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Abstract: Cocoa bean fermentation is carried out in different production areas following various
methods. This study aimed to assess how the bacterial and fungal communities were affected by
box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic
amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based
on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity,
while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and
Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter
tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented
samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces
cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to
identify potential interesting pathways. In conclusion, there were noticeable differences between
the three different fermentation methods. Due to its limited microbial diversity and the presence
of microorganisms that guarantee good fermentation, the box method was found to be preferable.
Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated
cocoa beans and to better understand the technological processes useful to obtain a standardized
end-product.

Keywords: microbiota; yeast; lactic acid bacteria; acetic acid bacteria; high-throughput sequencing

1. Introduction

Cocoa beans are the raw materials for chocolate production, and their fermentation is
still a spontaneous maturing process, usually taking place in the farms where the planta-
tions are located [1]. The different post-harvest practices result in different qualities of the
dry fermented final product, driving the economic value of cocoa beans [2–4]. The fermen-
tation of cocoa beans mainly involves three microbial groups: yeasts, lactic acid bacteria
(LAB) and acetic acid bacteria (AAB), which cooperate in the production of well-fermented
cocoa beans. The fermentation activities are exothermic reactions, which provoke an in-
crease in the temperature of the cocoa mass from 25–30 ◦C up to 45–50 ◦C, resulting in a
decline in all microorganisms [1,3,4].

Yeasts dominate the first 24–48 h of fermentation in limited oxygen availability, acid
conditions and high carbohydrate concentrations from the mucilaginous pulp [5].

Between 24 and 72 h, the pulp begins to dry and the amount of air that interacts
with the mass increases, thus creating the ideal conditions for the growth of LAB and
AAB consecutively [1,5]. During the next 72–112 h, the ethanol produced by yeasts and
the lactic acid produced by LAB are oxidized by AAB in acetic acid and acetic acid and
acetoin, respectively, with a slight decrease in the cocoa pulp pH. Subsequently, acetic
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acid is hyperoxidized into carbon dioxide and water [6]. The method and duration of
fermentation depend, respectively, on the production area and on the variety of cocoa [3].

Heap fermentation is the simplest and the most common method in the small farms
of West Africa. Beans are piled up on a banana-leaf layer, covered with banana leaves
and jute bags (to help maintain the heat inside). This is a typical anaerobic-condition
fermentation, so after a rest phase of 24–48 h, the beans are mixed and turned over to allow
oxygen diffusion [7]. On the other hand, box fermentation, generally wooden boxes, is the
most common method around the world, in particular in larger farms of Cote d’Ivoire [8].
The thickness of the box is important to avoid heat loss. Beans are turned by hand for
quantities of 25–100 kg while, for larger quantities, they are transferred to successive boxes,
arranged in cascade, by fall. Boxes have a holed bottom, which allows the correct drainage
of the fermented mass and helps in aeration [7]. Beans can also be fermented in jute bags,
closed and covered with banana leaves or plastic sheets to avoid unnecessary dispersion
of moisture and heat. Jute bag fermentation is widely used in Ecuador, even if high risks
of poor aeration and high humidity could damage the beans irreparably. It is a shorter
fermentation, from 67 to 72 h, that requires a higher drying temperature [9].

Two key points of fermentation are juice-pulp drainage and avoiding over-dissipation
of heat and moisture. Insufficient pulp drainage will result in bad fermentation and mold
contamination, while jute bags or a combination between jute bags and banana leaves is
recommended to avoid dissipation of heat and moisture and therefore promote the growth
of microorganisms. Choosing the correct method in fermentation significantly impacted
process parameters, such as temperature, which influenced the microbial population [9].
Adequate coverage prevents excessive air penetration and unnecessary environmental
contamination [8,9].

Several studies investigated microbial populations and dynamics in different fermen-
tation methods, using a culture-dependent approach, an independent approach or both.
Nielsen et al. (2007) [10] investigated two methods (tray and heap), while wider microbial
analyses were conducted in some studies considering only one fermentation method or a
combination of two (box and heap mainly). For example, bacterial species diversity was
studied in Brazilian box fermentation by Papalexandratou et al. (2011) [11], both culture-
dependent and independent techniques were used to target the bacterial population in
heap fermentation [12], and yeast diversity was studied through a culture-independent
approach [13]. In addition, heap and box fermentation were compared, for example, by
Meersman et al. (2013) for Malaysian cocoa beans [14], Visintin et al. (2016) for West
African cocoa beans [15] and Papalexandratou et al. (2011) for Ivory Coast and Brazil cocoa
beans [16] using a culture-independent approach. As far as we know, the microbiota of
jute fermentation is poorly investigated, and no one has compared this method with the
ground and box methods using cocoa from the same origin and farm.

The main purpose of this work was to assess bacterial and fungal diversities according
to the different fermentation methods using a culture-independent approach. The three
fermentation methods examined in this paper were as follows: (i) in heaps covered with
banana leaves (ground); (ii) in wooden or plastic boxes (box); and (iii) in jute bags (jute).

Furthermore, the microbial dynamics of the three methods were evaluated while
considering different fermentation times. Subsequently, the focus was to identify by culture-
independent analyses the species that are distinctive of the three methods considered and
evaluate the preferable fermentation method based on the microbial dynamics observed.

