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Abstract
Miscanthus is a leading perennial biomass crop that can produce high yields on 
marginal lands. Moisture content is a highly relevant biomass quality trait with 
multiple impacts on efficiencies of harvest, transport, and storage. The dynamics 
of moisture content during senescence and overwinter ripening are determined 
by genotype × environment interactions. In this paper, unmanned aerial vehicle 
(UAV)-based remote sensing was used for high-throughput plant phenotyping 
(HTPP) of the moisture content dynamics during autumn and winter senescence 
of 14 contrasting hybrid types (progeny of M. sinensis x M. sinensis [M. sin x M. 
sin, eight types] and M. sinensis x M. sacchariflorus [M. sin x M. sac, six types]). 
The time series of moisture content was estimated using machine learning (ML) 
models and a range of vegetation indices (VIs) derived from UAV-based remote 
sensing. The most important VIs for moisture content estimation were selected 
by the recursive feature elimination (RFE) algorithm and were BNDVI, GDVI, 
and PSRI. The ML model transferability was high only when the moisture con-
tent was above 30%. The best ML model accuracy was achieved by combining 
VIs and categorical variables (5.6% of RMSE). This model was used for phenotyp-
ing senescence dynamics and identifying the stay-green (SG) trait of Miscanthus 
hybrids using the generalized additive model (GAM). Combining ML and GAM 
modeling, applied to time series of moisture content values estimated from VIs 
derived from multiple UAV flights, proved to be a powerful tool for HTPP.
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1   |   INTRODUCTION

Miscanthus is a promising perennial crop that can achieve 
high biomass production on marginal lands (Amaducci 
et al., 2016; van der Cruijsen et al., 2021; Pancaldi & 
Trindade, 2020; Shepherd et al., 2020). Due to its perennial 
nature, Miscanthus has a limited input requirement and is 
cultivated under no tillage regime leading to multiple eco-
system services provision (Agostini et al., 2021; Ferrarini 
et al., 2016, 2021; Martani et al., 2021). Most of the research 
on Miscanthus has been conducted on Miscanthus x gigan-
teus (Heaton et al., 2010), which is a naturally occurring 
sterile triploid hybrid of Miscanthus sacchariflorus (M. sac) 
and Miscanthus sinensis (M. sin) (Hodkinson et al., 2002). 
New Miscanthus hybrids (Clifton-Brown et al., 2018, 2019; 
Hastings et al., 2017) have been recently obtained from 
several breeding programs (Clifton-Brown et al., 2019). In 
Europe, rhizome- and seed-based Miscanthus hybrids are 
available at a technology readiness level that can enable 
the plantation of thousands of hectares per year (Clifton-
Brown et al., 2018). These novel Miscanthus hybrids are 
being tested in multiple environments within the EU-BBI 
project GRACE.

Plant senescence is a key trait for perennial plants as 
it limits biomass yield, modifies moisture content, and af-
fects nutrient translocation (Boersma et al., 2015; Jensen 
et al., 2016; Malinowska et al., 2016; Sarath et al., 2014; 
Yang & Udvardi, 2017). Moisture content at harvest is 
the most important biomass quality trait (Robson et al., 
2011; Styks et al., 2020). Monitoring the dynamics of crop 
senescence and moisture content can support the choice 
of the optimal harvest time that can improve biomass 
quality and logistics biomass supply chain. Lewandowski 
et al. (2016) found that moisture content of different 
genotypes can vary due to morphological differences 
and senescence patterns, but it is primarily determined 
by harvest date. Several studies have shown that late se-
nescence (stay green—SG) maximizes biomass yield 
(Clifton-Brown et al., 2001), while early senescence in-
creases biomass quality (Clifton-Brown & Lewandowski, 
2002). SG is determined by a complex physiological con-
trol (e.g., chlorophyll efficiency, nitrogen contents, nu-
trient remobilization, and source–sink balance) (Munaiz 
et al., 2020; Thomas & Howarth, 2000) and traditional 
phenotyping methods for evaluating SG and delayed se-
nescence are time-consuming (Furbank & Tester, 2011). 
Nondestructive methods are based on greenness visual 
score (Bogard et al., 2011) and SPAD measurements 
(Lopes & Reynolds, 2012; Xie et al., 2016), for the estima-
tion of the green leaf area and relative chlorophyll con-
tent, respectively. These methods can be used to monitor 
field trials but are not effective in monitoring senescence 
dynamics at commercial scale. New sensing technologies 

