population and built-up area densities and contiguity of the cells 

(A.J. et al., 2019). In our study  the populations cells are classified  as urban for 

contiguous cells with a density of 1,500 inhabitants per km2 and a minimum of 

population of 5,000 inhabitants (GHS-SMOD≥2), as rural when grid cell are outside 

the urban clusters (GHS-SMOD≤1), or as not inhabited (GHS-POP=0). To conclude, 

the total population living inside each cluster is calculated with a zonal statistics 

algorithm (i.e. as the sum of the raster pixels falling within the polygon boundary). 

 

Residential electricity demand  

Residential demand of rural and urban households in Kenya, both divided into five 

tiers of consumption, is computed by estimating electric appliances ownership 

across different tiers of consumers. The baskets of appliances are obtained through 

a literature review (ref. (Adeoye and Spataru, 2019; Blodgett et al., 2017; Kotikot et 

al., 2018; Lee et al., 2016; Monyei et al., 2019; Monyei and Adewumi, 2017; Sprei, 

2002; Thom, 2000)) supported by the authors’ personal experience. The compiled 

database is reported in Supplementary File F2.1, where every category of users is 

characterized by a corresponding usage pattern of the owned appliances, 

differentiating every month to account for seasonality of the uses. Subsequently, the 

stochastic bottom-up tool RAMP (Lombardi et al., 2019) is employed to compute the 

load curve of each household type for each day of the year at a 1 minute time 

resolution. In order to avoid overlap of the peaks in this process, the simulation of 
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the load of each tier is carried out for 100 households, taking advantage of the 

stochastic characteristic of RAMP, which avoids that the use of the same appliance 

coincides (deterministically) among users of the same category. 

 

Allocation of population to residential consumption tiers 

The next key methodological challenge requires allocating the simulated residential 

energy demand load curves of each household type to the population without 

electricity access in each cluster.  

Firstly, a multi-variate random forest regression machine learning model is 

estimated to evaluate the current association between the distribution across tiers of 

households who already benefit from electricity access and their characteristics 

throughout sub-Saharan Africa: 

 

𝑇𝑖𝑒𝑟𝑠ℎ𝑎𝑟𝑒𝑖 =  𝑊𝑄, 𝑈𝑅, 𝜌𝑖 + 𝜖𝑖 

(Eq. A2.2) 

where: 

▪ 𝑇𝑖𝑒𝑟𝑠ℎ𝑎𝑟𝑒𝑖 is a vector of the shares of population with access in each cluster 

i that belongs to each of the four access tiers. Information about the current 

distribution of households with electricity access across tiers is derived from 

ref. (Falchetta et al., 2019). This source provides satellite-proxied field-

validated estimates of the distribution of households with electricity access 

across tiers; 

▪ 𝑊𝑄 is a vector of five variables expressing the proportion of households in 

each wealth quintile in the province within which each cluster falls. The sum 

of the five variables at each cluster is thus always 1. The wealth distribution 

information is derived from the most recent DHS survey data for each 

country (USAID, 2009); 

▪ UR is a fractional variable expressing the share of the population in each 

cluster that is classified as urban; it is calculated based on the  ‘degree of 

urbanization’ method (A.J. et al., 2019); 

▪ 𝜌𝑖 is a vector of country fixed-effects; 

▪ 𝜖𝑖 is a vector of residuals.  

The trained model is then used to predict the propensity of households are currently 

without access to electricity to fall within each of the five electricity tiers once they 

gain electricity access. To conclude, the predicted distribution of households without 

electricity across energy access tiers in each cluster are matched to the 

corresponding load curves and the relative power consumption levels estimated in 



                                                                                                                  
   

265 

RAMP. The approach ensures that in each cluster the latent residential electricity 

demand depends on the current link between electricity access tiers, wealth 

distribution, and urban/rural prevalence within each country. The results of the 

regression model are reported in Table A2.3. 

Healthcare and education demand 

In order to assess the energy behaviour of primary schools and healthcare facilities 

in Kenya, a field campaign was conducted in the second semester of 2019 by the 

authors and their team with the specific purpose of interviewing personnel from 

public facilities about their appliance ownership and usage patterns. During this 

campaign 65 Primary Schools, 10 Dispensaries (Tier 1), 14 Health Centres (Tier 2) 

and 3 Sub-County Hospitals (Tier 3) were visited. The purpose of the field campaign 

was double, collecting data directly from the facility managers to better model the 

electrical loads and engage with local authorities to better understand and classify 

the different kinds of facilities into Tiers, ad understand the national plans for the 

public facilities in the medium term. Thanks to the field campaign it was hence 

possible to collect and process the data presented in Supplementary File F2.2. The 

reported data are then fed into the open source tool RAMP (Lombardi et al., 2019) 

that thanks to a stochastic bottom-up process computes the load curve of the user 

per each day of a year, with a one minute time resolution.  

The generated load profiles are then parsed to geospatial information about the 

location and characteristics of healthcare and education facilities in Kenya with the 

following logic: 

 

Healthcare 

▪ Tier 1 -> dispensary; Tier 2 -> Health clinics; Tier 3 -> Sub-district hospital; 

Tier 4 -> District Hospital / Provincial General Hospital; Tier 5 -> National 

Referral Hospital 

▪ Facilities with missing beds number: Tier 1 -> 0; Tier 2 -> 45; Tier 3 -> 150; 

Tier 4 -> 450; Tier 5 -> 2000 

▪ Number of beds in healthcare facility i of tier k * per-bed load at tier k 

 

Education 

Number of pupils in school i * per-pupil load  

 

Micro-enterprises and commercial activities demand  

In the M-LED framework, we estimate the electricity demand induced by small-scale 

productive and commercial activities that are widely emerging in communities of 

sub-Saharan Africa with an availability of electric energy, such as barber shops, 

minimarkets, or telecommunication points. This is carried out in three steps. First, a 
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composite index based on the productive activities drivers and energy use is 

constructed based on road density (with road infrastructure data drawn from ref. 

