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A B S T R A C T

According to the Solvency II directive, insurers can use internal models for solvency assessment,
but regulators must approve these models. Sensitivity analysis is a crucial part of the approval
process. However, the directive lacks clarity on the required sensitivity analysis. Various
techniques exist in literature to assess the impact of model assumptions on output, each
revealing different aspects of model behaviour. In this letter, we suggest a minimum standard
for regulators to ensure model quality. We propose complementary sensitivity settings for
internal model development, governance, and approval. Implementing these settings enhances
the explainability of approved models and their reliability.

. Introduction

In recent years, scenario analyses and stress testing have gained increasing interest in the insurance industry (CRO Forum,
023). The Solvency II regulation (European Commission, 2009) emphasizes the importance of assessing the impact of changes in
ey assumptions or variables on an insurance company’s solvency capital requirement (SCR). The SCR calculation relies on multiple
ssumptions and inputs, such as the company’s risk profile, business nature, and operating economic conditions. These assumptions
nd inputs are subject to uncertainty, and proper analyses must be developed to identify which factors have the greatest impact on
he SCR and their magnitude. Additionally, a key component of the framework is the Own Risk and Solvency Assessment (ORSA), a
orward-looking risk management process that requires insurance companies to assess their overall risk profile and solvency position.
n particular, assessing the impact of adverse events on financial position aids firms in effective risk management and informed
ecision-making about capital and investment strategies.

The assessment of a company’s overall risk profile involves simulation models with inputs such as economic, financial, and
ctuarial variables. However, as these models grow in complexity, their internal workings often become opaque, resembling
lack-boxes. Consequently, policymaking based on model outputs become questionable. It is also worth mentioning that the
se of machine learning and artificial intelligence is gaining significant importance in the development and implementation of
nternal models under Solvency II. This trend is expected to grow in the future, as companies increasingly adopt a business model
haracterized by fintech and insurtech components. These methodologies offer significant enhancements to internal models by
nabling advanced predictive modelling and capturing complex relationships among diverse risk factors. Yet, the integration of
achine learning algorithms introduces additional complexities and challenges to the model validation process. The utilization

f such models amplifies the black-box effect of internal models, making it difficult to understand the reasoning behind their
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predictions. Thus, exploring and validating the underlying factors and assumptions influencing models’ outputs become essential
before than making inference from these models. This step, known as interpretability and explainability analysis, ensures alignment
between decisions, risk management objectives and compliance with regulatory requirements, as, for instance, remarked by the
Solvency II directive (European Commission, 2015a) stressing profit and loss attribution in the internal model validation. Indeed,
the purpose of this test is to ensure that the internal model captures the main sources of profit and loss that firms face.

In this context, to make the models transparent and interpretable to the decision-maker, best practice recommends to adopt
roper uncertainty quantification and sensitivity analysis for model interpretation and explanation (Saltelli et al., 2000, 2008, 2020).
ensitivity analysis can support model explanation by quantifying how variations in the input variables affect the model response.
nderstanding which inputs affect the output and how they do so is crucial for model interpretability.

The evolving methods for analysing complex models aim to quantify assumption impacts and allocate output uncertainty
o specific drivers. Uncertainty quantification involves propagating variability in model output stemming from uncertainty in
nput variables and assumptions. Sensitivity analysis complements uncertainty quantification by identifying the primary causes of
ariations in model output (Saltelli et al., 2019). Instead, global sensitivity analysis allocates uncertainty to individual inputs or
nteractions, while local sensitivity analysis investigates input variables responsible for output variations across scenarios. Recent
iterature has introduced alternative approaches, as we will outline in this letter. The literature on sensitivity analysis is, indeed,
rimarily scattered across the fields of environmental sciences, statistics, and operational research, with most papers typically
oncentrating on specific aspects of a model (Borgonovo and Plischke, 2016; Razavi et al., 2021). Instead of being redundant when
ombined, they produce complementary insights. Hence, uncertainty analysis and sensitivity analysis are essential elements for an
ffective risk management and for a proper monitoring of the company’s solvency ability. These settings can be adopted by the
inancial industry, regulators and other fields too.

Nonetheless, these terms are sometime misunderstood and conflated in the academic literature (Saltelli et al., 2019). This happens
n the actuarial literature as well. For instance, Booth et al. (2005) write that ‘‘sensitivity analysis, in order to gain some insight into the
range of possible outcomes. This involves making different model [...] projections on the basis of a range of assumptions for the underlying
parameters. [...] The assumed variations would aim to encompass the main range of future outcomes that the actuary would consider as
feasible or probably under certain conditions. The sensitivity analysis brings a number of additional benefits [...] It will give the idea of the
increasing uncertainty of any projection the further into the future the projection is made [...] It enables the actuary to assess the relative
importance of each factor to the solvency of the office’’ (Booth et al., 2005, page 356). However, they call this approach ‘‘deterministic
sensitivity assessment’’, mixing the notions of uncertainty analysis, local (deterministic) sensitivity analysis and global sensitivity
analysis.

At the same time, insurance authorities have yet to establish a formal, comprehensive framework for sensitivity analysis
techniques. While the Solvency II regulation prescribes the use of sensitivity analysis, it lacks specific best-practices, letting individual
companies responsible for developing their own sensitivity assessment. The absence of a unified common framework contributes to
market fragmentation, resulting in non-uniform standards of internal model quality and reliability. The lack of a regulatory guidance
coupled with the complexity of internal models exacerbate this issue.