have contributed to a substantial improvement in the 
monitoring of SG in different crops (Cerrudo et al., 2017; 
Kipp et al., 2014; Liedtke et al., 2020; Lopes & Reynolds, 
2012). High-throughput plant phenotyping (HTPP) with 
remote sensing is a rapid and nondestructive technology 
that can be used to monitor the senescence of numerous 
genotypes, thus supporting breeding programs (Anderegg 
et al., 2020; Hassan et al., 2018). Remote sensing technol-
ogies use different types of sensors, such as Red–Green–
Blue (RGB), multispectral, hyperspectral, and thermal 
cameras, installed on satellites and on unmanned aerial 
vehicles (UAVs) (Xie & Yang, 2020). Spectral data can be 
used to calculate vegetation indices (VIs), which can be 
used to estimate crop parameters related to SG trait: nor-
malized difference vegetation index (NDVI) for green bio-
mass (Cabrera-Bosquet et al., 2011), enhanced vegetation 
index (EVI) for leaf area index (LAI) (Alexandridis et al., 
2019), and modified chlorophyll absorption in reflectance 
index (MCARI) for chlorophyll content (Haboudane et al., 
2002). Other VIs, such as the plant senescence reflectance 
index (PSRI) (Merzlyak et al., 1999) or the structure insen-
sitive pigment index (SIPI) (Peñuelas et al., 1995), which 
are based on the chlorophyll/carotenoid ratio as the de-
composition rates of these pigments are affected during 
senescence, were specifically developed to study crop se-
nescence. The normalized difference water index (NDWI) 
(Gao, 1996), calculated using near-infrared (NIR) and 
shortwave-infrared (SWIR) spectral bands, has been pro-
posed as a powerful direct water-sensitive VI, which can 
be used for the remote sensing of canopy water content 
(CWC) (Jackson et al., 2004). However, NDWI is rarely 
calculated by UAV because it requires costly sensors that 
are equipped with the SWIR band. Zhang and Zhou (2019) 
compared direct against indirect (which does not include 
the SWIR band) water-sensitive VIs, such as NDVI, NDRE, 
CIgreen, and CIred-edge and found that these VIs were 
strongly correlated with the CWC as the direct VIs.

Field trials carried out with small plots cannot be mon-
itored using satellite data, for this HTPP using UAV-based 
multispectral images is best used in breeding programs 
where numerous genotypes are compared (Gracia-Romero 
et al., 2019; Ostos-Garrido et al., 2019; Su et al., 2019; Varela 
et al., 2021; Yang et al., 2017; Zhou et al., 2019). UAV-based 
multispectral images were used in many studies to com-
pare genotypes on the basis of VIs linked to LAI (Potgieter 
et al., 2017), green LAI (Blancon et al., 2019), canopy cover 
(Makanza et al., 2018), crop biomass and yield (Johansen 
et al., 2020; Wang et al., 2019), and senescence dynamics 
(Hassan et al., 2018). However, many VIs show nonlin-
ear relationships with their associated crop parameters 
(Verrelst et al., 2015). Machine learning (ML) regression 
algorithms have increasingly been used in HTPP to rec-
ognize nonlinear and nonparametric relationships. ML is 
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used to combine multiple VIs for estimating crop parame-
ters from a sequence of UAV remote sensing acquisitions. 
ML models use two main datasets: a training set on which 
the best model is trained to fit the measured parameters 
and a test set used to assess the performance of model 
(Kuhn & Johnson, 2013). In addition to the VIs data, with 
ML methods, numerous types of data, such as categorical 
variables (e.g., genotype, crop type, locations, agronomic 
treatments) (Im et al., 2009; Meroni et al., 2021; Wolanin 
et al., 2020), can be used in the analysis (Verrelst et al., 
2018). An ML method commonly used in many remote 
sensing analyses is random forest (RF) (Belgiu & Drăguţ, 
2016; Holloway & Mengersen, 2018), which can estimate 
crop biomass (Han et al., 2019) and yield (Johansen et al., 
2020) from UAV multispectral images. A main limit of the 
RF model is its transferability to environments, cropping 
systems, or growing seasons different from those used for 
training the model (Vuolo et al., 2013). Another limitation 
is in the training set size (Millard & Richardson, 2015) and 
the unreliability of predictions made beyond the range of 
values of the parameters present in the training set (Shah 
et al., 2019). In addition, Schauberger et al. (2020) reported 
that 52% of the studies on ML do not validate the models’ 
performance with independent test sets. Overall, the qual-
ity of training data for developing robust ML models is the 
key for successfully transferring the trained model and its 
knowledge to other target domains/tasks. For these rea-
sons, new studies are needed to assess the transferability 
of ML models for UAV applications in agricultural sci-
ences (Johansen et al., 2020).

However, to date, only time series VIs data from UAV, 
and not estimated crop parameter of ML models, are used 
for HTPP. A set of known models are normally fitted to 
VIs time series to characterize plant growth/status asso-
ciated with different phenological phases. Specifically 
for the senescence, logistic functions (Christopher et al., 
2014) and the Gompertz model (Anderegg et al., 2020) are 
the two most used models. Another potential approach to 
fit VIs data is the generalized additive model (GAM) (Nolè 
et al., 2018). Antonucci et al. (2021), for example, success-
fully used GAM approach for HTPP of whole-canopy pho-
tosynthesis and transpiration.

Although remote sensing applications that support 
these approaches exist and have been already tested suc-
cessfully for field crops (Alam et al., 2012; Kavats et al., 
2019; Yang, 2011; Zhang et al., 2021), no remote sensing 
application for estimating moisture content of Miscanthus 
is reported in scientific literature.

As a first-time testbed for phenotyping Miscanthus with 
UAV remote sensing, two locations, where 14 contrasting 
Miscanthus hybrids were compared in a completely ran-
domized block design, were monitored regularly with 
moisture content measurements and UAV flights and 

senescence dynamics were assessed during two growing 
seasons. The objectives of this study were (1) to evaluate 
the performances and transferability of RF models in es-
timating the moisture content of Miscanthus biomass and 
(2) to phenotype the dynamics of senescence and identify 
SG trait of contrasting Miscanthus hybrids using GAM ap-
plied to moisture content time series.

