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Abstract
The aim of this paper is to extend some notions of proper minimality from vector 
optimization to set optimization. In particular, we focus our attention on the con-
cepts of Henig and Geoffrion proper minimality, which are well-known in vector 
optimization. We introduce a generalization of both of them in set optimization with 
finite dimensional spaces, by considering also a special class of polyhedral ordering 
cone. In this framework, we prove that these two notions are equivalent, as it hap-
pens in the vector optimization context, where this property is well-known. Then, 
we study a characterization of these proper minimal points through nonlinear sca-
larization, without considering convexity hypotheses.
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1  Introduction

The notion of proper minimality was developed in vector optimization in order 
to rule out some undesirable features of the solutions, that is, the main intention 
of introducing this type of notions is to provide a more depurated set of minimal 
points that satisfy better properties, taking into account some criterion.

One of the first notions in this vein was introduced by Geoffrion, for multiob-
jective optimization problems with the Pareto order (see [1]), who considered the 
boundedness of trade-off ratios between conflicting objectives. On the other hand, 
some years later, Henig proposed a geometrical approach to proper minimality 
(see [7]) for a general vector optimization problem, where a sort of stability with 
respect to order perturbations is considered. Many other authors proposed alter-
native versions of proper minimality (for a detailed overview about proper mini-
mality see, e.g, [3]). Since its origin, proper minimality in vector optimization is 
deeply related to scalarization techniques [14], in the sense that the proper mini-
mal points can be characterized through scalarization approaches. Indeed, this is 
the main advantage of this type of minimal points.

In the last decades, the attention of many researchers was focused on an exten-
sion of vector optimization to a class of problems where the objective functions 
are set-valued maps. Some interesting applications can be found, for instance, 
in mathematical finance [6], game theory [20], mathematical economics and 
robust optimization (see Chapter  15 in [12] and the references therein). A rel-
evant approach in this field is based on comparisons of sets whose origins go 
back in time (see, e.g., [13, 22]). In this paper we deal with a quasiorder relation 
induced by the original order structure in the space. This approach was exploited 
by Kuroiwa (see [15, 17], and also [12] and the references therein).

To our knowledge, the only attempt that exists in the literature to extend the 
notion of proper minimality to the more general framework of set optimization 
was proposed in the very recent paper by Huerga et  al. [8], in which several 
notions of proper efficiency in the sense of Henig were defined and studied for a 
set-valued optimization problem, and by considering the set criterion of solution.

In this paper, we continue with the contribution to the study of this kind of 
notions and we introduce some extensions to the framework of set optimization of 
the concepts of proper minimality originally developed by Geoffrion and Henig 
in the vector optimization setting.

Since, in particular, the concept due to Geoffrion makes sense for finite dimen-
sional spaces, for the sake of technical simplicity, we are going to consider that 
the involved spaces are finite dimensional along the whole paper. In this setting, 
one of the main reasons of studying a definition of proper minimality in the sense 
of Geoffrion, in addition to the definitions following the line due to Henig, is to 
provide a more tangible interpretation of proper minimality, based on bounded-
ness of trade-off ratios of conflicting objectives. Moreover, although the original 
notion of proper minimality in the sense of Geoffrion is given for the Pareto cone, 
the extension introduced in this paper is defined for polyhedral cones.
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Furthermore, in the multiobjective (vector) optimization setting with the Pareto 
order, it is known that the notions of proper efficiency given by Henig and Geoffrion 
are equivalent (see, for instance [21]). This property is also satisfied by the corre-
sponding extensions of the concepts introduced in this work to the set optimization 
framework, as it is studied in Sect. 4. Thus, these extensions result to be natural and 
provide some interesting insights in set optimization.

The paper is organized as follows. In Sect. 2, we present the framework, nota-
tions and some preliminary results that we need along the paper. In Sects.. 3 and 
4, we introduce the new concepts of proper minimality in the sense of Henig and 
Geoffrion, respectively, for the set optimization framework, where the involved 
spaces are finite dimensional. Also in Sect. 4, we study the equivalence among these 
new notions, when a polyhedral ordering cone is considered. Finally, in Sect. 5, we 
develop a characterization of proper minimal points by using nonlinear scalarization 
techniques, without considering any convexity assumption. At the end of the paper 
we state the conclusions.

2 � Preliminaries

As we have mentioned in the introduction, we consider this work in the setting of 
finite dimensional spaces. It is worth to mention that the definitions of proper effi-
ciency in the sense of Henig presented in Sect. 3 can be straightforwardly extended 
to more general spaces but, for the convenience of the reader, we prefer to keep the 
finite dimensional setting along the work.