Implementing sensitivity analysis techniques provides substantial benefits for model validators. It helps them to understand and
evaluate the inputs, assumptions, calculations, and outputs of internal models, ensuring the accuracy, robustness, and adherence
to regulatory requirements. Using explainability methods, validators can assess whether the model aligns with the intended risk
measurement objectives and capital calculation. Therefore, validating internal models, particularly those integrating machine
learning, requires a multifaceted approach. This involves combining statistical analysis, stress testing, sensitivity analysis, and
interpretability assessment. To this end, in this letter we present up-to-date sensitivity indices and describe how each sheds light on
specific aspects of the model’s behaviour. This framework aims to propose a unified benchmark for sensitivity analysis in internal
models, built upon complementary sensitivity settings.

2. Internal models and regulators

The Directive Solvency II (European Commission, 2009) allows insurance and reinsurance companies to adopt internal models
for the assessment of their own capital requirement, rather than relying solely on the standard formula provided by the regulator
authorities (European Commission, 2015a).

The use of internal models in Solvency II should provide insurance companies with a more flexible and accurate way to manage
their risk and allocate capital, but, at the same time, it requires significant investment in data, systems, and expertise, and is subject
to strict regulatory oversight. Indeed, once the internal model has been developed, the insurance company must seek approval from
the regulatory authorities. This involves providing detailed documentation of the model and its underlying assumptions (EIOPA,
2016), as well as demonstrating its accuracy and reliability through backtesting and validation (see EIOPA (2022)).

Therefore, a validation process must be developed (see European Commission (2015b)) in order to ensure that the up-to-date risk
profile has been considered in the modelling and to verify the process for choosing assumptions and using expert judgment (EIOPA,
2022). Validation is an iterative process of identification of model limitations and the implementation of possible improvements.

The validation policy must set out the validation tools that are used, i.e. proper approaches designed to evaluate that the internal
model is appropriate and reliable. Regulatory technical standards (RTS) and implementing technical standards (ITS), under the level
2 guidance, define as mandatory the inclusion of sensitivity analysis and backtesting for each material risk in order to validate the
model. Hence, sensitivity analysis is a critical component of the internal model used for Solvency II compliance (Loisel and Nisipasu,
2

2016). It involves testing the sensitivity of the model’s output to changes in the underlying assumptions and parameters, in order to
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assess the model’s robustness and reliability. This includes assessing the impact of variations in key risk factors, such as interest rates,
market prices, technical assumptions or mortality rates on the model’s output (European Commission, 2009). However, the regulator
does not prescribe a specific method for sensitivity analysis. Instead, Solvency II provides general guidance on the requirements for
sensitivity analysis and the factors that should be considered when performing such analysis. Some general indications are also given
in the documents regarding the system of governance (see EIOPA (2014)), where it is required that insurance companies should
have a clear methodology for sensitivity analysis, which should be proportionate to the complexity of the internal model and the
risks being modelled.

It is evident that when the solvency position is assessed using complex models, it becomes essential to understand the impact that
he assumptions used in the model construction have on the reliability of the model. This information is delivered by uncertainty
nd sensitivity analyses, which constitute important elements of the model building process. Neglecting a proper sensitivity analysis
ight lead to overconfident attitude by the model builders as well as to underestimation of the uncertainty (Saltelli et al., 2000).
he importance of stressing both single risk drivers and the effect of their dependencies is indeed a crucial aspect that several papers
re pointing out (see, e.g., CRO Forum 2013, Dacorogna 2017, International Actuarial Association 2013, Lloyds 2022, SCOR 2008).
rt. 242 of Delegated Regulation (European Commission, 2015a) remarks indeed the relevance of testing at the level of single
utputs as well as at the level of aggregated results. Additionally, the statistical process for validating the internal model shall
nclude a reverse stress test, identifying the most probable stresses that would threaten the viability of the insurance or reinsurance
ndertaking. Although there is not much literature on internal insurance model validation, the importance of this process is well
tressed in Dacorogna (2023).

. Uncertainty and sensitivity settings

The issue of explaining complex models is a subject of ongoing debate in the literature, with numerous papers consistently
roposing new strategies to shed light on the internal mechanisms of these models. However, a significant number of these
pproaches lack theoretical justification, while others offer only partial explanations. Only a limited number of works present a
omprehensive strategy for investigating the model effectively, making best use of available techniques (Borgonovo and Plischke,
016). In this letter we illustrate and integrate several up-to-date best practices in uncertainty and sensitivity analysis. As Dacorogna
rites, ‘‘The sensitivity analysis [of internal models] is important. It is not possible to base management decisions on results that could
rastically change if some unimportant parameters are modified in the input. Unfortunately, note that this statement contains the adjective
‘unimportant’’, which is hard to define’’ (Dacorogna, 2017, page 11). Depending on the context of analysis, the notion of ‘‘importance’’
can be formalized. There are two main settings for investigating the model behaviour:

1. scenario analysis,
2. uncertainty quantification,

The scenario analysis mode is also known as local sensitivity analysis and it involves the inspection of the model behaviour at a
limited number of locations in the parameter space. The uncertainty quantification setting aims at exploring the response of the
model for variations of the input parameters across the entire parameter space. The two modes are not mutually exclusive as we
are to see. However, the analysis needs to be clear up front about these aspects.

Within these two settings, sensitivity measures can be used to answers sensitivity analysis goals (Borgonovo and Plischke, 2016;
Borgonovo, 2023). The goals of a sensitivity analysis exercise should be specified up front, so that, on the one hand, the sensitivity
analysis question is clearly specified and, on the other hand, the analyst is able to identify the sensitivity method that is most
appropriate to answer the sensitivity question. The literature has identified alternative goals, we summarize the three main ones in
this note:

1. factor prioritization,
2. trend identification,
3. interaction quantification.