2   |   MATERIALS AND METHODS

2.1  |  Experimental design

This study is part of the EU-BBI funded project “GRowing 
Advanced industrial Crops on marginal lands for biorEfin-
eries” (GRACE) that aims to prove the feasibility of large-
scale Miscanthus cultivation on marginal land. Two of the 
eight plot scale (PS) trials conducted within GRACE pro-
ject have been selected for this study. The two sites were 
located in the province of Piacenza (NW Italy): PAC 1 lo-
cated in San Bonico (45°00′11.70″N, 9°42′35.39″E) and 
PAC 2 located in Chiulano (44°50′40.32″N, 9°35′04.93″E) 
(Figure 1). Former land use was arable land with cereal 
crops rotation and permanent meadow, respectively, 
in PAC 1 and PAC 2. The climate in both locations is 
temperate. The sites differ for soil type and elevation 
(Figure  1). Meteorological data were collected from au-
tomatic weather stations located at each experimental 
site (Table 1). Experimental layout was a complete rand-
omized block design with 14 Miscanthus hybrids (Table 2) 
with n = 4 replicates for a total of n = 56 plots. Plot size 
was 6 m × 7 m. The 14 hybrids, coded from GRC 1 to GRC 
15 (except GRC 12), were grouped into three main geno-
types: M. x giganteus as control genotype, and interspecific 
(M. sin x M. sac) and intraspecific (M. sin x M. sin) hybrids 
genotypes. Both PS trials were established in April 2018 
after winter ploughing and spring seed bed preparation 
(power harrowing). Plugs and rhizomes were manually 
transplanted while mechanical weeding during the first 
years was performed three times. Neither irrigation nor 
fertilization was applied. Measurements of this study were 
carried in the second and third growing season during 
senescence.

2.2  |  Crop measurements

Senescence was tracked visually following the scoring 
method proposed by Robson et al. (2011), which is based 
on a scale from 1 to 9, where 1 indicates the lowest level 
of “greenness” of the whole visible aerial parts of the 
plant and 9 is the score attributed when no visible leaf 
senescence occurs. Scores were acquired from August to 
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February (until harvest) for a total of 10 events in PAC 1 
and 9 in PAC 2. Besides scoring senescence, at each meas-
urement event, whole stem samples randomly selected for 
each plot (20 for M. sin x M. sin and 10 for M. sin x M. 
sac hybrids, respectively) were sampled to calculate plant 
moisture content. Samples were weighed immediately 
after harvest and again after having been oven-dried at 
105°C, and then, the percentage of moisture content was 
calculated (Samuelsson et al., 2006).

2.3  |  UAV multispectral data and 
vegetation indices

The unmanned aerial vehicle (UAV) used in the experi-
ment was a four-rotator DJI Matrice 210 RTK (SZ DJI 
Technology Co.) combined with an RTK (Real-Time 
Kinematic) GPS positioning system. At each visual 
scoring event, a UAV multispectral data acquisition 
was performed; in addition, 10 supplementary flight 
missions were carried out on PAC 1 and five on PAC 2 
to increase the frequency of senescence tracking. Ten 
flights were performed over PAC 1 in both seasons, 
while in PAC 2, 6 and 8 flights were realized in the first 
and second seasons, respectively (Table S1). The UAV 
was equipped with a MicaSense RedEdge-Mx multi-
spectral camera (MicaSense). RedEdge-Mx camera 
can acquire the images in five different spectral bands: 
blue (475 nm center, 32 nm bandwidth), green (560 nm 
center, 27 nm bandwidth), red (668 nm center, 14 nm 

bandwidth), red edge (717  nm center, 12  nm band-
width) and near-infrared (840 nm center, 57 nm band-
width). All the flights were performed between 11.00 
and 15.00. The flight altitude above ground level (AGL) 
was 40–50 m in PAC 1 and 80–100 m in PAC 2. The for-
ward overlap was set at 80% and lateral overlap was set 
at 75% of the images. The flight speed was set at 3 m/s. 
The ground sampling distance (GSD) was 2.78–3.47 cm 
and 5.56–6.94  cm in PAC 1 and PAC 2, respectively. 
The flight was performed in automatic mode with way-
point routes as the presence of a GPS navigation system 
enables a more accurate image acquisition. The DJI 
Pilot software (SZ DJI Technology Co.) was used for 
flight planning and automatic mission control. For the 
radiometric calibration of the images, the reflectance 
of a spectral panel (MicaSense) with reflectance values 
provided by MicaSense was captured before each flight. 
In addition, a light sensor that automatically adjusts 
the readings to ambient light was mounted at the top of 
the UAV to minimize error during image capture. The 
radiometric calibration, image mosaicking, and ortho-
mosaic generation were done using the Pix4D mapper 
(Pix4D, S.A.). The orthomosaic in reflectance values 
generated from the software was used for the calcula-
tion of 54 vegetation indices (VIs) as shown in Table S2. 
To extract the spectral information of each experimen-
tal plot, the polygons of the experimental design were 
drafted in AutoCAD (Autodesk) and georeferenced 
based on the UAV multispectral images by using QGIS 
software (QGIS Development Team, 2021).

