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A B S T R A C T

We consider a 2D piecewise-linear discontinuous map defined on three partitions that drives the dynamics
of a stock market model. This model is a modification of our previous model associated with a map defined
on two partitions. In the present paper, we add more realistic assumptions with respect to the behavior of
sentiment traders. Sentiment traders optimistically buy (pessimistically sell) a certain amount of stocks when
the stock market is sufficiently rising (falling); otherwise they are inactive. As a result, the action of the price
adjustment is represented by a map defined by three different functions, on three different partitions. This
leads, in particular, to families of attracting cycles which are new with respect to those associated with a
map defined on two partitions. We illustrate how to detect analytically the periodicity regions of these cycles
considering the simplest cases of rotation number 1∕𝑛, 𝑛 ≥ 3, and obtaining in explicit form the bifurcation
boundaries of the corresponding regions. We show that in the parameter space, these regions form two different
overlapping period-adding structures that issue from the center bifurcation line. In particular, each point of
this line, associated with a rational rotation number, is an issue point for two different periodicity regions
related to attracting cycles with the same rotation number but with different symbolic sequences. Since these
regions overlap with each other and with the domain of a locally stable fixed point, a characteristic feature of
the map is multistability, which we describe by considering the corresponding basins of attraction. Our results
contribute to the development of the bifurcation theory for discontinuous maps, as well as to the understanding
of the excessively volatile boom-bust nature of stock markets.
1. Introduction

For several decades, many researchers have been interested in the
underlying mechanisms that lead to the wild behavior of stock mar-
kets, which repeatedly exhibit boom-bust cycles and are excessively
volatile. The main role in such behavior is attributed to the presence
of chartists and fundamentalists. Chartists are typically represented as
traders who extrapolate stock price trends, while fundamental traders
presume that stock prices will revert towards their fundamental values
(see review articles [1,2]). The nonlinear interaction between these two
types of trading philosophies has been shown in many contributions
(among which we mention [3–5]), in particular, for models that are
analytically tractable since they are represented by one-dimensional
(1D) maps (e.g. in [6–8]). Recent works, [9] and [10], have introduced
chartist-fundamentalist models associated with two-dimensional (2D)
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piecewise-linear maps, that allow a more detailed description of the
behavior of stock market participants. See also [11] for a chartist-
fundamentalist model that corresponds to a 2D piecewise-smooth map
with nonlinear branches.

Our goal is to make the simplest assumptions leading to models that
can be used to mimic the market dynamics. As a starting point, we take
the stock market model proposed in [10], where market makers quote
stock prices with respect to the order flow of chartists, fundamentalists,
and sentiment traders (being subject to animal spirits). Chartists place
buying (selling) orders when stock prices increase (decrease), whereas
fundamentalists place buying (selling) orders when stock prices are low
(high). The order sizes of chartists and fundamentalists are proportional
to their trading signals. Sentiment traders optimistically buy a certain
amount of stocks in rising stock markets and pessimistically sell a
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certain amount of stocks in falling markets. The dynamics of the related
stock market model depends essentially on two partitions where the
related 2D piecewise-linear discontinuous map has different defini-
tions. The results obtained with that simple model were promising
(as reported e.g. in [12]), but it lacked a region where fundamental
equilibrium exists. To address this gap, in the present paper we propose
and study a generalized version of the stock market model in [10], as-
suming that sentiment traders exhibit three types of behavior: they are
optimistic and buy (are pessimistic and sell) a certain amount of stocks
only when the stock market is sufficiently increasing (decreasing), and
they are neutral and abstain from trading when the stock market is
relatively stable. This simple and realistic assumption strongly affects
the dynamics of the model which is now determined by a 2D piecewise-
linear discontinuous map defined by three different functions on three
different partitions.

Recall that piecewise-smooth dynamical systems have been consid-
ered by many researchers not only from a theoretical point of view,
but also with respect to a wide range of applications of these systems
in various fields (see, e.g., [13–15]). In particular, in economics and
finance many models have been proposed that are ultimately described
by piecewise-smooth maps (besides the papers mentioned above, see
also [16]). These maps are characterized by the existence of border(s),
often called switching manifolds, at which the system changes its
definition. As a result, under parameter variation one can observe not
only the bifurcations typical for smooth systems, but also so-called
border-collision bifurcations1 (BCBs for short). The bifurcation theory
of nonsmooth systems is more developed for 1D and 2D continuous
maps due to the related border-collision normal forms. As for discon-
tinuous maps, many results have already been obtained for 1D maps
(see [19] and references therein), while the bifurcations occurring in
two- or higher-dimensional maps belong to a quite novel research field.
To cite a few contributions related to a 2D map with one discontinuity
line we refer to [20–22]. One of the aims of our work is therefore
to describe new properties that are characteristic of 2D discontinuous
maps.

As mentioned above, the dynamics of the stock market model under
consideration are determined by a 2D piecewise-linear map defined
on three partitions that are separated by two discontinuity lines. A
specific property of this map is that the Jacobian matrix is the same
in all the partitions, which facilitates obtaining analytical results. Since
the standard local bifurcations occurring in smooth maps cannot occur
in piecewise-linear maps, the main role in determining the existence
and bifurcations of various invariant sets of the map is associated
with BCBs. In particular, an 𝑛-cycle may disappear/appear due to a
BCB occurring when a periodic point has a contact with one of the
discontinuity lines.

In the present paper, we derive explicit expressions for BCB curves
bounding periodicity regions of attracting 𝑛-cycles with rotation num-
ber2 1∕𝑛, 𝑛 ≥ 3. Economically, this does not only mean that we can
rigorously prove that our modeling of animal spirits may generate
excessively volatile boom-bust dynamics, but also that we can analyt-
ically characterize how the behavior of different trader types affects
the dynamics of stock markets. In doing so, we also describe new
bifurcation structures that, to the best of our knowledge, have not been
observed in other maps. Namely, we determine two different kinds
of families of cycles: the first kind includes families of cycles with
points in two partitions only, while families of the second kind include
cycles with points in all three partitions. In the parameter space,

1 This notation was introduced by Nusse and Yorke in [17] (see also [18]).
2 In the case considered, the unique fixed point of the map is a focus, and
e consider 𝑛-cycles with points located around this fixed point. In simpler

terms, the rotation number of such a cycle is an irreducible fraction 𝑚∕𝑛,
where 𝑚 is the number of rotations of the trajectory around the fixed point in
2

𝑛 iterations. For a rigorous definition, see, e.g., [23].
the corresponding periodicity regions form two different overlapping
period-adding structures3 issuing from the line related to the center
bifurcation of the fixed point. Specifically, from each point of the
center bifurcation line, corresponding to a rational rotation number,
two periodicity regions are issuing related to attracting cycles with the
same rotation number but with different symbolic sequences. For a
description of a period-adding bifurcation structure, we refer to [19];
for the center bifurcation, see [25].

Our analysis also shows that a locally stable fixed point, at which the
stock price matches its fundamental value, mainly coexists with other
attracting cycles whose points are located around the fundamental
value. When the stock market is hit by exogenous shocks, coexisting
attractors may yield interesting attractor-switching dynamics, such as
alternating periods between fixed point and cyclical motion. In this re-
spect, knowledge of the properties of the basins of attraction, e.g., how
the behavior of certain trader types affects their size, is important from
an economic policy perspective, and we show how to derive the basin
boundaries.

Our paper is organized as follows. In Section 2, we present a
generalized version of the stock market model proposed in [10]. In
Section 3, we outline a number of preliminary properties, including a
description of the so-called stability box related to an attracting (funda-
mental) fixed point, which may coexist with one or several attracting
cycles. A mechanism of creation of these cycles can be explained as
follows: among the fixed points of the linear components of the map,
only one (fundamental) fixed point is actual while two other fixed
points are virtual; however, these virtual fixed points play the role of
‘‘ghosts’’ influencing the overall dynamics by forcing the trajectories
to jump between the different partitions and eventually create various
cycles. We also discuss the role of the discontinuity lines, as well as
their images and preimages. Since the considered discontinuous map
is invertible, it represents a two-dimensional analog of a gap-map
(occurring in the theory of 1D piecewise linear maps [26]). Our main
results are presented in Section 4. First, we show that a 2-cycle exists
(being unique) only outside the stability box, where all other cycles
are saddles. We obtain the two conditions associated with the first
homoclinic bifurcation of this 2-cycle, which determines the bound-
ries of the parameter region associated with chaotic attractors. The
ttracting chaotic sets have the structure of those occurring in a Belykh
ap (see [27]), belonging to a region in the phase space in which all

ycles are saddles, existing when the 2−cycle is not homoclinic. Then
e show that for parameters belonging to the stability box, a locally
ttracting fixed point may coexist with one or several attracting cycles.
n particular, we detect the BCB boundaries of the periodicity regions
elated to attracting cycles with rotation number 1∕𝑛, 𝑛 ≥ 3, belonging
o two different kinds of families, as mentioned above, namely, with
oints in two outermost partitions only and with points in all three
artitions. We present numerical evidence that the corresponding peri-
dicity regions are organized in two different period-adding bifurcation
tructures issuing from the center bifurcation line. With respect to the
enter bifurcation, we show the existence of an invariant polygon or
n invariant ellipse (associated with a rational or irrational rotation
umber, respectively) filled with periodic or quasiperiodic trajectories.
ome conclusions are drawn in Section 5.