Factor prioritization refers to the identification of the key-drivers of the model response, either in a local or global context. Trend
identification refers to understanding the direction of change in the model response following a change in the inputs. Interaction
quantification refers to understanding whether relevant interactions are present in the model response.

3.1. Local sensitivity analysis

Let us start with a scenario analysis. We write the internal model as 𝑦 = 𝑓 (𝐱), where 𝑦 is the model output and 𝐱 ∈ R𝑑 is the
-dimensional input vector representing economic, financial and actuarial variables. In general, 𝑦 is the quantity of interest to the
ecision-maker. In this case, it is intended as a real number that can represent either the output of a deterministic model or a
ey indicator obtained by summarizing the distribution given by a stochastic model. For instance, the own funds, the SCR or the
olvency Ratio can represent possible outcomes of an internal model for an insurance firm.

In this analysis the analyst typically fixes a reference or base case scenario. In this scenario, the inputs are assigned a value
0 = (𝑥01, 𝑥

0
2,… , 𝑥0𝑑 ). The internal model is then evaluated at this reference scenario. We denote with 𝑦0 the base-case value of the

odel, that 𝑦0 = 𝑓 (𝐱𝟎). The stressed scenario is an alternative scenario in which the inputs are fixed at 𝐱1 = (𝑥1, 𝑥1,… , 𝑥1 ). The
3
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value of the model output at the alternative scenario is then 𝑦1 = 𝑓 (𝐱1). In general, the quantity of interest undergoes a change
cross these two points, which we denote as

𝛥𝑦 = 𝑔(𝐱1) − 𝑔(𝐱0) (1)

t turns out that this change can be exactly apportioned to the variation in each of the inputs as (Rabitz and Alis, 1999; Borgonovo,
010)

𝛥𝑦 = 𝑔(𝐱1) − 𝑔(𝐱0) =
𝑛
∑

𝑖=1
𝜙𝐱0→𝐱1
𝑖 +

∑

𝑖<𝑗
𝜙𝐱0→𝐱1
𝑖,𝑗 +⋯ + 𝜙1,2,…,𝑛. (2)

n Eq. (2), the change in model response is decomposed in 2𝑛 terms. The first order terms are given by

𝜙𝐱0→𝐱1
𝑖 = 𝑓 (𝑥1𝑖 ∶ 𝐱0−𝑖) − 𝑓 (𝐱0), (3)

here 𝑓 (𝑥1𝑖 ∶ 𝐱0−𝑖) denotes the model evaluated at the point having all coordinates equal to 𝐱0 except the 𝑖th one equal to 𝑥1𝑖 . These
erms account for the individual effects of the input. We call them main effects in the remainder. They convey the information about
hat is the effect of having changed input 𝑥𝑖, while keeping all the others at the base-case scenario. They are frequently visualized by
ornado diagrams (Borgonovo and Rabitti, 2023). A Tornado diagram is a graphical representation of the local sensitivity results,
howing the relative importance of a variable as a bar. Main effects are often used to quantify importance of 𝑥𝑖 in driving the

difference 𝑓 (𝐱1) − 𝑓 (𝐱0) of the model output from the base-case scenario to the stressed scenario (Borgonovo, 2010). A sensitivity
nalysis based on main effects is also called a one-factor-at-a-time analysis, because all variables are shifted individually from their
ase-case values to the stressed ones. If we normalize the change in quantity of interest by the change in input variation, we
btain

𝜈𝐱
0→𝐱1

𝑖 =
𝜙𝐱0→𝐱1
𝑖

(𝑥1𝑖 − 𝑥0𝑖 )
. (4)

When the difference between the base-case scenario 𝐱0 and the stressed scenario 𝐱1 is very small, the local indices 𝜈𝐱0→𝐱1
𝑖 tend to

the partial derivatives 𝜕𝑔∕𝜕𝑥𝑖, which are known as sensitivities in the financial literature. In terms of goals of a sensitivity analysis,
we can answer questions concerning factor prioritization and direction of change. Indications on factor prioritization are gained
by considering the magnitude of 𝜙𝐱0→𝐱1

𝑖 . Indications on the direction of change are obtained looking at 𝜈𝐱0→𝐱1
𝑖 (see Borgonovo and

Rabitti (2023) among others for additional details). The first order indices do not deliver insights on interactions. These can be
gained by considering higher order terms of the expansion in Eq. (2). For example, it is sometimes convenient to consider also the
total finite-change effect 𝜙𝑇

𝑖 = 𝜙𝐱0→𝐱1
𝑖 +

∑

𝑗 𝜙
𝐱0→𝐱1
𝑖,𝑗 +⋯ + 𝜙1,2,…,𝑛 which includes all the terms in which 𝑖 contributes.

3.2. Uncertainty quantification and global sensitivity analysis

One-at-a-time sensitivity analysis is popular, intuitive and it is often computationally inexpensive. However, the indications
it yields are local. The validity of any conclusion is limited to changes across the two scenarios. Insights from this deterministic
approach are completely disregarding the uncertainty on future scenarios and provide only a partial exploration of the model input
space.

In order to account for uncertainty, we need to move to the uncertainty quantification setting. In this setting, the random inputs
are typically assigned probability distributions. They become random variables and, consequently, the internal model response
𝑌 = 𝑔(𝐗) becomes a random variable. The output 𝑌 is random because 𝐗 is. Let us denote the probability distribution of 𝑌 by P𝑌 ,
its cumulative distribution function by 𝑃𝑌 , its density function by 𝑝𝑌 , its variance by V[𝑌 ] and its mean value by E[𝑌 ]. We then
need to propagate uncertainty from 𝑌 to 𝐗, in order to assess how uncertainty in the inputs reverberates on the output. This is
typically performed by Monte-Carlo simulations, by bootstrapping market data or by simulating new economic scenarios (Flaig and
Junike, 2022). Quantifying uncertainty is essential to avoid solvency decisions based on model point estimates.