(Center for International Earth Science Information Network - CIESIN - Columbia 

University and Information Technology Outreach Services - ITOS - University of 

Georgia, 2013)), employment levels and wealth distribution (at the provincial level, 

with data from ref. (USAID, 2009)), and city accessibility (ref. (Weiss et al., 2018)) 

proximity is built. The indicators are aggregated using a principal component 

analysis (PCA). PCA is a multivariate statistical method that is used in development 

research to reduce the number of variables in a dataset and construct composite 

indices. In a PCA, the variables are weighted according to the variance explained by 

the first principal component (Booysen, 2002). Figure A2.2 below highlights the 

results of the PCA: 

 

 

Figure A2.2: Results of the PCA to evaluate the propensity of micro-entrepreneurial 

and commercial activities to operate 

Next, the PCA outcome is rescaled to the 0.3 and 0.6 range (following (Moner-

Girona et al., 2019)) to create a bottom-up mark-up factor on top of the residential 

demand. The baseline load curve (share of demand at each hour of the day over the 

total daily demand) of micro productive  activities is assumed to follow the same 

path of that described in (Moner-Girona et al., 2019), which in turn relies on ground-
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metered data from mini-grids in Kenya. Finally, a seasonal variation is imposed to 

the monthly demand loads curves: in particular, the seasonality follows the same 

monthly mark-up observed in the residential demand across months of the year.  

Algebraically, the final sectoral demand 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝑖𝑚ℎ (where i, m, and h, identify 

demand clusters, months of the year, and hours of the day, respectively) is 

expressed as: 

𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝑖𝑚ℎ = (1 + 𝑃𝐶𝐴𝑖
𝑟𝑎𝑛𝑔𝑒

) × 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑚ℎ × 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝐶𝑢𝑟𝑣𝑒𝑚ℎ 

(Eq. A2.3) 

where: 

▪ 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝑖𝑚ℎ is the commercial and productive demand at each cluster i at 

each month of the year m at each hour h; 

▪ 𝑃𝐶𝐴𝑖
𝑟𝑎𝑛𝑔𝑒

 is the result of the PCA at each cluster rescaled to the 0.3-0.6 

range; 

▪ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑚ℎ is the residential demand at each cluster i at each month of 

the year m at each hour h; 

▪ 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝐶𝑢𝑟𝑣𝑒𝑚ℎ are the twelve month-specific hourly curves for the 

sectoral demand derived from (Moner-Girona et al., 2019) and adjusted for 

the seasonality based on the residential seasonality variation. 

Irrigation water requirements modelling 

In developing countries crops are mostly rain-fed and existing water storage 

systems exploit gravity. For instance, in sub-Saharan Africa it is estimated that over 

90% of all agricultural land is rain-fed only (Rockstrom et al., 2007). The possibility 

to exploit electrical energy to pump water bears a huge rural productivity growth 

potential – if those water resources are used sustainably (Jägermeyr et al., 2016; 

Mueller et al., 2012). Thus, accurately predicting those water requirements and their 

load curve and in turn derive the electric energy necessary to pump it can shed light 

on the role of pumping energy in the elaboration of a rural electrification plan that 

might act as a trigger to rural productivity growth.  

We exploit 30-m resolution GIS information on the location of rainfed cropland in 

Africa (Teluguntla et al., 2018) to statistically downscale 10 km resolution 

information on the cropping area and regime of 42 distinct crops (You et al., 2014a). 

First, we use the GFSAD30AFCE cropland extent product to estimate the rainfed 

cropland area within each cluster. Then, using the MapSPAM database and 

referring to the rainfed harvested (i.e. not only the physical area, but the total area 

accounting for multiple harvests of a crop on the same plot) cropland area for 42 

types of crops, we calculate the total area for each crop type within the clusters. 

Since, however, the GFSAD30AFCE product has a 30 m resolution while the 
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MapSPAM layers only have a 10 km resolution, we redistribute the area value 

written into each 1 km resolution pixel such that it is proportional to the share of total 

cropland area within each cluster over the total cropland area underlying each 

MapSPAM pixel. Following this approach, we are able to downscale the layers 

based on the 30 m layer, under the assumption that, under each 10 km pixel, for 

each crop cropland is homogeneously distributed in underlying pixels. While this is 

an assumption, it is not particularly limiting given the already high resolution of the 

MapSPAM layer, which limits the maximum spatial allocation error to a ∼ 500 m 

radius, and in any case is such that the total sum of cropland in the clusters 

underlying the MapSPAM pixels is equal to the value reported in the MapSPAM 

pixel itself. 

We then combine the cropland information with satellite-derived observations of 

precipitations and evapotranspiration (Abatzoglou et al., 2018) and information 

about crop scheduling and watering periods (refer to Table A2.2) to accurately 

estimate the daily water gap that would be necessary to ensure the optimal yield is 

achieved in each cluster (with the caveat that we do not consider variation in 

fertilisation, pesticides, or land management regimes): 

𝑊𝑅𝑖
𝑦

=  ∑
𝐴𝐸𝑇𝑖

𝑚 − 𝑃𝑅𝑖
𝑚 𝜂 𝐶𝑅𝑆𝐻𝐴𝑅𝐸𝑖

𝜂𝑐

12

𝑚

 

  (Eq. A2.4) 

where: 

▪ 𝑊𝑅𝑖
𝑦
 is the yearly irrigation water requirement at cluster I; 

▪ 𝐴𝐸𝑇𝑖
𝑚 is the total monthly actual evapotranspiration in cluster i  calculated 

from the processed geospatial information on each crop’s harvested area 

(You et al., 2014b), the relative crop factors (Allen et al., 1998) – which 

depend both on each specific crop and the agroclimatic zone where it is 

being cultivated –, and the local potential evapotranspiration (Abatzoglou et 

al., 2018); 

▪ 𝑃𝑅𝑖
𝑚 are the monthly cumulative precipitations; 

▪ 𝐶𝑅𝑆𝐻𝐴𝑅𝐸𝑖 is the share of cropland area over the total cluster area;  

▪ 𝜂 is a roots absorption efficiency parameter, set at 0.6. 

The artificial irrigation water requirement is increased by dividing it by an irrigation 

efficiency parameter 𝜂𝑐. This is crop-specific, as each crop is irrigated with either 

drip, sprinkler, or surface irrigation, for which efficiencies of 0.85, 0.6, and 0.6, 

respectively, are assumed. Each crop is allocated to a technology following the FAO 

guidelines (Allen et al., 1998), with staple crops allocated to surface irrigation, and 

sprinkler and drip irrigation to vegetables and sugarcane and fruit trees, 
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respectively. Rainfall is given an absorption efficiency of 0.6. Finally, the yearly 

water requirement per hectare per crop is embedded into each cluster, a weighted 

sum between the products of such water requirement and the rainfed harvested 

area of each crop in that cluster is calculated. This results in monthly and yearly 

water requirement in m3 within each cluster, which is the requirement necessary to 

attain the potential yield in currently rainfed cropland. 

 

Water pumping energy demand quantification 

To quantify the electricity necessary yearly to satisfy the estimated demand for 

irrigation in each cluster, we set-up a groundwater pumping model based on Eq. 