. A generalized stock market model

In this section, we first generalize the stock market model proposed
n [10] and then derive the map that governs its dynamics. The main

3 In [24] a model is considered whose dynamics is determined by a 2D
iecewise-linear map defined on four partitions separated by two discontinuity
ines. It also shows the existence of several overlapping not period-adding but
period-incrementing bifurcation structures. See [19] for a description of these
two bifurcation structures.
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difference between our two stock market models is that, due to a no-
trade zone for sentiment traders, the number of partitions on which the
map is defined increases from two to three, leading to novelties in the
dynamic scenarios that can be observed.

2.1. Model setup

Four types of market participants populate the stock market model
that we consider in our paper: market makers, chartists, fundamental-
ists, and sentiment traders. Let us start with the behavior of market
makers. Market makers change the stock price from period 𝑡 to period
+ 1 with respect to current excess demand. To be precise, they
eriodically quote new stock prices using the linear price-adjustment
ule

𝑡+1 = 𝑃𝑡 + 𝑎(𝐷𝐶
𝑡 +𝐷𝐹

𝑡 +𝐷𝑆
𝑡 ), (1)

here parameter 𝑎 > 0 denotes the strength with which market
akers adjust the current stock price with respect to the orders of

hartists, fundamentalists, and sentiment traders, given by 𝐷𝐶
𝑡 , 𝐷𝐹

𝑡 ,
nd 𝐷𝑆

𝑡 , respectively. Market makers increase (decrease) the stock price
ccordingly when confronted with excess buying (selling).

Since chartists seek to exploit stock price trends, they place buying
rders when the stock market is rising and selling orders when the stock
arket is falling. We formalize their trading behavior as
𝐶
𝑡 = 𝑏(𝑃𝑡 − 𝑃𝑡−1), 𝑏 > 0. (2)

ote that the size of the orders placed by chartists depends on the
trength of their technical trading signal, given by the current stock
rice trend, and their general aggressiveness, represented by parameter
.

Fundamental analysis rests on the assumption that the stock price
ill return towards its fundamental value. Fundamentalists place buy-

ng orders when the stock market is undervalued and selling orders
hen the stock market is overvalued. Let 𝐹 stand for the stock market’s

undamental value. Since fundamentalists follow the trading rule
𝐹
𝑡 = 𝑐(𝐹 − 𝑃𝑡), 𝑐 > 0, (3)

he size of their orders depends on the strength of their fundamental
rading signal, given by the stock market’s current mispricing, and their
eneral aggressiveness, captured by parameter 𝑐.

Sentiment traders are subject to Keynesian animal spirits. According
o Keynes, [28], human agents recurrently show collective, (appar-
ntly) spontaneous, and significant shifts in their sentiment, say a
ransition from pessimism to optimism, upon which they act. In this
aper, we consider the case where sentiment traders display three
istinct moods. Sentiment traders are either optimistic, pessimistic, or
eutral, depending on whether stock prices are sufficiently increas-
ng, sufficiently decreasing, or relatively stable. Moreover, sentiment
raders’ mood affects their trading behavior, which we express as

𝑆
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑑 if 𝑃𝑡 − 𝑃𝑡−1 > ℎ,
0 if −ℎ ≤ 𝑃𝑡 − 𝑃𝑡−1 ≤ ℎ,
−𝑑 if 𝑃𝑡 − 𝑃𝑡−1 < −ℎ,

𝑑 > ℎ > 0. (4)

arameter 𝑑 reflects the number of stocks sentiment traders are willing
o trade in a given period. Parameter ℎ controls under which stock mar-
et conditions sentiment traders are optimistic, pessimistic, or neutral.
o be more precise, sentiment traders optimistically buy 𝑑 units of stock
hen the stock market increases by more than ℎ (𝑃𝑡 − 𝑃𝑡−1 > ℎ) and
essimistically sell 𝑑 units of stock when the stock market decreases
y more than ℎ (𝑃𝑡 − 𝑃𝑡−1 < −ℎ). When the stock market is relatively
table, i.e., when stock price changes are bounded between the two
alues, −ℎ ≤ 𝑃𝑡 −𝑃𝑡−1 ≤ ℎ, sentiment traders’ mood is neutral and they
o not trade.

A remark with respect to the behavior of sentiment traders is in
3

rder. In [10], it is considered the case 𝑑 > 0 and ℎ = 0, resulting in
stock market model with two generic sentiment states, i.e., optimism
nd pessimism, and one nongeneric sentiment state, namely neutral.
y considering three generic sentiment states, one may deem our setup
ore general. In fact, human agents are not always optimistic or
essimistic. To understand the transition from two to three generic
entiment states, our main attention will be on the case 𝑑 > ℎ >
0, i.e., we consider that parameter ℎ transgresses from zero into the
positive domain. Needless to say, for ℎ = 𝑑 = 0, sentiment traders
vanish from our stock market model. We then end up with a linear
chartist-fundamentalist model, which serves us as a useful benchmark.

2.2. Dynamic model

Given the behavior of the four market participants, we can now
derive the law of motion of our stock market model. Inserting (2), (3),
and (4) into (1) and rearranging terms, we find that the stock price in
period 𝑡 + 1 adheres to

𝑃𝑡+1 =

⎧

⎪

⎨

⎪

⎩

𝑃𝑡 + 𝑎(𝑏(𝑃𝑡 − 𝑃𝑡−1) + 𝑐(𝐹 − 𝑃𝑡) + 𝑑) if 𝑃𝑡 − 𝑃𝑡−1 > ℎ,
𝑃𝑡 + 𝑎(𝑏(𝑃𝑡 − 𝑃𝑡−1) + 𝑐(𝐹 − 𝑃𝑡)) if −ℎ ≤ 𝑃𝑡 − 𝑃𝑡−1 ≤ ℎ,
𝑃𝑡 + 𝑎(𝑏(𝑃𝑡 − 𝑃𝑡−1) + 𝑐(𝐹 − 𝑃𝑡) − 𝑑) if 𝑃𝑡 − 𝑃𝑡−1 < −ℎ.

(5)

ote that the parameters 𝑎𝑏, 𝑎𝑐, and 𝑎𝑑 reflect the model impact of
hartists, fundamentalists, and sentiment traders, which we rename for
onvenience as 𝑏, 𝑐, and 𝑑, respectively. Furthermore, it is convenient
o express our generalized stock market model in deviation from the
undamental value. Defining 𝑃𝑡 ∶= 𝑃𝑡 − 𝐹 yields

𝑡+1 =

⎧

⎪

⎨

⎪

⎩

𝑃𝑡 + 𝑏(𝑃𝑡 − 𝑃𝑡−1) − 𝑐𝑃𝑡 + 𝑑 if 𝑃𝑡 − 𝑃𝑡−1 > ℎ,
𝑃𝑡 + 𝑏(𝑃𝑡 − 𝑃𝑡−1) − 𝑐𝑃𝑡 if −ℎ ≤ 𝑃𝑡 − 𝑃𝑡−1 ≤ ℎ,
𝑃𝑡 + 𝑏(𝑃𝑡 − 𝑃𝑡−1) − 𝑐𝑃𝑡 − 𝑑 if 𝑃𝑡 − 𝑃𝑡−1 < −ℎ.

(6)

Introducing the auxiliary variable 𝑋𝑡 = 𝑃𝑡−1, we arrive at the two-
dimensional piecewise-linear discontinuous map:

𝑇 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑃𝑡+1 =

⎧

⎪

⎨

⎪

⎩

(1 + 𝑏 − 𝑐)𝑃𝑡 − 𝑏𝑋𝑡 + 𝑑 if 𝑃𝑡 −𝑋𝑡 > ℎ,
(1 + 𝑏 − 𝑐)𝑃𝑡 − 𝑏𝑋𝑡 if − ℎ ≤ 𝑃𝑡 −𝑋𝑡 ≤ ℎ,
(1 + 𝑏 − 𝑐)𝑃𝑡 − 𝑏𝑋𝑡 − 𝑑 if 𝑃𝑡 −𝑋𝑡 < −ℎ,

𝑋𝑡+1 = 𝑃𝑡.

(7)

In the absence of sentiment traders, the above map simplifies to

𝑇𝑂 ∶
{

𝑃𝑡+1 = (1 + 𝑏 − 𝑐)𝑃𝑡 − 𝑏𝑋𝑡,
𝑋𝑡+1 = 𝑃𝑡,

(8)

hose unique fixed point is obviously given by the origin, representing
he stock market’s fundamental value. In this elementary chartist-
undamentalist model, a two-dimensional linear map drives the dynam-
cs of the stock price. Clearly, the differences we see in the properties
f maps 𝑇 and 𝑇𝑂 are entirely due to the behavior of sentiment traders.