We can then address the sensitivity analysis goals within an uncertainty quantification framework. Let us start with factor
prioritization. When uncertainty in the inputs is considered, then factor prioritization means to identify the key-drivers of uncertainty
in the model response. Towards achieving this first goal, we can start with the question: if we are informed that 𝑋𝑖 = 𝑥𝑖 what is
the effect of this information on the distribution of 𝑌 ? Will the new distribution P𝑌 |𝑋𝑖

change significantly or will it be close to
the current distribution of 𝑌 ? If the distribution of 𝑌 does not change, then the variable is uninfluential (statistically independent).
Thus, we are interested in quantifying the separation between the original distribution P𝑌 and the conditional distribution P𝑌 |𝑋𝑖

.
Such a separation can be written as 𝜁 (𝑋𝑖) = 𝜁(P𝑌 |𝑋𝑖

, P𝑌 ), where 𝜁(P𝑌 |𝑋𝑖
, P𝑌 ) is some distance or divergence between probability

distributions (let us leave it general for the moment, we will provide examples shortly). Because 𝑋𝑖 is uncertain, we average over
the possible values of 𝑋𝑖 obtaining the global sensitivity index (Borgonovo et al., 2016)

𝜉𝑖 = E[𝜁 (P𝑌 |𝑋𝑖
,P𝑌 )]. (5)

The global sensitivity index 𝜉𝑖 can be used for comparing the influence of variables: if 𝜉𝑖 < 𝜉𝑗 , then 𝑋𝑖 is less influential than 𝑋𝑗 .
There are several ways in which we can specify the separation measurement. An important aspect here is that the selection needs
4

to match the statistical property of 𝑌 that the analyst or the decision-maker is considering in the risk assessment. For instance, the
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decision-maker might be considering the mean, a quantile or the entire distribution of 𝑌 . Then, the separation measurement should
lead to a sensitivity measure that matches the statistical property of the quantity of interest.

One popular way to consider the influence of 𝑋𝑖 on 𝑌 is to quantify the separation between P𝑌 |𝑋𝑖
and P𝑌 as a reduction in

the variance of 𝑌 . Let us consider the effect of learning 𝑋𝑖 on the mean of 𝑌 . After learning 𝑋𝑖, the expected value of 𝑌 becomes
E[𝑌 |𝑋𝑖]. Pearson proposes to consider the variance of this conditional expectation, introducing the correlation ratio

𝑆𝑖 =
V(E[𝑌 |𝑋𝑖])

V(𝑌 )
=

V(𝑌 ) − E[V(𝑌 |𝑋𝑖)]
V(𝑌 )

(6)

This ratio has later on become the well-known variance-based importance measure, also known as the first order Sobol’ sensitivity
index (Sobol’, 1993; Saltelli et al., 2008). The variance-based importance index 𝑆𝑖 quantifies the contribution of the individual
variable 𝑋𝑖 to the output variance, as the expected fractional reduction in variance that we obtain if we get to know 𝑋𝑖. It is
possible to extend the index 𝑆𝑖 for the variable 𝑋𝑖 to 𝑆𝑢 for the importance of a group 𝑢 of variables 𝐗𝑢 = {𝑋𝑖 ∶ 𝑖 ∈ 𝑢}, for any
subset of variables 𝑢 ⊆ {1, 2,… , 𝑑} (see Saltelli et al. (2008), Borgonovo and Plischke (2016) for technical details).

Under variable independence, it becomes meaningful to consider the total importance index

𝑆𝑇𝑖 =
E𝐗−𝑖

(

V𝑋𝑖
(𝑌 |𝐗−𝑖)

)

V(𝑌 )
(7)

which quantifies the contribution of 𝑋𝑖 to the variance of 𝑌 including its main and interaction effects. The technical justification
lies in the functional ANOVA expansion of the model 𝑓 (see Saltelli et al. (2008) for more details). When the 𝑋𝑖’s are independent,
we have 𝑆𝑖 ≤ 𝑆𝑇𝑖 for all 𝑖, meaning that the total effect of 𝑋𝑖 is always greater than its individual effect. The value 𝑆𝑖 ≈ 𝑆𝑇𝑖 can
be interpreted in terms of a low relevance of interactions in the model response involving 𝑋𝑖. Moreover, if 𝑆𝑇𝑖 ≈ 0 then 𝑋𝑖 can be
rozen at a nominal value since it is not influencing 𝑌 . This helps the analyst to reduce the dimensionality of the model 𝑓 .

When the variables 𝐗 are assumed to be dependent, the Sobol’ indices can be still defined but their interpretation in terms
f explained variance is no more valid due to spurious correlations. For example, total effects can be even smaller than their
orresponding individual indices. Two avoid the issues in the presence of dependent variables, two main approaches have been
eveloped in the literature. A first approach is to use the Shapley effect for variable 𝑋𝑖 defined as (Owen, 2014)

𝑆ℎ𝑖 =
∑

𝑢⊆{1,2,…,𝑑}⧵{𝑗}

|𝑢|!(𝑑 − |𝑢| − 1)!
𝑑!