F I G U R E  1   Locations, experimental field design, main soil properties and drone picture of Miscanthus trials
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2.4  |  Machine learning model for 
moisture content estimation

A recursive feature elimination (RFE) algorithm (Feng 
et al., 2020; Yue et al., 2018) was initially applied to solve 
the multicollinearity problem among VIs by selecting 
the most important VIs for moisture content estimation. 
Inputs for the RFE algorithm were the predictor variables 
(the 54  VIs calculated from UAV multispectral images) 
and the corresponding target values (the measured plant 
moisture content). In the RFE algorithm, the random 
forest (RF) model was used to minimize the root mean 
square error (RMSE). The RFE results were combined 
with the “pickSizeTolerance” function to select a model 
containing fewer predictor variables within the bounds 
of a user-defined threshold metric (Parmley et al., 2019). 
RMSE metric and the 0%, 1%, and 5% tolerance thresholds 
were utilized to identify models with acceptable perfor-
mance but with fewer predictor variables.

On the selected VIs, RF was then used to estimate the 
moisture content of Miscanthus hybrids. RF model is an 
ensemble learning model where the output averages the 
result of multiple regression trees (Kamir et al., 2020). The 
RF models were created using the caret R package (Kuhn, 
2008). Two steps in RF modeling were adopted: Firstly, 
RF was trained and tested on the VIs selected from RFE 
algorithm at the tolerance threshold of 1%; secondly, the 
three categorical crop variables (material, hybrid code, 
and genotype, Table 2) and their combinations were 
added in RF modeling to check for improvement in mod-
el's performance.

For the RF modeling, the optimal size of the variable 
subset (“mtry”) was obtained by grid-searching method 
using repeated k-fold cross-validation. The repeated k-fold 
cross-validation consists of dividing the data into k inde-
pendent folds of the same size, training the algorithm on 
(k−1) folds, and testing its accuracy on the remaining fold 
based on the error between predicted and target values 
several times (Kamir et al., 2020). In our study, we used 
a tenfold cross-validation, which was repeated five times. 
This procedure was used to estimate the moisture content 
and to evaluate the transferability of the models tested on 
five subset test datasets: four specific season and location 

datasets (two locations x two growing seasons) and one 
reference dataset, as a comparison. The reference data-
set was created by using a stratified random sampling 
method (Han et al., 2019): data from both locations and 
seasons were split into 70/30 between training and test-
ing based on moisture content distribution. To include 
the categorical variables into the models (second step), a 
one-hot-encoded approach was used to encode categori-
cal variables into numbers, assigning the value 1 when the 
condition is satisfied and 0 when it is not satisfied.

RF models’ performances were evaluated calculating 
the root mean square error (RMSE) and the normalized 
root mean square error (NRMSE) as follows:

where n is the sample number, xi and yi are the estimated 
and measured moisture content, and ȳ is the mean of 
the measured value. The performance metrics were also 
calculated for different intervals of moisture content and 
each Miscanthus hybrid. The moisture content intervals 
investigated were lower than 30%, between 30% and 60%, 
higher than 60%, and finally between 10% and 80%. The 
set size used for each training dataset was reported to 
compare the metrics of the models. For each model, the 
RMSE and NRMSE were calculated for each genotype 
and for the different moisture content intervals to evalu-
ate the models.

2.5  |  GAM for phenotyping Miscanthus 
senescence dynamics

The moisture content during senescence was esti-
mated from spectral data acquired by UAV using the 
validated RF model: This approach was selected to 
add supplementary flights to the dataset without field 

RMSE =

�

∑n
i=1

�

xi−yi
�2

n

NRMSE (%) =

�

∑n
i=1 (xi−yi)

2

n

y
100

T A B L E  2   Characteristics of the 14 Miscanthus hybrids considered in this study

Material Hybrid code Genotype
Planting 
density

Seed-based plugs GRC 1–8 M. sinensis x M. sinensis 3 plants/m2

Rhizomesa GRC 9 M. x giganteus 1.5 plants/m2

Seed-based plugs GRC 10–14 (except GRC 12) M. sinensis x M. sacchariflorus 1.5 plants/m2

Rhizomesa GRC 15 M. sinensis x M. sacchariflorus 1.5 plants/m2

aHybrids commercially available.
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measurements. The validated RF model included as 
predictor variables the VIs and the three categorical 
variables. The time series moisture content dataset es-
timated from RF was fitted against the modified day of 
the year (DOY). Early and late senescence in Miscanthus 
occur normally in two different years. To overcome the 
problem of having nonsequential DOY data along the 
senescence season, moisture content data of January 
and February were calculated by adding 365 to the DOY 
of the corresponding year. To phenotype the dynamics 
of senescence and identify stay-green (SG) trait of the 
different Miscanthus hybrids, statistical analysis of the 
estimated moisture content time series was carried out 
via a generalized additive model (GAM). The regression 
model GAM is a nonparametric extension of the gener-
alized linear model (GLM), which allows the integration 
of nonparametric smoothing functions and nonlinear 
fitting of the variables. GAM models were fitted in R 
package “mgcv” (Wood, 2017). The fitted model used 
fixed factors and a smooth for DOY, based on location, 
season, and hybrid. GRC 9 (M. x giganteus) was used a 
reference to detect difference between interspecies and 
intraspecies Miscanthus hybrids.

