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Robustness of radiomic features 
in CT images with different slice 
thickness, comparing liver tumour 
and muscle
Lorena Escudero Sanchez1,2*, Leonardo Rundo1,2*, Andrew B. Gill1,3, Matthew Hoare2,4, 
Eva Mendes Serrao1,2,5 & Evis Sala1,2,5

Radiomic image features are becoming a promising non-invasive method to obtain quantitative 
measurements for tumour classification and therapy response assessment in oncological research. 
However, despite its increasingly established application, there is a need for standardisation criteria 
and further validation of feature robustness with respect to imaging acquisition parameters. In this 
paper, the robustness of radiomic features extracted from computed tomography (CT) images is 
evaluated for liver tumour and muscle, comparing the values of the features in images reconstructed 
with two different slice thicknesses of 2.0 mm and 5.0 mm. Novel approaches are presented to address 
the intrinsic dependencies of texture radiomic features, choosing the optimal number of grey levels 
and correcting for the dependency on volume. With the optimal values and corrections, feature values 
are compared across thicknesses to identify reproducible features. Normalisation using muscle regions 
is also described as an alternative approach. With either method, a large fraction of features (75–90%) 
was found to be highly robust (< 25% difference). The analyses were performed on a homogeneous CT 
dataset of 43 patients with hepatocellular carcinoma, and consistent results were obtained for both 
tumour and muscle tissue. Finally, recommended guidelines are included for radiomic studies using 
variable slice thickness.

Hepatocellular carcinoma (HCC) is the most common liver primary tumour, and currently the 4th largest cause 
of cancer-related death1,2 with a poor survival rate (less than 20% 5-year survival rate3). Radiomics analysis of 
HCC cases has been used to predict outcome4 and early recurrence5 using computed tomography (CT) images, 
as well as defining tumour immunoscore6 based on Magnetic Resonance Imaging (MRI). However, despite these 
advances, the reported radiomics quality score (RQS)7 of HCC radiomic studies is low ( 8.35± 5.38 out of a pos-
sible maximum value of 36)8. Therefore, careful analyses of radiomic feature robustness and reliability require 
attention from the scientific community.

Radiomics9, the emerging field of research describing the extraction of mineable features from medical 
images, is based on the idea that medical images convey information that reflects the underlying pathophysiol-
ogy, which can be probed by quantitative image analysis. Unlike qualitative image evaluation, which requires 
a trained reader to make a subjective judgement based on images (i.e. presence of disease), radiomics allows 
a large number of quantitative features to be extracted from standard-of-care images, from modalities such as 
CT, MRI and Positron Emission Tomography (PET). These features provide quantitative measurements of tissue 
characteristics, such as shape or heterogeneity, allowing objective, reader-independent non-invasive biomarkers 
to be extracted.

Radiomics has shown great potential in precision oncology10, but there is still a need for safeguards and 
standardisation to achieve robust and generalisable results11. Efforts to harmonise the study of radiomic features 
are being made within the cancer research community, such as those provided by the Image Biomarker Stand-
ardisation Initiative (IBSI)12. However, these attempts are not yet offering comprehensive guidelines in order 
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to make practical choices—such as decisions on voxel size and quantisation of grey levels (GLs), necessary to 
obtain robust and reliable outcomes13.

First of all, it is necessary to assess feature robustness in terms of the intrinsic dependencies of some features 
on volume (or number of voxels) and on the number of GLs14, regardless of the software package used to calcu-
late these features13. This paper presents novel approaches to address such intrinsic dependencies, with the aim 
to choose the optimal number of GLs and voxel size. The analyses performed focus on evaluating the impact 
of such choices on images with different reconstructed slice thicknesses—which is one of the main acquisition 
parameters that varies in realistic cohorts—by comparing the values obtained using images reconstructed with 
2.0 mm and 5.0 mm, typical slice thickness values used in diagnostic CT scans. An automatic, software-agnostic 
method to correct for volume dependencies of some of the texture features is also presented.

Once the optimal choice for GLs has been identified, and the optimal correction of dependencies on the 
number of voxels has been implemented, the values of the features are compared for the different slice thicknesses 
in order to (1) choose the optimal voxel size for the feature extraction and (2) quantify the number of features 
that are robust with respect to a change of slice thickness. Results are presented for liver tumour and muscle, 
with consistent conclusions extracted for both tissue types.

The present work is, to the best of our knowledge, the first study that systematically investigates radiomic 
feature robustness for the same CT scans reconstructed with two different slice thickness values. In addition to 
the methods described to correct for intrinsic dependencies of the parameters and minimise the effect of the slice 
thickness, recommended guidelines are provided to make optimal choices in future radiomic studies analysing 
heterogeneous cohorts with variable slice thickness.

Materials and methods
Dataset composition and preparation.  This retrospective analysis was conducted on imaging from 
patients on the liver transplant waiting list. Patients were recruited at the Cambridge University Hospitals NHS 
Foundation Trust, Cambridge, UK, and gave written informed consent with approval of the Office for Research 
Ethics Committees Northern Ireland (REC ref 16/NI/0196, IRAS 206106, REC approval on September 12th 
2016). After subsequent transplantation all were demonstrated to have histologically-proven HCC. All trans-
plants conducted between 2002 and 2020 were retrospectively reviewed, and a total of n = 43 were selected 
between the years 2005–2020. To protect the individuals’ privacy, the patient’s exam information was pseudo-
anonymised by replacing personal identifiers with pseudonyms. All work was carried out in accordance with 
relevant guidelines and regulations.