(

𝑆𝑢∪{𝑖} − 𝑆𝑢
)

. (8)

he Shapley effects are based on game theory (Shapley, 1953) and satisfy the properties that 𝑆ℎ𝑖 ≥ 0 for all 𝑖 and ∑𝑑
𝑖=1 𝑆ℎ𝑖 = V[𝑌 ]

for any dependence structure of 𝐗. Moreover, if 𝑆ℎ𝑖 = 0, then the variable 𝑋𝑖 is not affecting the model behaviour neither in terms
of functional relationship nor in terms of dependence with other variables. When variables are independent, the Shapley effects can
be bounded between the first-order and the total Sobol’ indices

𝑆𝑖 ≤ 𝑆ℎ𝑖 ≤ 𝑆𝑇𝑖 (9)

for all 𝑖 = 1, 2,… , 𝑑. Hence, in this case it is more convenient to estimate the total indices only. A drawback of Shapley effects is that
their computation becomes costly as the dimension 𝑑 increases. Eq. (8) indeed requires the computation of all 2𝑑 possible Sobol’
indices 𝑆𝑢. For 𝑑 > 20, this number exceeds 1 million.

An alternative approach relies on using global sensitivity measures that draw from the literature on measures of statistical
association. The definitions and properties of these global sensitivity measures are not affected by the presence of input dependence.
The increase in size and dimensionality of modern datasets has renewed interest in the definition of measures of statistical association
that can be conveniently computed in the case of large dimensional data. A recent example is the new correlation coefficient
by Chatterjee (2021). Chatterjiee correlation coefficient can be defined as a global sensitivity measure in Eq. (5)

𝜉𝐶𝑣𝑀
𝑖 = E

[

∫ (𝑃𝑌 (𝑦) − 𝑃𝑌 |𝑋𝑖
(𝑦))2𝑑𝑃𝑌 (𝑦)

]

, (10)

where the separation measurement is the Cramer-von-Mises distance between cumulative distribution functions. One early example
of this class of importance measures is the well-known mutual information, which can be written as

𝜉MI
𝑖 = E[∫ 𝑓𝑌 (𝑦)𝑙𝑛

𝑓𝑌 (𝑦)
𝑓𝑌 |𝑋𝑖

(𝑦)
𝑑𝑦] (11)

where 𝜁KL(𝑋𝑖) = ∫ 𝑓𝑌 (𝑦)𝑙𝑛
𝑓𝑌 (𝑦)

𝑓𝑌 |𝑋𝑖
(𝑦)

𝑑𝑦 is the well-known Kullback–Leibler divergence (Kullback and Leibler, 1951). It turns out

that if one selects the separation measurement appropriately, one obtains a global sensitivity measure that possesses relevant
properties towards understanding variable importance. The first is zero-independence: the sensitivity measure is null if and only
if 𝑌 is independent of 𝑋𝑖. This property is useful to analysts for avoiding false negatives, that is the risk of judging a variable
as unimportant when, in fact, it plays a role in the problem. The indices 𝑆𝑖 in Eq. (6) do not possess this property. The second
property is max-functionality: The global sensitivity is maximal if and only if 𝑌 is a noiseless function of 𝑋𝑖, that is 𝜉𝑖 takes on its

aximum value if and only if 𝑌 = 𝑔(𝑋𝑖). Note that, in this case, fixing 𝑋𝑖 eliminates uncertainty in 𝑌 completely. The third property
is monotonicity. Suppose that instead of being informed about 𝑋𝑖 we are informed about a variable 𝑍𝑖 which is related to 𝑋𝑖, but
through a non-monotonic transformation, (i.e., 𝑍 = ℎ(𝑋 ), where 𝑋 is a non-monotonic function. Monotonicity guarantees that
5
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the importance of 𝑍𝑖 is lower than the importance of 𝑋𝑖. Global sensitivity measures in (5) can be estimated from a given dataset,
ith a minimization of the computational cost which is then independent of the number of variables 𝑑 (Borgonovo et al., 2016;
hatterjee, 2021).

Let us now come to the second goal, trend identification. The analyst aims to understand the behaviour of 𝑌 as a function of one or
ore input variables. One straightforward approach is to examine the signs of the Newton Ratios in Eq. (4) across multiple locations
ithin the input domain. Additionally, an alternative approach to uncovering such trends involves considering the conditional

egression functions, denoted as 𝑟𝑖(𝑥𝑖) = E[𝑌 |𝑋𝑖 = 𝑥𝑖], when the variables are assumed to be independent. In particular, insights on
he monotonicity of the risk profile 𝑌 with respect to 𝑋𝑖 can be assessed from this function when inputs are independent. An input
ariable 𝑋𝑖 with monotonic effect might compromise the risk profile of the company when it gets to its high values, and need to
e properly controlled.

The third goal, interaction quantification, can also be addressed on a global scale. There are different indices for interactions. It
ight be useful to first estimate the overall impact of interactions due to a single variable. Under variable independence, one can
efine the total interaction index of variable 𝑋𝑖 is (Borgonovo and Rabitti, 2023)

𝑆𝐼𝑖 = 𝑆𝑇𝑖 − 𝑆𝑖 (12)

hich is the difference between the total effect of 𝑋𝑖 and its individual effect. If the analyst wants to investigate the relevance
f specific interactions (for instance between variables 𝑋𝑖 and 𝑋𝑗), they should consider the difference 𝑆𝑖,𝑗 − 𝑆𝑖 − 𝑆𝑗 where the
econd-order Sobol’ index is explicitly given by

𝑆𝑖,𝑗 =
V𝑋𝑖,𝑗

(

E𝐗−{𝑖,𝑗}
(𝑌 |𝑋𝑖,𝑗 )

)

V(𝑌 )
. (13)

The sensitivity settings proposed and discussed above allow the insurance company to effectively, transparently and responsibly
nalyse its risk profile when this is evaluated through a complex internal model. The model design and building phases could benefit
oo using these settings.