First of all, we remind that a nonempty set K ⊂ ℝ
p is a cone if �k ∈ K , for all 

� ≥ 0 and for all k ∈ K . In this paper, we consider a closed, convex and pointed 
( K ∩ (−K) = {0} ) cone K ⊂ ℝ

p that induces in ℝp a partial order ≤K , defined as 
usual:

Given x, y ∈ ℝ
p , we denote by x(y) the usual scalar product in ℝp . The polar and the 

strict positive polar cones of K are denoted, respectively, by K∗ and K∗s , i.e.,

and

Given a nonempty set F ⊆ ℝ
p , we denote by intF and coneF , the topological interior 

and the cone generated by F, respectively. We remind that coneF =
⋃
�≥0

�F . We say 

that F is solid when intF ≠ ∅ . Also, the Euclidean closed unit ball in ℝp is denoted 
by B

ℝp.
We recall that a nonempty convex subset B ⊂ ℝ

p is a base of K, if for every 
k ∈ K�{0} there exist a unique 𝜆 > 0 and an element b ∈ B such that k = �b (see, 
for instance, [9, Definition 1.10(d)]).

x ≤K y ⇔ y − x ∈ K, ∀x, y ∈ ℝ
p.

K∗ = {x∗ ∈ ℝ
p ∶ x∗(k) ≥ 0 for every k ∈ K},

K∗s = {x∗ ∈ ℝ
p ∶ x∗(k) > 0 for every k ∈ K ⧵ {0}}.
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Since K is a closed convex pointed cone in a finite dimensional space, any base B of 
K is compact and there exists x∗ ∈ K∗s such that

(see [2, Theorem 2.1.15 and page 3], [11, Theorem 3.8.4] and [10, Lemma 3.21(d)]).
Let B be a base of K and � ∈ (0, �) , where � = d(0,B) = infb∈B ‖b‖ (we con-

sider the Euclidean norm). T̄hen, C� ∶= cone(B + �B
ℝp ) is a dilating cone for K, i.e., 

K�{0} ⊆ intC𝛼 . It is called the Henig dilating cone ([2]) and satisfies the properties 
collected in the following proposition (see [2, Lemma 3.2.51] and [13, Proof of Propo-
sition 2.4.6(iii)]).

Proposition 1 

	 (i)	 C� is solid, pointed, closed and convex for every � ∈ (0, �).
	 (ii)	 If 0 < 𝛼1 < 𝛼2 < 𝛿 , then K�{0} ⊆ C𝛼1

�{0} ⊆ intC𝛼2
.

	 (iii)	 For any pointed solid convex cone K′ ⊂ ℝ
p such that K�{0} ⊆ intK� , there 

exists � ∈ (0, �) such that C𝜂�{0} ⊆ intK�.

In particular, we can consider the special case when K is polyhedral, i.e.,

where P ∈ M(m, p) , i.e., it is a matrix with m rows and p columns, with m ≥ p , 
hence K is closed and convex. Moreover, we suppose that P has full rank p, so the 
pointedness property of K is kept.

For this case, Kaliszewski [11] defined a family of dilating cones for K, {K𝜌}𝜌>0 , by 
perturbing matrix P, in the following way

where U denotes the all-ones square matrix of order m. This family of dilating cones 
satisfy the next properties (see [111, Lemma 3.7]).11

Proposition 2 

	 (i)	 K� is solid, closed, convex and pointed for all 𝜌 > 0.
	 (ii)	 K�{0} ⊆ K𝜌1

�{0} ⊆ intK𝜌2
 , for all 𝜌1 < 𝜌2.

	 (iii)	 For any pointed solid convex cone K′ ⊂ ℝ
p such that K�{0} ⊆ intK� , there 

exists 𝜌 > 0 such that K𝜌�{0} ⊆ intK�.

We underline that, in particular,

for all � ≥ 0 , where pi denotes the ith row of matrix P, so

B = Sx∗ ∶= {x ∈ K ∶ x∗(x) = 1}

(1)K =
{
y ∈ ℝ

p ∶ Py ∈ ℝ
m
+

}
,

(2)K� ∶= {y ∈ ℝ
p ∶ Py + �UPy ∈ ℝ

m
+
},

(3)s∗ ∶=

m∑
i=1

pi ∈ K∗s
�
,
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is a compact base of K� , for all � ≥ 0.
In order to consider a set minimization framework, we are going to follow the 

approach introduced by Kuroiwa [15] (see also [17]), who defined several set rela-
tions with respect to a cone. The most popular ones are called the upper and the 
lower set less order relations, that are given, respectively, in the following way:

for ∅ ≠ A,B ⊆ ℝ
p , where we consider that A + � = � + A = � . It is easy to see that

In this paper, we are going to focus on the lower set less relation, which is the most 
known and used for minimization processes in set optimization. As usual, with 
respect to ⪯l

K
 , we introduce an equivalence relation ∽l

K
 defined by:

Note that A ∽l
K
B if and only if A + K = B + K.