Patients were selected based on the criterion that contrast-enhanced CT scans were available with homogene-
ous CT acquisition parameters (except for in-plane resolution and slice thickness, focus of our analysis) and that 
images were obtained as part of the same study with two reconstructed slice thickness of 2.0 mm and 5.0 mm. 
The CT scans were all acquired at porto-venous contrast phase and a 120 kilovoltage peak (KVP) and they were 
reconstructed with a convolution kernel of either B20f or B30f (all B20f for 2.0 mm). The pixel spacing (i.e. in-
plane resolution) varied within a range of (0.57–0.92) mm, with a mean of µx = µy = 0.735 mm. The relevant 
CT acquisition parameters are summarised in Supplementary Table ST1. The main demographics characteristics 
of the selected n = 43 patients are summarised in Supplementary Table ST2.

A radiologist (E.S.M.) with 6 years of experience segmented the ROIs for the liver tumours. A single tumour 
was delineated per patient and analysed. In addition, ROIs were also drawn in the CT images within healthy 
muscle tissue, in the right erector spinae, such that every tumour ROI was accompanied on the same slice by an 
ROI of similar size drawn within the muscle, resulting in comparable 3D volumes for the tumour and muscle. 
All scans and ROIs were delineated using the Microsoft Radiomics Tool (Version 1.0.30558.1, project InnerEye15, 
Redmond, WA, USA). The segmentation of liver tumours and muscle regions was performed for each patient and 
study in scans with 2.0 mm and 5.0 mm slice thickness. Potential volume effects or biases in the segmentation 
of the tumours, as a function of the slice thickness used, were investigated with the Bland–Altman analysis16.

Radiomic features extraction and pre‑processing.  The radiomic features considered in this study 
were computed using PyRadiomics (version 2.2.0)17, an open source Python package widely used for this pur-
pose. Since this software requires the image input in the Neuroimaging Informatics Technology Initiative (NIfTI) 
format18, a preliminary step was performed to convert the original Digital Imaging and Communications in 
Medicine (DICOM) scan and segmentation files to this format using custom software written in MATLAB (The 
Mathworks Inc., Natick, MA, USA) version R2019b.

A total of 107 3D radiomic features were calculated, without any image filters applied, from the following 
categories: shape (14), first-order (18), Grey Level Co-occurrence Matrix features (GLCM)19–21 (24), Grey Level 
Dependence Matrix (GLDM)22 (14), Grey Level Run Length Matrix (GLRLM)23 (16), Grey Level Size Zone Matrix 
(GLSZM)24 (16) and Neighbouring Grey Tone Difference Matrix Features (NGTDM)25 (5). The full list of features 
can be found in Supplementary Tables ST6-ST7.

The analyses described in this paper were performed using the ROOT26 open-source data analysis framework 
developed at CERN (Geneva, Switzerland). This was used via its Python interface to integrate it with other Python 
libraries, such as NumPy, SciPy and scikit-learn27.

Intrinsic dependencies of radiomic features.  In this paper, the known intrinsic dependencies of some 
of the radiomic image features studied are: (1) the number of GLs used—also called quantisation—and (2) the 
outlined (tumour) volume, expressed as number of voxels.
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Choice of grey level quantisation.  A number of GLs, resulting from a process known as quantisation or re-
binning, needs to be selected in order to extract radiomic features. This number typically has an impact on the 
distribution of intensity values (i.e. histogram) of the volume considered, and on the GL matrices that are cal-
culated comparing local image intensities, such as co-occurrence (GLCM) and run-length (GLRLM) matrices. 
Thus, the chosen number of GLs might have an effect on the values of certain radiomic features.

Two options are typically available for choosing the number of GLs: either fixing the number of bins, or fix-
ing the bin width. Although fixing the bin width seems naturally more appropriate when comparing histograms 
of different extent, the IBSI guidelines12 recommend using a fixed number of bins instead. The data used in this 
study have the advantage of very little variation in the image intensity ranges across the different patients. In 
this case using a fixed number of bins or a fixed bin width become equivalent. Therefore, a fixed number of bins 
was preferred in this analysis.

In order to test the effect of the GL quantisation, and to evaluate its impact on the values of the radiomic 
features, seeking to find the optimal choice minimising differences in a cohort of heterogeneous slice thick-
ness, radiomic features were extracted using different values of number of GLs, following powers of two as 
they are typically used in the literature: 8, 16, 32, 64, 128 and 256. In addition, a statistical rule, known as the 
Freedman–Diaconis rule28, was explored to calculate the optimal GL number automatically. This rule is a basic 
extension, generalised to non-Gaussian distributions, of Scott’s rule29, which is a statistical attempt to find the 
optimal bin width of a distribution (histogram) for an unbiased estimation of the probability density function 
underneath. The Freedman–Diaconis rule is based on the interquartile range (IQR) and states that the optimal 
bin width of a distribution X can be computed as:

where N is the number of entries (i.e. elements) in the distribution X , and that can be translated as:

The intraclass correlation coefficient (ICC) was computed to evaluate which features are correlated with the 
number of GLs. Given k multiple measurements to be compared (7 different GL quantisations), ICC(3, 1)30 for 
a two-way random-effects (or mixed effects) model was used:

where MSR and MSE are the mean square for rows and mean square for error, respectively.