Denoting the variables as 𝑥𝑡 ∶= 𝑃𝑡 and 𝑦𝑡 ∶= 𝑋𝑡 and skipping the
ime index, map 𝑇 can be written as follows:

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑇𝐿 ∶
(

𝑥
𝑦

)

→ 𝐽
(

𝑥
𝑦

)

+
(

𝑑
0

)

if (𝑥, 𝑦) ∈ 𝐷𝐿 = {(𝑥, 𝑦) ∶ 𝑦 < 𝑥 − ℎ},

𝑇𝑂 ∶
(

𝑥
𝑦

)

→ 𝐽
(

𝑥
𝑦

)

if (𝑥, 𝑦) ∈ 𝐷𝑂 = {(𝑥, 𝑦) ∶ 𝑥 − ℎ < 𝑦 < 𝑥 + ℎ},

𝑇𝑈 ∶
(

𝑥
𝑦

)

→ 𝐽
(

𝑥
)

−
(

𝑑
)

if (𝑥, 𝑦) ∈ 𝐷𝑈 = {(𝑥, 𝑦) ∶ 𝑦 > 𝑥 + ℎ},

⎩ 𝑦 0



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 176 (2023) 114143L. Gardini et al.

t
w
s

ℎ
k
m
o

3

S
d
l
C
p
a
a
t

3

m
c

p
−
w
p
w
i

a
𝑃
m
a

s
0
1

(
(

F
d

𝐶

(9)

where 𝐽 is the Jacobian matrix given by

𝐽 =
(

𝑣 −𝑏
1 0

)

, 𝑣 = 1 + 𝑏 − 𝑐. (10)

Note that index 𝐿 in map 𝑇 refers to the lower partition with respect
o the straight line 𝑦 = 𝑥 − ℎ, index 𝑈 refers to the upper partition
ith respect to the straight line 𝑦 = 𝑥 + ℎ, and index 𝑂 refers to the

trip between these two straight lines. Furthermore, rescaling 𝑥 ∶=
𝑥∕𝑑 or 𝑥 ∶= 𝑥∕ℎ (and similarly for 𝑦) allows us to set 𝑑 = 1 or
= 1, respectively. However, due to their economic role, we prefer to

eep both these parameters in our mathematical analysis. As already
entioned, our main focus will be on the case 𝑑 > ℎ > 0. Unless

therwise stated, we fix 𝑑 = 0.02 and ℎ = 0.01 in our numerical analysis.

. Preliminary remarks, definitions, and basins of attraction

In Section 3.1, we present some general properties of map 𝑇 . In
ection 3.2, we introduce the critical lines (the discontinuity lines) and
escribe some related properties. In fact, not only the discontinuity
ines but also their forward and backward iterations are relevant.
onsidering the images, we obtain the boundaries of regions of the
hase plane that cannot include any periodic point, while the preim-
ges determine segments belonging to the boundaries of the basins of
ttraction of different coexisting attracting cycles. We also introduce
he symbolic representation of cycles.

.1. General properties of map T

The properties we discuss in the following also hold, with some
inor differences, for the maps studied in [10] and [12], i.e., for the

ase ℎ = 0 associated with a map defined on two partitions.
∙ (Symmetry) Map 𝑇 is symmetric with respect to the origin. The

roof is straightforward. Since 𝑇𝑂(−𝑥,−𝑦) = −𝑇𝑂(𝑥, 𝑦) and 𝑇𝑈 (−𝑥,−𝑦) =
𝑇𝐿(𝑥, 𝑦), it follows that the trajectory of a point (−𝑥0,−𝑦0) is symmetric
ith respect to the origin to the trajectory of the point (𝑥0, 𝑦0). From this
roperty, we have that any invariant set of map 𝑇 is either symmetric
ith respect to the origin, or its symmetric set with respect to the origin

s also invariant.
∙ (Fixed points) The fixed point 𝑃𝑂 = (0, 0) of map 𝑇𝑂 is the unique

ctual fixed point of map 𝑇 . The fixed points 𝑃𝐿 = (𝑑∕𝑐, 𝑑∕𝑐) and
𝑈 = (−𝑑∕𝑐,−𝑑∕𝑐) of maps 𝑇𝐿 and 𝑇𝑈 belong to the diagonal, where
ap 𝑇𝑂 is defined, so that they are virtual for map 𝑇 , denoted as 𝑃𝐿

nd 𝑃𝑈 .
∙ (Eigenvalues of 𝐽 and stability box 𝑆) The Jacobian matrix 𝐽 is

the same in all three partitions, with determinant det 𝐽 = 𝑏 and trace
𝑡𝑟𝐽 = 𝑣. In the (𝑏, 𝑐)-parameter plane of interest, with 𝑏 > 0 and 𝑐 > 0,
the eigenvalues of the Jacobian matrix 𝐽 , given by

𝜆1,2 = 0.5(𝑣 ±
√

𝑣2 − 4𝑏), 𝑣 = 1 + 𝑏 − 𝑐, (11)

satisfy |

|

𝜆1,2|| < 1 in region 𝑆 called the stability box,

𝑆 = {(𝑏, 𝑐) ∶ 0 < 𝑏 < 1, 0 < 𝑐 < 2(1 + 𝑏)}, (12)

hown in yellow in Fig. 1a, which includes three regions: 𝑅1 = {(𝑏, 𝑐) ∶
< 𝑏 < 1, 1 + 𝑏 − 2

√

𝑏 < 𝑐 < 1 + 𝑏 + 2
√

𝑏}, 𝑅2 = {(𝑏, 𝑐) ∶ 0 < 𝑏 <
, 0 < 𝑐 ≤ 1 + 𝑏 − 2

√

𝑏}, and 𝑅3 = {(𝑏, 𝑐) ∶ 0 < 𝑏 < 1,+𝑏 − 2
√

𝑏 ≤ 𝑐 <
2(1 + 𝑏)}, related to complex conjugate, real positive, and real negative
eigenvalues, respectively. Since the Jacobian matrix 𝐽 is the same in
all three partitions of map 𝑇 , for (𝑏, 𝑐) ∈ 𝑆, not only the fixed point 𝑃𝑂
but also all the existing cycles are attracting. However, we shall see that
an attracting 2-cycle does not exist, so that this holds for all 𝑛-cycles of
period 𝑛 ≥ 3. The fixed point 𝑃𝑂 undergoes a degenerate flip bifurcation
see [29]) at the border 𝑏 = 2(1 + 𝑐) of 𝑆, and a center bifurcation
see [25]) at the border 𝑏 = 1 of 𝑆.
4

∙ (Parameter region 𝑅4) For (𝑏, 𝑐) ∈ 𝑅4 = {(𝑏, 𝑐) ∶ 0 < 𝑏 < 1, 𝑐 >
2(1 + 𝑏)}, the eigenvalues of 𝐽 are −1 < 𝜆1 < 0 and 𝜆2 < −1, so that the
fixed point 𝑃𝑂 is a saddle, and all the cycles of map 𝑇 are saddles as well
because the eigenvalues of 𝐽 𝑛 associated with a cycle of period 𝑛 ≥ 1
satisfy −1 < 𝜆𝑛1 < 0, 𝜆𝑛2 < −1 for odd 𝑛, and 0 < 𝜆𝑛1 < 1, 𝜆𝑛2 > 1 for even
𝑛. However, this does not necessarily imply divergent dynamics (as it
occurs for a generic trajectory when the map is defined only via map
𝑇𝑂), because chaotic attractors may exist, leading to bounded dynamics
with humped behaviors of stock prices.

In the absence of sentiment traders, the dynamics of our stock
market model depend only on map 𝑇𝑂, and the stability box 𝑆 corre-
sponds to the parameter region where the fixed point 𝑃𝑂 is globally
attracting. For map 𝑇 , however, the stability box 𝑆 corresponds to
the parameter region where the fixed point 𝑃𝑂 is locally attracting.
Depending on whether parameters 𝑏 and 𝑐 are located in regions 𝑅1,
𝑅2, or 𝑅3, locally we observe either a cyclical, a monotonic, or an
alternating convergence of the stock price towards its fundamental
value. In fact, the difference between the trivial dynamics of map 𝑇𝑂
and the piecewise-linear discontinuous map 𝑇 leads to the coexistence
of the locally stable fundamental fixed point with other stable cycles of
various periods, surrounding 𝑃𝑂. As we will see, the basin of attraction
of 𝑃𝑂 depends on the width of the strip in which map 𝑇𝑂 is defined,
given by two segments on the discontinuity lines and related preimages.

Recall that in the case ℎ = 0 (see [10] and [12]), the only region
related to trajectories convergent to a fixed point is region 𝑅2, which
is either the virtual fixed point 𝑃𝐿 or 𝑃𝑈 , both attracting in the Milnor
sense [30]. Put differently, in the case ℎ > 0, for parameters belonging
to the stability box 𝑆, map 𝑇 has the locally attracting fundamental
fixed point 𝑃𝑂, which may coexist with attracting cycles of different
periods surrounding it. Some of the related periodicity regions in the
(𝑏, 𝑐)-parameter plane, obtained numerically, are shown in Fig. 1b for
𝑛 ≤ 40. These regions issue from the center bifurcation line defined by
𝑏 = 1, 0 < 𝑐 < 4, corresponding to complex conjugate eigenvalues on the
unit circle of the Jacobian matrix 𝐽 , and the boundaries of these regions
are BCB curves. In Section 4, we obtain analytically the boundaries
of the largest periodicity regions corresponding to attracting 𝑛-cycles
with rotation number 1∕𝑛. But let us first introduce several notations
related to the three partitions of the map, and describe some properties
characteristic for the discontinuous case.

3.2. Critical lines of map 𝑇 and their role

For piecewise smooth maps, weather continuous or discontinuous,
the border at which the map changes its definition is called a critical
line (following [31]). In fact, several properties of the dynamics of map
𝑇 are related to these sets as well as to their images and preimages,
also called critical lines of different ranks. In particular, it is known
that in piecewise-linear discontinuous maps, the borders of the basins
of attraction of coexisting attractors, besides stable invariant sets of
saddle cycles, may be associated with preimages of the critical lines.
A few examples are given below.