Given a collection of sets A ⊆ 2ℝ
p , we can now recall the definitions of minimal-

ity and strict minimality based on relation ⪯l
K

 (see, for instance, [5, 16], and the 
references therein).

Definition 1  Let Â ∈ A . 

	 (i)	 It is said that Â is minimal in A when for every B ∈ A , if B ⪯l
K
Â then Â ∽l

K
B.

	 (ii)	 It is said that Â is strictly minimal in A if there is no B ∈ A such that B ⪯l
K
Â 

and B ≠ Â.

The two definitions coincide when A ∽l
K
B implies that B = A . In the special case 

where all the elements of A are singletons, both definitions above collapse into the 
classical notion of minimal element of a set in the partially ordered space ℝp with 
respect to ≤K.

3 � Henig proper minimality notion in set optimization

In this section we introduce several notions of proper minimality in set optimization 
based on the concepts due to Henig [7] in vector optimization.

In the original definition introduced by Henig, proper minimality is defined as 
minimality with respect to a dilating cone C whose interior contains K�{0} . Since 
the notion of minimality in a set optimization framework relies upon a quasiorder 

S
�
s∗
∶= {y ∈ K� ∶ s∗(y) = 1}

A ⪯u
K
B if and only if A ⊆ B − K,

A ⪯l
K
B if and only if B ⊆ A + K,

A ⪯l
K
B ⟺ −B ⪯u

K
−A.

A ∽l
K
B if and only if A ⪯l

K
B and B ⪯l

K
A.
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relation among sets, the reformulation of Henig’s proper minimality for set optimi-
zation involves a set relation formulated with respect to a dilating cone, as well. A 
further possibility is to consider a notion of strict minimality in the sense of Henig.

Thus, in the following definition we provide three different concepts of proper 
minimality in the sense of Henig in set optimization.

From now on, we consider a collection of sets A ⊆ 2ℝ
p

�{�}.

Definition 2  Let Â ∈ A . 

	 (i)	 It is said that Â is H1-properly minimal (shortly, H1-P minimal) in A if there 
exists a pointed convex cone C such that K ⧵ {0} ⊆ intC and Â is minimal in 
A with respect to ⪯l

C
 , i.e., 

	 (ii)	 It is said that Â is H2-properly minimal (shortly, H2-P minimal) in A if there 
exists a pointed convex cone C such that K ⧵ {0} ⊆ intC and 

	 (iii)	 It is said that Â is H-properly strictly minimal (shortly, H-PS minimal) in A if 
there exists a pointed convex cone C such that K ⧵ {0} ⊆ intC and Â is strictly 
minimal in A with respect to ⪯l

C
 , i.e., 

Remark 1 

(a)	 In the special case of vector optimization, where all the elements of A are single-
tons, all the three definitions coincide with Henig proper minimality, as defined 
in [7].

(b)	 We point out that in the set optimization framework, the way to define a notion 
of proper minimality that follows the line due to Henig is not unique, as it is 
shown in Definition 2. Probably, at a first sight, the most natural extension of 
the concept due to Henig to a set optimization problem is the H1-P minimal-
ity, based on the idea of replacing the cone K by a dilating cone C. The H1-P 
minimal points satisfy interesting properties. A first study of this notion can be 
found in [8], for a set-valued optimization problem and by considering the set 
criterion of solution (with the lower set less order relation).

However, H1-P minimality does not imply, in general, minimality (see, for instance, 
Example 1 below). In the vector optimization framework, the notions of proper min-
imality arise with the idea of depurating the set of minimal points from some unde-
sirable features. Hence, the fact that the set of H1-P minimal points is not a subset of 
the set of minimal points is an irregularity that deserves futher investigation. Never-
theless, the concept of H2-P minimality (as well as the notion of H-PS minimality) 

for every B ∈ A, if B ⪯l
C
Â then Â ∽l

C
B.

for every B ∈ A, if B ⪯l
C
Â then Â ∽l

K
B.

there is no B ∈ A such that B ⪯l
C
Â and B ≠ Â.
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overcomes this drawback, as it is shown in the next proposition, whose proof follows 
directly from the definitions.
Proposition 3  Let Â ∈ A . 