2. Materials and Methods
2.1. Fermentation Process and Sample Collection

The fermented cocoa beans were collected from a production site in Cameroon during
the mid-crop season (June to July 2014). The spontaneous fermentation process was
conducted with three different methods: (i) wooden box fermentation (BF); (ii) jute sack
fermentation (JF); (iii) ground fermentation (GF).
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In this study, the fermentation step lasted six days, and the sampling was carried out
in triplicates during each day. The total number of samples obtained and submitted to the
next DNA extraction step was 54.

2.2. DNA Extraction

DNA extraction was performed according to a previous study [17]. One hundred
grams of processed cocoa beans was ground and homogenized, and then Fast DNA Spin Kit
for Soil (MP Biomedicals, Solon, OH, USA) was used to collect DNA into sterile tubes. For
each sample, DNA was eluted in 100 µL of sterile TE buffer (10 mM Tris/HCl, 1 mM EDTA
pH 8.0) and stored at −20 ◦C. The quantification of the DNA extracted was performed with
a Quant-iT HS ds-DNA assay kit (Invitrogen, Paisley, UK) and a QuBit fluorometer. To
verify the quality of the DNA sample collected, 2 µL was analyzed by electrophoresis on
0.8% agarose gel.

2.3. DNA Amplification

Bacterial and fungal communities were determined by analysis based on HTS of
16S rDNA and the Internal Transcribed Spacer 1 (ITS1) region of ribosomal RNA
(rRNA) amplicons.

The amplification of the V3-V4 region of the 16S rRNA gene was carried out by PCR us-
ing the universal primers 343f (5′-TACGGRAGGCAGCAG-3′) and 802r (5′-
TACNVGGGTWTCTAATCC-3′). The PCR reaction mix was composed of 12.5 µL of
Phusion Flash High-Fidelity Master Mix (Thermo Fisher Scientific, Inc., Waltham, MA,
USA), 1.25 µL of each primer (10 µM), 0.2 ng of DNA template and nuclease-free water [17].
A second PCR with a forward-tagged primer with a 9-base extension at the 5′ end was
applied to perform simultaneous analyses of all the samples in a single sequencing run [18].
The thermocycler program used included the following steps: initial denaturation at 95 ◦C
for 5 min, followed by 20 cycles of denaturation at 95 ◦C for 30 s, annealing at 50 ◦C for
30 s, an extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 10 min.

The fungal communities were assessed using the universal primers ITS-1 (5′-
TCCGTAGGTGAACCTGCGG-3′) and ITS-2 (5′-GCTGCGTTCTTCATCGATGC-3′) [19].
The PCR reactions required 12.5 µL of Phusion Flash High-Fidelity Master Mix (Thermo
Fisher Scientific, Inc., Waltham, MA, USA), 1.25 µL of each primer (10 µM), 2 µL of DNA
and nuclease-free water to reach the final volume of 25 µL. The thermocycler was set as
follows: an initial hold at 94 ◦C for 4 min, followed by 28 cycles of 94 ◦C for 30 s, annealing
at 56 ◦C for 30 s, an extension at 72 ◦C for 1 min, and a final extension at 72 ◦C for 7 min.

Two-step PCR is required to reduce the generation of anomalous data caused by the
non-specific primer annealing [20]. Amplicons were combined in equimolar ratios and
multiplexed into two separate pools, one for Bacteria and the other for Fungi, using the same
molecular weights (20 ng). Pools were purified by solid-phase reversible immobilization
(SPRI) method using an Agencourt AMPure XP kit (REF A63880, Beckman Coulter, Milan,
Italy). The sequencing analysis was carried out by Fasteris S.A. (Geneva, Switzerland) using
a TruSeq DNA sample preparation kit (REF 15026486, Illumina Inc., San Diego, CA, USA)
for amplicon library preparation. The instrument used for sequencing was MiSeq Illumina
(Illumina Inc., San Diego, CA, USA) with V3 chemistry generating 300 bp paired-end reads.

2.4. Sequence Data Preparation

Filtering, multiplexing and preparation of data were carried out as previously de-
scribed [17,21,22], before statistical analyses. Base calling was performed using MiSeq
Control Software version 2.3.0.3, RTA v1.18.42.0 and CASAVA v1.8.2, while the “pandaseq”
script was used to align raw Illumina sequences [23].

Since V3–V4, 16S rRNA and ITS1 gene amplicons are shorter than 500 bp and re-
quire 300 bp paired-end reads per amplicon for reconstructing full regions, a minimum
overlap of 30 bp between read pairs and two maximum allowed mismatches were set. To
demultiplex the sequences, Fastx-toolkit was applied according to sample indexes and
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primers. Among the bacterial sequences, homopolymers >10 bp (chimeras), sequences
outside the regions of interest and non-targeted taxa were removed [17]. On the other
hand, among the ITS amplicons, the UCHIME algorithm with UNITE database v6 was
used to identify and discard homopolymers >10 bp, chimeras and non-fungal sequences.
Operational taxonomic units (OTUs) were determined and taxonomy-based approaches
were performed on the sequences. For the OTUs, Mothur V1.32.1 and taxonomy matrixes
for the V3–V4 regions were applied [24]. Mothur was used to perform ITS taxonomy-based
analyses with a minimum length of 120 bp and no upper length limit due to ITS variability.
Statistical analyses were performed with R2 supplemented with the Vegan package [25].
To visualize the hierarchical clustering of the sequences, the average linkage algorithm was
applied at different taxonomic levels. Principal component analysis (PCA), which data
did not show, was used to assess the unconstrained sample grouping and the canonical
correspondence analysis (CCA) to visualize the significance of different treatments on the
analyzed diversity (constrained variance). To estimate the associated α and β diversity,
the OTU- and taxonomy-based matrixes were analyzed using R. Moreover, to better esti-
mate any significant differences between samples, α-diversity analyses based on observed
richness (S) and Simpson’s diversity index (D) were performed on bacterial and fungal
communities. The identification of the most abundant OTUs was confirmed with RDP
(Ribosomal Database Project) for Bacteria and with MYCOBANK Database for Fungi.