In our case, there are two critical lines of rank −1, denoted by 𝐶−1,𝐿
and 𝐶−1,𝑈 ∶

𝐶−1,𝐿 = {(𝑥, 𝑦) ∶ 𝑦 = 𝑥 − ℎ}, 𝐶−1,𝑈 = {(𝑥, 𝑦) ∶ 𝑦 = 𝑥 + ℎ}. (13)

or each critical line, we have to consider two images by the maps
efined on the two different sides of the set:

𝐿 = 𝑇𝐿(𝐶−1,𝐿) =
{

(𝑥, 𝑦) ∶ 𝑦 = 𝑥
1−𝑐 − 𝑏ℎ+𝑑

1−𝑐

}

,

𝐶𝑂,𝐿 = 𝑇𝑂(𝐶−1,𝐿) =
{

(𝑥, 𝑦) ∶ 𝑦 = 𝑥
1−𝑐 − 𝑏ℎ

1−𝑐

}

,

𝐶𝑈 = 𝑇𝑈 (𝐶−1,𝑈 ) =
{

(𝑥, 𝑦) ∶ 𝑦 = 𝑥
1−𝑐 + 𝑏ℎ+𝑑

1−𝑐

}

,

𝐶 = 𝑇 (𝐶 ) =
{

(𝑥, 𝑦) ∶ 𝑦 = 𝑥 + 𝑏ℎ
}

.

(14)
𝑂,𝑈 𝑂 −1,𝑈 1−𝑐 1−𝑐
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Fig. 1. In (a), stability box 𝑆 = 𝑅1 ∪ 𝑅2 ∪ 𝑅3 in the (𝑏, 𝑐)-parameter plane. Region 𝑅1 is characterized by complex eigenvalues, while region 𝑅2 (𝑅3) is characterized by real and
positive (real and negative) eigenvalues. In region 𝑅4, the eigenvalues satisfy −1 < 𝜆1 < 0, 𝜆2 < −1, and all the existing cycles of map 𝑇 are saddles. In region 𝑅5, the eigenvalues
are complex conjugate and larger than 1 in modulus. In (b), regions of different colors, obtained numerically, denote the existence of attracting 𝑛-cycles of different periods,
3 ≤ 𝑛 ≤ 40. The white region denotes the existence of a chaotic attractor, while the gray region denotes divergence. The remaining parameters are ℎ = 0.01, 𝑑 = 0.02.
Fig. 2. (a) shows critical lines of map 𝑇 , and (b) shows their images separating the regions whose points have one preimage (𝑍1𝑈 , 𝑍1𝐿, 𝑍1𝑂) and no preimages (𝑍0𝐿, 𝑍0𝑈 ).
Here 𝑏 = 1, 𝑐 = 1.5, ℎ = 0.01, 𝑑 = 0.02.
All these lines have the same slope, given by 𝑠 = 1
1−𝑐 , 𝑐 ≠ 1. This slope

is negative for 𝑐 > 1 and positive for 0 < 𝑐 < 1 (see, e.g. Fig. 2, where
𝑐 = 1.5).

Since the Jacobian matrix 𝐽 is the same in all three partitions, the
region of the phase plane on the right side of the straight line 𝐶−1,𝐿 is
mapped by 𝑇𝐿 on the right side of the line 𝐶𝐿 = 𝑇𝐿(𝐶−1,𝐿) (pink region
denoted by 𝑍1𝐿 in Fig. 2b), the region on the left side of the straight
line 𝐶−1,𝑈 is mapped by 𝑇𝑈 on the left side of the line 𝐶𝑈 = 𝑇𝑈 (𝐶−1,𝑈 )
(green region 𝑍1𝑈 in Fig. 2b), while the strip between 𝐶−1,𝐿 and 𝐶−1,𝑈
is mapped by 𝑇𝑂 onto the strip between 𝐶𝑂,𝐿 and 𝐶𝑂,𝑈 (yellow region
𝑍1𝑂 in Fig. 2b). It follows that there are two regions, 𝑍0𝐿 and 𝑍0𝑈
(see Fig. 2b), that cannot be reached by a trajectory, since no point of
the phase plane can be mapped by 𝑇 in these regions.

As a result, map 𝑇 is an invertible map of the following type: the
phase plane is divided into five regions, namely, regions 𝑍1𝐿, 𝑍1𝑈
and 𝑍1𝑂, whose points have one preimage by 𝑇 −1

𝐿 , 𝑇 −1
𝑈 and 𝑇 −1

𝑂 ,
respectively; these regions are separated by two regions, 𝑍0𝐿 and 𝑍0𝑈 ,
whose points have no rank−1 preimage. Moreover, since either no
preimage or a unique preimage exists, sets 𝑇 𝑘(𝑍0𝐿) and 𝑇 𝑘(𝑍0𝑈 ) never
intersect for any 𝑘 > 0. A periodic point cannot belong to regions
𝑍0𝐿 and 𝑍0𝑈 (since points in these regions cannot have a preimage),
and similarly any invariant set cannot have a point in these regions.
Hence, neither a cycle nor an invariant set can have points belonging
to the images of these strips. In fact, reasoning by contradiction, let us
suppose that there exists a point 𝑝 (not critical) of an invariant set 
that belongs to 𝑇 𝑘(𝑍0𝐿) or 𝑇 𝑘(𝑍0𝑈 ) for some 𝑘. Since  is invariant
(i.e., 𝑇 () = ), each point of  has an infinite sequence of preimages
in . However, this leads to a contradiction because if, for example,
𝑝 ∈ 𝑇 𝑘(𝑍0𝐿), then 𝑇 −𝑘(𝑝) ∈ 𝑍0𝐿 and a point in 𝑍0𝐿 has no other
preimages (similarly for 𝑇 𝑘(𝑍0 )).
5

𝑈

To summarize, we can state the following property of set 𝛺 =
R2∖ ∪𝑘≥0 𝑇 𝑘(𝑍0𝐿 ∪𝑍0𝑈 ) ∶

Property 1 (Invertibility of Map 𝑇 and Set 𝛺). For the feasible parameter
range 𝑏 > 0, 𝑐 > 0,

(i) map 𝑇 is invertible; points of strip 𝑍0𝐿 between the critical lines
𝐶𝑂,𝐿 and 𝐶𝐿, and strip 𝑍0𝑈 between the critical lines 𝐶𝑂,𝑈 and 𝐶𝑈 have
no rank-1 preimage; all the other points have one rank-1 preimage;

(ii) any 𝑛-cycle of map 𝑇 of any period 𝑛 ≥ 1, as well as any other
invariant set, must belong to set 𝛺.

Clearly, the points belonging to 𝑇 𝑘(𝑍0𝐿) and 𝑇 𝑘(𝑍0𝑈 ) tend towards
some attracting sets, at a finite distance or at infinity. That is, the
𝜔-limit set of any trajectory of map 𝑇 belongs to set 𝛺. In contrast
to 1D piecewise-linear maps with a similar property (also known as
gap maps, see [19,26], where only one attracting cycle can exist and
chaos cannot occur), set 𝛺 may include coexisting attracting cycles of
different periods or attracting chaotic sets.

To represent a cycle {(𝑥𝑖, 𝑦𝑖)}𝑛−1𝑖=0 of map 𝑇 , we use its symbolic
sequence 𝜎0𝜎1...𝜎𝑛−1, where

𝜎𝑖 =

⎧

⎪

⎨

⎪

⎩

𝐿 if (𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝐿,
𝑂 if (𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝑂 ,
𝑈 if (𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝑈 .

For short, we denote a cycle by its symbolic sequence. In Fig. 3a, for
example, the attracting fixed point 𝑃𝑂 coexists with two 4-cycles, 𝐿2𝑈2

and 𝐿𝑂𝑈𝑂, while in Fig. 3b 𝑃𝑂 coexists with one 4-cycle 𝐿𝑂𝑈𝑂, four 3-
cycles, 𝐿2𝑈 , 𝑈2𝐿, 𝐿𝑂𝑈 , 𝑈𝑂𝐿, and one 10-cycle 𝐿2𝑈𝑂𝐿𝑈2𝐿𝑂𝑈 . Note
that the symbolic sequence of a generic cycle consists of symbols 𝐿,
𝑂, and 𝑈 , while in a nongeneric case, for a periodic point belonging
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Fig. 3. Basins of attraction of the fundamental fixed point 𝑃𝑂 coexisting with (a) two 4-cycles; (b) one 4-cycle, four 3-cycles, and one 10-cycle. Here, ℎ = 0.01, 𝑑 = 0.02, and (a)
𝑏 = 0.4, 𝑐 = 2; (b) 𝑏 = 0.5, 𝑐 = 2.9.
to the critical line 𝐶−1,𝐿 or 𝐶−1,𝑈 , a special symbol can be introduced
(say, 𝐵𝐿 and 𝐵𝑈 , respectively), and the presence of such a symbol in
the symbolic sequence indicates that a BCB occurs. This occurs when,
under parameter variation, a periodic point approaches border 𝐶−1,𝐿 or
𝐶−1,𝑈 from the inner part of strip 𝐷𝑂 (where map 𝑇𝑂 applies) or from
region 𝐷𝐿 or 𝐷𝑅 (where map 𝑇𝐿 or map 𝑇𝑈 applies).