	 (i)	 If Â is H-PS minimal in A , then Â is strictly minimal in A.
	 (ii)	 If Â is H-PS minimal in A , then Â is H2-P minimal in A.
	 (iii)	 If Â is H2-P minimal in A , then Â is a minimal set in A.
	 (iv)	 If Â is H2-P minimal in A , then Â is H1-P minimal in A.

In the following examples we point out some features of these notions. In the first 
one, we show that, in general, H1-P minimality does not imply minimality.

Example 1  Let X = ℝ
2 ordered by K = ℝ

2
+
 , and let A = {A,B} , where 

A =
{
(x, y) ∈ ℝ

2 ∶ y ≥ 0
}
 , and B =

{
(x, y) ∈ ℝ

2 ∶ y ≥ 1
}
 . Then both A and B are 

H1-P minimal in A , but B is not minimal in A.

Moreover, the next examples clarify that none of the implications summarized in 
Proposition 3 can be reversed.

Example 2  Let X = ℝ
2 ordered by K = ℝ

2
+
 , and let A = {A,B} , where 

A =
{
(x, y) ∈ ℝ

2 ∶ y ≥ 0
}
 , and B =

{
(x, y) ∈ ℝ

2 ∶ x ≥ 0
}
 . Then A is a minimal 

set (and a strictly minimal set). On the other hand, since A + K = A , B + K = B , 
and A + C = B + C = ℝ

2 for all convex cones C such that K ⧵ {0} ⊆ intC , then A is 
H1-P minimal but it is not H2-P minimal.

Example 3  Let X = ℝ
2 ordered by K = ℝ

2
+
 , and let A = {A,B} , where

Then, both the sets A and B are H2-P minimal but not H-PS minimal.

The next result straightforwardly follows from Propositions 1 and 2.
We denote by Min(A,E) (respectively, SMin(A,E) ) the set of minimal (respec-

tively, strictly minimal) elements of A with respect to a pointed convex cone E. On 
the other hand, Min2(A,E) represents the set of elements A ∈ A for which if B ∈ A 
and B ⪯l

E
A , then A ∽l

K
B.

Finally, by H1-P(A) (respectively, H2-P(A) , H-PS(A) ) we denote the set of H1-P 
(respectively, H2-P, H-PS) minimal elements of A.
Proposition 4  The following relations hold. 

	 (i)	 H1 − P(A) ⊇
⋃

𝛼∈(0,𝛿) Min(A,C𝛼).

A =
{
(x, y) ∈ ℝ

2 ∶ 0 ≤ x ≤
1

2
, 0 ≤ y ≤

1

2

}
, and

B =
{
(x, y) ∈ ℝ

2 ∶ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
.
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	 (ii)	 H2 − P(A) =
⋃

�∈(0,�) Min2(A,C�).
	 (iii)	 H − PS(A) =

⋃
�∈(0,�) SMin(A,C�).

If K is polyhedral, defined as in (1), we also have that 

(d)	 H1 − P(A) ⊇
⋃

𝜌>0 Min(A,K𝜌).
(e)	 H2 − P(A) =

⋃
𝜌>0 Min2(A,K𝜌).

(f)	 H − PS(A) =
⋃

𝜌>0 SMin(A,K𝜌).

The proof of this proposition follows in a straightforward way from the defini-
tions of C� and K� , and from Propositions 1 and 2.

Remark 2  Clearly, the relations of Proposition 4 also hold if we replace C� by 
intC� ∪ {0} and K� by intK� ∪ {0}.

Finally, when collection A is finite, we have the following equivalences.

Proposition 5  Suppose that A is finite and let Â ∈ A . If all the elements of A are 
compact sets, then 

	 (i)	 Â is H-PS minimal if and only if it is strictly minimal.
	 (ii)	 Â is H2-P minimal if and only if it is minimal.

Proof  Right hand implications in (i) and (ii) are clear (see Proposition 3(i), (iii)), so 
we only have to prove the reciprocal implications. 