2.5. PICRUST Analysis

To predict the supposed metagenomic profile, based on OTU abundance, Phyloge-
netic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2
https://github.com/picrust/picrust2; Version 2.5.1, accessed on 1 February 2023) was
applied after the processing of amplicon sequencing analysis of the sample. In PICRUST2,
specific 16S-seq abundances were used to deduce the abundances of enzymes and metabolic
pathways for each sample [26]. The two databases used to analyze the PICRUST results
were the Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.
genome.jp/kegg/, accessed on 15 February 2023) and Statistical Analyzer of Metagenomic
Profiles (STAMP 2.3.1: https://beikolab.cs.dal.ca/software/STAMP, accessed on 1 March
2023). MetaCyc [27] was used, in the end, to elaborate outputs.

3. Results and Discussion
3.1. Overview of the Bacterial and Fungal Communities Involved in Different
Fermentation Methods

Sequencing of bacterial amplicons resulted in 1200 high-quality sequences per sample
after screening, filtering and rarefaction. The dataset revealed a consistent coverage of
93.83%, and sequences were classified to family level (99.6%), genus level (89.5%) and
species level (9.3%) to a lower extent. For fungal communities, a total of 12,351 high-quality
sequences per sample were obtained, and the coverage rate was 99.54%. The sequences
were classified to family level (65.3%), genus level (55.1%) and species level (43.0%).

A comprehensive picture of the most abundant bacterial genera is shown in Figure 1,
confirming differences between the three investigated methods and fermentation days. The
samples are quite well clustered, even if some similarities are present.

Two main clusters were identified, according to the days of fermentation. The first
group contains samples from the three fermentation methods (JF, jute fermentation; GF,
ground fermentation; BF, box fermentation) from day 1 up to day 4; in the second group,
samples from the last two days of fermentation (5 and 6) were mostly represented.

More specifically, three sub-groups were identified in the first cluster, corresponding
mainly to the three fermentation methods studied. The first one included day 1 of BF
and days 1 and 2 of JF displaying the prevalence of Enterobacter and Enterobacteriaceae
non-classifiable at a deeper taxonomical level. The second sub-group was dominated by
the Acetobacter genus in BF at days 2, 3 and 4 of fermentation. The third, well-defined
group included samples from days 1 to 5 of the GF and day 3 of the JF method. From day
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1 to 5 of GF and on day 3 of JF, the dominance of the Pseudomonas genus together with
Enterobacteriaceae_unclassified was observed.
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Figure 1. Hierarchical clustering of bacterial sequences using the average linkage algorithm at
the genus level for taxa with at least ≥5% of participation in a single sample. Taxa beneath this
threshold were added to the sequence group named “other”. Image legend: method; “F_n”, days of
fermentation; “a, b, c”, replicates 1, 2 and 3.

The second cluster included all samples from the last days of the three fermentation
methods analyzed. Acetobacter was the dominant genus in all the samples, but with some
exceptions: (I) Pseudomonas genus was detected on day 4 of JF and disappeared in the next
two days; (II) in the last day of JF and BF, Bacillus genus was observed; (III) the presence of
ex-Lactobacillus genus was mainly found in BF method, but also at the end of JF and GF.
Lactobacillus fermentum was one of the main LAB species isolated from BF or GF [12,28,29],
with Leuconostoc pseudomesenteroides (glucose and fructose fermenting), isolated only at the
beginning of GF [12]. L. plantarum, detected in all the fermentation processes according
to [29], and L. fermentum were the most prevalent LAB species dominating both in BF and
in GF [10,12,15,30]. More specifically, L. plantarum strains were observed to be abundant
at the beginning of the GF, while L. fermentum strains converted fructose into mannitol
during longer fermentation time [12]. Citrate-converting LAB species, such as L. fermentum,
play a role in pH increasing, which is important to promote AAB growth and the pecti-
nolytic activity of yeasts [28]. Common precursors of aromatic amino acids and secondary
metabolites in the shikimate pathway were identified in L. fermentum and other species, not
observed in this study [31].

In agreement with a work conducted in 2013 to identify a core and variable micro-
biota in the box and the heap cocoa bean fermentation [14], Lactiplantibacillus plantarum
(formerly Lactobacillus plantarum) and the AAB Acetobacter pasteurianus emerged as the core
bacterial population.
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Gluconobacter and Acetobacter genera were observed at the beginning and during the
BF, respectively. Similar results for Gluconobacter sp. and Acetobacter pasteurianus were
found in the literature for Ecuadorian and Ivory Coast cocoa BF [5,28,29]. Moreover, the
Gluconobacter genus was also found in the JF and the GF method on days 2, 3 and 4. This
microorganism was reported in the literature as one of the most abundant acetic acid
bacteria during heap fermentation, thanks to the turning and mixing of beans [31].