SI5: 

𝑃𝑊𝑖 =  
𝜌𝑞𝑔ℎ

𝜂
 

(Eq. A2.5) 

where 

▪ PW is the hydraulic power requirement in W; 

▪ ρ is the density of the fluid in kg · m−3 (here set at 1,000, for water); 

▪ q is flow capacity of the pump in m3 · h−1; 

▪ g is the gravitational constant (9.81 m · s−2) ;  

▪ h is the differential head, in m;  

▪ η is a pumping efficiency parameter, set at 0.75.  

▪ h is defined by calculating the average local groundwater well depth using 

data from MacDonald et al. (2012) – including depth, storage, and 

productivity.  

The flow capacity of the pump q is defined as the flow capacity necessary to satisfy 

the local irrigation requirements in the month t with the highest requirement 

assuming a maximum watering of six hours per day. To translate the pumping 

power requirement (W) in the daily electricity demand (kWh), the following product is 

estimated: 

𝑃𝑊ℎ𝑚 =
𝑃𝑊

1000
× 𝐼𝐻𝑚 

  (Eq. A2.6) 

where: 

▪ 𝑃𝑊ℎ𝑚  is the estimated electricity consumption of the pump (in kWh) in each 

month m; 
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▪ 𝑃𝑊 is the nameplate power of the pump (in W); 

▪ 𝐼𝐻𝑚 are the number of irrigation hours in month m. 

Finally, as shown in Figure A2.3, to derive cluster and month-specific load curves 

we consider an archetypical curve with two irrigation windows per day (5am-9am 

and 10pm-12am) where the pump is operating, consistent with farming practices to 

reduce evapotranspiration: 

 

Figure A2.3: Representative load curve of the irrigation electricity demand (% of 

daily load at each hour of the day). 

 

In order to guarantee a sustainable supply of irrigation water, two constraints are set 

so that irrigation does not lead to the dwell’s depletion.  

The constraints are formulated as: 

𝑊𝑊𝑖
𝑑 ≤

(𝐺𝑊𝑃𝑟𝑜𝑑𝑖 ∗
𝑁𝑜𝑖𝑟𝑟ℎ𝑜𝑢𝑟𝑠

𝐼𝑟𝑟ℎ𝑜𝑢𝑟𝑠
) +  𝐺𝑊𝑃𝑟𝑜𝑑𝑖

1000
 

  (Eq. A2.7a) 

and  

𝑊𝑊𝑖
𝑑 ≤

𝐺𝑊𝑆𝑡𝑜𝑟𝑖

𝐼𝑟𝑟ℎ𝑜𝑢𝑟𝑠 × 3600
+

𝐺𝑊𝑃𝑟𝑜𝑑𝑖

1000
 

  (Eq. A2.7b) 
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where: 

▪ 𝑊𝑊𝑖
𝑑 is water withdrawal for irrigation purposes on the day of the year d in 

cluster I; 

▪ 𝐺𝑊𝑃𝑟𝑜𝑑𝑖 is the average groundwater dwell productivity  (in litres per 

second); 

▪ 𝐺𝑊𝑆𝑡𝑜𝑟𝑖 is the average groundwater dwell storage  (in meters); 

▪ 𝐼𝑟𝑟ℎ𝑜𝑢𝑟𝑠 and 𝑁𝑜𝑖𝑟𝑟ℎ𝑜𝑢𝑟𝑠 are the number of hours in which the pump is 

operated or not, respectively, during the average irrigation day.  

If the constraints are not met, the algorithm seeks to fill the watering gap 

withdrawing from the nearest freshwater surface  (if this is within a reasonable 

distance threshold, set at 5 km). The surface water pumping is modelled as: 

𝑆𝐹𝑃𝑊𝑖 =  𝑞𝑖 × 
(32 × 𝑊𝑆 × 𝑆𝑊𝐷𝑖  × 𝑉)

𝑃𝐷2
 ×  𝜂−1 

  (Eq. A2.8) 

where: 

▪ 𝑆𝐹𝑃𝑊𝑖 is the power of the surface water pump in W 

▪ 𝑞𝑖 is the required water flow rate (m3/s), obtained as the difference between 

the total required flow rate to meet irrigation needs and the flow rate that can 

be guaranteed sustainably by the groundwater pump; 

▪ 𝑊𝑆 is the speed of water in the pipe, set at 2 m/s; 

▪ 𝑆𝑊𝐷𝑖 is the Euclidean distance to the surface water body; 

▪ 𝑉 is the viscosity of water, 0.00089 Ns/m2 

▪ 𝑃𝐷 is the pipe diameter, set at 0.8 m 

▪ η is a pumping efficiency parameter, set at 0.75.  

In those instances where the irrigation demand cannot be fulfilled sustainable either 

by groundwater or via surface water pumping, a remark is signalled in the analysis 

result about the possibility to replace the existing crops or cropping schedule to relax 

the water stress in critical clusters. The analysis is carried out at a daily temporal 

resolution to account for overlapping growing seasons of crops found in each cluster 

and the therefore greater simultaneous water withdrawal needs.  

Crop processing electricity demand 

To estimate the electricity necessary to mechanically process the raw crop 

production of each cluster, an extensive literature review of crop processing energy 

requirements in the context of developing countries is carried out. Refer to 

Supplementary File 2.3 for an extensive summary of the sources accessed. Figure 
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SI4 summarises the resulting estimates range for each crop (in kWh/kg of 

processed crop).  

 

  

Figure A2.4: Comparison of the literature ranges for crop processing electrical 

requirements for the main crops considered for sub-Saharan Africa (in kWh/kg of 

processed crop).  

 

Thereafter, the yearly crop yield in each cluster i for each of the 42 crop classes c of 

the MapSpam database is estimated multiplying the mean crop yield (in kg/ha) of 

pixels falling into each cluster with the downscaled crop-specific cropland extent (in 

ha)  of each cluster. 

 

𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚 = 𝑌𝑖𝑒𝑙𝑑𝑐

𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  × 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑐
𝑖  

  (Eq. A2.9) 

where: 

▪ 𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚 is the yield of each crop c at each month m in each cluster I; 

▪ 𝑌𝑖𝑒𝑙𝑑𝑐
𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅  is the average yield (in kg/ha) of crop c for cropland falling within 

each cluster I; 

▪ 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑐
𝑖  is the harvested area of each crop c at each cluster I (in ha). 

The total yearly electricity consumption for crop processing (CP) in each cluster is 

then calculated as: 
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𝐶𝑃𝑖𝑚 = ∑ 𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚

𝑁

𝑖

× 𝑘𝑊ℎ/𝑘𝑔𝑐 

  (Eq. A2.10) 

where: 

▪ 𝐶𝑃𝑖𝑚 is the estimated electricity consumption for crop processing (in kWh) in 

each month m at each cluster i; 

▪ 𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚 is the yield of each crop c at each month m in each cluster I; 

▪ 𝑘𝑊ℎ/𝑘𝑔𝑐 are the crop-specific unit processing energy requirements (in 

kWh). 