Correction of volume dependencies.  The other known key dependency of some radiomic features is the volume 
of the ROI considered. This dependency was analysed as a function of the number of voxels.

There are two ways in which the number of voxels can be varied: (a) by fixing the voxel size, and analysing 
ROIs with different 3D volumes, and (b) for a fixed 3D volume (ROI), varying the size of the voxels used in the 
calculation. In this study, both variations were considered (a) by collecting data from different patients, for which 
ROI volumes differ; and (b) by varying the voxel sizes, both by resampling the images within patients and by 
comparing the studies with 2.0 mm and 5.0 mm slice thickness.

The images were resampled using the following set of isotropic and anisotropic voxel sizes. This set includes 
some standard choices found in the literature and ensures that examples of both up-sampling and down-sampling 
are considered:

•	 Original, i.e. no resampling;
•	 Isotropic choices; (0.5, 0.5, 0.5) mm, (1.0, 1.0, 1.0) mm, (1.25, 1.25, 1.25) mm, (1.75, 1.75, 1.75) mm and (2.0, 

2.0, 2.0) mm;
•	 (µx , µy , Z) where µx = µy = 0.735 mm is the mean of the pixel widths and Z is the original thickness 

(2.0 mm or 5.0 mm);
•	 (µx , µy , µz ) where µx = µy = 0.735 mm is the mean of the pixel widths and µz = 3.5 mm is the mean thickness.

For each resampling, three different interpolation methods were compared: linear, B-spline (spline) and Welch 
windowed sinc interpolator (welch).

Features that show a dependency on the number of voxels were identified by evaluating the Spearman’s rank 
correlation coefficient ( rS ), deeming them as correlated if rS >= 0.5.

A correction of the volume dependency was explored for those features correlated. The purpose of this cor-
rection is not to discard any valuable information that can be extracted from the volume itself, therefore it was 
not applied to shape-related features. Instead, the aim is to decouple from volume effects the potential predictive 
power of radiomic features that might be complementary to the information conveyed by the volume itself.

For this purpose, an automatic approach was developed to perform fits to estimate the underlying function 
that describes the correlation for each feature: y = f (x) where y is each radiomic feature and x is the number of 
voxels. Different invertible functions were tested for f(x), covering the dependencies reported in the literature9 
and beyond. Therefore, eight fits were performed per feature with the following formulae, each of them described 
by two coefficients or fit parameters [p0] and [p1]: (1) f (x) = [p1] · x + [p0] ; (2) f (x) = [p1] · x2 + [p0] ; (3) 

(1)widthbins = 2
IQR(X)

N1/3
,

(2)nbins =
Xmax − Xmin

widthbins
=

1

2

(Xmax − Xmin)N
1/3

IQR(X)
.

(3)ICC(3, 1) =
MSR −MSE

MSR + (k − 1)MSE
,
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f (x) = [p1] · x3 + [p0] ; (4) f (x) = [p1]/x + [p0] ; (5) f (x) = [p1]/x2 + [p0] ; (6) f (x) = [p1]/x3 + [p0] ; (7) 
f (x) = [p1] · log(x)+ [p0] ; (8) f (x) = [p1]/ log(x)+ [p0] . From these, the function that best fits the distribution 
of each radiomic feature versus the number of voxels was the one adopted to correct for its observed depend-
ency. In this way, this approach was not only automatic but also software-agnostic and did not need any prior 
knowledge of the feature derivation, working for any feature extraction platform13.

A necessary intermediate step to achieve reliable fits was to combine the feature measurements (one per 
patient) together to compute an estimation of the statistical uncertainty on the measurements. To do so, feature 
measurements with similar numbers of voxels were combined into a single point (mean of the measurements) 
and error (standard deviation). To ensure an approximately constant number of measurements (and at least 2 
in all cases) is used for each point, divisions of variable width are used for the number of voxels (X axis). This 
uncertainty could then be used in the fit to evaluate a meaningful metric χ2 , which allowed for poor fits to be 
discarded and to select the function best fitting the distribution of data points. This step is illustrated in Fig. 4 
(middle row).

Robustness of radiomic features in different slice thicknesses.  For the comparison of feature val-
ues in different slice thicknesses, the main metric used in this study was the relative difference between the values 
of feature f in 2.0 mm and 5.0 mm as:

In addition to �r , the variance of the values of the features within patients was also taken into account. This 
was measured by the normalised standard deviation:

where σ is the standard deviation of f, which is the value of the feature within the cohort of patients. This addi-
tional metric was used to establish which features presented a very small (or near-zero) variance in certain 
scenarios (e.g. with a given number of GLs tested).