Among the lactic acid bacteria involved in spontaneous cocoa bean fermentation, the
ex-Lactobacillus genus is one of the most relevant for its flavor precursors, citrate converting
and mannitol production [12,28]. In this study, it was mainly detected in BF throughout
the process, especially in the first four days. Lactobacilli were also found in the JF method.
Visintin et al. (2016) [15] isolated different species of Lactobacillus during different days of
GF. These results were in contrast with this study, in which Lactobacillus was observed in
low abundance on the last day of the GF.

In summary, at the beginning of all the fermentation processes, the Acetobacter genus
dominated mainly in the BF, and the Pseudomonas genus dominated mainly in the GF
samples. Spoilage microorganisms could be found at the beginning of GF and BF [12,29];
examples include some enterobacterial species, which may convert glucose into lactic acid
and citric acid [12]. Different studies reported Enterobacteriaceae during the initial phase of
cocoa bean fermentation [28], but in this work, a few representatives could be found at the
end of both GF and JF.

A comprehensive picture of the most abundant yeast genera is shown in Figure 2. The
samples are less clustered than bacterial genera and present, in some cases, an abundance
of unclassified fungi.
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On days 1 and 2 of the BF and from days 1 to 3 of the JF, the three most relevant genera
observed were HanseniaspIora, Pichia, Wickerhamomyces and Saccharomycopsis. Hanseniaspora
and Rodotorula were the dominant genera on day 1 of the GF, with a slow decrease over the
process. As reported in [28], species of Hanseniaspora represented a minority during cocoa
fermentation and were detected mainly at the beginning of the spontaneous process. This
study observed a clear dominance of other genera in the BF, GF or JF over time. In another
study, Hanseniaspora opuntiae predominated during the whole wooden BF, with different
species of Candida and Pichia according to the days of fermentation [29].

Pichiaceae and Saccharomycetaceae families and Candida and Pichia genera were the
dominant yeasts at the end of the BF. These results were in accordance with microorganisms
isolated from cocoa beans fermented in West Africa [15].

A coexistence of Saccharomyces, Hanseniaspora, Pichia, Candida and Wickerhamomyces
genera was observed from day 3 to the end of the GF method. According to the literature,
isolates of Saccharomyces sp., Candida sp., two species of Hanseniaspora, Pichia sp. and
Schizosaccharomyces sp. were also involved in the ground cocoa bean fermentation in West
Africa, without a specific dominant yeast [15].

In the JF method, Pichia, Candida and Wickerhamomyces genera and the Saccharomycetaceae
family were identified. More precisely, from day 4 to day 6, the Saccharomycetales fam-
ily grew steadily, becoming dominant at the end of the JF. Candida sp., mainly detected
in the middle and at the end of the process, could be a specific marker of incomplete
fermentation [29].

3.2. Effects of the Method and the Days of Fermentation on the Abundance of OTUs

Total bacterial communities in the cocoa bean fermentation samples were also assessed
with an OTU-based approach. Hypothesis-driven, canonical correspondence analysis
(CCA) on the relative abundance of the total bacterial OTUs was performed firstly to
test the effect of the fermentation method on bacterial ecology (Figure 3a), and then to
evaluate the interaction between fermentation method and time (Figure 3c). Moreover, the
CCA model was also applied to the total fungal OTUs (Figure 3b,d). All the models were
significant (p = 0.001), with a quite good explanation of constrained variance (19.1% for
Figure 3a, 20% for Figure 3b, 68.8% for Figure 3c and 72.9% for Figure 3d).

Clustering of samples was observed when testing the hypothesis of how the fermenta-
tion method influenced microbial dynamics (Figure 3a). GF samples were mainly grouped
in the lower right sector of the CCA plot (positive correlation with CCA1 and negative
with CCA2), while box samples were in the lower left part (negative correlation with both
CCA1 and CCA2). On the other hand, JF samples were highly dispersed in the upper part
of CCA2, and they related both positively and negatively with CCA1. In conclusion, the
fermentation method influenced the bacterial community; the samples from the different
methods appear to be well separated, with ellipses of varying sized intersecting at the
center of the model. The ellipse related to JF was wider than the GF ones that were in direct
contact with sources of microorganisms, such as soil and air. In contrast, BF showed less
variability. Camu et al. (2007) [12] observed limited biodiversity and targeted population
dynamics of both lactic and acetic acid bacteria during heap fermentation of Ghana cocoa:
L. plantarum, L. fermentum, Leuconostoc pseudomesenteroides and Enterococcus casseliflavus
dominated among the LAB isolates, while A. pasteurianus, Acetobacter syzygii-like bacteria,
and Acetobacter tropicalis-like bacteria were observed among AAB. Furthermore, Papalexan-
dratou et al. (2011) [16] showed the influence of local fermentation practices on species
diversity and community dynamics by comparing heap and box fermentation in an Ivorian
farm and box fermentations conducted in two different Brazilian farms. It was observed
that there was a limited species diversity of lactic and acetic acid bacteria. L. fermentum and
Leuconostoc pseudomesenteroides were the predominant LAB species, but Erwinia soli and
Pantoea sp. specifically dominated both box and heap Ivory Coast fermentations. A wider
microbial species diversity was studied in box fermentation of the two Brazilian farms,
with a dominance of acetic acid bacteria.
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analyses) to test the influence of the fermentation method and the day of fermentation on the yeast
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Figure 3b shows the yeast communities analyzed according to the different fermen-
tation methods. The majority of JF and GF samples clearly overlapped and positively
correlated with CCA2. On the other hand, the BF method was negatively correlated with
CCA2 but equally distributed between positive and negative CCA1. The elongated ellipse
of GF samples explained a greater variability compared to the other two methods. The
model showed less distinction between different fermentation methods, and specifically,
the JF method had less variability. Detailed analysis of the Malaysian microbial population
during cocoa fermentation was conducted by Meersman et al. (2013) [14]. They identified
a limited number of different LAB species, with L. fermentum and A. pasteurianus the two
dominant species, and a much higher fungal diversity with four dominant species and a
large number of yeasts occurring in specific fermentation methods.