3   |   RESULTS

3.1  |  Dynamics of moisture content in 
Miscanthus biomass

The frequency distribution of measured moisture con-
tent and its variation during the two senescence seasons 
at two locations are shown in Figure 2 and Figure S1. 
Overall, the peak of frequency distribution of moisture 
content values was recorded for all genotypes within 
the interval between 30% and 60% (Figure 2). M. sin x 
M. sin showed a left-skewed distribution with relatively 
high-frequency values for moisture content below 30% 
(Figure 2). Moisture content loss started at the begin-
ning of December at both locations and for all geno-
types (Figure S1). M. sin x M. sac hybrids showed a 
higher moisture content (+18% and +6%) than M. sin x 
M. sin hybrids and M. x giganteus in both locations from 
December until harvest in late winter (Figure 2 and 
Figure S1). On average, M. sin x M. sac hybrids and the 
M. x giganteus were harvested at 45% and 37% moisture 
content, respectively (Figure 2 and Figure S1). M. sin x 
M. sin hybrids had an average moisture content at win-
ter harvest of 22%. The dynamics of moisture content 
during senescence are confirmed by visual recording of 
senescence score based on plant greenness (Figure S2). 
For all genotypes, the correlation between senescence 

score and moisture content indicated that moisture 
content loss starts when senescence score values of 4 
are recorded.

3.2  |  Recursive feature elimination of 
vegetation indices

The optimal number of vegetation indices (VIs) included 
in the models to minimize RMSE in the estimation of 
moisture content was obtained by the recursive fea-
ture elimination (RFE) algorithm with repeated cross-
validation (Figure 3). RFE analysis showed that using 
four or less VIs led to a moisture content estimation 
with RMSE values higher than 8% (Figure 3a). With the 
0% tolerance threshold, the minimum RMSE (7.4%) was 
achieved with 30 VIs. However, the use of 20 or more VIs 
led to a moisture content estimation with a mean RMSE 
value of 7.4%. On the contrary, with the thresholds of 
tolerance of 1% and 5%, the optimal number of VIs was 
14 (RMSE  =  7.5%) and 6 (RMSE  =  7.8%), respectively 
(Figure 3a). The threshold of tolerance of 1% was cho-
sen as the threshold that maximizes the model's perfor-
mances with the minimum number of VIs. According to 
the importance of the ranking (Figure 3b), 14  VIs have 
been selected for RF models training among the 54  VIs 
calculated (Figure 3b). The 14  VIs were BNDVI, GDVI, 
PSRI, MCARI/MTVI2, GOSAVI, NGBDI, NLI, GBNDVI, 
GLI, MCARI/OSAVI2, SIPI, MCARI2, OSAVI2, and GI. 
The six most important VIs to reach 5% tolerance (RMSE 
<7.8%) were (Figure 3b) BNDVI, GDVI, PSRI, MCARI/
MTVI2, GOSAVI, and NGBDI.

3.3  |  RF model performance and 
transferability

The performances (RMSE and NRMSE) of the ran-
dom forest (RF) models were compared among the 
season-specific datasets of the two location and 
against one reference dataset (split into 70/30 train-
ing/test) (Table 3). When all the genotypes and all 
moisture content intervals were considered, the RF 
model of the reference dataset was the most accurate 
one among the five models considered in estimat-
ing Miscanthus moisture content (RMSE = 6.9% and 
NRMSE  =  14%). The other models achieved lower 
accuracy values with RMSE ranging from 9.2% to 
10.6% and NRMSE from 20.1% to 22.1%. The accuracy 
of the RF models trained with the season–location-
specific datasets and for the intervals of moisture 
content of 30%–60% and >60% was on average similar 
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(RMSE  =  8.5%) to the accuracy of the RF model 
trained with the reference dataset for the same inter-
vals (RMSE = 6.3%). On the contrary, the accuracy of 
the RF models for the season–location-specific data-
sets was lower for the interval of moisture content 
<30% (RMSE  =  16.4%) than the reference dataset 
(RMSE = 10.7% and 6.3%, respectively).

The addition of categorical variables (material, hybrid 
code, and genotype of Table 2) to the reference dataset 
model of VIs improved the accuracy of moisture content 
estimation (Figure 4). The single addition of material, 
hybrid code, or genotype in the model (Figure 4b–d) de-
creased the RMSE from 6.9% (model with only Vis) to 6.8%, 
6.4%, and 5.7%, respectively. The simultaneous addition of 
three categorical variables to the model achieved the best 
performance with an RMSE = 5.6% and NRMSE = 11.4% 
(Figure 4e). Finally, the RMSE of all models was evaluated 
for each genotype (Figure 4f). The addition of categorical 
variables decreased the RMSE value with respect to the 
model with only VIs for the M. x giganteus genotype from 
7.6% to 5.6%, for the interspecific M. sin x M. sac genotype 
hybrids from 6.9% to 4.7%, while for intraspecific M. sin x 
M. sin genotype hybrids from 6.8% to 6.1%.