Normalisation using healthy muscle tissue.  As an additional test to improve the robustness of the tex-
ture radiomic features (i.e. all except those relating to shape), normalisation with respect to the healthy muscle 
tissue obtained from the muscle ROIs was investigated. To that effect, ratios of the values of the features were 
obtained as:

and they were used to calculate the corresponding metric showing the difference between those ratios for images 
with 2.0 mm and 5.0 mm slice thickness according to Eq. (6):

Results
For each patient, the tumour and muscle ROIs were drawn in the two sets of acquired images, with 2.0 mm and 
5.0 mm slice thicknesses. An example illustrating the segmentation performed for one patient in a 2D slice is 
shown in Fig.1 for 2.0 mm (Fig. 1a) and 5.0 mm (Fig. 1b).

The ranges of volumes were (calculated from 2.0 mm slice thickness images for reference):

•	 Tumour: approx. (0.4–38) cm3 , which corresponds to a range of (300–53141) number of voxels (original 
voxel sizes);

•	 Muscle: approx. (0.4–27) cm3 , which corresponds to a range of (304–37294) number of voxels (original voxel 
sizes).

The comparison of the volumes with 2.0 mm and 5.0 mm and the Bland–Altman analysis are presented in 
Fig. 1c, and show that, with the exception of the few outlier cases with very large volumes, there is no systematic 
bias in volume when comparing the results from both slice thicknesses.

Intrinsic dependencies of radiomic features.  Most of the radiomic features were found to have a cor-
relation or dependency on either the number of GLs or the number of voxels. Some features presented both 
dependencies. In this section, results evaluating those intrinsic dependencies are discussed for the texture radi-
omic features: first-order, GLCM, GLDM, GLRLM, GLSZM, NGTDM.

Choice of grey level quantisation.  Figure 2 shows the result of the Freedman–Diaconis rule from Eq. (2). Note 
that the number of entries N in this case is the number of voxels and therefore depends on the voxel size used 

(4)�r =
|f5mm − f2mm|

|f2mm|
.

(5)σn =
σ(f )

|median(f )|
,

(6)ρ =
ftumour

fmuscle
,

(7)�ρ =
|ρ5mm − ρ2mm|

|ρ2mm|
.
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(listed in “Materials and methods”). The value obtained from this rule is ∼ 30–40 bins for most voxel sizes, how-
ever it significantly changed for very small or very large voxel sizes (maximum ∼ 90 bins, minimum ∼ 20 bins). 
Values were also consistent between tumour and muscle, except for voxel size (0.5, 0.5, 0.5) mm.

Different grey level quantisation configurations (as listed in Materials and Methods) were compared, and 
the values of the features computed with each choice can be found in Supplementary Figures SF1-SF3, clearly 
showing a dependency of some features with the number of GLs. To minimise effects arising from using different 
number of voxels, which are confounded by the effect of change of GL bins, the 3D volumes were resampled to 
a common isotropic voxel size of (1,1,1) mm using the default interpolator in PyRadiomics (i.e. spline). For this 
voxel size, the corresponding value from the Freedman–Diaconis rule was 40 bins, which was then added to the 
set of analysed GLs (as per Materials and Methods).

Features with ICC(3,1) < 0.9 were considered unstable and therefore significantly correlated with the number 
of GLs. A total of 70 features were found to be correlated with the number of GLs, and their ICC values (calcu-
lated independently for 2.0 mm and 5.0 mm, tumour and muscle) are presented in Supplementary Tables ST3 
and ST4. This shows that values were in general consistent between both tissue types and between both slice 
thicknesses.

For those features correlated with the number of GLs, a comparison between the values with 2.0 mm and 
5.0 mm calculated using Eq. (4) was performed to test the effect of the GL quantisation on the feature robustness. 
In addition, the variance within patients was also evaluated according to Eq. (5), and it was found that some 

Figure 1.   Example of the segmentation performed in a 2D slice for one patient in CT images acquired with 
2.0 mm (a) and 5.0 mm (b) slice thickness, showing the HCC tumour (red) and muscle (blue) regions of 
interest. Comparison of liver tumour volumes (c) calculated using the segmented CT scans with 2.0 mm 
(Vol2mm ) and 5.0 mm (Vol5mm ) slice thickness (middle), showing a zoom of the Vol < 10 cm3 region (left). 
The comparison of these measurements is summarised in the Bland–Altman analysis (right), with the Lin’s 
concordance correlation coefficient (CCC) showing a high level of  agreement between both measurements.
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features clearly presented a very small (or near-zero) variance when using extreme values of GLs (e.g. 8 or 256 
bins), as can be observed in Supplementary Figures SF1-SF3.

Figure 3 presents a summary of the results with the different GL quantisations. Starting from the bottom 
row, the number of features for which σn < 0.1 are shown for tumour (red, left column) and muscle (blue, right 
column) for 2.0 mm (solid, filled) and 5.0 mm (dashed, hollow). Those are the features considered to have a small 
standard deviation (or variation within patients), as it is smaller than 10% of the value of the feature ( 10% being an 
arbitrary but reasonable value chosen for the purpose of this analysis). The middle row contains the median of σn 
(marker) and the first and third quartiles (lower and upper error bars) for the ensemble of 70 features correlated 
with the number of GLs. The top row presents the boxplots of �r for those features with σn > 0.1 . There is con-
sistently an outlier value far from the rest in the boxplots, which corresponds to the GLCM feature ClusterShade.

Results from Fig.3 indicate that the optimal quantisation should be chosen in the range (32–64) and that the 
result of the Freedman–Diaconis rule (40 bins) was found to indeed be a reasonable choice and was the one used 
in deriving the results described in the subsequent parts of this paper.