The hypothesis studied in Figure 3c is the time–method effect on the bacterial com-
munity, which showed lower variability. Samples from days 5 and 6 of BF were missing
in this model as a result of filtering steps during the bioinformatics analysis. A positive
correlation to CCA2 for GF samples and a negative one for BF samples were represented in
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the figure. Only the JF samples were clearly clustered by the method and the time: days 1,
2 and 3 were negatively correlated to both CCA1 and CCA2; days 4, 5 and 6 were positively
correlated to both CCA1 and CCA2. Similarities were observed between day 5 and 6 of JF
and day 6 of GF. GF samples clustered independently of the day of fermentation compared
with the other methods and differing only at day 6. In contrast, samples from different
days of fermentation in JF and BF were distributed separately within the model.

Figure 3d represents the method and time effects on the fungal community. First,
more heterogeneity was generally observed, apart from the GF samples. Days 1, 2, 3 and
4 of GF overlapped and were well separated by all the other samples. All the days of JF
were positively correlated with CCA1, but days 1, 2 and 3 were negatively correlated with
CCA2, while days 4, 5 and 6 showed a positive correlation. For BF samples, days 1, 2 and
3 overlapped, while day 4 is well differentiated and positively correlated to both CCA1
and CCA2. The fermentation method also seemed to influence the fungal communities
involved during different days of fermentation.

3.3. Influence of the Fermentation Method on the Bacterial Communities

The Metastats model (Figure 4), which is an OTU-based approach, was used to better
understand the main bacterial species involved in the three different fermentations. The
model evaluated the effects of fermentation type on the relative abundances of the 10 most
abundant OTUs comprising 95/99.9% of the bacterial diversity in each method analyzed.
The taxonomical affiliations of the most abundant OTUs identified were confirmed with
Ribosomal Database Project (RDP).

OTU2 (Pseudomonas sp.) was the most abundant OTU in GF methods (about 65%
in abundance), and it was statistically different from the abundance in the other two
methods (32% in JF and less than 8% in BF). This bacterium is associated with soil and
water according to Lima Serra et al. (2019) [32].

Differently, OTU13 (Bacillus sp.) and OTU6 (Tatumella sp.) were present exclusively
in BF, at around 8% abundance. Bacillus spp. were observed in cocoa bean samples under
higher temperatures and less acidic and more aerobic conditions, usually at the end of the
process [12]. Numerous Bacillus spp. were thermotolerant, but some were isolated after
drying and roasting, suggesting that they were able to grow at the highest temperatures [33].
Under fermentative conditions, species of Bacillus released different chemical compounds
that confer acidity and off-flavors of beans, influencing the final chocolate quality [4,33].
On the other hand, the role of this microorganism and its potential production of valuable
flavor and bioactive compounds must be further demonstrated [34,35]. These species
produced organic acids as part of their central and secondary metabolism, lactic and acetic
acids, pyrazines and 2,3-butanediol, as well as enzymes, such as β-glycosidases, proteases,
amylases and lipases [4,32–34].

The genus Tatumella (OTU16 and OTU6), a member of the Enterobacteriaceae family,
was statistically present only in BF. Papalexandratou et al. (2011) [28] found two species
of Tatumella involved in the initial phase (during the first 36 to 42 h) of the Ecuadorian
box and platform cocoa bean fermentation. Tatumella sp. was also detected in Brazilian
box fermentation at 48 h, according to Garcia-Armisen et al. (2010) [36]. Tatumella sp.
was also observed to produce gluconic acid [28,37]. In the initial phase of cocoa bean
fermentation, Enterobacteriaceae species might have a role in the pectin degradation of cocoa
pulp, converting glucose into lactic and citric acid and gluconic acid production [28,29,37].
Soil could be considered the source of Enterobacterial species in cocoa beans, and Tatumella sp.
is a potential phytopathogen in cocoa pods [36].

OTU5, identified as Klebsiella michiganensis, dominated the JF method, for more than
20% abundance, which was statistically different from the other two methods studied. The
genus Klebsiella represented a minority in cocoa bean fermentation [31].
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10 most abundant OTUs observed comprising 95% of the bacterial diversity in fermented cocoa beans.
OTUs showing significant differences according to the false discovery rate correction are highlighted
with letters. The assigned species was indicated where possible for each OTU. Significant differences
in OTUs are reported due to the false discovery rate correction: bars followed by different letters
were statistically different from (a, b, c) or similar to (a, b, ab) each other (Tukey’s test, p < 0.05).