3.4  |  Phenotyping of Miscanthus 
senescence dynamics with multiple 
UAV flights

The RF model trained with the VIs and the three cat-
egorical variables was used to estimate moisture content 
of Miscanthus hybrids from spectral data of multiple 
UAV flights at two locations. Generalized additive model 
(GAM) was applied to time series moisture content data 
estimated from RF model, with the M. x giganteus (GRC 9) 
as reference for estimating significant differences among 
the hybrids during senescence. M. sin x M. sin hybrids 
(GRC 1–8) from DOY 280 (mid-early October) showed a 
constant and significant lower moisture content than the 
M. x giganteus hybrid (Figure 5). The first genotype show-
ing a significant difference in moisture content compared 
to GRC 9 was GRC 5, at DOY 260 (mid-September), while 
the last was GRC 1, at DOY 312 (mid-early November). 
Intraspecies M. sin x M. sin hybrids showed the highest 
variability on moisture content loss during senescence 
compared to interspecies M. sin x M. sac hybrids. The es-
timated difference of moisture content at harvest varied 
from 10.2% for GRC 1 to 14.5% for GRC 6. On the contrary, 

F I G U R E  2   Frequency distribution of the moisture content of different Miscanthus genotypes during the two seasons and on two 
locations
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constant negative differences compared to GRC9 oc-
curred later in the season (early November) for interspe-
cific M. sin x M. sac hybrids (GRC 10–15). The difference 
is statistically significant approximately from DOY 295 
(mid-late October) for GRC 10 hybrid and from DOY 314 
(mid-early November) for GRC 13 hybrid. At harvest, the 
estimated moisture content difference varied from −9.2% 
for GRC 11 to −10% for GRC 14. The rhizome-based GRC 
15 hybrid, a M. sin x M. sac genotype, showed a similar 
moisture content dynamics to the other rhizome-based 
hybrid (GRC 9).

4   |   DISCUSSION

The characterization of moisture content dynamics of 
Miscanthus biomass is important to determine the harvest 
time and selecting the most suitable genotypes in each en-
vironment. This study estimated the moisture content of 
14 contrasting Miscanthus hybrids combining unmanned 
aerial vehicle (UAV) remote sensing and machine learn-
ing. The random forest (RF) model was trained with 
moisture content values measured directly from each plot 

trial, UAV multispectral data (the vegetation indices), and 
categorical variables of Miscanthus hybrids (material, hy-
brid code, and genotype). The time series of the moisture 
content values estimated by RF model from VIs derived 
from multiple UAV flights was used for phenotyping se-
nescence dynamics and identifying the stay-green (SG) 
trait of Miscanthus hybrids using the generalized additive 
model (GAM).

4.1  |  Selection of multispectral 
vegetation indices for Miscanthus moisture 
content estimation

Increasing the number of VIs from 1 to 14 improved the 
RF model's accuracy and allowed to decrease RMSE from 
10% to 7.5% (Figure 3a). Generally, the estimation of the 
crop parameters via multiple VIs is affected by data re-
dundancy and multicollinearity among some vegetation 
indices (VIs) (Yue et al., 2018). The use of recursive fea-
ture elimination (RFE) algorithm proved to be a suitable 
approach to minimize RMSE while reducing the noise ef-
fect caused by data redundancy and multicollinearity, as 

F I G U R E  3   (a) Results of the RFE algorithm with different tolerance thresholds and (b) importance of the VIs used in the different 
tolerance thresholds (blue = 5%, yellow = 1% and grey = 0%)
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suggested by Han et al. (2019) and Anderegg et al. (2020). 
This study showed that the three most important VIs 
for estimating moisture content were VIs based on blue 
(BNDVI), green (GDVI), and red-edge (PSRI) spectral 
bands (Figure 3b). Zhu et al. (2019) found that the blue 
band is sensitive to the change of carotenoid content and 
the green and red-edge bands are sensitive to the change 
of chlorophyll content. VIs based on these spectral bands 
indeed have been used to study crop senescence dynam-
ics (Anderegg et al., 2020; Peñuelas & Inoue, 1999). The 
blue band proved to be the most important variable for 
predicting harvest date (pod's maturity) in soybean (Yu 
et al., 2016). Anderegg et al. (2020) reported that the time 
series of PSRI could accurately track senescence dynam-
ics of the canopy of wheat and replace the visual scorings. 
Furthermore, the SIPI was strongly correlated with rela-
tive water content (RWC) and can indirectly evaluate leaf 
water stress (Peñuelas & Inoue, 1999). Also, this study 
confirmed that the VIs selected by the RFE algorithm 
and used in the RF model were sensitive to changes of 
chlorophyll/carotenoid ratio during senescence. Finally, 
although no VIs based on the SWIR band were used in 

this study, it was demonstrated that the combination of 
multiple VIs based on VIS-NIR images compensated for 
the lack of the SWIR band, which is known to predict well 
crop moisture content when integrated with VIs such as 
NDWI (Zhang & Zhou, 2019).

4.2  |  Moisture content estimation with a 
machine learning algorithm

This study estimated the moisture content with the RF 
model, trained with a wide range of genotypes, across 
two senescence seasons and at two different locations, 
differing strongly in soils and slightly in climate. These 
differences, as suggested by Maxwell et al. (2018), help 
to assess the RF model transferability. The transferabil-
ity of the moisture content estimation models was eval-
uated by splitting the moisture content dataset into five 
test datasets. The performance metrics of the RF models 
showed that a good accuracy (6.9% of RMSE and 14.0% 
of NRMSE) was achieved when all the genotypes and all 
moisture content intervals were considered in the models 

F I G U R E  4   Estimated versus measured moisture content (%) of Miscanthus with RF model with only VIs and no categorical variables 
(a), with the addition of transplanting material (b), of hybrid (c), of genotype (d) and their combination (e). RMSE for each model is reported 
as barplot (f) according to the different genotypes
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(Table 3). Similar results were reported by Li et al. (2021) 
to estimate the moisture content of three species of trees, 
who achieved an NRMSE between 8.6% and 13.9%. The 
models evaluated to estimate the moisture content might 
be affected by errors in the estimation in some moisture 
content intervals due to limits in the range of data used 
to train the model (Shah et al., 2019). Indeed, small in-
creases in RF models performance were found when the 
models were trained with the specific season and location 
datasets. This difference is due to different models’ accu-
racy when the moisture content is <30%. During the two 
seasons, many hybrids did not reach such low moisture 
content, and thus, the training set size for this interval was 
lower.