Correction of volume dependencies.  The value of each radiomic feature was computed per patient and slice 
thickness (2.0 mm or 5.0 mm) with a total of 22 different variations of voxel sizes (1 original voxel sizes + 7 dif-
ferent resampled voxel sizes × 3 interpolation methods), maintaining the number of GLs fixed to 40 bins. With 
this ensemble of extracted values, the correlation between each radiomic feature and the number of voxels was 
analysed.

The Spearman’s rank correlation coefficient rS was calculated between radiomic feature values and number 
of voxels for each voxel size option. This showed that the most extreme values tested, namely the smallest 
(0.5, 0.5, 0.5) mm and the largest (1.75, 1.75, 1.75) mm and (2.0, 2.0, 2.0) mm, presented either an unnatural 
behaviour or provided incomplete information for certain features. This is illustrated in Supplementary Fig-
ure SF4, and shows some examples of features for which the values of rS considerably differs when using either 
the smallest voxel size (e.g. GLCM Imc1 and GLDM DependenceEntropy) or the largest voxel size (e.g. GLCM 
DifferenceEntropy and GLRLM RunEntropy). This was found to be due to changes, sometimes subtle, in the val-
ues of the features that affect especially those cases with fewer number of voxels as presented in Supplementary 
Figures SF5-SF8. In those cases, where only information from few voxels was available, merging them into very 
large voxel sizes caused the number of entries in the GL matrices to be too few for feature calculations. Contrarily, 
using a very small voxel size increases the number of voxels used, which caused the GL matrices to become too 
sparse to provide reliable information. For these reasons, extreme values should be discarded when selecting the 
optimal voxel size, and they will not be taken into account in the remaining studies in this paper.

Features were deemed to be correlated with the number of voxels based on their Spearman’s rank correlation 
coefficient using a threshold of rS > 0.5 . Shape features were not taken into account as by definition they are the 
ones naturally containing information about the tumour volume. A total of 60 texture features were identified 
as correlated with the number of voxels, as shown in Supplementary Table ST5. In that table, the median value 

Figure 2.   Result of the Freedman–Diaconis rule to calculate the optimal number of bins describing the 
distribution of pixel intensities of the ROIs for tumour (red) and muscle (blue). Results are presented for all 
voxel sizes and interpolators tested, providing the median across all patients. Values of µx,y,z represent the mean 
of the voxel widths of the original images in the corresponding x, y, z axis.
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of rS across the distributions with different voxel sizes and interpolators is given for tumour and muscle, using 
2.0 mm and 5.0 mm slice thickness images.

For those features found to be correlated, fits were performed testing the different functions listed in Materials 
and Methods. Some examples of the resulting best-fits can be found in Fig.4, where the feature values are shown 
before correction on the left column, the intermediate graph and result of the best fit is presented in the middle 
column, and the values of the features after correction (using the inverse function of the best fit) is shown in 
the right column.

Corrections were implemented by using the inverted function corresponding to the best fit per fea-
ture, e.g. for a best-fit function f (x) = [p1] · log(x)+ [p0] , the value of the feature was corrected by using 
f ′(x) = (f (x)− [p0])/ log(x) . With the corrected features, the correlation with the number of voxels was 
expected to diminish, and this is confirmed in Fig. 5 (top), which shows rS before (hollow markers) and after 
(solid markers) the correction of the number of voxels dependencies. An important effect of correcting such 
dependencies is that the intrinsic dependencies between the features themselves, often used in a pre-processing 
step to remove redundant features in analyses, decreased as a consequence of reducing the dependency with the 
common factor (i.e. volume). This is also presented in Fig. 5 (bottom), that shows the pair-wise Spearman’s rank 
correlation coefficients before (left) and after (right) the number of voxels dependency correction.

Figure 3.   Bottom row: number of features with small or near-zero variance ( σn < 0.1 ). Middle row: median 
of σn (marker) and the first and third quartiles (lower and upper error bars, respectively) for the ensemble of 70 
correlated features. Top row: boxplots of �r for those features with σn > 0.1 . All panels: tumour is denoted in 
red, left column, and muscle in blue, right column, for 2.0 mm (solid line, filled marker) and 5.0 mm (dashed 
line, hollow marker).
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Figure 4.   Examples of fits performed to four different features (one per row) that are correlated with the 
number of voxels, both for tumour (red) and muscle (blue), using images with 2.0 mm slice thickness and their 
original in-plane resolutions. In the left column, the feature values are shown before correction (one marker 
per patient), and on the right after correction. In the middle column, the result of the best fit performed on 
top of the intermediate graph is shown. Features are, from top to bottom: first-order Energy (best-fit function 
[p1] · x + [p0] ); GLCM Id (best-fit function [p1] · log(x)+ [p0] ); GLDM GrayLevelVariance (best-fit function 
[p1]/ log(x)+ [p0] ); NGTDM Strength (best-fit function [p1]/x + [p0]).
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Robustness of radiomic features for different voxel sizes and slice thicknesses.  The values of 
the texture radiomic features, computed independently in the set of images with 2.0 mm and 5.0 mm with the 
22 different voxel size settings described previously, were compared to assess their robustness. The metric �r as 
in Eq. (4) was used for this purpose.