Acetobacter tropicalis, OTU1, was dominant in BF (about 50% abundance), which was
not statistically different from the JF method (about 32% abundance) and statistically
different from the GF (15% abundance). Acetobacter genus is reported in the literature
as the main representative acetic acid bacteria, with a particular reference to Acetobacter
pasteurianus species [12,15,28]. On the other hand, Acetobacter tropicalis was observed by
Soumahoro et al. (2020) [38] as one of the dominating AAB species in Ivorian heap cocoa
fermentation. According to the literature [10,39], A. tropicalis remains constant between 24
and 120 h of fermentation, dominating the later stages of fermentation. Different studies
isolated A. tropicalis from Thailand and Indonesian fruits and flowers [39,40].

3.4. Influence of the Fermentation Method on the Fungal Communities

Figure 5 shows the Metastats model for the most abundant OTUs detected during
cocoa bean fermentation with different methods. OTU9 (Fusarium solani), OTU504 and
OTU20 (Wickerhamomyces pijperi), OTU15 (Pichia terricola) and OTU1 (Candida ethanolica)
were detected as the most abundant (about 10–15%) in JF and statistically different from
GF and BF methods (both less than 4%).
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dances of the 17 most abundant OTUs observed comprising 95% of the fungal diversity in fermented
cocoa beans. OTUs showing significant differences according to the false discovery rate correction are
highlighted with letters. The assigned species was indicated where possible for each OTU. Significant
differences in OTUs are reported due to the false discovery rate correction: bars followed by different
letters were statistically different from (a, b) or similar to (a, b, ab) each other (Tukey’s test, p < 0.05).

Candida ethanolica dominated the last days of BF and the whole process in the GF
method [10,15,41]. This study confirmed the observation of the genus Candida mainly
at the end of the BF and GF methods (Figure 2), but according to OTU abundances, it
prevailed in JF (more than 12%). Candida and Pichia are important yeast genera in cocoa
bean fermentation for their metabolization of citric acid, which increases pulp pH and
creates an advantageous environment for bacteria [33]. C. ethanolica, according to the
literature [15], is important for its glycosidase and pectinolytic activities.

No statistically significant differences were observed for OTU3 (Geotrichum ghanense),
OTU2 and OTU1608 (Pichia kudriavzevii, formerly Issatchenkia orientalis), OTU1419
(Issatchenkia orientalis) and OTU13 (Rhodotorula mucilaginosa). Several yeast species, such as
P. kudriavzevii and S. cerevisiae, were identified as actors in cocoa bean fermentation through-
out the world [28,42]. On the other hand, as reported in detail by Douglass et al. (2018) [43],
the opportunistic pathogen Candida krusei, responsible for about 2% of Candida species
infections in humans, and the important industrial yeast Pichia kudriavzevii (regarded as
non-pathogenic) are the same species. So, caution and detailed analyses may be needed
before the use of P. kudriavzevii strains for food application.

Hanseniaspora opuntiae (OTU6) was abundant but not statistically different between
JF (about 15% abundance) and BF (about 18% abundance). This result was aligned with
previous studies [15,28]: Pichia kudriavzevii (OTU2 and 1608) and Hanseniaspora opuntiae
(OTU6) were the main yeast species detected in the BF, but not in GF.
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H. opuntiae was identified as the unique yeast strain present on fresh cocoa beans. This
species usually dominated during cocoa bean fermentation [12,29,44] or participated with
other yeast species at the beginning of fermentation [28,45]. This genus is also reported as
a less-fermentative yeast, producing ethanol at a concentration lower than that produced
by highly fermentative yeasts such as S. cerevisiae [45].

On the other hand, OTU466 (Hanseniaspora sp.) was statistically different and was
observed only for GF (more than 16% abundance) in this study. OTU16 (identified as
Hanseniaspora occidentalis) was abundant (more than 8%) in BF and statistically different as
compared to the other two fermentation methods. Hanseniaspora uvarum (OTU1034) was
equally observed in both GF and BF methods (more than 8%): according to
Visintin et al. (2016) [15], this species was the most isolated at time zero in BF. Some species
of Hanseniaspora, particularly H. uvarum, were identified to be positive for β-glucosidase,
glycosidase, pectinase and esterase activity [15]. Hanseniaspora spp. were relevant for the
impact on final cocoa quality as they produce ethanol, secondary products (organic acids,
ketones, esters) and glycosidase [4,37].

Mucor inaequisporus (OTU5) was statistically different for GF and BF with about
16% abundance in the samples obtained by the GF method. Mucor, specifically Mucor
racemous, dominated the whole fermentation process studied in [33]. On the contrary,
Ceratocystis paradoxa (OTU14) was statistically different between GF and JF.

According to the literature [12,15,29,31], Saccharomyces cerevisiae is the most abundant
species in BF and GF, and it was confirmed in this study with the presence of OTU11 only in
BF and in GF methods. In a previous study [15], S. cerevisiae was positive for β-glucosidase,
glycosidase, protease (influencing) and pectinase activities, having an impact on the final
quality [46]. Pectinase activity is important for pulp degradation, whereas protease activity
influences first the concentration of amino acids within the beans and then chocolate flavor
due to the formation of pyrazines during roasting. The fermentation of sugars in the pulp
(β-glucosidase and glycosidase activity) impacted volatile metabolites (e.g., organic acids,
esters, aldehydes, ketones) and final aromatic properties [45].