In a similar fashion to the irrigation load curve definition, crop processing machinery 

follows an archetypical load (Figure A2.5) with an on/off flat curve and an operation 

window between : 

 

Figure A2.5: Representative load curve of the crop processing electricity demand 

(% of daily load at each hour of the day). 

 

Yield gap. agricultural revenues, and costs 

For the Kenya country-study, we estimate the local productivity (kg · ha−1), the mean 

yield for each crop is calculated using the MapSPAM rainfed crops layers. The total 

production in rainfed cropland is the given by the product of yield and harvested 
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area in each cluster. To estimate the revenues stemming from the irrigation of 

previously rainfed cropland and the related costs, we develop a simple model of 

production, transportation, and wholesale. Farmers in cluster i would bear cost 

components F (the fixed cost for purchasing the water pump) and R (the running 

costs, including electricity to power the pump and operation and maintenance of the 

appliance), as well as T (the travel costs to the closest wholesale market, including 

the rent/use of the truck, the fuel, and the opportunity cost of time). In turn, they earn 

a revenue which is defined as the additional yield of each crop produced thanks to 

irrigation by the wholesale market price at which that crop is currently exchanged 

(according to official statistics).  

Here we model transportation costs, total pumping costs, and the potential revenues 

from wholesale to quantify the potential locally generated agricultural revenues from 

the increased agricultural productivity as a result of the artificial watering. To 

estimate this added value, we retrieve the most recent database of wholesale prices 

for a large basket of crops in Kenya relative the location of each wholesale market. 

We then calculate what is the nearest wholesale market to each cluster, and – 

assuming constant prices over time – we estimate the yearly revenue. 

 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠𝑖 =  ∑ 𝑃𝑖
𝑗

 ×  𝑌𝑖𝑒𝑙𝑑𝑔𝑎𝑝𝑖
𝑗𝑐

𝐶

𝑗=1

 

  (Eq. A2.11) 

where: 

▪ 𝑃𝑖
𝑗
 is the local  (i.e. in each cluster i) wholesale unit price for each crop j 

▪ 𝑌𝑖𝑒𝑙𝑑𝑔𝑎𝑝𝑖
𝑗𝑐

 is the average difference between rainfed and irrigated yield in 

climate zone c for each crop j.  

▪ To estimate and subtract transportation costs needed to generate these 

revenues to obtain effective profit, we calculate the following: 

 

𝑇𝐶𝑠𝑖 = 2 × (𝑇𝑇𝑀𝑖 × 𝐹𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑖 × 𝑙𝑝𝑒𝑟𝑚𝑖𝑛) × 𝑛 

  (Eq. A2.12) 

where: 
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▪ 𝑇𝑇𝑀𝑖 is the travel time from each cluster i to the nearest market calculated in 

Google Earth Engine exploiting the algorithm developed by (Weiss et al., 

2018) 

▪ 𝐹𝑢𝑒𝑙𝑐𝑜𝑠𝑡 is the local cost of diesel fuel derived with the approach described 

in (Szabo et al., 2011)  

▪ 𝑙𝑝𝑒𝑟𝑚𝑖𝑛 is a parameter expressing the average fuel consumption of a truck 

in litres per minute.  

The whole product is multiplied by 2 to simulate a return journey, and by 𝑛, which is 

defined as the ratio of the weight of the total yield gap and the weight that a track 

journey can transport, thus representing the number of required journeys.  

To model groundwater pumping total costs, we refer to the database for recent 

projects in different countries of sub-Saharan Africa compiled in ref. (Xenarios and 

Pavelic, 2013), selecting only mechanical electric-powered pumps. In particular, we 

estimate the following non-linear regression model: 

𝑇𝑃𝐶𝑖 = ℎ𝑖 × 𝛽1 + 𝑦𝑖  × 𝛽2 + ℎ𝑖 ×  𝑦𝑖  × 𝛽3 + 𝜀𝑖 

  (Eq. A2.13) 

where: 

▪ 𝑇𝑃𝐶𝑖 are total pump costs, which include both fixed upfront costs (for the 

installation of the pump) and operational and maintenance costs; 

▪ ℎ𝑖 is the well depth (in m);  

▪ 𝑦𝑖 is the pump yield (in l/s). 

The model yields a cost function, which is plotted in Figure A2.6 for a ℎ𝑖 ∈ (10, 50) 

and 𝑦𝑖 ∈ (1, 10). We then estimate total pumping costs using the model in all 

clusters of our analysis where groundwater pumping requirements and feasibility 

criteria are met . 
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Figure A2.6: 3D surface plot of the non-linear function to assess groundwater 

pumps total costs 

 

A limitation of our local microeconomic economic analysis is that we do not 

monetise the intangible benefits of the improved local education and healthcare 

level as a result of the new electricity input. However, these likely imply both 

substantial costs savings in terms of human lives and treatment, and a greater 

accumulation of human capital which in the long-run can yield to significantly larger 

economic growth, as discussed in the relevant literature (Aguirre, 2017; Daka and 

Ballet, 2011; Sovacool and Ryan, 2016; Spalding-Fecher, 2005). We encourage 

studies targeting to quantify those indirect, long-run monetary gains. The same is 

true for small commercial and productive activities, and the additional value added 

from local crop processing. We acknowledge that electricity is likely to have a broad 

array of impacts through complex socio-economic linkages (Riva et al., 2018), 

including on fertility and migration decisions (Fried and Lagakos, 2017; Grimm et al., 

2015).  
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Supplementary tables  

Table A2.1: Main data sources in the M-LED platform 

Input step Dataset Unit 

Source 
Time 

resolution 

Spatial 

resolution 
(ref. 

number) 

Population 

clustering 

and 

residential 

demand 

High 

Resolution 

Settlement 

Layer 

Number of 

people per 

cell 

(Facebook 

Connectivity 

Lab and 

Center for 

International 

Earth 

Science 

Information 

Network - 

CIESIN - 

Columbia 

University, 

2016) 

Annual 30 m 

Wealth 

distribution, 

employment 

levels 

Distribution 

across 

quintiles; 

employment 

rates 

(USAID, 

2009) 
Survey year 

Province-

level 

GHS-SMOD 

Classification 

urban, rural 

settlement 

(A.J. et al., 

2019) 
5 years 250 m 

VIIRS DNB 

nighttime 

lights 

Radiance 
(Elvidge et 

al., 2017) 