The dependency of features with the number of voxels was first considered and a correction for this depend-
ency examined. A correction was found to be necessary for some features, for example the first-order Energy 
feature (which is an additive measurement of the magnitude of voxel values). For others, e.g. GLCM ClusterTend-
ency (which is a measurement of heterogeneity), the difference of its value per patient between slice thicknesses 
was insignificant. To illustrate this, Fig.6 shows details for these two features as examples. Figure 6a–d relate to 
the feature first-order Energy, with its value as a function of the number of voxels presented in Fig. 6a (Fig. 6b) 
for 2.0 mm (5.0 mm) slice thickness for tumour (red) and muscle (blue). Clearly, the range of the feature value 
(Y axis) is very different for Fig. 6a,b; both values are compared patient by patient in Fig. 6c, showing the striking 
difference in value at 2.0 mm and 5.0 mm slices. However, after correcting for the dependency on the number 
of voxels, both values become very similar as can be easily appreciated in Fig. 6d. Similar plots are presented for 
the feature GLCM ClusterTendency in Fig. 6e–h. In this case, however, there is no difference in the feature values 
(Y axis) between 2.0 mm (Fig. 6e) and 5.0 mm (Fig. 6f), meaning that the value of this feature is (with some 
exceptions) very similar between both slice thicknesses, as clearly shown in Fig. 6g. Since the number of voxels 
is however different for 2.0 mm (Fig. 6e) and 5.0 mm (Fig. 6f), an attempt to correct for the dependency in the 
number of voxels was found to have a detrimental impact.

Figure 5.   Illustration of the effect of correcting the dependencies of features with the number of voxels. Top: 
the Spearman’s rank correlation coefficient of the correlated features before (rounded markers) and after (cross 
markers) correcting, for both tumour (red) and muscle (blue) in images with 2.0 mm slice thickness and using 
their original voxel sizes. Bottom: the Spearman’s rank correlation coefficient showing pair-wise correlations 
between the features before (left) and after (right) the correction, for tumour and 2.0 mm slice thickness. 
Similar results are obtained when computing the correlation matrices using images with 5.0 mm slice thickness 
(as shown in Supplementary Figure SF9) and when computing them for muscle (as shown in Supplementary 
Figure SF10). Feature ID in this Figure follows the one in Supplementary Table ST5.
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The value of the metric �r ( �r > 0.5 ) was used to decide the features to correct for their dependency with 
the number of voxels before comparing their values in both slice thicknesses. A total of 14 features were found 
to need such a correction as presented in Supplementary Tables ST8-ST9 (in the original, no re-sampled, voxel 
sizes); these were: (first-order) Energy, (GLCM) Imc1, (GLDM) DependenceNonUniformity, GrayLevelNonU-
niformity, (GLRLM) GrayLevelNonUniformity, RunLengthNonUniformity, (GLSZM) GrayLevelNonUniformity, 
LargeAreaEmphasis, LargeAreaHighGrayLevelEmphasis, ZoneVariance, (NGTDM) Busyness, Coarseness, Contrast, 
Strength. After correcting their dependencies with the number of voxels, 11 of them (all except LargeAreaEm-
phasis, LargeAreaHighGrayLevelEmphasis and ZoneVariance) had values Δr<0.5.

A summary of the values of �r after the corrections explained above is given in Fig.7, where the boxplots 
convey the information for all features of their median values of �r within the cohort of patients for tumour (red, 
left) and muscle (blue, right) for the different combinations of voxel sizes and interpolation methods. In addition, 
the histograms in the bottom row of Fig.7 show the number of features that can be deemed robust ( �r < 0.5 , 
solid lines) and highly robust ( �r < 0.25 , dashed lines) for each re-sampling option. Most features (75%–90%) 
were found to be highly robust, i.e. with a difference between the values of less than 25%.

Although there was no significant difference found between the median values of the boxplots, there were 
differences in the number of robust, and especially highly robust features, between the different voxel sizes, 
and even between the different interpolation methods for a given voxel size. In general, higher robustness was 
obtained when using a voxel size with a z-dimension intermediate to (optimally, the mean) those of the two slice 
thicknesses. For each given fixed voxel size, it was also found a higher level of robustness was achieved using the 
Welch windowed sinc interpolation method. Therefore, from Fig.7 it could be inferred that the voxel size ( µx , 
µy , µz ) and the Welch windowed sinc interpolation method was optimal to reduce the discrepancy between the 
values of the features obtained with images of 2.0 mm and 5.0 mm slice thickness.

Normalisation using healthy tissue.  The robustness of texture radiomic features was investigated using 
healthy tissue to normalise values following Eq. (6), and by constructing and comparing the metric �ρ from 
Eq. (7).

The result of this comparison is presented in Fig.8, which shows a boxplot of the median value within the 
cohort of patients of �ρ , for all the ensemble of 107 radiomic features for each voxel size and interpolation 
method combination. The previously used metric �r was maintained in Fig.8 for the shape features, whilst the 
others are compared in terms of ratios with �ρ . In addition, the percentage of features that are robust ( �ρ,r < 0.5 ) 
and highly robust ( �ρ,r < 0.25 ) are also presented. The median values for each feature can be found in Sup-
plementary Tables ST10-ST11.