Let us discuss how basin boundaries of coexisting attractors can
be determined. As already mentioned, for parameters belonging to the
stability box 𝑆, in case of the coexistence of attracting sets, the basin
boundaries cannot be associated with stable invariant sets of saddle
cycles (they do not exist for (𝑎, 𝑏) ∈ 𝑆). Instead, the basin boundaries
are formed by segments of the critical lines 𝐶−1,𝐿, 𝐶−1,𝑈 and their
preimages of different ranks. We can define the preimages of the critical
lines 𝐶−1,𝐿 and 𝐶−1,𝑈 of rank−1 via three different linear maps. The
preimages of 𝐶−1,𝐿 by 𝑇 −1

𝑂 , 𝑇 −1
𝐿 , and 𝑇 −1

𝑈 are denoted by 𝐶𝑂
−2,𝐿 𝐶𝐿

−2,𝐿,
and 𝐶𝑈

−2,𝐿, respectively:

𝐶𝑂
−2,𝐿 = 𝑇 −1

𝑂 (𝐶−1,𝐿) =
{

(𝑥, 𝑦) ∶ 𝑦 =
(

1 − 𝑐
𝑏

)

𝑥 − ℎ
𝑏

}

,

𝐶𝐿
−2,𝐿 = 𝑇 −1

𝐿 (𝐶−1,𝐿) =
{

(𝑥, 𝑦) ∶ 𝑦 =
(

1 − 𝑐
𝑏

)

𝑥 − ℎ + 𝑑
𝑏

}

,

𝐶𝑈
−2,𝐿 = 𝑇 −1

𝑈 (𝐶−1,𝐿) =
{

(𝑥, 𝑦) ∶ 𝑦 =
(

1 − 𝑐
𝑏

)

𝑥 − ℎ − 𝑑
𝑏

}

,

and the preimages of 𝐶−1,𝑈 are denoted by 𝐶𝑂
−2,𝑈 , 𝐶𝐿

−2,𝑈 , and 𝐶𝑈
−2,𝑈 ,

respectively:

𝐶𝑂
−2,𝑈 = 𝑇 −1

𝑂 (𝐶−1,𝑈 ) =
{

(𝑥, 𝑦) ∶ 𝑦 =
(

1 − 𝑐
𝑏

)

𝑥 + ℎ
𝑏

}

,

𝐶𝐿
−2,𝑈 = 𝑇 −1

𝐿 (𝐶−1,𝑈 ) =
{

(𝑥, 𝑦) ∶ 𝑦 =
(

1 − 𝑐
𝑏

)

𝑥 + ℎ + 𝑑
𝑏

}

,

𝐶𝑈
−2,𝑈 = 𝑇 −1

𝑈 (𝐶−1,𝑈 ) =
{

(𝑥, 𝑦) ∶ 𝑦 =
(

1 − 𝑐
𝑏

)

𝑥 + ℎ − 𝑑
𝑏

}

.

The basin boundaries of the coexisting attractors include segments of
these straight lines. In Fig. 3a, for example, two segments of the critical
lines 𝐶−1,𝐿 and 𝐶−1,𝑈 , and two segments of the rank−1 preimages
𝐶𝑂
−2,𝐿 and 𝐶𝑂

−2,𝑈 bound the basin of attraction of the fixed point 𝑃𝑂,
while different segments of 𝐶−1,𝐿, 𝐶−1,𝑈 and segments of four rank-1
preimages 𝐶𝑂

−2,𝐿, 𝐶𝑂
−2,𝑈 , 𝐶𝐿

−2,𝐿, and 𝐶𝐿
−2,𝑈 belong to the basin boundaries

of two attracting 4-cycles, 𝐿2𝑈2 and 𝐿𝑂𝑈𝑂.
As we can see, map 𝑇 can have an attracting cycle of even period

with points belonging to 𝐷𝐿 and 𝐷𝑈 only, similar to the case ℎ = 0
described in [12]. For ℎ > 0, however, a cycle of the same even period
may also exist with periodic points belonging to three different regions,
𝐷𝐿, 𝐷𝑂, and 𝐷𝑈 , that is, a cycle with symbolic sequence containing
symbols 𝐿, 𝑈 , and 𝑂 (see Fig. 3a, where two 4-cycles have symbolic
sequences 𝐿2𝑈2 and 𝐿𝑂𝑈𝑂, and Fig. 3b, where four different 3-cycles
are shown).

It is worth noting that the coexistence of several attracting cycles
with the attracting fixed point 𝑃 occurs not only for (𝑏, 𝑐) ∈ 𝑅 , related
6

𝑂 1
to complex conjugate eigenvalues of the Jacobian matrix 𝐽 . As can
be seen in Fig. 1b, it holds also for (𝑏, 𝑐) ∈ 𝑅2, associated with real
and positive eigenvalues of 𝐽 . This is a new property related to three
partitions of the map and to the fact that the fixed point 𝑃𝑂 always
exists. Put differently, when the map is defined on two partitions, for
ℎ = 0 and (𝑏, 𝑐) ∈ 𝑅2, map 𝑇 has two virtual fixed points that are
Milnor attractors, and no other attracting set can exist. Moreover, the
coexistence of two different cycles, besides 𝑃𝑂, in region 𝑅2 is also
possible, as shown in Fig. 4a.

4. Main results

This section contains our main results. In Section 4.1, we introduce
two kinds of families of cycles that are of interest, and state a useful
property with respect to the stability of all possible cycles of map 𝑇 .
In Section 4.2, we explore the relation between the 2-cycle 𝐿𝑈 and
the existence of chaotic attractors. In Sections 4.3 to 4.6, we describe
the bifurcation structures in the (𝑏, 𝑐)-parameter plane. In Section 4.7,
we show that the periodicity regions related to attracting cycles of two
different structures are issuing from particular bifurcation points.

4.1. Two kinds of families of cycles and their stability

Due to the symmetry with respect to the origin (see Section 3.1),
any 𝑛-cycle, 𝑛 ≥ 2, of map 𝑇 is either symmetric itself, or one more
symmetric 𝑛-cycle exists. In all the considerations below, we assume
that the rotation number of an 𝑛-cycle is 1∕𝑛. Obviously, a cycle of
even period 𝑛 may be symmetric with respect to the origin. If a cycle
has no points in partition 𝐷𝑂 and 𝑚 points in each partition 𝐷𝐿 and
𝐷𝑈 , then its symbolic sequence is 𝐿𝑚𝑈𝑚, 𝑛 = 2𝑚, 𝑚 ≥ 1, and due to
the linearity of maps 𝑇𝐿 and 𝑇𝑈 , this cycle is unique (see, e.g., cycle
𝐿2𝑈2 in Fig. 3a). As we have already seen, map 𝑇 can have a cycle
of even period with periodic points also in partition 𝐷𝑂, and due to
the symmetry, in 𝐷𝑂 there must be at least two periodic points of the
same cycle. In the simplest case, there are exactly two periodic points
in 𝐷𝑂, so that the symbolic sequence of such an 𝑛-cycle of even period
is 𝐿𝑚𝑂𝑈𝑚𝑂, 𝑛 = 2𝑚 + 2, 𝑚 ≥ 1 (see, e.g., cycle 𝐿𝑂𝑈𝑂 in Fig. 3a).

In contrast, a cycle of odd period 𝑛 cannot be symmetric with respect
to the origin, and it necessarily coexists with a symmetric cycle of the
same period. In the simplest case, if an odd-period cycle has no points
in 𝐷𝑂, then two related symmetric cycles are 𝐿𝑚𝑈𝑚−1 and 𝑈𝑚𝐿𝑚−1,
𝑛 = 2𝑚−1, 𝑚 ≥ 2 (see, e.g., cycles 𝐿2𝑈 and 𝑈2𝐿 in Fig. 3b). Map 𝑇 can
also have an odd-period cycle with points in 𝐷𝑂. Again, in the simplest
case, a couple of such cycles have symbolic sequences 𝐿𝑚𝑂𝑈𝑚, 𝑈𝑚𝑂𝐿𝑚,
𝑛 = 2𝑚 + 1, 𝑚 ≥ 1, each with one point in 𝐷𝑂 (see, e.g., cycles 𝐿𝑂𝑈
and 𝑈𝑂𝐿 in Fig. 3b).
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Fig. 4. Basins of attraction of the fixed point 𝑃𝑂 coexisting with (a) one 6-cycle 𝐿2𝑂𝑈 2𝑂 and one 8-cycle 𝐿3𝑂𝑈 3𝑂; (b) two 7-cycles, 𝐿3𝑂𝑈 2𝑂 and 𝑈 3𝑂𝐿2𝑂. Here, ℎ = 0.01,
𝑑 = 0.02, and (a) 𝑏 = 0.03, 𝑐 = 0.644; (b) 𝑏 = 0.35, 𝑐 = 0.8.
The aforementioned cycles can be grouped into two kinds of fam-
ilies: the first kind includes cycles without points in 𝐷𝑂, that is, even-
period cycles 𝐿𝑚𝑈𝑚, 𝑚 ≥ 1 and odd-period cycles 𝐿𝑚𝑈𝑚−1, 𝑈𝑚𝐿𝑚−1,
𝑚 ≥ 2, while the second kind includes cycles with points in 𝐷𝑂, that
is, even-period cycles 𝐿𝑚𝑂𝑈𝑚𝑂, 𝑚 ≥ 1, and odd-period cycles 𝐿𝑚𝑂𝑈𝑚,
𝑈𝑚𝑂𝐿𝑚, 𝑚 ≥ 1. In the present paper, we focus on these two simplest
kinds of families. However, it is important to emphasize that map 𝑇
can have other kinds of cycles, such as odd-period cycles with symbolic
sequences 𝐿𝑚𝑂𝑈𝑚−1𝑂, 𝑈𝑚𝑂𝐿𝑚−1𝑂, 𝑛 = 2𝑚+1, 𝑚 ≥ 2, each cycle having
two points in 𝐷𝑂. One example is shown in Fig. 4b, where 7-cycles
𝐿3𝑂𝑈2𝑂, 𝑈3𝑂𝐿2𝑂 coexist with the fixed point 𝑃𝑂.