Monthly 

(aggregated 

to annual) 

30 arc-

seconds 

Electricity 

access levels 
% 

(Falchetta et 

al., 2019) 
Annual 450 m 
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GADM – 

global 

administrative 

layers 

- 
(Hijmans et 

al., 2018) 
2018 

Country 

and 

provincial 

boundaries 

Productive 

demand 

Travel time to 

nearest 

feature 

hours 
(Weiss et al., 

2018) 
- 1 km 

Cropland 

extent 

Land area 

(ha) 

(Teluguntla 

et al., 2018) 
2015 30 m 

Crop-specific 

harvested 

area and 

yield 

Land area 

(km2) 
(You et al., 

2014b) 
2005 10 km 

Yearly yield 

(tonnes/(km2) 

Crop 

processing 

energy 

demand 

kWh/kg of 

yield 

processed 

See Table 

SI3 
- - 

Crop 

schedule and 

crop factors 

Days and 

coefficients 

See Table 

SI2;  

ref. (Allen et 

al., 1998) 

- - 

Global Agro-

Ecological 

Zone (GAEZ)  

layers 

Area (ha), 

climate zone 

(Fischer et 

al., 2012) 
2005 0.5° 

Groundwater 

depth, 

productivity, 

storage 

m, l/s, m 
(MacDonald 

et al., 2012) 
2012 5 km 

Surface water 

basins 
Distance (m) 

(Pekel et al., 

2016) 
- 30 m 

Services 

demand 

Healthcare 

facilities 
Tier 

(Maina et al., 

2019) 

Existing 

(2015) and 

Exact 

position 
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predicted to 

2030 

Education 

facilities 
Tier 

(“Kenya 

Open Data 

Initiative - 

Humanitarian 

Data 

Exchange,” 

n.d.) 

Existing 

(2015) and 

predicted to 

2030 

Count of 

facilities in 

cluster 

Kenya 

case study 

Crop 

wholesale 

prices at 

different 

markets 

USD/ton 

(“NAFIS – 

National 

Farmers 

Information 

Service,” 

n.d.) 

1 year 
Exact 

position 

 

 

Table A2.2: Crop schedule and crop factors 

Crop K_c1 K_c2 K_c3 nd_1 nd_2 nd_3 nd_4 pm_1 pm_2 eta_irr 

Maize 0.3 1.2 0.35 30 50 60 40 1503 3010 0.6 

Bean 0.15 1.15 0.35 20 30 40 20 1510 0109 0.6 

Sorghum 0.3 1 0.55 20 35 45 30 2503 1510 0.6 

Sweet 
potato 

0.5 1.15 0.65 15 30 50 30 1503 0109 0.6 

Tea 0.95 1 1 90 90 90 90 0101 0101 0.85 

Plantain 1 1.2 1.1 120 60 180 5 0101 0101 0.85 

Cowpea 0.4 1.15 0.3 20 30 35 15 1503 1510 0.85 

Pigeonpea 0.7 1.05 0.95 20 30 35 15 1003 1510 0.85 

Vegetables 0.7 1.05 0.95 40 60 50 15 2003 0109 0.85 

Arabica 
coffee 

1.05 1.1 1.1 90 90 90 90 0101 0101 0.85 

Banana 1 1.2 1.1 120 60 180 5 0101 0101 0.85 

Potato 0.5 1.15 0.75 25 30 45 30 1503 0109 0.6 

Cotton 0.35 1.2 0.6 30 50 60 55 0101 0101 0.6 

Cassava 0.3 1.1 0.5 150 40 110 60 0101 0101 0.85 
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Pearl millet 0.3 1 0.3 15 25 40 25 1503 1510 0.6 

Wheat 0.5 1.15 0.33 15 30 65 40 1503 1507 0.6 

Rice 1.05 1.2 0.75 30 30 80 40 0101 0101 0.6 

Small 
millet 

0.3 1 0.3 15 25 40 25 1503 1510 0.6 

Sugar beet 0.35 1.2 0.7 40 70 75 35 0101 0101 0.6 

Sunflower 0.4 1 0.35 25 35 45 25 1503 1510 0.85 

Soybean 0.5 1.15 0.5 15 15 40 15 1503 1510 0.6 

Groundnut 0.7 1.15 0.6 25 35 45 25 1503 1510 0.6 

Rapeseed 0.4 1.1 0.35 25 35 45 25 0101 0101 0.6 

Sugarcane 0.4 1.25 0.75 50 70 220 140 0101 0101 0.6 

 

 

Table A2.3: Results of the multi-variate random forest regression for residential 

electricity tiers allocation 

 

Sample size: 297 

Number of trees: 1000 

Forest terminal node size: 5 

Average no. of terminal nodes: 40.335 

No. of variables tried at each split: 3 

Total no. of variables: 8 

Total no. of responses: 4 

User has requested response: 
acc_pop_share_t1 

Resampling used to grow trees: swor 

Resample size used to grow trees: 188 

Analysis: mRF-R 

Family: regr+ 

Splitting rule: mv.mse *random* 

Number of random split points: 10 

% variance explained: 46.63 

Error rate: 0.03 

 

 

 

 

Supplementary files 

F2.1 - Excel File: “Households”: 
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The file is composed of 10 sheets, Rural-1 / Rural-5 accounting for the five modelled 

tiers of rural households, Urban-1 / Urban-5 for the urban tiers of households of the 

country.  

 

F2.2 - Excel File: “Services”: 

The file is composed of 6 sheets, the first one “School” representing the average 

public primary school of the country and the Hospital-1 / Hospital-5 representing the 

five modelled tiers of health care units.  

 

The two files are structured in the same way, each of the mentioned sheets, 

represents the usage pattern of the owned appliances by the described category of 

user. The sheet is divided into 12 months, for each month appears a matrix 

accounting for the appliances and the parameters that define their use, in order to 

account for the seasonal variation of the electric loads. An example is reported in 

Table A2.4. 

 

Table A2.4: Parameters describing Appliances Usage Pattern  

 
All the parameters are described in Table 1 in the manuscript. 