	 (i)	 ⇐ Reasoning by contradiction, let us suppose that Â is strictly minimal but not 
H-PS minimal in A. Therefore there exists a sequence of sets 

{
Bn

}∞

n=1
⊆ A 

such that, for every n,  Bn ≠ Â and 

 Since A is finite, by considering a subsequence if necessary, we can suppose 
that Bn = B , for all n, where B ∈ A , B ≠ Â . Then, we have that Â ⊆ B + C 1

n

 , 

for all n ∈ ℕ . We claim that 
⋂

n

�
B + C 1

n

�
= B + K . Indeed, inclusion ⊇ is 

clear. Reciprocally, let d ∈
⋂

n

�
B + C 1

n

�
 . Then, for every n, there exist 

b̂n ∈ B , 𝛼n > 0 , bn ∈ B and tn ∈ B
ℝp such that d = b̂n + 𝛼n

(
bn +

1

n
tn

)
 . Since 

B, B and B
ℝp are compact, by taking subsequences if necessary, we can sup-

pose without loss of generality that there exist b̂ ∈ B , b ∈ B and t ∈ B
ℝp such 

that b̂n → b̂ , bn → b and tn → t . If the sequence 
{
�n
}
 is unbounded, there 

Â ⊆ Bn + C 1

n

.
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exists a subsequence 
{
�nj

}
 such that �nj → +∞ . Then, on the one hand, 

1

�nj
d → 0 , and on the other hand 

so we reach a contradiction, since 0 ∉ B . Thus, 
{
�n
}
 is bounded and there 

exists 𝛼 > 0 such that, up to a subsequence, �n → � , from which we have that 
d = b̂ + 𝛼b ∈ B + K . Thus, Â ⊂ B + K , and we obtain a contradiction, since 
Â is strictly minimal.

	 (ii)	 ⇐ The proof follows analogously as in (i). In this case, if Â is not H2-P mini-
mal, then there exists a sequence 

{
Bn

}∞

n=1
⊆ A such that 

 from which we get Â ⊆ B + K and Â ≁l
K
B , for some B ∈ A , B ≠ Â , that 

contradicts that Â is minimal.
	�  ◻

Table  1 collects all the relationships between the various notions of Henig-type 
proper minimality and the well-known notions of minimality used in set optimization.

4 � Geoffrion proper minimality notion in set optimization

In this section, we are interested in searching for a notion of proper minimality in set 
optimization that extends the concept due to Geoffrion [1] in multiobjective optimiza-
tion, based on bounds of trade-off ratios.

The main idea is to avoid some undesirable situations, where the trade-off ratios 
between conflicting objectives can be unbounded.

In a set minimization framework, we should compare trade-off ratios between varia-
tions based on elements chosen in two sets.

Here, we consider that K is polyhedral, defined as in (1).
Given k ∈ {1, 2,… ,m} , A,B ∈ A and b ∈ B , we denote

With the intent of clarifying the ideas behind our approach, we give an informal 
interpretation of the above sets in the special case of a multiobjective minimization 

1

𝛼nj
d =

1

𝛼nj
b̂nj + bnj +

1

nj
tnj → b,

Â ⊆ Bn + C 1

n

, and Â ≁l
K
Bn,

Δ+
k
(B,A, b) ∶= {a ∈ A�(B + K) ∶ pk(b − a) > 0},

Δ−
k
(B,A, b) ∶= {a ∈ A�(B + K) ∶ pk(b − a) < 0}.

Table 1   Relationships between Henig-type proper minimality notions
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problem, where the ordering cone K is the nonnegative orthant and hence the matrix 
P is the identity matrix. Given an element b ∈ B , Δ+

k
(B,A, b) represents all the ele-

ments a ∈ A�(B + K) such that the kth component of b is larger than the correspond-
ing k-component of a, while Δ−

k
(B,A, b) is the set of all the elements a ∈ A�(B + K) 

such that the kth component of b is smaller than the corresponding k-component of 
a. Since we are considering a minimization problem, roughly speaking, we can inter-
pret Δ+

k
(B,A, b) as the set of elements a ∈ A�(B + K) such that the kth component of 

b worsens with respect to the corresponding component of a, while Δ−
k
(B,A, b) is 

the set of all the elements a ∈ A�(B + K) such that the kth component of b improves 
with respect to the corresponding component in a.

Definition 3  Let Â ∈ A . It is said that Â is properly strictly minimal in the sense of 
Geoffrion (shortly G-PS minimal) in A if 

1.	 Â is strictly minimal in A , and
2.	 there exists M > 0 such that, for every B ∈ A , with Â ⊈ B + K  , there is 

â ∈ Â�(B + K) such that, for all indices i and all elements b̂ ∈ B with 
â ∈ Δ−

i
(B, Â, b̂) , there is an index j with â ∈ Δ+

j
(B, Â, b̂) and 

The above definition can be interpreted as a refinement of strict minimality 
in the sense of boundedness of some trade-off ratios. For the convenience of the 
reader, we will focus again on the special case of a multiobjective minimiza-
tion problem, where K = ℝ

p

+ . Hence P is the identity matrix. Let B ∈ A , with 
Â ⊈ B + K . What the definition says is that if the strictly minimal set Â is G-PS 
minimal, then we can always find â ∈ Â in such a way that if there exists an ele-
ment b ∈ B such that the ith component of b is smaller than the ith component of 
â (hence, better, in the minimization framework), then there is another index j ≠ i 
for which the jth component of b is bigger than the jth component of â and the 
trade-offs between the i, jth components are bounded.