To assess the performance of the models in identify-
ing the optimal harvest dates based on moisture content 
at different endpoints of drying, the moisture content 
dataset was indeed divided into different intervals 
(<30%, 30–60, >60%, and 10–80%). It is considered that 
the optimal moisture content for the Miscanthus winter 
harvest is at or below 20% (Lewandowski et al., 2016) in 
order to avoid self-ignition of biomass, minimize trans-
port costs, and increase combustion efficiency (Robson 
et al., 2011). In this study, especially novel interspecies 
seed-based M. sin x M. sac hybrids rarely reached at 
harvest a moisture content lower than 30% (Figure 2), 
while M. sin x M. sin in some cases dried until 10%. In 
the low moisture content interval (<30%), a large dif-
ference in RMSE was found between the model trained 
with the reference dataset and on the season–location-
specific datasets (Table 3). These results indicate that 
the tested models cannot be transferred with good accu-
racy to locations and or/growing seasons where biomass 
of these genotypes dried until moisture content <30%. 
The low transferability of RF beyond the extreme values 
of the training data range confirmed that this is one of 
the main limits of the RF model (Johansen et al., 2020; 
Vuolo et al., 2013). On the contrary, the RF models were 
transferable in different locations and growing seasons 
for moisture content values ranging between 30% and 
60% (Table 3). The training set size and the moisture 
content distribution during senescence confirmed to be 
the most important dataset's characteristics to achieve 
good model's performances (Millard & Richardson, 
2015) and transferability (Johansen et al., 2020).

The addition of categorical variables in RF model im-
proved the estimation of moisture content. Introducing 
three categorical variables such as material, hybrid, and 
genotype decreased more the RMSE than adding only 
material type (Figure 4b,e). The M. sin x M. sac and M. 
x giganteus genotypes showed the highest improvement 
of RMSE due to the addition of these categorical vari-
ables (Figure 4f). The data imbalance in the “hybrid” 

categorical variables among control M. x giganteus (n = 1), 
interspecies (n  =  4), and intraspecies (n  =  8) genotype 
hybrids could have caused these differences in model's 
performance.

Another limitation of the RF model developed in this 
study relies on the fact that it is composed of multiple VIs 
calculated with precise multispectral bands. This means 
that our RF model might not reach the same accuracy if 
the same VIs are calculated on spectral data acquired with 
different multispectral cameras operating within different 
band intervals. This calls for the development of algo-
rithms able to overcome these differences in the spectral 
data through advanced normalization and calculation 
procedures of VIs from different sensors (Emilien et al., 
2021; Hoque & Phinn, 2018).

4.3  |  Phenotyping stay-green trait via 
UAV remote sensing to capture genotypic 
variation during senescence

This study demonstrated that high-throughput plant 
phenotyping (HTPP) of contrasting Miscanthus hybrids 
is possible by combining multiple UAV flights and GAM 
modeling. Stay-green (SG) is an important phenotypic 
trait when evaluating the senescence of novel Miscanthus 
hybrids. The goal of plant breeders is to obtain high yield-
ing plants with high biomass quality. In Miscanthus, a de-
layed senescence is expected to increase yields, while an 
early senescence is expected to increase biomass quality 
(Robson et al., 2011). In our environments, senescence of 
M. sin x M. sin hybrids led to drier biomass (22% mean 
moisture content in late February) than commercially 
available rhizome-based hybrids (GRC 9–15 with 37%), 
while M. sin x M. sac hybrids showed an SG trait with 
an average moisture content of 45% until harvest. These 
findings confirmed that biomass with low moisture con-
tent at the harvest is usually related to early senescence 
in Miscanthus, as was found by Robson et al. (2011). 
However, opposite results to our study were reported by 
Nunn et al. (2017) that observed a lack of relationship be-
tween an early senescence and low moisture content at 
harvest in different locations across Europe.

Mild cold conditions during autumn–winter periods af-
fected the start of senescence and moisture content losses 
dynamics until late winter harvest in all Miscanthus hy-
brids. The overwintering conditions (e.g., number and fre-
quency of chilling frosts) between the start of senescence 
and harvest time have a higher effect on the moisture con-
tent than the senescence itself (Sarath et al., 2014). That 
was the case in our two southern European locations, 
where a reduced frequency of killing frost days and ab-
sence of prolonged freezing periods in late autumn–early 
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winter in 2019–2020 seasons (Table 1) might not have in-
duced complete senescence in the M. sin x M. sac hybrids 
leading to a higher moisture content at harvest. During 
the first years after establishment, Miscanthus might have 
a reduced senescence (Clifton-Brown & Lewandowski, 
2000) due to changes in the source–sink dynamics of 
young Miscanthus plants (Boersma et al., 2015). However, 
standing age did not affect in our case the observed de-
layed senescence since measurements were done on ma-
ture plantation at second and third year.