Before we continue, let us state a property related to the stability
of any cycle of map 𝑇 . Taking into account that the Jacobian matrix
𝐽 is the same in all the partitions, it follows that the eigenvalues 𝜆(𝑛)1
and 𝜆(𝑛)2 of an 𝑛-cycle are 𝜆(𝑛)1 = 𝜆𝑛1, and 𝜆(𝑛)2 = 𝜆𝑛2, where 𝜆1 and 𝜆2
are given in (11). For (𝑏, 𝑐) ∈ 𝑆, any cycle is attracting, while on the
boundary of 𝑆 defined by 𝑐 = 2(𝑏 + 1), the eigenvalues of an 𝑛-cycle
satisfy −1 < 𝜆(𝑛)1 < 0, 𝜆(𝑛)2 = −1 for odd 𝑛, and 0 < 𝜆(𝑛)1 < 1, 𝜆(𝑛)2 = 1 for
even 𝑛. Thus, we can state the following

Property 2 (Bifurcations on the Borders of the Stability Box). (i) Let
0 < 𝑏 < 1. The condition 𝑐 = 2(𝑏+1) corresponds to a degenerate bifurcation
with eigenvalue −1 for any odd-period 𝑛-cycle, 𝑛 ≥ 3, of map 𝑇 , as well as
to a degenerate bifurcation with eigenvalue +1 for any even-period 𝑛-cycle,
𝑛 ≥ 2, of map 𝑇 .

(ii) Let 𝑏 = 1, 0 < 𝑐 < 4. Then the fixed point 𝑃𝑂 is a center, with
complex conjugate eigenvalues equal to 1 in modulus; in the phase plane,
an invariant region with bounded dynamics exists.

Given that the eigenvalues 𝜆(𝑛)1 and 𝜆(𝑛)2 of an 𝑛-cycle do not depend
on ℎ, Property 2(i) is the same as in the case ℎ = 0. Property 2(ii)
is due to region 𝐷𝑂 in which the fixed point 𝑃𝑂 exists, and since the
map is linear in 𝐷𝑂, at the center bifurcation related to the fixed point
with complex conjugate eigenvalues on the unit circle, some invariant
sets must necessarily exist. We shall come back to this property in Sec-
tion 4.7, evidencing the existence of the region with bounded dynamics,
which is a new property with respect to the case ℎ > 0.

It is worth emphasizing a further difference between the cases ℎ = 0
and ℎ > 0. Recall that for ℎ = 0, an attracting 𝑛-cycle, 𝑛 ≥ 3, loses
stability at 𝑐 = 2(𝑏 + 1) and persists for 𝑐 > 2(𝑏 + 1) becoming a
saddle, while for ℎ > 0, this is no longer always true because in this
case the existence of a cycle is conditioned by other possible BCBs (due
to the presence of two borders instead of one in the definition of the
partitions). For example, the 4-cycle 𝐿2𝑈2 for ℎ > 0, similar to the case
for ℎ = 0, loses stability at 𝑐 = 2(𝑏 + 1) (the upper boundary of the
stability box 𝑆) becoming a saddle. For ℎ = 0, however, it persists for
any 𝑐 > 2(𝑏 + 1), while for ℎ > 0 it disappears due to a BCB when its
7

two points collide with the borders of 𝐷𝑂, i.e., with the critical lines
𝐶−1,𝐿 and 𝐶−1,𝑈 .

Note also that from Property 2(i) it follows that when in the (𝑏, 𝑐)-
plane a parameter point crosses the line 𝑐 = 2(𝑏 + 1), 0 < 𝑏 < 1, from
below to above, in the phase plane a transition occurs from regular
dynamics (no repelling cycle – expanding or saddle – can exist for
𝑐 < 2(𝑏 + 1)) to chaotic dynamics (no attracting cycle can exist for 𝑐 >
2(𝑏+1)). When there is a bounded attracting set, it is necessarily chaotic,
but divergent trajectories also are present. It may hold that almost all
the trajectories are divergent (this occurs for parameters in the gray
region of Fig. 1b). Similar to the case with ℎ = 0, for ℎ > 0 the transition
to generic divergence is related to the first homoclinic bifurcation of
the saddle 2-cycle, but now this bifurcation can occur in two different
ways, leading to the two different bifurcation curves shown in Fig. 1b,
denoted by 𝐻𝑈

2 and 𝐻𝐿
2 , and determined in Section 4.2.

4.2. Chaotic attractors and bifurcations of the 2-cycle 𝐿𝑈

The 2-periodic points 𝑝0 = (𝑥0, 𝑦0) ∈ 𝐷𝐿 and 𝑝1 = (𝑥1, 𝑦1) ∈ 𝐷𝑈 of
the 2-cycle 𝐿𝑈 are given by

𝑥0 =
𝑑

𝑐 − 2(1 + 𝑏)
, 𝑦0 =

−𝑑
𝑐 − 2(1 + 𝑏)

, 𝑥1 = −𝑥0, 𝑦1 = −𝑦0. (15)

At 𝑐 = 2(𝑏+1), 0 < 𝑏 < 1, this cycle appears via degenerate transcritical
bifurcation, and for 𝑐 ⪆ 2(𝑏+ 1) its periodic points are close to infinity.
Increasing 𝑐, both points 𝑝0 and 𝑝1 tend to the origin, so that at some
parameter value a BCB must occur when 𝑝0 collides with the critical
lines 𝐶−1,𝐿 and 𝑝1 with 𝐶−1,𝑈 , and after this collision the 2-cycle 𝐿𝑈
disappears. Substituting (15) to the BCB condition (𝑥0, 𝑦0) ∈ 𝐶−1,𝐿 (or
(𝑥1, 𝑦1) ∈ 𝐶−1,𝑈 ), we get

−𝑑
𝑐 − 2(1 + 𝑏)

= 𝑑
𝑐 − 2(1 + 𝑏)

− ℎ,

so that the BCB curve valid for ℎ > 0 is defined by

𝑐 = 2(1 + 𝑏) + 2𝑑
ℎ
. (16)

The role of the stable invariant set of the saddle 2-cycle 𝐿𝑈 for
2(1 + 𝑏) < 𝑐 < 2(1 + 𝑏) + 2𝑑

ℎ , 0 < 𝑏 < 1, ℎ > 0, is the same as for
ℎ = 0.

Since no attracting cycle can exist for 𝑐 > 2(1 + 𝑏) and all existing
cycles are saddles (possibly homoclinic), when bounded dynamics exist,
these cycles must belong to some chaotic set. The unstable invariant
set of the 2-cycle has one branch whose points have divergent trajecto-
ries, while points of the opposite branch have trajectories converging
to some bounded attracting set, when it exists. That is, the chaotic
attractor is the 𝜔-limit set of such a branch of the unstable invariant
set of the 2-cycle. Thus, the stable invariant set of the 2-cycle, together
with proper segments of the critical lines 𝐶−1,𝐿, 𝐶−1,𝑈 and their preim-
ages, separate the region of diverging trajectories from the basin of
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Fig. 5. Phase portrait of map 𝑇 near the first homoclinic bifurcation of the 2-cycle 𝐿𝑈 when (a) 𝑃𝑆𝑈 ≈ 𝑃𝑈𝑈 at 𝑏 = 0.05, 𝑐 = 2.87; (b) 𝑃𝑆𝐿 ≈ 𝑃𝑈𝐿 at 𝑏 = 0.6, 𝑐 = 3.48. Other
parameters 𝑑 = 0.02, ℎ = 0.01.
attraction of the chaotic attractors existing as long as the 2-cycle is
nonhomoclinic. In this way, the boundary of the divergence region
in the (𝑏, 𝑐)-parameter plane is associated with the first homoclinic
bifurcation of the 2-cycle 𝐿𝑈 , which may occur in two different ways.
In fact, for ℎ > 0, this boundary is formed by two curves denoted by
𝐻𝑈

2 and 𝐻𝐿
2 in Fig. 1b, associated with the two possible conditions of

homoclinic bifurcations as explained below.
Let us first define the branches of the stable and unstable invariant

sets of the saddle 2-cycle 𝐿𝑈 , which will then help us to obtain the
homoclinic bifurcation conditions. As illustrated in Fig. 5, two branches
of the local invariant stable set of 𝐿𝑈 , denoted by 𝑆(𝑝0) and 𝑆(𝑝1), are
halflines of equations 𝑦 = (𝑥 − 𝑥0)∕𝜆1 + 𝑦0 and 𝑦 = (𝑥 − 𝑥1)∕𝜆1 + 𝑦1,
issuing from a point of 𝐶−1,𝐿 and a point of 𝐶−1,𝑈 , respectively. The
two branches of the local unstable invariant set of 𝐿𝑈 are halflines of
equations

𝑦 = (𝑥 − 𝑥0)∕𝜆2 + 𝑦0, (17)

and

𝑦 = (𝑥 − 𝑥1)∕𝜆2 + 𝑦1, (18)

issuing from a point 𝑃𝑈𝐿 ∈ 𝐶−1,𝐿 and a point 𝐾𝑈𝑈 ∈ 𝐶−1,𝑈 . We denote
by 𝑈 (𝑝0) the segment (𝑝0, 𝑇𝑈 (𝐾𝑈𝑈 )) of the unstable invariant set of 𝐿𝑈 ,
which is an image by 𝑇𝑈 of the segment (𝑝1, 𝐾𝑈𝑈 ), and 𝑈 (𝑝1) denotes
the segment (𝑝1, 𝑇𝐿(𝑃𝑈𝐿)), which is an image by 𝑇𝐿 of the segment
(𝑝0, 𝑃𝑈𝐿). Obviously, segments 𝑈 (𝑝0) and 𝑈 (𝑝1) belong to the straight
lines of the same equations given above, of the local unstable invariant
sets of 𝐿𝑈 , namely, 𝑦 = (𝑥 − 𝑥0)∕𝜆2 + 𝑦0 and 𝑦 = (𝑥 − 𝑥1)∕𝜆2 + 𝑦1,
respectively.