We can also introduce an alternative definition of proper minimality in the 
sense of Geoffrion by changing the strict minimality condition by minimality in 
Definition 3.

Definition 4  Let Â ∈ A . It is said that Â is properly minimal in the sense of Geof-
frion (shortly G-P minimal) in A if Â is minimal in A , and condition 2 of Definition 
3 is verified.

Remark 3 

(a)	 It is clear that if Â ∈ A is G-PS minimal, then it is G-P minimal.

pi(â − b̂)

pj(b̂ − â)
≤ M.
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(b)	 If K = ℝ
p

+ and all the elements of A are singletons, the notions of G-PS and G-P 
minimality reduce to the concept of proper minimality due to Geoffrion [1] in 
multiobjective optimization.

Next, we prove the equivalences between the notions of Henig and Geoffrion 
proper minimality studied above. We remind that in the setting of multiobjective 
optimization, with respect to the Pareto cone, both notions provide the same set of 
proper minimal points (see, for instance, [21]), so it is natural to expect the equiv-
alences of the respective notions in the extended framework of set optimization.

Theorem 1  Let Â ∈ A . If Â is H-PS minimal in A , then Â is G-PS minimal in A.

Proof  Suppose by reasoning to the contrary that Â is H-PS minimal in A , but not 
G-PS minimal. On the one hand, by Proposition 3(i), we have that Â is strictly 
minimal. On the other hand, by Proposition 4(vi) there exists 𝜌 > 0 such that 
Â ∈ SMin(A,K𝜌) , i.e.,

Fix M >
1

𝜌
+ m . Since Â is not G-PS minimal, then there exists B ∈ A�{Â} such 

that for all a ∈ Â�(B + K) there are an index i = i(a) ∈ {1, 2,… ,m} and an element 
b = b(a) ∈ B , with a ∈ Δ−

i
(B, Â, b) such that

Fix â ∈ Â�(B + K𝜌) ⊆ Â�(B + K) (such an element â exists since Â ⊈ B + K𝜌 ). For 
this â , there exist b̂ ∈ B and î ∈ {1, 2,… ,m} satisfying the conditions above. Con-
sider the vector Γ ∶= b̂ − â.

Without loss of generality, we can suppose that î = 1 and that the components of 
Γ are ordered according to their signs, as follows:

for some n ≤ m (observe that ps(Γ) > 0 for some s ∈ {2,… ,m} , since â ∉ B + K ). 
We note that the ith component of (P + �UP)(Γ) is given by pi(Γ) + �

∑m

i=1
pi(Γ) . 

Then, we have that

Â ⊈ B + K𝜌, ∀B ∈ A,B ≠ Â.

(4)
pi(a − b)

pj(b − a)
> M, ∀j ∈ {1, 2,… ,m} such that a ∈ Δ+

j
(B, Â, b).

ps(Γ) is

⎧
⎪⎨⎪⎩

< 0 if s = 1

> 0 if s = 2, ..., n

≤ 0 if s = n + 1, ...,m

m∑
i=1

pi(Γ) ≤

n∑
i=1

pi(Γ) < p1(Γ) − (n − 1)
p1(Γ)

M
= p1(Γ)

(
1 −

n − 1

M

)

< p1(Γ)
(
1 −

m

M

)
< 0.
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Hence,

Therefore, by (2), we have that b̂ − â ∈ −intK𝜌 , so â ∈ B + K𝜌 (in fact, since â is a 
general element of Â�(B + K𝜌) , we have that Â ⊆ B + K𝜌 ), and we reach a contradic-
tion. The proof is complete. 	�  ◻

Theorem 2  Let Â ∈ A . If Â is G-PS minimal in A , then Â is H-PS minimal in A.