 

F2.3 – PDF file: “Crop processing references” 

The PDF file lists the list of studies accessed to define crop-specific processing 

energy needs.  
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Appendix to Essay 3 
Appendix A – Technical ACC electricity requirements estimation 

To estimate the technical air conditioning requirement at each location to enable 

thermal comfort in residential buildings based on the estimated CDDs for each 

Tbase value considered, we first size the average basic cooling capacity 𝐶𝐶𝑖
𝑘𝑊 (i.e. 

the average household air conditioning unit(s)). Cooling capacity “indicates the 

amount of heat the system can remove from the refrigerated space over time” 

(Subiantoro et al., 2013). In our study, 𝐶𝐶𝑖
𝑘𝑊is based on the cooling space 

volume for rural and urban areas, which in turn is a function of the home volume 

𝐶𝑆𝑝𝑎𝑐𝑒𝑖 and the share of the home volume cooled 𝑠ℎ𝑎𝑟𝑒_ℎ𝑜𝑢𝑠𝑒_𝑐𝑜𝑜𝑙𝑒𝑑𝑖: 

 

𝐶𝐶𝑖
𝑘𝑊 = 𝑓(𝐶𝑆𝑝𝑎𝑐𝑒𝑖 , 𝑠ℎ𝑎𝑟𝑒_ℎ𝑜𝑢𝑠𝑒_𝑐𝑜𝑜𝑙𝑒𝑑𝑖) 

(Eq. A3.1) 

 

As a rule of thumb, on average one cooling ton can cool 45 m2. In our analysis, 

we assume that the average urban and rural households require 60 m2 × 80% = 

48 m2 and 100 m2 × 35% = 35 m2 of cooling space, or 120 and 105 m3 of cooling 

volume based on assumed room heights of 2.5 and 3 m. The result is expressed 

in kW (where 1 cooling ton = 3.517 kW).  

 

In our study, we also define the AC-unit energy efficiency ratio (EER) as 

rural/urban dependent. The EER is defined as the ratio of the air conditioning unit 

capacity to its power output, i.e. it describes its efficiency: 

 

𝐸𝐸𝑅 =
𝐴𝐶𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴𝐶𝑝𝑜𝑤𝑒𝑟 
  

(Eq. A3.2) 

 

The baseline EER is set at 2.2 for rural areas and 2.9 for urban areas based on 

(Mastrucci et al., 2019). Sensitivity values of 2.2 and 3.2 for urban areas and 2 

and 2.9 for rural areas are tested to evaluate the impact of energy efficiency on 

the results. Based on the cooling capacity and on the local calculated monthly 

CDDs, we estimate the monthly amount of heat Q to be removed from each 

household in month m in joules: 

 



                                                                                                                  
   

286 

𝑄𝑖𝑚 = 29 × 𝑛 × 𝛥𝑇 

(Eq. A3.3) 

 

Where 29 is the heat capacity of air at constant pressure in J/mol K; and n is the 

ratio between 𝐶𝑆𝑝𝑎𝑐𝑒𝑖 in liters and 24, i.e. the molar volume of air at room 

temperature. 𝛥𝑇 is the differential between the experienced and the desired 

temperature. This is equivalent to the CDDs in month m at location i: 

 

𝛥𝑇𝑖𝑚  ≡  𝐶𝐷𝐷𝑖𝑚 

(Eq. A3.4) 

 

We then estimate the monthly hours of peak AC activity (at 100% compressor 

activity) as the share of the heat capacity to be removed and the cooling capacity 

of the local AC unit in joules/hour (1 cooling ton = 3.517 kW = 12,661,200 

joules/hour): 

 

𝐴𝐶ℎ𝑜𝑢𝑟𝑠𝑖𝑚 = 𝑄𝑖𝑚/𝐶𝐶
𝑖

𝐽
ℎ 

(Eq. A3.5) 

 

We proceed estimating the additional air conditioning running hours in the 

average day of month m at location i (𝐻𝐻𝐷𝑖𝑚) when the comfort temperature is 

reached but needs to be preserved. The factor is set to a base value of 6 hours, 

which are defined as the hours of cooling requirement in the month m with the 

median CDDs among each month of the year at each location i. 

 

Then, we let the factor vary from month to month according to the following rule: 

 

𝐻𝐻𝐷𝑖𝑚 =
𝐶𝐷𝐷𝑠𝑖𝑚

𝐶𝐷𝐷𝑠𝑖
̅̅ ̅̅ ̅̅ ̅̅  

× 6 

(Eq. A3.6) 

with a cap of 12 maximum cooling hours per day. 

 

To calculate the fraction of the average hour of month m in which the compressor 

is activated by the thermostat to maintain the house at the Tbase, we first import a 
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monthly solar radiation (W/m2 on a horizontal surface) raster calculated as the 

monthly average radiation at each grid cell over the period 1970-2010. Using the 

suncalc R package, we then calculate the sun altitude and azimuth angle at each 

location for the 15th day of each month of the year, at 1000h (a proxy for the 

average value over the daytime). We then adjust the horizontal solar 

radiation 𝑆𝑅𝑖𝑚
ℎ𝑜𝑟𝑖𝑧 to the effective angle as follows: 

 

𝑆𝑅𝑖𝑚 =
𝑆𝑅𝑖𝑚

ℎ𝑜𝑟𝑖𝑧

tan (𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑖𝑚)
× sin (𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑤𝑎𝑙𝑙

𝑖𝑚) 

(Eq. A3.7) 

 

where tan and sin are the tangent and sine functions, respectively, and 

𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑤𝑎𝑙𝑙
𝑖𝑚 is the angle between the orientation of each building wall and the 

sun azimuth angle.  

 

Then, assuming total window area values of 10 and 15 m2 in cooled rooms and 

solar heat gain coefficients of 0.5 and 0.75 for the average urban and rural 

homes, respectively, we calculate the quantity of energy entering the house 

windows in the average hour of daytime at each month of the year at each 

location: 

 

𝑘𝑊ℎ_𝑖𝑚

ℎ
=

𝑆𝑅𝑖𝑚 × 𝑤𝑖𝑛𝑑𝑜𝑤𝑎𝑟𝑒𝑎 × 𝑘_𝑠𝑜𝑙𝑎𝑟_ℎ𝑒𝑎𝑡_𝑔𝑎𝑖𝑛

1000
 

(Eq. A3.8) 

 

The share of the average air conditioning hour with operational compressor is 

then calculated as: 

 

𝑠ℎ𝑎𝑟𝑒𝑖𝑚 =

𝑘𝑊ℎ𝑖𝑚
ℎ

× 3600000

𝐶𝐶
𝑖

𝐽
ℎ

 

(Eq. A3.9) 

where 3600000 is the conversion factor from kWh to Joules. 

 

Finally, we calculate the power requirement for air conditioning in each month m 

for each household HH at location i as: 
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𝐴𝐶𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖𝑚
𝐻𝐻 =

𝐶𝐶𝑖
𝑘𝑊

𝐸𝐸𝑅𝑖
×  𝐴𝐶ℎ𝑜𝑢𝑟𝑠𝑖𝑚 +  

𝐶𝐶𝑖
𝑘𝑊

𝐸𝐸𝑅𝑖
× 𝐻𝐻𝐷𝑖𝑚 × 𝑠ℎ𝑎𝑟𝑒𝑖𝑚 

 

(Eq. A3.10) 

 

Namely, assuming that after the base comfort temperature is reached at 100% 

compressor activity, the compressor then runs 𝑠ℎ𝑎𝑟𝑒𝑖𝑚 of the time to maintain the 

temperature constant net of window heat gain. 