3.5. Biodiversity Indexes

The α-diversity analysis was based on observed richness (S) and Simpson’s diversity
index (D). The Simpson index quantifies the biodiversity of habitat and is based on the
richness and uniformity of species [47]. Good’s coverage was calculated to evaluate the
percentage of diversity obtained by sequencing [48]. These are indicators of richness and
evenness, and they calculate the value of diversity, a value that increases with the number
of species and the measure of equidistribution (uniformity, equality).

The number of bacterial species in BF and JF samples was high and not equidistributed
(Figure 6a), while the number of fungal species was lower for BF and GF compared to JF
samples (Figure 7a), from which wider species diversity could be deduced.
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Figure 6. Simpson’s (a) and observed (b) richness indexes for the analyzed samples. BAC OTUs were
classified according to different fermentation methods.
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As shown by the observed S index in Figure 6b, BF and JF samples had higher
variability than GF in terms of bacterial species. On the contrary, the fungal species
variability of GF was much higher compared to BF and JF (Figure 7b).

3.6. PICRUST Analysis

A PICRUST analysis was performed to predict the functional potential of microbial
communities associated with fermented cocoa beans. The 3-hydroxyphenyl-acetate degra-
dation pathway (Figure 8a) was classified as belonging to the group of aromatic compound
degradation pathways, which includes pathways of different microorganisms that degrade
substrates to serve as sources of nutrients and energy [27]. 4-Hydroxyphenyl-acetate is
a typical aromatic amino acid fermentation product, but many bacteria convert it firstly
into (3,4-dihydroxyphenyl) acetate, which is then degraded into TCA cycle intermediates,
providing carbon and energy sources to the bacteria [49,50].

The aromatic compound degradation via β-ketoadipate (MetaCyc ID code
PWY-5431 [27]), among the “Aromatic Compound Degradation” class, showed a sig-
nificant difference between the BF method and GF method, in which the abundance was
higher (Figure 8b). As reported by Caspi et al. (2018) [27], the expected taxonomic range
was Proteobacteria, and Pseudomonas putida was highlighted among the species. In this
study, Pseudomonas sp. was abundant in GF. The β-ketoadipate pathway is usually chro-
mosomally encoded and, taking part in the degradation of naturally occurring aromatic
compounds, is considered as a major utility pathway for the degradation of these aro-
matic compounds [51]. A variety of aromatic compounds, such as 4-hydroxybenzoate and
benzoate, serve as growth substrates for bacteria through the β-ketoadipate pathway [51].

In addition, other bacteria employ this pathway, which involves two parallel branches,
protocatechuate and catechol dissimilation [52]. Both these two pathways were significantly
different for BF and GF, with a predominance for GF.

Protocatechuate is one of the intermediate metabolites in the microbial degradation
of various compounds. Three pathways were identified: protocatechuate degradation I,
protocatechuate degradation II (found in this study) and protocatechuate degradation III.
The protocatechuate degradation II pathway, part of the β-ketoadipate pathway, is common
among soil bacteria and fungi, differing in organization and regulation between the different
species [51].

Catechol can be degraded in two ways: the meta-cleavage pathway and the ortho-
cleavage pathway (found in this study, MetaCyc ID PWY-5417). The ortho-cleavage path-
way employs the catechol 1,2-dioxygenase enzyme for catechol cleaving, and the result
is further metabolized in 3-oxoadipate. This pathway is typical of soil bacteria and fungi,
with differences in organization and regulation within the species [51–54]. The two phyla
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individuated by the MetaCyc database were Actinobacteria and Proteobacteria, with relevance
in Pseudomonas [27].
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Even if there are no data available for cocoa bean fermentation, in silico analysis
suggests a clear difference between the BF and GF. Further research is needed to better
evaluate the possible role of these pathways.

The P122-PWY pathway corresponds to heterolactic fermentation [27], and it is shown
in Figure 8c. This fermentation significantly dominated samples from BF and JF, with
very low abundance in GF samples. Homo- or hetero-fermentation converts glucose, still
present after yeast growth, into lactic acid, acetic acid, carbon dioxide and/or ethanol.
It was observed that the metabolic capabilities of LAB were most related to heterolactic
fermentation and citrate assimilation pathways [55]. Fructose, still abundant, is fermented
by fructose-favoring LAB species or is used as an alternative external electron acceptor by
strictly heterofermentative LAB species, such as L. fermentum and Weissella strains. In the
first 24 h, while yeast converts glucose into ethanol, citric acid is used as a co-substrate in the
heterolactate fermentation, generating lactic acid or acetic acid and/or flavor compounds
(diacetyl, acetoin and 2,3-butanediol) from pyruvate metabolism. This allows a slight
increase in the pH of the pulp, with the relative proportion of all the end-product, enabling
the modulation of firstly the composition of the cocoa fermenting mass and, consequently,



Foods 2023, 12, 2024 15 of 19

the microbial succession and growth [3,12,30,44]. In particular, the slightly rising pH, due
to the assimilation of citric acid by heterofermentative LAB, and the increase in oxygen,
create the ideal condition for aerobic AAB growth [56]. In this way, there is a maximization
of the LAB growth rate on glucose [1,46].