Proof  By reasoning to the contrary, suppose that Â is G-PS minimal but not H-PS 
minimal in A . Hence, since Â is strictly minimal but not H-PS minimal, for every 
l ∈ ℕ , there exists Bl ∈ A such that

where {�l} is a sequence of positive real numbers that tends to zero.
On the other hand, since Â is G-PS minimal, there exists M > 0 such that for 

every Bl there is âl ∈ Â�(Bl + K) satisfying the conditions of statement 2 of Defini-
tion 3.

Taking into account statement (5), it follows that for every âl there exists 
b̂l = b̂l(âl) ∈ Bl such that Γl ∶= b̂l − âl ∈ −K𝜀l

⧵ {0} and b − âl ∉ (−K) for every 
b ∈ Bl . Then, it holds that

Since S�l
s∗

 is a base of K�l
 , there exist 𝜆l > 0 and sl ∈ S

�l
s∗

 such that

By (3), s∗(sl) = p1(sl) + p2(sl) +⋯ pm(sl) = 1 , so there exists at least one index 
i ∈ {1, 2,… ,m} , such that pi(sl) ≥

1

m
 . Without loss of generality, by consider-

ing a subsequence if necessary, we can consider p1(sl) ≥
1

m
 , for all l ∈ ℕ . Thus, 

p1(Γl) ≤ −𝜆l
1

m
< 0 , for all l ∈ ℕ.

Since Γl ∉ (−K) for every l ∈ ℕ , there exists a set � ≠ J(l) ⊆ {2, ...,m} such that 
pj(Γl) > 0 if and only if j ∈ J(l) , for every l ∈ ℕ . Since the set {2, ...,m} is finite, 
there exist at least one increasing sequence of integers 

{
lu
}+∞

u=1
 and a nonempty sub-

set J0 ⊆ {2,… ,m} such that J(lu) = J0 for every u ∈ ℕ . Hence, by (6) and (7) we 
have 0 < pj(Γlu

) ≤ 𝜀lu𝜆lu
∑m

i=1
pi(slu ) = 𝜀lu𝜆lu for every j ∈ J0 and for every u ∈ ℕ.

pj(Γ) + 𝜌

m∑
i=1

pi(Γ) < 𝜌p1(Γ)
(
1 −

m

M

)
< 0, for j = 1 and j ∈ {n + 1,… ,m}

pj(Γ) + 𝜌

m∑
i=1

pi(Γ) < −
p1(Γ)

M
+ 𝜌p1(Γ)

(
1 −

m

M

)

= p1(Γ)
(
−
1

M
+ 𝜌

(
1 −

m

M

))
< 0, for j ∈ {2,… , n}.

(5)Â ⊆ Bl + K𝜀l
and Â ⊈ Bl + K,

(6)pi(Γl) + �l

m∑
i=1

pi(Γl) ≤ 0, ∀i ∈ {1, 2,… ,m}.

(7)Γl = −�lsl.
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Then, for all u ∈ ℕ , it follows on the one hand that âlu ∈ Δ−
1
(Blu

, Â, b̂lu) , 
âlu ∈ Δ+

j
(Blu

, Â, b̂lu) if and only if j ∈ J0 , and for all j ∈ J0

but, on the other hand,

and we obtain a contradiction. The proof is complete. 	�  ◻

Then, from Theorems 1 and 2 we deduce the following result.

Theorem 3  Let Â ∈ A . It follows that Â is H-PS minimal in A if and only if Â is 
G-PS minimal in A.

Thus, we have proved that the notions of strict proper minimality in the senses of 
Henig and Geoffrion are equivalent. The question that arises now is what happens with 
the notion given in Definition 4. In the following results, we prove that this concept is 
equivalent to the H2-P minimality notion.

Theorem 4  Let Â ∈ A . If Â is H2-P minimal in A , then Â is G-P minimal in A.

Proof  By reasoning to the contrary, suppose that Â is H2-P minimal in A , but not 
G-P minimal. By Proposition 3(iii) we have that Â is minimal and by Proposition 
4(v) there exists 𝜌 > 0 such that

Fix M >
1

𝜌
+M . Since Â is not G-P minimal, there exists B ∈ A , with Â ⊈ B + K 

such that for all a ∈ Â�(B + K) there are an index i = i(a) ∈ {1, 2,… ,m} and an ele-
ment b = b(a) ∈ B , with a ∈ Δ−

i
(B, Â, b) such that statement (4) holds.

It follows that Â ⊈ B + K𝜌 . Otherwise, by (8) we have in particular that 
Â ⊆ B + K , and we reach a contradiction. The proof continues, then, in the same 
way as in the proof of Theorem 1. 	�  ◻

Theorem 5  Let Â ∈ A . If Â is G-P minimal in A , then Â is H2-P minimal in A.