 

Finally, we exploit the gridded distribution of people without electricity access 

estimated in Section 3.3 and information about average household size in urban 

and rural areas of each country (United Nations, Department of Economic and 

Social Affairs, Population Division, 2019) to estimate the total potential electricity 

demand for air conditioning at each grid cell: 

 

𝐴𝐶𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖 =  ∑ 𝐴𝐶𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖𝑚
𝐻𝐻  × 𝐻𝐻𝑠𝑖

12

𝑚=1

 

 

(Eq. A3.11) 

 

Potential CO2 emissions estimation 

To complement the analysis, we estimate the potential CO2 emissions that would 

be generated by ACC use from households currently without access to electricity 

under the scenarios considered in this paper. In particular, we refer to the 

statistics about the carbon intensity (kg CO2 / kWh) of the electricity sector of 

each country from the IEA Energy Balances; for those country lacking information 

in the database, we assume the baseline national power mixes of 2017 reported 

from the US EIA International Energy Statistics (EIA, 2017). For those countries, 

we refer to generalised figures on the direct emission factors for each generation 

source from (ICF, 2014; Noussan and Neirotti, 2020), reported in Table 

C.3.Global CO2 emissions to meet cooling needs are then calculated as:  

 

𝐶𝑂2
𝑖 =  ∑ 𝑇𝑂𝑇𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖 × ∑ 𝑠ℎ𝑎𝑟𝑒𝑡𝑒𝑐ℎ𝑖𝑐 × 𝐸𝐹𝑐𝑘

12

𝑚=1
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(Eq. A3.12) 

 

where i is each grid cell, m identifies months of the year, 𝑇𝑂𝑇𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 is the 

sum of electricity requirements for AC and fans at each i, 𝑠ℎ𝑎𝑟𝑒𝑡𝑒𝑐ℎ𝑖𝑐 is the 

power generation mix of each country c, and 𝐸𝐹𝑔𝑘 is the CO2 emission factor of 

each generation technology k in each country. Note that for households gaining 

access through decentralised generation solutions we assume an average 

emission factor of 0.34 kg CO2 / kWh consumed, based on the technological mix 

of operational mini-grid projects in sub-Saharan Africa commissioned between 

2010 and 2019 (CLUB-ER and CARBON TRUST, 2020). A final necessary 

remark is that the estimated emissions are not explicitly accounted for in the 

future climate change scenarios considered in this paper because irrespective of 

the scenario considered, they remain a marginal share of global CO2 emissions.  
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Appendix B – Supplementary Results 

 
Figure B3.1 | Country-level distribution of unmet CDDs due to electricity access deficit at 

Tbase=26° C. (A) Absolute number of CDDs per year, million; (B) CDDs per year per person 

without electricity access, (C) Absolute change in million CDDs per year (historical to SSP370). 
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Figure B3.2 | Violin plots of the distribution of monthly CDDs among areas where populations 

without access to electricity are living in the baseline, SSP246 and SSP370 scenarios. Grey bars 

show the range of the data; light blue shaded areas show the distribution of the data in that 

range.  

A 

B 

C 



                                                                                                                  
   

292 
 



                                                                                                                  
   

293 
 



                                                                                                                  
   

294 
 kWh / household / year 



                                                                                                                  
   

295 

 

Figure B3.3 | Spatial distribution of electricity consumption (kWh/household/year) for S2 appliance 

ownership scenarios. 
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Feedback CO2 emissions from closing the air cooling gap 

Based on the estimated electricity requirements, we calculate the CO2 emissions 

that would be driven by air conditioning and circulation of households currently 

without electricity access under the considered scenarios. The results are 

illustrated in Figure B. 3.4. They closely resemble the trends observed for the 

latent electricity demand. Under the S2 scenario we estimate a feedback 

emission potential of 146 Mt CO2/year, equivalent to about half of the current 

total emissions from electricity and heat production in sub-Saharan Africa (IEA, 

2019).  

 

 

Figure B3.4 | Average yearly feedback CO2 emissions to meet universal air cooling needs under 

the assumed parameters for four technology adoption scenarios and three climate scenarios 
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(baseline, SSP245, SSP370). (A) Results under different Tbase (comfort temperature) targets; (B) 

Results under different AC-unit EERs (energy efficiency ratios) variants. 

 

 

 

 
 

Figure B3.5 | Residual cooling electricity gap map for the S0 scenario under SSP245 due to 

income constraints (average kWh / household / year). 
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Appendix C – Supplementary Tables 

 

Table C3.1: Key techno-economic parameters assumed in the electrification model  

 

Category Parameter Value 

General 

parameters 

Discount rate 17.50% 

Diesel price 
1.25 USD / 

liter 

Population in 2030 1,400,000,000 

Urbanisation level in 2030 50% 

Central 

grid 

Central grid connection charge 

per household 
100 USD 

Central grid capacity factor 65% 

Operation and maintenance 

costs of transmission and 

distribution lines 

2% 

Central grid capacity factor 65% 
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Per kWh generation cost for 

central grid utilities 

0.1 USD / 

kWh 

Central grid distribution losses 20% 

Grid Capacity Investment Cost 
2,000 USD / 

kW 

Mini grids 

Hydro mini-grid investment cost 
4,000 USD / 

kW 

Wind  mini-grid investment cost 
4,000 USD / 

kW 

Solar PV  mini-grid investment 

cost 

3,500 USD / 

kW 

Diesel  mini-grid investment 

cost 
900 USD / kW 

Standalone 

solutions 

Solar PV standalone investment 

cost 

<50 W: 9000 

USD / kW; 

<100 W: 7500 

USD / kW; 

<1kW: 600 

USD / kW; <5 

kW: 5000 

USD / kW; >5 

kW: 4250 

USD / kW 

Diesel standalone investment 

cost 

1,200 USD / 

kW 
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Table C3.2: Input dataset to the geospatial electrification analysis  

Input dataset Unit Source 

Elevation m 
 (NASA LP DAAC, 

2011) 

Slope % Author’s elaboration 

Global 

horizontal 

irradiation 

W/m2 (SolarGIS, 2017) 

Wind speed m/s 

(DTU Technical 

University of Denmark, 

2018) 

Administrativ

e boundaries 
- (Hijmans et al., 2018) 

Small 

hydropower 

potential 

MW (Korkovelos et al., 2017) 

Population Inhabs. (Tatem, 2017) 

Travel time 

the nearest 

50,000+ city 

hours (Weiss et al., 2018) 

MV network kV (Arderne et al., 2020) 

HV 

transmission 

network 

kV (Energydata.info, n.d.) 