Genotypic variations in flowering and senescence times 
are instead two key explanatory factors of SG trait ob-
served in perennial crops. The relationship between flow-
ering and senescence in Miscanthus has been proposed 
to promote nutrient remobilization, and hence biomass 
quality improvement (Jensen et al., 2016). GAM applied 
to estimated moisture content values from the RF model 
from multiple UAV flights helped us to capture differ-
ences in senescence dynamics in contrasting Miscanthus 
hybrids (Figure 5). A constant increase in the differences 
between the estimated moisture content of interspecies 
M. sin x M. sac and intraspecies M. sin x M. sin hybrids was 
observed between DOY 300 (late October) and DOY 350 
(mid-December). During this period, the mean tempera-
ture decreased under 10°C. Therefore, under these mean 

temperature conditions, M. sin x M. sin hybrids might be 
more sensitive to temperatures below 10°C and thus start 
active senescence sooner than M. x giganteus and M. sin x 
M. sac hybrids that instead showed a delayed senescence. 
Fonteyne et al. (2016) reviewed the effect of frost and 
chilling stress in Miscanthus genotypes and found that 
M.  sacchariflorus was more resistant to cold stress than 
M. sinensis. All M. sin x M. sac genotype hybrids showed a 
more persistent SG compared to M. x giganteus and M. sin x 
M. sin hybrids. In agreement with our results, Rusinowski 
et al. (2019) found that GNT 34  hybrid (GRC 13 in this 
study) had a longer SG period than M. x giganteus. Only 
GRC 15 among M. sin x M. sac genotype had similar se-
nescence dynamics to the M. x giganteus. The similar se-
nescence dynamics observed for these two commercially 
available rhizome-based hybrids confirm that transplant-
ing material (rhizome vs. seed-based plugs) has an impact 
on moisture content loss during senescence. The observed 
differences in senescence time and moisture content loss 
rate during senescence among Miscanthus genotypes are, 
respectively, linked to flowering time and nutrient remo-
bilization. Other studies confirming that M. sin x M. sin 
hybrids flowered earlier (mid-summer) than rhizome-
based M. x giganteus hybrid while M. sin x M. sac never 
reached flowering (Clifton-Brown & Lewandowski, 2002; 

F I G U R E  5   Senescence dynamics of the different Miscanthus hybrids according to the difference in estimated moisture content with 
reference hybrid M. x giganteus—GRC 9 (dashed black line). The estimation of moisture content time series was carried out by using a 
GAM. Solid and dashed coloured lines denote respectively significant (p < 0.05) and not significant differences of the corresponding hybrid 
compared to reference hybrid
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Nunn et al., 2017). Jensen et al. (2016) found, for similar 
contrasting hybrids, that nitrogen and phosphorous re-
mobilization rate to underground rhizomes followed the 
same trend of moisture content loss observed also in our 
study. The absence or delay of flowering, respectively, 
in M. sin x M. sac and rhizome-based hybrids may have 
caused delayed senescence that was also observed in the 
SG trait in this study. As a consequence, these genotypes 
were harvested at higher moisture content (Figure S1) 
and likely higher nutrient content compared to M. sin x 
M. sin hybrids. The high variability among Miscanthus 
hybrids in moisture content loss dynamics during senes-
cence (Figure 5) might be further explained by the wider 
geographical distribution of M. sinensis than of M. sac-
chariflorus (Clifton-Brown & Hastings, 2015). This may 
have produced a higher genetic variation of the pheno-
typic traits due to the hybridization among M. sinensis 
species (Robson et al., 2011). Additionally, also the cold 
resistance trait likely depends on the origin and in situ en-
vironmental characteristics of the genetic accession of the 
Miscanthus species. In fact, opposite results to our study 
were reported by Clifton-Brown et al. (2002) showing 
that different M. sin x M. sin hybrids had delayed senes-
cence with respect to M. x giganteus and M. sacchariflorus 
hybrids.

In conclusion, this study demonstrated that moisture 
content of Miscanthus can be accurately estimated via 
machine learning algorithm applied to multiple VIs cal-
culated from UAV-based VIS-NIR images. The RF model 
developed on different genotypes showed a good transfer-
ability to multiple location and seasons when moisture 
content ranges from 30% to 60%. Further training datasets 
are required to extend the transferability and confirm the 
same performance of the RF model at lower moisture con-
tent values (10%–30%). For the first time, we showed that 
the combination of machine learning (ML) and GAM ap-
plied to time series of moisture content values estimated 
from VIs derived from multiple UAV flights is a powerful 
tool for high-throughput plant phenotyping. Remote sens-
ing can be used for phenotyping future advanced breeding 
programs of Miscanthus. The possibility to distinguish via 
remote sensing the SG trait of novel Miscanthus hybrids 
can deepen our understanding of key factors mediating 
the induction of early or delayed senescence. Our study 
focused on the use of ML algorithms to estimate moisture 
content during Miscanthus senescence, but we believe 
that the same methodological approach can be used for 
estimating other phenological traits or yield components 
in similar and/or different crops. This is particularly rele-
vant for upscaling models from experimental plot to field 
scale by using satellites. Satellites can collect data of many 
fields simultaneously, with a larger number of spectral 
bands, like the SWIR band, that could ultimately support 

with high precision and resolution moisture content and 
yield estimation. ML algorithms could be applied in re-
mote sensing to develop satellite and UAV applications 
beneficial to sustainable crop management, for example, 
in the case of Miscanthus to identify optimal harvest date 
or to predict commercial yield (quantity and quality).
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