The adoption of these sensitivity settings, each with a clear focus on the model behaviour, can provide complementary insights.
or example, from the computational point of view (Borgonovo and Rabitti, 2023) show that an estimate of 𝑆𝑇𝑖 is

�̂�𝑇𝑖 =
1
𝑁

∑𝑁−1
𝑘=0

(

𝜙𝐱𝑘→𝐱𝑘+1
𝑖

)2

2�̂�2
(14)

here 𝐱𝑙 is the 𝑙th scenario, for 𝑙 = 0, 1,… , 𝑁 and �̂�2 is the estimate of the variance of 𝑌 . Eq. (14) shows that the total-order index
of variable 𝑖 can be estimated as a squared mean of local effects 𝜙𝐱𝑘→𝐱𝑘+1

𝑖 computed considering multiple scenarios {𝐱0, 𝐱1,… , 𝐱𝑁}.
Thus, having at hand not only the local sensitivity indices for two scenarios but for many more, the analyst can

1. obtain many local effects and gain insights on model output drivers for several scenarios;
2. estimate the total-order indices.

The intuition is that, if the terms 𝜙𝐱𝑘→𝐱𝑘+1
𝑖 are always small across multiple scenarios, the numerator of Eq. (14) is negligible

and the 𝑖th variable can be considered unimportant from the local and the global point of view (Borgonovo and Rabitti, 2023). This
information strongly supports the understating of the model behaviour globally as well as across deterministic scenarios.

In common actuarial practice, internal models might contain large amounts of variables. For example, Dacorogna (2017) writes
that the SCOR’s model is based on few thousand risks. A possible strategy to screen large internal models is using Eq. (14) as done
in Borgonovo and Rabitti (2023). When the dimension 𝑑 is very large, investigating the local importance with the one-at-a-time
method across multiple scenarios can become computationally expensive for estimating Eq. (14), especially when the internal model
is slow. In such cases, it might be advantageous to allocate the entire computational budget to a Monte Carlo sample analysis, which
not only enables uncertainty quantification but also allows for the utilization of statistical association measures in Eq. (5) computed
from given data. Additionally, the use of a Monte Carlo simulation allows the analyst, on the one hand, to inspect the model input
space more thoroughly and, on the other hand, to fit a faster metamodel (i.e. a machine learning model) which can significantly
reduce computational time (Krah et al., 2020b,a).

In general, we recommend employing an ensemble of sensitivity measures. Table 1 provides a summary of the characteristics of
various sensitivity indices and the information they provide.

Table 1 presents a comparison of sensitivity indices based on type of insights, presence of discrete variables, impact of
interactions, variables uncertainty and variables dependence. For instance, if the analyst is interested in the interaction between
the 𝑖−th and the 𝑗−th variables, the partial derivative 𝜕2𝑓∕𝜕𝑥𝑖𝜕𝑥𝑗 can be adopted but the analyst needs to remember that it depends
on the specific location where it is evaluated and it does not take into account the uncertainty of 𝑋𝑖 and 𝑋𝑗 nor their possible
statistical dependence. Moreover, this partial derivative cannot be defined when variables are discrete. In this case, finite-change
sensitivity indices can be used. The global impact of interactions can be measured using Sobol’ indices, but their interpretation is
not clear when variables are dependent. Research on global measures for quantifying interactions under dependent variables is still
active. When variables are independent, the analyst using a combination of total Sobol’ indices and conditional regression functions
can understand the most important variables and their effect on the model output in terms of increase or decrease.

The integration of these sensitivity settings can provide insightful information to the model analysts in insurance companies and
6
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Table 1
Comparison of sensitivity indices in terms of delivered insights; their well-definiteness in presence of discrete variables; their extension to interaction quantification;
whether they account for variables uncertainty; their well-definiteness in presence of variables dependence.

Analysis Discrete
variables

Impact of
interactions

Variables
uncertainty

Variables
dependence

Partial derivatives Scenario-specific No Yes No No
Finite-change indices Scenario-specific Yes Yes No No
Conditional regression functions Global Yes No Yes No
Sobol’ indices Global Yes Yes Yes No
Shapley effects Global Yes No Yes Yes
Distribution-based Global Yes No Yes Yes

the company’s net asset value (NAV) and the ratio NAV/SCR. However, Floryszczak et al. (2016) adopt only the trend identification
setting for the sensitivity of the company’s indicators NAV and NAV/SCR with respect to financial and actuarial variables (namely
the interest rate risk, equity risk, mortality risk, surrender risk and specific insurance contract parameters). While this setting allows
these authors to identify and visualize the marginal impact of these variables on the company’s indicators, it provides no insights
on their importance ranking nor on their interaction effects.

4. Numerical illustration

To illustrate the proposed approaches, we have developed a simplified partial internal model in order to quantify the solvency
apital requirement (SCR) for premium risk in a framework consistent with Solvency II regulation. To this end we focus on a multi-
ine non-life insurance company, where the total aggregate claim amount 𝐴 of the portfolio is described by a frequency-severity
pproach (Daykin et al., 1994) as follows:

𝐴 =
𝑙

∑

𝑖=1
𝐴𝑖 =

𝑙
∑

𝑖=1

𝑁𝑖
∑

𝑗=1
𝑍𝑗,𝑖 (15)

ith 𝐴𝑖 = 0 if 𝑁𝑖 = 0 and where:

• 𝑙 is the number of lines of business (LoBs), here represented by Motor Third-Party Liability (MTPL), General Third-Party
Liability (GTPL), Property and Motor Own Damages (Mod).