Electricity 

substations 
- (Energydata.info, n.d.) 

Solar 

restrictions 
- Author’s elaboration 

Roads - 

(Center for International 

Earth Science 

Information Network - 

CIESIN - Columbia 

University and 

Information Technology 

Outreach Services - 

ITOS - University of 

Georgia, 2013) 
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Land cover Type (Channan et al., 2014) 

Night-time 

lights 

intensity 

Radianc

e 
(Elvidge et al., 2017) 

 

 

 

Table C3.3: Emission factors assumed in the emissions calculation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Technology kg CO2 / kWh 

Oil 0.545 

Gas 0.368 

RES (solar, wind, hydro, tidal) 0 

Waste 0.555 

Coal 0.87 

Diesel_200kW 0.73 

Diesel_2MW 0.587 
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Appendix D – CDDs primary data source: sensitivity analysis 
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Figure D3.1 | Discrepancy among the different CDD primary data sources 

considered: (A) monthly CDDs in areas without electricity access; (B)  yearly total 

CDDs in areas without electricity access; (C) Areas without electricity access. 
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Appendix to Essay 4 
 

 
Figure A4.1: Boxplot of the distribution of the (normalised) variables included in 

the country-level PCA for the EAGI generation, by country. 
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Figure A4.2: Histograms of the distribution of the (normalised) variables included 

in the country-level PCA for the EAGI generation, by variable. 

 

 

Table A4.1: Country-specific EAGI 

Country EAGI 

Angola 45 
Burundi 27 
Benin 59 

Burkina Faso 68 
Botswana 100 

Central African Republic 14 
Cote d'Ivoire 66 
Cameroon 57 

Democratic Republic of the Congo 27 
Congo 21 

Comoros 38 
Djibouti 45 
Eritrea 19 
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Ethiopia 70 
Gabon 43 
Ghana 74 
Guinea 39 
Gambia 44 

Guinea Bissau 24 
Equatorial Guinea 31 

Kenya 77 
Liberia 21 

Lesotho 58 
Madagascar 23 

Mali 32 
Mozambique 25 
Mauritania 29 

Malawi 45 
Namibia 91 

Niger 56 
Nigeria 41 
Rwanda 97 
Sudan 41 

Senegal 60 
Sierra Leone 36 

Somalia 0 
South Sudan 8 

Sao Tome and Principe 66 
Swaziland 72 

Chad 12 
Togo 60 

Tanzania 76 
Uganda 67 

South Africa 78 
Zambia 59 

Zimbabwe 45 
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EAGI-adjusted discount rate: calculation and results 

 

 

Table A4.2: Per-capita regional GDP_PPP in urban and rural settlements in 2030 

 

Region URB_Q1 URB_Q2 URB_Q3 URB_Q4 URB_Q5 RUR_Q1 RUR_Q2 RUR_Q3 RUR_Q4 RUR_Q5 

Western & 
central Africa 

820 1587 2451 3805 8399 425 787 1179 1773 3674 

Eastern Africa 550 1125 1808 2923 7004 427 751 1085 1573 3036 
Southern Africa 2049 4605 7916 13710 37937 1004 2160 3599 6037 15611 

Republic of 
South Africa 

1228 1995 2732 3751 6522 656 1062 1451 1987 3441 
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Table A4.3: Boundary regional consumer discount rates 

Region Area Upper bound Lower bound 

Western Africa Urban 70.4% 41.5% 
Eastern Africa Urban 79.7% 44% 

Southern 
Africa 

Urban 
61% 42% 

Republic of 
South Africa 

Urban 
62% 18% 

Western Africa Rural 78% 55% 
Eastern Africa Rural 81% 57% 

Southern 
Africa 

Rural 
68% 51% 

Republic of 
South Africa 

Rural 
71% 31% 

 

 

Detailed EAGI-adjusted discount rate results  

 

Table A4.4: Country-specific EAGI-adjusted discount rates 

Country 

Rural 
EAGI-

adjusted 
DR 

Urban 
EAGI-

adjusted 
DR 

Angola 58.9% 52.2% 

Burundi 67.8% 63.4% 

Benin 51.7% 43.4% 

Burkina Faso 47.5% 38.1% 

Botswana 31.3% 18.1% 

Central African Republic 74.0% 71.0% 

Cote d'Ivoire 48.3% 39.2% 

Cameroon 52.4% 44.3% 

Democratic Republic of the Congo 67.8% 63.3% 

Congo 70.7% 66.9% 

Comoros 62.1% 56.2% 

Djibouti 58.7% 52.0% 

Eritrea 71.5% 68.0% 

Ethiopia 46.3% 36.7% 

Gabon 59.5% 53.0% 

Ghana 44.3% 34.2% 

Guinea 61.7% 55.8% 

Gambia 59.1% 52.5% 

Guinea Bissau 69.0% 64.8% 

Equatorial Guinea 65.5% 60.5% 

Kenya 42.9% 32.4% 

Liberia 70.3% 66.5% 

Lesotho 52.1% 43.9% 

Madagascar 69.4% 65.4% 
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Mali 65.3% 60.2% 

Mozambique 68.7% 64.4% 

Mauritania 66.7% 62.0% 

Malawi 58.8% 52.1% 

Namibia 35.5% 23.3% 

Niger 53.1% 45.1% 

Nigeria 60.5% 54.2% 

Rwanda 32.7% 19.8% 

Sudan 60.5% 54.2% 

Senegal 51.1% 42.6% 

Sierra Leone 63.2% 57.6% 

Somalia 81.0% 79.7% 

South Sudan 77.2% 75.0% 

Sao Tome and Principe 48.4% 39.2% 

Swaziland 45.0% 35.1% 

Chad 74.9% 72.1% 

Togo 51.2% 42.7% 

Tanzania 43.2% 32.9% 

Uganda 47.7% 38.4% 

South Africa 42.3% 31.7% 

Zambia 51.7% 43.4% 

Zimbabwe 58.6% 51.9% 
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Appendix to Essay 5 
 

Table A5.1: SPEI index classification 

 

 

Figure A5.1: Classification of the regional country groups considered; (b) Location and 

extent of the nine river basins assessed. 
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Table A5.2: Reviewed literature about the projected impacts of climate change on 

hydropower in SSA. 
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Table A5.3: Reviewed literature about the impact of power generation on water availability. 
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