In Fig. 5, we illustrate two different cases of the phase portrait
of map 𝑇 near the first homoclinic bifurcation of the 2-cycle 𝐿𝑈 . To
obtain the related conditions, we need two more branches of the stable
invariant set of 𝐿𝑈 . We first take a preimage by map 𝑇 −1

𝐿 of branch
𝑆(𝑝0), which is denoted by 𝑆−1

𝐿 (𝑝0). Obviously, the preimage by map
𝑇 −1
𝑈 of 𝑆(𝑝0) is branch 𝑆(𝑝1). Applying 𝑇 −1

𝐿 to 𝑆(𝑝0), branch 𝑆−1
𝐿 (𝑝0) is

obtained, which belongs to the line of equation

𝑦 = ((𝑣 − 𝜆1)𝑥 + 𝜆1𝑦0 − 𝑥0 + 𝑑)∕𝑏, (19)

and applying 𝑇 −1
𝑂 to 𝑆(𝑝0), branch 𝑆−1

𝑂 (𝑝0) is obtained, which belongs
to the line of equation

𝑦 = ((𝑣 − 𝜆1)𝑥 + 𝜆1𝑦0 − 𝑥0)∕𝑏. (20)

In Fig. 5a, we see that the first contact of the stable and unstable
invariant sets of 𝐿𝑈 can be determined from the condition 𝑃𝑈𝑈 = 𝑃𝑆𝑈 ,
while in Fig. 5b the first contact corresponds to the condition 𝑃𝑈𝐿 =
𝑃𝑆𝐿, where points 𝑃𝑈𝑈 and 𝑃𝑆𝑈 are intersection points of the branches
𝑈 (𝑝0) and 𝑆−1

𝑂 (𝑝0) with the critical line 𝐶−1,𝑈 , while 𝑃𝑈𝐿 and 𝑃𝑆𝐿 are
intersection points of the branches 𝑈 (𝑝 ) and 𝑆−1(𝑝 ) with the critical
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0 𝐿 0
line 𝐶−1,𝐿. Using Eqs. (17), (13), (20), and (19), these intersection
points can be easily obtained: point 𝑃𝑈𝑈 is given by 𝑥 = 𝑥′′ =
𝑦0−𝑥0∕𝜆2−ℎ

1−1∕𝜆2
, 𝑦 = 𝑦′′ = 𝑥′′ + ℎ; point 𝑃𝑆𝑈 is given by 𝑥 = 𝑥 = 𝜆1𝑦0−𝑥0−𝑏ℎ

𝑐−1+𝜆1
,

𝑦 = 𝑦 = 𝑥+ℎ; point 𝑃𝑈𝐿 is given by 𝑥 = 𝑥′ = 𝑦0−𝑥0∕𝜆2+ℎ
1−1∕𝜆2

, 𝑦 = 𝑦′ = 𝑥′ −ℎ;

and point 𝑃𝑆𝐿 is given by 𝑥 = 𝑥 = 𝜆1𝑦0−𝑥0+𝑑+𝑏ℎ
𝑐−1+𝜆1

, 𝑦 = 𝑦 = 𝑥 − ℎ.
In this way, the first homoclinic bifurcation of 𝐿𝑈 can be defined

from the condition 𝑥 = 𝑥′′, related to 𝑃𝑈𝑈 = 𝑃𝑆𝑈 (in Fig. 5a, points 𝑃𝑈𝑈
and 𝑃𝑆𝑈 almost coincide), leading to the first homoclinic bifurcation
curve denoted 𝐻𝑈

2 ∶

(𝐻𝑈
2 )

𝑦0 − 𝑥0∕𝜆2 − ℎ
1 − 1∕𝜆2

=
𝜆1𝑦0 − 𝑥0 − 𝑏ℎ

𝑐 − 1 + 𝜆1
, (21)

or from the condition 𝑥 = 𝑥′ related to 𝑃𝑈𝐿 = 𝑃𝑆𝐿 (in Fig. 5b, the
points 𝑃𝑈𝐿 and 𝑃𝑆𝐿 almost coincide) leading to the first homoclinic
bifurcation curve denoted 𝐻𝐿

2 ∶

(𝐻𝐿
2 )

𝑦0 − 𝑥0∕𝜆2 + ℎ
1 − 1∕𝜆2

=
𝜆1𝑦0 − 𝑥0 + 𝑑 + 𝑏ℎ

𝑐 − 1 + 𝜆1
. (22)

As can be seen in Fig. 1b, for the parameter values under consideration,
these curves intersect at a point, say 𝐻2, of the feasible parameter
domain. As a result, on the left/right of the intersection point 𝐻2, curve
𝐻𝑈

2 /𝐻𝐿
2 is valid, and it corresponds to the first homoclinic bifurcation

of the 2-cycle 𝐿𝑈 .
Since the homoclinic bifurcation corresponds to a contact of the

chaotic set with the stable and unstable invariant sets of the saddle
2-cycle, and the stable invariant set is on the boundary of the set of
divergent trajectories, after the first homoclinic bifurcation almost all
the trajectories are divergent, although a chaotic repeller still exists,
which includes infinitely many homoclinic saddle cycles and their
stable sets.

We have therefore proved the following

Property 3 (Chaotic Attractor, 2-Cycle and Related Bifurcations). Let 0 <
𝑏 < 1, ℎ > 0, then

(i) the saddle 2-cycle 𝐿𝑈 with periodic points given in (15) exists for
2(𝑏 + 1) < 𝑐 < 2(1 + 𝑏) + 2𝑑

ℎ ;
(ii) for parameters (𝑏, 𝑐) belonging to the region above line 𝑐 = 2(𝑏 + 1)

and below the homoclinic bifurcation curves 𝐻𝑈
2 / 𝐻𝐿

2 given in (21) and
(22), the stable invariant set of the 2-cycle belongs to the boundary of the
region of bounded trajectories, where a chaotic attracting set of map 𝑇
exists. For parameters above the homoclinic bifurcation curves 𝐻𝑈

2 / 𝐻𝐿
2 ,

the generic trajectory is divergent.

To end this section, it is worth noting that the structure of the
existing chaotic attractor is similar to the one occurring in a 2D
piecewise-linear discontinuous map defined on two partitions, known
as the Belykh map (see [27,32]), which is characterized by a region
in the phase space in which all cycles are saddles. Moreover, similar
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to our case, the basin boundary of a chaotic attractor in the Belykh
map is associated with the stable invariant set of a saddle 2-cycle, and
the chaotic attractor exists up to the first homoclinic bifurcation of this
cycle. This is clearly true in the case ℎ = 0, when the map in defined
on two partitions (as for the Belykh map), but we have the numerical
evidence that this is true also in the case ℎ > 0, when the map is
defined on three partitions. This is a novelty for the understanding of
the properties of the chaotic set in terms of ergodic theory (related to
the property that all existing cycles are saddles).

4.3. Even-period cycles in two partitions, 𝐿𝑚𝑈𝑚, 𝑚 ≥ 1

Let us now determine the boundaries of the largest periodicity
regions related to attracting cycles with rotation number 1∕𝑛. We begin
with a cycle 𝐿𝑚𝑈𝑚, 𝑚 ≥ 1. Its periodic points have been detected for
he case ℎ = 0 (see [12]), and this result is also valid for the case ℎ > 0.
owever, the corresponding periodicity region is bounded by curves

elated to different BCBs. Let 𝑝0 = (𝑥0, 𝑦0) be the point of a 2𝑚-cycle
𝑚𝑈𝑚, 𝑚 ≥ 1, which is the leftmost periodic point in partition 𝐷𝐿, that

s, with 𝑦0 < 𝑥0 − ℎ. Then from 𝑇 𝑚
𝐿 (𝑥0, 𝑦0) = (−𝑥0,−𝑦0) it holds that

𝑥0
𝑦0

)

=
𝑑∕𝑐

𝑃𝐽𝑚 (−1)

(

𝑏𝑚 − 1 + 𝑎𝑚−1(1 − 𝑏 − 𝑐)
𝑏𝑚 − 1 + 𝑎𝑚−1(1 − 𝑏 + 𝑐)

)

, (23)

where

𝑃𝐽𝑚 (−1) = 1 + 2𝑎𝑚 − 𝑣𝑎𝑚−1 + 𝑏𝑚

is the characteristic polynomial 𝑃𝐽𝑚 (𝜆) of matrix 𝐽𝑚 evaluated at 𝜆 =
−1, and

𝑎𝑚 = 𝑣𝑎𝑚−1 − 𝑏𝑎𝑚−2, 𝑚 ≥ 2

is a second-order linear difference equation with the initial conditions

𝑎0 = 1, 𝑎1 = 𝑣.

One can check that substituting 𝑚 = 1 to (23), we obtain point 𝑝0 of
the 2-cycle considered above (see (15)).

The existence conditions of cycle 𝐿𝑚𝑈𝑚, that is, the conditions
which guarantee that all points belong to their proper partitions, are
given by the following inequalities, which must be satisfied simultane-
ously:
{

(𝑐1) 𝑦0 ≤ 𝑥0 − ℎ (𝑝0 ∈ 𝐷𝐿),
(𝑐2) 𝑦𝑚−1 ≤ 𝑥𝑚−1 − ℎ (𝑝𝑚−1 ∈ 𝐷𝐿).