• the aggregate claim amount of each LoB 𝐴𝑖 is modelled by a frequency-severity approach
• the number of claims of each LoB 𝑁𝑖 is described by the Poisson law 𝑁𝑖 ∼ 𝑃𝑜𝑖(𝑛𝑖 ⋅𝑄𝑖), with an expected claim count 𝑛𝑖 subject

to a parameter uncertainty modelled by a structural variable 𝑄𝑖.
• 𝑄𝑖 serves as a mixing variable (or contagion parameter) and represents the parameter uncertainty associated with the number

of claims. It is assumed that 𝐸(𝑄𝑖) = 1 and that the random variable is defined only for positive values. Following a common
approach, we assume that 𝑄𝑖 follows a Gamma distribution, resulting in 𝑁𝑖 being distributed as a Negative Binomial.

• the severity is described by random variables 𝑍𝑖,𝑗 using LogNormal distributions with a mean 𝑚𝑖 and coefficient of variation
𝑐𝑍𝑖

.

We consider classical assumptions of independence between 𝑁𝑖 and 𝑍𝑖,ℎ and that the random variables 𝑍𝑖,ℎ are independent and
identically distributed. For the sake of simplicity, the dependence between LoBs is here modelled via a Gaussian copula, whose
parameters are calibrated using the correlation coefficients provided by Solvency II standard formula (European Commission, 2015a).

The model is based on the parameters described in Table 2 in the Appendix and the main parameters have been calibrated
considering a representative insurer in the Italian market. The SCR has been quantified using a Value at Risk at 99.5% confidence
level. We are aware that the model can be extended in order to consider other relevant aspects as the inclusion of other sources of
risks, modelling tail dependence, the effect of reinsurance treaties, the separate modelling between attritional and large claims, the
volatility of expenses, the use of alternative risk measures, but the aim is to provide a realistic toy example that allows to appreciate
the alternative approaches provided in the previous section.

For any input parameter combination 𝐱, we conduct one million Monte Carlo replicates, and from the resulting distribution,
we calculate the aggregate claim amount 𝐴 and the SCR ratio, i.e., the ratio between SCR and the volume of gross premiums. We
then validate the model using the available data obtaining a good convergence between the exact and the simulated moments. We
estimate a resulting SCR equal to roughly 29.6% of premiums.

As a second step, to introduce uncertainty, we have perturbed the value of the parameters ±10% with respect to their nominal
values in Table 2 in the Appendix. We sampled 1,000 observations of 𝐗 using Monte Carlo and estimated the SCR ratio using
the original internal model, which took 1.54 days. Subsequently, using this sample we constructed a neural network metamodel
with two layers (with 10 and 1 neurons respectively). We compared the linear association between the original simulated value
and its predicted counterpart using the same input parameters. The 𝑅2 accuracy scores were 0.98 on the training set (70% of the
observations), 0.96 on the validation set (15% of the observations), and 0.96 on the test set (15% of the observations). We then
extended our sampling to 10,000 values of 𝐗 and employed the metamodel to compute the SCR ratio. Using the metamodel, this
7

process took only 1.65 s, demonstrating a significant improvement in computational speed.
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Fig. 1. Global sensitivity indices.

For the sake of space, we restrict the sensitivity analysis to Sobol’ total effects, finite changes, and conditional regression
functions.

Let us delve into the total Sobol’ indices, as illustrated in Fig. 1. It is intriguing to observe how the distinct pooling effects
within the Lines of Business (LoBs) influence the ranking of the most significant variables. Notably, the expected claim count of
MTPL emerges as a pivotal parameter. This is primarily due to MTPL being the largest segment in the firm’s portfolio, where the
parameters of the frequency distributions exert a predominant influence on severity. In contrast, GTPL and Property exhibit a notably
low number of claims and a highly volatile severity distribution. Given the limited diversification in the portfolio, the coefficient of
variation 𝑐𝑍𝑖

assumes a paramount role for these LoBs. According to Mod, the LoB displays a more balanced significance between
frequency and severity.

In Fig. 2, we examine the finite-change indices for the difference in SCR ratio between the base-case scenario (in Table 2) and the
stressed case, where all variables have been increased by 10%. Fig. 2 substantiates the significance of certain variables, namely the
coefficient of variations of the most volatile LoBs (such as GTPL and Property). As anticipated, these characteristics of the severity
distribution exert an increasing influence on the SCR ratio. Conversely, it is noteworthy that, for MTPL, both a higher expected
number of claims and a greater average cost lead to a reduction in the SCR ratio. This can be justified by the fact that the SCR tends
to increase at a rate that is less than proportional to the premiums. Notably, this effect is attenuated when considering the total-finite
change due to the compensatory impact of other variables that operate in an opposing manner. We highlight the distinction between
the insights obtained from Figs. 1 and 2. In Fig. 1, a high bar implies a significant contribution of a variable to the variability of
the SCR ratio. Conversely, a very high (or very low) bar in Fig. 2 indicates that a variable has a substantial impact on increasing
(or decreasing) the SCR ratio when transitioning from the base-case scenario to the stressed scenario. This latter analysis is local as
it assesses variable importance between two scenarios only.

To investigate the trend of the impact of the four globally most important variables, we consider the conditional regression
functions in Fig. 3. As depicted in Fig. 3, these variables exhibit clear monotonic effects, aligning with actuarial expectations.
Specifically, a higher volatility of the severity (𝑐𝑍𝑖

) leads to an increase in the Solvency Capital Requirement (SCR), and in this
instance, a rise in the SCR ratio, given that the loading percentages applied by the firm remain unchanged. Conversely, an upswing
in the expected number of claims (𝑛𝑖) has the opposite effect on the SCR ratio. It is a well-established fact that for premium risk,
the SCR tends to increase at a slower rate than 𝑛𝑖, resulting in a reduction of the SCR ratio.

In terms of average cost, this parameter typically holds significance for LoB (such as GTPL in our example) characterized by a
notable distribution volatility. In this context, although the increased average cost is offset by higher premiums, we observe a more
pronounced growth in the standard deviation, consequently leading to an increase in the SCR ratio.