The P125-PWY corresponded to the 2,3-butanediol biosynthesis according to the
MetaCyc database [27]. This pathway is part of the super-pathway of 2,3-butanediol
biosynthesis (MetaCyc ID: PWY-6396), which includes several pathways found in different
organisms, each producing various 2,3-butanediol stereoisomers. The super-pathway was
observed mostly in BF samples as the P125-PWY shown in Figure 8d.

2,3-Butanediol could be fermented by many bacteria species, which could not carry
the process all the way through, accumulating different intermediates, such as acetoin and
diacetyl. Acetoin and diacetyl, a secondary metabolite of yeast and bacteria, are known
for their characteristic taste of cream and butter [56–58]. Diacetyl was observed as an
important flavor metabolite in dairy products, wine and beer [59]. On the other hand,
acetoin, which is one of the desirable compounds for flavor development in cocoa bean
fermentation, was observed to come from the metabolism of yeast, such as the two strains
S. cerevisiae YB14 and P. kudriavzevii YP13 [60]. The 2,3-butanediol compound, produced by
Bacillus spp., gives sweet and flowery notes during cocoa fermentation [4,56]. According
to Visintin et al. (2017), Castro-Alayo et al. (2019) and Magalhães da Veiga Moreira et al.
(2017) [57,60,61], the 2,3-butanediol compound was identified as a fine aroma component,
detected in Brazil cocoa using two different starter mixes. Acetoin and 2,3-butanediol were
found also after drying Criollo cocoa beans [60]. Diacetyl, 2,3-butanediol and acetoin, as
well as acetaldehyde, were observed and found to increase sensory characteristics during
fermentation [31].

Notably, L-leucine degradation and L-histidine degradation pathways were found
to be statistically more abundant in GF than either BF or JF; this observation warrants
further investigation.

3.7. Evaluation of the Three Fermentation Methods

Sufficient pulp drainage and avoiding over-dissipation of heat and moisture are two
key points to result in a well-fermented mass [7,9]. Box fermentation, the most common
method around the world [8], is preferred to ground fermentation, as it takes place in a
more controllable environment and allows undesirable soil microbial contamination to be
avoided. The microbial population of fermentation in jute bags, despite being widely used
in Ecuadorian farms [9], is not as studied as ground and box populations, so further studies
are necessary to better evaluate this fermentation method.

Both Bacillus sp. and Tatumella sp., found to bring potential positive characteristics
to the finished fermented product [28,29,32–34,37], were detected exclusively in BF. Fur-
thermore, Hanseniaspora, important for producing ethanol and secondary products [4,37],
was one of the most relevant genera observed in BF. Moreover, the PICRUST analysis
identified positive pathways in the BF, allowing the conclusion that fermentation in boxes
is preferable.

In conclusion, it is important to clarify the differences between our studies and the
literature. Some studies investigated the diversity in microorganisms during different
spontaneous cocoa bean fermentations using mostly culture-dependent methods, which
were intrinsically biased due to the impossibility of cultivating all the species. The coupling
of classical methods with culture-independent molecular techniques could help in better
detailing the microbial population [10,12,36,44,62]. Moreover, high-throughput sequencing
(HTS) can be used to obtain greater resolution and detection sensitivity [63,64], even if it
depends on DNA extraction methodologies and primer specificity, which could influence
the richness and diversity of the microbial population investigated [14]. In addition, cocoa
fermentation is still spontaneous and influenced by many factors, so differences, sometimes
even very significant and unpredictable, can occur and have not been deeply studied yet.
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Therefore, further culture-dependent studies will reveal more precise aspects regarding
microbial dynamics during the fermentations analyzed.

4. Conclusions

Analysis of the bacterial and fungal ecologies at different times of cocoa bean JF, GF
and BF highlighted a strong variation in several species detected at the molecular level. A
higher complexity was highlighted for the fungal population compared to LAB and AAB
communities. The results indicated that the different fermentation methods modulate the
adaptation of bacteria and fungi along the different days of fermentation investigated.

L. fermentum and P. kudriavzevii were the dominant microorganisms in cocoa bean
fermentation and were found in BF, GR and JF.

A. tropicalis, K. michiganensis and Fusarium solani, H. opuntiae, Pichia terricola and
Candida ethanolica dominated JF samples, resulting in a widely heterogeneous community.
Pseudomonas sp., S. cerevisiae and Hanseniaspora sp. were the most abundant in GF. BF
showed the dominance of A. tropicalis and Bacillus sp. for the bacterial community, but also
S. cerevisiae and different species of Hanseniaspora (H. uvarum, H. opuntiae and H. occidentalis)
among the fungal community.

The differences between days and the three fermentation methods highlighted the
limited microbial variation and the presence of microorganisms that could guarantee a
good fermentation in the box method.

PICRUST analysis was performed to identify potential interesting pathways. Dif-
ferences between BF and GF methods were observed for the 3-hydroxyphenyl-acetate
degradation pathway and degradation via the β-ketoadipate pathway, which prevailed in
GF samples. On the other hand, heterolactic fermentation and 2,3-butanediol biosynthesis
pathways were abundant in BF. To better understand the microbial community and its
impact on the final chocolate quality, further studies should focus on microbial activities
and their fermentation pathways.
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