Proof  Suppose that Â is G-P minimal but not H2-P minimal in A . Following the 
proof of Theorem 2, we have in this case a sequence Bl ∈ A such that

−
p1(Γlu

)

pj(Γlu
)
≥

�lu
1

m

�lu�lu
=

1

m�lu

u→+∞
⟶ +∞,

−
p1(Γlu

)

pj(Γlu
)
≤ M,

(8)for any B ∈ A, if Â ⊆ B + K𝜌, then Â ∽l
K
B.

Â ⊆ Bl + K𝜀l
and Bl ≁

l
K
Â,
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If Â ⊆ Bl + K , then since Â is minimal, we have Bl ⊆ Â + K , which contradicts 
Bl ≁

l
K
Â , so Â ⊈ Bl + K and the proof continues as in Theorem 2. 	�  ◻

Then, by Theorems 4 and 5 we obtain the next result.

Theorem 6  Let Â ∈ A . It follows that Â is G-P minimal in A if and only if Â is 
H2-P minimal in A.

5 � Scalarization for proper minimality in set optimization

In this section we present a characterization for H-PS minimal elements through non-
linear scalarization, without any convexity assumption, when the ordering cone K is 
polyhedral, defined as in (1).

Let 𝜌 > 0 . We remind that the ith row of the matrix P + �UP defining the dilating 
cone K� is given by the vector p�

i
∶= pi + �

∑m

l=1
pl , for i ∈ {1, 2,… ,m}.

Theorem 7  Let Â ∈ A . It follows that Â is H-PS minimal in A if and only if there 
exists 𝜌 > 0 such that for every B ∈ A , B ≠ Â , there exists a ∈ Â�B satisfying that

Proof  By Proposition 4(vi) and Remark 2, we have that Â is H-PS minimal if and 
only if there exists 𝜌 > 0 such that

The above is equivalent to say that for every B ∈ A , B ≠ Â , there exists a ∈ Â�B 
such that

From the definition of K� , it is easy to see that statement (9) is equivalent to say 
that for every b ∈ B , there exists i ∈ {1, 2,… ,m} such that p�

i
(b − a) ≥ 0 , which is 

equivalent to

which completes the proof. 	�  ◻

Remark 4  Let us note that when all the elements of A are singletons, i.e., when we 
consider a vector optimization setting, by Theorem 7 it follows that â ∈ A is H-PS 
minimal (that is, Henig proper minimal [7]) if and only if

inf
b∈B

max
i∈{1,2,…,m}

{
p
�

i
(b − a)

}
≥ 0.

Â ⊈ B + intK𝜌 ∪ {0}, for all B ∈ A, B ≠ Â.

(9)b − a ∉ −intK�, for all b ∈ B.

max
i∈{1,2,…,m}

{
p
�

i
(b − a)

}
≥ 0, for all b ∈ B,

min
b∈A

max
i∈{1,2,…,m}

{
p
𝜌

i
(b − â)

}
= 0.
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This result was proved in [4, Theorem 3.5] for a multiobjective optimization prob-
lem (i.e., when 4A = f (S) , f ∶ ℝ

n
→ ℝ

p is the multiobjective function and S is the 
feasible set).

6 � Conclusions

In this work we have first generalized the notion of proper minimality introduced 
by Henig to the case of a set optimization problem in finite dimensional spaces. In 
this vein, we have proposed various definitions by means of dilating cones and a 
set-order relation, and we have analyzed their relationships. Subsequently, we have 
introduced two Geoffrion-type notions of proper minimality in set optimization, 
based on boundedness of trade-off rations, also for the general case when the order-
ing cone is polyhedral, and we have proved that they are equivalent to the Henig-
type concepts, as it happens in the vector optimization framework. All these notions 
reduce to the concepts given by Henig and Geoffrion, respectively, when the vector 
optimization setting is considered.

Finally, we have obtained a characterization of strict proper minimality based on 
nonlinear scalarization techniques, without considering any convexity hypothesis.

To our knowledge, this is the first attempt in the literature to introduce a notion of 
proper minimality in the sense of Geoffrion, in the framework of set optimization.

The study presented in this work may be considered as a starting point for further 
investigation, for instance for studying optimality conditions through linear and non-
linear scalarization for proper minimal solutions of a set-valued optimization prob-
lem. Also, another future research line related to this work is the study of solution 
concepts in the spirit of proper minimality for set optimization problems based on 
lattice structures, associated to infimal and supremal sets, which is an alternative 
approach to the set criterion considered in this paper (see, for instance, [18, 19]).
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