5. Discussion: Benefits and challenges for insurance companies and regulators

We suggest the use of an ensemble of sensitivity measures to conduct a proper sensitivity analysis, incorporating a complex
and unified approach that integrates different settings. This integrated sensitivity settings approach combines various techniques,
such as one-factor-at-a-time analysis, scenario testing, and global analysis, to provide a comprehensive assessment of the internal
model’s performance. By adopting this approach, we can thoroughly evaluate the model, assess the firm’s risk profile, and identify
potential areas for improvement. These insights are invaluable for supporting risk management decisions and ensuring a nuanced
understanding of the company’s risk profile across different scenarios.

In addition, considering the sensitivity approaches together enhances the understanding and communication of solvency results
to model auditors and regulators. Insurance companies gain a greater awareness of how risk assumptions and dependencies affect
8
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Fig. 2. Tornado diagram with finite-change sensitivity indices.

Fig. 3. Scatterplots (in blue) with conditional regression functions (in red) for the four most important variables.

model response, while experts can make more informed decisions based on internal model predictions. Moreover, these sensitivity
settings can serve as a benchmark for sensitivity analysis approaches in analysing and validating internal models. It is recommended
that companies utilize comparable statistical indices to perform sensitivity and uncertainty analysis of their models. Establishing a
common minimum requirement based on these settings would enable regulators to consistently and objectively compare sensitivity
analyses across different companies’ internal models. This approach would also promote a statistical culture within companies,
fostering improved model construction, validation, and uncertainty analysis.

Integrating alternative sensitivity approaches in the validation of internal models is of significant importance in the realm of
risk management and decision-making. Traditional validation methods, which often rely on single-point estimates and assumptions,
might not fully capture the complexity of risks associated with complex systems. By incorporating alternative sensitivity approaches,
organizations can enhance their understanding of potential vulnerabilities, identify hidden risks, and make more informed decisions.
These approaches allow for assessing the model’s robustness and resilience, gaining insights into inputs, assumptions, and key risk
drivers, and detecting potential limitations and biases.

Moreover, considering alternative sensitivity approaches promotes a culture of continuous improvement and learning within
organizations. By acknowledging the uncertainty and complexity of internal models, stakeholders are encouraged to challenge
assumptions, explore alternative perspectives, and refine their understanding of risks. This iterative process fosters innovation and
the development of more accurate and robust models over time.

Ultimately, the integration of alternative sensitivity analyses enables organizations to better understand and manage risks,
enhances the resilience of decision-making processes, and contributes to the overall stability and sustainability of the organization.
9
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By harnessing the power of these approaches, organizations can proactively adapt to changing circumstances, make more informed
decisions, and navigate complex environments with greater confidence.

To conclude, the proper integration of sensitivity analysis techniques and the adoption of alternative sensitivity approaches
lay a crucial role in validating internal models, enhancing risk management practices, and improving decision-making processes.
y considering multiple sensitivity settings and utilizing statistical measures, companies can gain valuable insights into their
odels’ performance, assess their risk profiles, and identify opportunities for improvement. Regulatory bodies should establish

ommon minimum requirements based on these sensitivity settings to facilitate consistent and objective comparisons among
ifferent companies’ internal models. Through the integration of alternative sensitivity approaches, organizations can foster a
ulture of continuous learning, refine their understanding of risks, and enhance their resilience in a dynamic and uncertain business
nvironment.
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ppendix. Table with parameters in the internal model

See Table 2.

Table 2
We display the parameters used for modelling the aggregate claim amount of each LoB, the correlation matrix
used for calibrating the Gaussian Copula and the parameters that have been used only for the assessment of
gross premiums. The central portion of the table reports the base-case values of the correlation parameters. We
denote with 𝑐𝑜𝑟𝑟1 the values of the correlations equal to 0.25 and with 𝑐𝑜𝑟𝑟2 the values of the correlations equal
to 0.50. In Figs. 1, 2, and 3 the inputs 𝑚𝑖 are denoted by 𝑐𝑜𝑠𝑡. Parameters 𝜆𝑖, 𝑖 = 1, 2, 3, 4, represent the safety
loadings, expressed as percentages of fair premiums. Parameters 𝜂𝑖, 𝑖 = 1, 2, 3, 4, represent the expenses loadings,
expressed as percentages of gross premiums.

Parameters used for 𝐴𝑖 computation

Parameters Mod Property MTPL GTPL

𝑛𝑖 1,806 1,167 4,646 306
𝜎𝑄𝑖

0.06 0.09 0.08 0.18
𝑚𝑖 2,500 6,000 4,800 10,000
𝑐𝑍𝑖

2 8 4 10

Correlation matrix

Mod Property MTPL GTPL

Mod 1 𝑐𝑜𝑟𝑟1 = 0.25 𝑐𝑜𝑟𝑟2 = 0.5 𝑐𝑜𝑟𝑟1 = 0.25
Property 𝑐𝑜𝑟𝑟1 = 0.25 1 𝑐𝑜𝑟𝑟1 = 0.25 𝑐𝑜𝑟𝑟1 = 0.25
MTPL 𝑐𝑜𝑟𝑟2 = 0.5 𝑐𝑜𝑟𝑟1 = 0.25 1 𝑐𝑜𝑟𝑟2 = 0.5
GTPL 𝑐𝑜𝑟𝑟1 = 0.25 𝑐𝑜𝑟𝑟1 = 0.25 𝑐𝑜𝑟𝑟2 = 0.5 1

Parameters used for gross premiums computation

𝜆𝑖 13% 1% 1% 15%
𝜂𝑖 32% 33% 22% 33%
10
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