Figure 6.   Example of the comparison of the values with different slice thicknesses of two features: first-order 
Energy (top row) and GLCM ClusterTendency (bottom row). The values of the features in images with 2.0 mm 
slice thickness are presented in (a) (Energy) and (e) (ClusterTendency) and with 5.0 mm slice thickness in (b) 
and (f) for tumour (red) and muscle (blue). The values calculated with 2.0 mm and 5.0 mm are compared in a 
case by case basis in (c) and (g) before correcting for the dependency with the number of voxels, and in (d) and 
(h) after correcting for it, showing that in one case (Energy) the agreement is better after correcting whilst in the 
other (ClusterTendency) is not.
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This test shows that the percentage of robust features that can be achieved was similar to that in Fig.7, and it 
was more stable across the different voxel sizes and interpolation methods used. However, the number of highly 
robust features was slightly worse than the number that could be achieved with the optimal normalisation choice 
shown in Fig.7 (i.e. with ( µx , µy , µz ) and the Welch windowed sinc interpolation, and the correction of the 
dependencies with the number of voxels).

Discussion
In this paper, important considerations for the computation of radiomic features for a dataset of heterogeneous 
voxel size and slice thickness CT images were described. The effect of the intrinsic dependencies of radiomic 
features was analysed, ways to correct for these dependencies were developed and optimal choices were identified.

First of all, the impact of the GL quantisation on the features was studied (summarised in Fig.3). On the one 
hand, although there is not a remarkable variation in the values of �r (as described in Eq. 4), its median and IQR 
are larger for the smaller number of GLs tested (8, 16 bins). On the other hand, the number of features with small 
( σn < 0.1 ) variance increases for the largest values tested (i.e. 128, 256 bins), as does the IQR range of variance 
σn . This shows that the number of GL bins affects the values computed for some features, such that they might 
“collapse” to a single value for all patients if the number of bins is not large enough to account for differences in 
neighbouring pixels (i.e. with the smaller values of 8 and 16 bins) or too large to produce meaningful compari-
sons of the pixel intensities in the GL matrices (i.e. with the larger values of 128 and 256 bins). It was therefore 
found that the optimal range of GLs was (32–64), and that the Freedman–Diaconis rule could be used to find a 
reasonable choice for this quantisation. These conclusions hold for both tissue types, tumour and muscle. It is 
worth mentioning that the default bin width of PyRadiomics has a value of 25, which for the ranges of HU of the 
tumour and muscle ROIs in this cohort would translate into ∼ 6 bins, clearly not optimal for the computation 
of features in light of these results.

Secondly, the correlation of radiomic features with the number of voxels was analysed and corrected. It was 
important to correct this dependency when making comparisons across different sized regions. Pair-wise correla-
tions amongst the features were found to decrease in strength after this correction, since a common factor (their 

Figure 7.   Top row: boxplots conveying the information about the median (across all patients) values of �r for 
all features, calculated for tumour (red, left) and muscle (blue, right) for the different combinations of voxel 
sizes (as shown on the top) and interpolation methods (O original, L linear; S B-spline, W Welch). Bottom row: 
percentage of the whole ensemble of 107 features that can be deemed robust across changes in slice thickness 
( �r < 0.5 , solid lines) and highly robust ( �r < 0.25 , dashed lines) for each re-sampling option. Some features 
are corrected for their dependency on the number of voxels before the comparison between slice thicknesses is 
made. More details can be found in the text.
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dependency on the volume or number of voxels) had been eliminated. Such correction is therefore necessary to 
understand the actual intrinsic dependencies between the features, which is often employed in pre-processing 
steps to remove redundant features from the analysis.

It is important to note that shape-based features were purposely not corrected in this paper, as those features 
must convey by definition information about the shape and therefore the volume. It was not the goal of the stud-
ies presented, nor the recommended approach, to completely remove any information about the volume of the 
ROIs, which might be indeed relevant for the analyses performed, but to instead preserve it only in the features 
where it is inherent, such as in shape-related features like lengths and diameters.

Lastly, the robustness of the features computed with different reconstructed slice thicknesses was investigated 
both in liver tumour and healthy muscle tissue. Interestingly, it was found that most features were highly robust, 
but that the number of robust features did depend on the voxel size and interpolation method used, being the 
optimal choice using a voxel size with a z-dimension intermediate to (optimally, the mean) those of the two slice 
thicknesses, with the Welch windowed sinc interpolation method. Some features were found to never be robust 
between both slice thickness values.

A further study was performed to investigate results using normalisation with healthy (muscle) tissue reported 
in prior literature31–34. In the study presented in this paper, the texture features of the liver tumour were normal-
ised using the corresponding texture values from healthy (muscle) tissue. It was found that such a normalisation 
could be an alternative approach to achieve robust (across slice thickness) texture feature results, stable across 
different voxel sizes and interpolation methods. Robustness results in this case were adequate but slightly worse 
than those achieved using the feature correction method described above.

Existing literature work has investigated the impact of intrinsic dependencies and acquisition parameters on 
radiomic feature extraction. The majority of these studies focus on CT, PET and MRI in oncological applications. 
Shafiq-ul-Hassan et al.14 addressed the impact of slice thickness and pixel spacing, along with other acquisition 
and reconstruction parameters, on a subset of radiomic features extracted from phantom images acquired using 
different CT scanners. The same research group also considered feature dependency on GL quantisation in a 
later study35, validating on lung tumour CT images the voxel size and GL normalisations previously found in 
phantom studies. Other studies have investigated feature robustness using image perturbations, like Zwanenburg 
et al.36 by adding noise, as well as performing translations or rotations. Moreover, the ROIs were perturbed by 
volume erosion/dilation and supervoxel-based contour randomisation. Test-retest and perturbation robustness 
were evaluated on two CT datasets: (1) non-small-cell lung cancer (NSCLC), and (2) head-and-neck squamous 
cell carcinoma (HNSCC). Leijenaar et al.37 focused on the implications of the quantisation step in PET-based 
radiomic features. In particular, the standardised uptake value (SUV) quantisation showed a crucial effect on 
the resulting textural features and the corresponding interpretation. This experimental evidence pointed out the 
importance of standardised procedures for tumour texture analysis.

Figure 8.   Top row: median values of �ρ,r ( �ρ and �r for texture and shape features, respectively), comparing 
the difference between the ratios of the value of each feature in tumour over muscle in 2.0 mm and 5.0 mm, for 
the different combinations of voxel sizes (as shown on the top) and interpolation methods (O original; L linear; 
S B-spline, W Welch). Bottom row: percentage of the whole ensemble of 107 features that can be deemed robust 
( �ρ,r < 0.5 , solid lines) and highly robust ( �ρ,r < 0.25 , dashed lines) for each re-sampling option.
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Several other studies have analysed the robustness of MRI-based radiomic features. These span from phantom 
studies where various aspects were analysed (signal-to-noise ratio, ROI delineation, voxel sizes and normalisation 
methods)38 to oncology reports on reproducibility and repeatability. Reproducibility was assessed by either using 
different normalisation methods31 or estimating the inter-operator variability in various contexts, namely when 
manual segmentation39, automatic perturbed delineations (with the goal of simulating the inter-observer vari-
ability)40, or semi-automatic and interactive segmentation solutions were applied41. Repeatability improvements 
were also studied by applying several pre-processing and extraction configurations (such as image normalisation 
schemes, image pre-filtering and bin widths) in multiparametric MRI scans of small prostate tumours32, however 
without definitive recommendations.

All these radiomic robustness studies leveraged classical statistical methods, such as the ICC, Spearman’s 
correlation coefficient, coefficient of variation and Bland-Altman analysis. The inter-observer variability was 
typically evaluated by the Dice Similarity Coefficient (DSC). In this paper, a novel methodological approach was 
introduced, based on testing invertible functions to fit the underlying dependency of each feature with respect 
to the number of voxels, to analytically correct for the observed dependencies in an automatic and software-
agnostic way. In addition to analyse the impact of the GL quantisation and voxel size used in the computation 
of the features like existing approaches, this work aimed to justify optimal choices for such parameters in the 
context of images with different slice thicknesses, and to provide guidelines. Finally, the question of how many 
features are robust with respect to a change in slice thickness is addressed, which to best of our knowledge has 
not been studied so far. All these studies were performed with a consistent comparison between tumour and 
healthy (i.e. muscle) tissue, a practice not common in previous literature studies.

The main limitation of this analysis was the small size of the cohort used (43 cases). This was sufficient to 
perform suitable fits, but they would have been improved with a larger cohort size: it would have allowed for 
further optimisation of the number of bins in the intermediate graph to fit and would have provided additional 
statistics, especially in regions in which the current cohort did not have available cases. It is important to note, 
however, that the sample size used in this analysis is representative of patient sample sizes generally reported 
in the literature.

Future work should analyse the effect of other CT acquisition parameters on the robustness and reproduc-
ibility of radiomic features, and their impact in radiomics-based models to characterise liver cancer and, by 
extension, other cancer types.

In conclusion, the following guidelines can be proposed in light of the results. They apply to a CT-based 
radiomic analysis in a cohort heterogeneous in terms of slice thickness and in-plane resolution, and they have 
been tested on HCC tumours and muscle tissue (work to generalise to other cancer types should follow):

•	 Too small or too large GL quantisations (such as 8 or 256 bins) should be avoided, as they might impact the 
values of the texture features by significantly reducing the information available in their computation.

•	 The result of the Freedman–Diaconis statistics rule on a given cohort gives an indication of a reasonable value 
of the number of GLs to be chosen for the computation of radiomic features.

•	 It is important to correct texture features for their dependency on the number of voxels (or volume) before 
they can be compared within a heterogeneous cohort. For example the commonly used first-order feature 
Energy has a strong volume dependence that yields a very different value for the same tumour in images 
reconstructed with two different slice thicknesses. Volume dependencies should also be corrected before 
correlations between the features themselves can be investigated.

•	 For interpolation, a voxel size should be selected with a size approximately the average of that over the range of 
values of the cohort. The Welch sinc interpolation method should be used in preference to linear or B-spline 
methods.

•	 Alternatively, a normalisation approach can be performed by using the ratios of the feature values calculated 
in the tumour to the respective values from similarly sized muscle regions.

Data availability
The datasets generated and analyzed during this study are available from the corresponding author on reason-
able request.
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