(24)

Note that due to the symmetry of map 𝑇 , conditions (c1) and (c2) in
(24) can be equivalently written as 𝑦𝑚 ≥ 𝑥𝑚 + ℎ and 𝑦𝑛−1 ≥ 𝑥𝑛−1 + ℎ
(𝑝𝑛−1 ∈ 𝐷𝑈 ), respectively. That is, if conditions (c1) and (c2) in (24)
are satisfied, then all the points of cycle 𝐿𝑚𝑈𝑚 are in their proper
partitions.

Substituting 𝑥0 and 𝑦0 from (23) to the existence condition (c1) in
(24), we get
2𝑑𝑎𝑚−1
𝑃𝐽𝑚 (−1)

≤ −ℎ, (25)

where equality corresponds to the condition 𝑝0 ∈ 𝐶−1,𝐿, that is, to the
condition of the first BCB of cycle 𝐿𝑚𝑈𝑚. Due to the symmetry of 𝐿𝑚𝑈𝑚

with respect to the origin, it holds that 𝑝𝑚 ∈ 𝐶−1,𝑈 . The related BCB
curves are denoted by 𝐵1,1

2𝑚 and plotted in Fig. 6a for 𝑚 = 2,… , 8. They
are the lower boundaries of the 2𝑚-periodicity regions. The upper index
‘‘1,1’’ in 𝐵1,1

2𝑚 denotes that it is the first BCB condition of the first kind
of family of cycles (without points in 𝐷𝑂).

The simplest way to obtain the existence condition (c2) in (24) is
to take a preimage of 𝑝0 by

𝑇 −1
𝑈 ∶

(

𝑥
𝑦

)

→

(

𝑦
(−𝑥 + 𝑣𝑦 − 𝑑)∕𝑏

)

,

so that
(

𝑥𝑛−1
)

=
(

𝑦0
)

.

9

𝑦𝑛−1 (−𝑥0 + 𝑣𝑦0 − 𝑑)∕𝑏
Substituting 𝑥0 and 𝑦0 from (23), we get
(

𝑥𝑛−1
𝑦𝑛−1

)

=
𝑑∕𝑐

𝑃𝐽𝑚 (−1)

(

𝑏𝑚 − 1 + 𝑎𝑚−1(1 − 𝑏 + 𝑐)
𝑏𝑚 − 1 + 𝑎𝑚−1(1 − 𝑏 + 𝑐) − 2𝑐(𝑏𝑚−1 − 𝑎𝑚−2)

)

,

(26)

nd substituting the expressions for 𝑥𝑛−1 and 𝑦𝑛−1 from (26) into 𝑦𝑛−1 ≥
𝑥𝑛−1 +ℎ (this inequality is equivalent to the existence condition (c2) in
(24)), we get

2𝑑(𝑎𝑚−2 − 𝑏𝑚−1)
𝑃𝐽𝑚 (−1)

≥ ℎ. (27)

Here, equality corresponds to the condition 𝑝𝑛−1 ∈ 𝐶−1,𝑈 (as well as
𝑝𝑚−1 ∈ 𝐶−1,𝐿), that is, to the condition of the second BCB of cycle 𝐿𝑚𝑈𝑚.
The related BCB curves are denoted by 𝐵2,1

2𝑚 and plotted in Fig. 6a
for 𝑚 = 2,… , 8. They are the upper boundaries of the 2𝑚-periodicity
regions.

As an example, let us consider the 4-cycle 𝐿2𝑈2. Its point 𝑝0 ∈ 𝐷𝐿
is obtained from (23) for 𝑚 = 2:

𝑥0 =
𝑑(𝑐 − 2)

1 + 2𝑎2 − 𝑣𝑎1 + 𝑏2
, 𝑦0 =

𝑑(2𝑏 − 𝑐)
1 + 2𝑎2 − 𝑣𝑎1 + 𝑏2

.

Substituting 𝑚 = 2 to (25), we get that the condition 𝑦0 ≤ 𝑥0 − ℎ is
atisfied for

≥ (1 + 𝑏) + ℎ
2𝑑

(1 + 2𝑎2 − 𝑣𝑎1 + 𝑏2), (28)

where 𝑎2 = 𝑣2 − 𝑏, 𝑎1 = 𝑣, so that (1 + 2𝑎2 − 𝑣𝑎1 + 𝑏2) = (1 − 𝑏)2 + 𝑣2 >
. This equality corresponds to the lower BCB boundary 𝐵1,1

4 of the
-periodicity region related to cycle 𝐿2𝑈2 (see Fig. 6a).

The second BCB condition is obtained by substituting 𝑚 = 2 to (27):

(1 + 2𝑎2 − 𝑣𝑎1 + 𝑏2) ≤ 2𝑑(1 − 𝑏), (29)

hich (for 0 < 𝑏 < 1) is always satisfied in the case ℎ = 0, while this is
o longer true for ℎ > 0, leading to the second BCB condition, which
efines the upper BCB boundary 𝐵2,1

4 of the 4-periodicity region related
o the cycle 𝐿2𝑈2 (see Fig. 6a). In Fig. 6b, cycle 𝐿2𝑈2 is close to this
CB. As can be seen in Fig. 6a, curve 𝐵2,1

4 can be crossed when cycle
2𝑈2 is still attracting (i.e., for 𝑐 < 2(𝑏 + 1)), as well as when it is a

addle (for 𝑐 > 2(𝑏 + 1)).

.4. Odd-period cycles in two partitions, 𝐿𝑚𝑈𝑚−1, 𝑈𝑚𝐿𝑚−1, 𝑚 ≥ 2

Let us suppose that map 𝑇 has a cycle of odd period 𝑛 = 2𝑚−1, 𝑚 ≥
, with symbolic sequence 𝐿𝑚𝑈𝑚−1. Then a symmetric cycle 𝑈𝑚𝐿𝑚−1

ust also exist. Let the point 𝑝0 = (𝑥0, 𝑦0) of a cycle 𝐿𝑚𝑈𝑚−1 be the
eftmost point in the lower partition. From 𝑇 𝑚−1

𝑈 ◦𝑇 𝑚
𝐿 (𝑥0, 𝑦0) = (𝑥0, 𝑦0),

e get

𝑥0
𝑦0

)

=
𝑑∕𝑐

𝑃𝐽2𝑚−1 (1)

(

𝑃𝐽2𝑚−1 (1) − 2(𝑏𝑎2𝑚−3 + 1)𝑘1 + 2𝑏𝑎2𝑚−2𝑘2
𝑃𝐽2𝑚−1 (1) − 2𝑎2𝑚−2𝑘1 + 2(𝑎2𝑚−1 − 1)𝑘2

)

,

(30)

here, for short,

1 = 1 − 𝑎𝑚−1 + 𝑏𝑎𝑚−2, 𝑘2 = 1 − 𝑎𝑚−2 + 𝑏𝑎𝑚−3,

nd

𝐽2𝑚−1 (1) = 1 − 𝑎2𝑚−1 + 𝑏𝑎2𝑚−3 + 𝑏2𝑚−1.

ote that the point (−𝑥0,−𝑦0) is the rightmost point of the symmetric
ycle 𝑈𝑚𝐿𝑚−1 in the upper partition.

For example, for the 3-cycle 𝐿2𝑈 (𝑚 = 2 in (30)), we get

0 =
𝑑
(

𝑏2 + 𝑏 + 1 − 𝑐 (𝑏 − 𝑐 + 3)
)

, 𝑦0 =
𝑑(𝑏2 + 𝑏 + 1 + 𝑐(𝑏 − 𝑐 + 1))

.

𝑐[3(𝑏2 + 𝑏 + 1) − 𝑐(3𝑏 − 𝑐 + 3)] 𝑐[3(𝑏2 + 𝑏 + 1) − 𝑐(3𝑏 − 𝑐 + 3)]
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Fig. 6. (a) BCB boundaries of the periodicity regions related to even-period cycles 𝐿𝑚𝑈𝑚 and pairs of odd-period cycles 𝐿𝑚𝑈𝑚−1, 𝑈𝑚𝐿𝑚−1 for 𝑚 = 2,… , 8; (b) basins of coexisting
attracting fixed point 𝑃𝑂 , 4-cycle 𝐿2𝑈 2, 3-cycles 𝐿2𝑈 , 𝑈 2𝐿, and 10-cycle 𝐿2𝑈𝑂𝐿𝑈 2𝐿𝑂𝑈 at 𝑏 = 0.61, 𝑐 = 2.67 (the related parameter point is indicated by a black circle in (a)).
Other parameters are 𝑑 = 0.02, ℎ = 0.01.
For the existence of 𝐿2𝑈 , inequality 𝑦0 < 𝑥0 − ℎ must be satisfied. It
can be checked that inequality [3(𝑏 + 𝑏2 + 1) − 𝑐(3𝑏 − 𝑐 + 3)] > 0 always
holds, and the existence condition 𝑦0 ≤ 𝑥0 − ℎ leads to

2𝑑(𝑏 + 2 − 𝑐) ≤ −ℎ[3(𝑏 + 𝑏2 + 1) − 𝑐(3𝑏 − 𝑐 + 3)].

In particular, for ℎ = 0, we have the condition 𝑐 ≥ 𝑏+2. Equality defines
the lower BCB curve 𝐵1,1

3 (see Fig. 6a). Considering the point (−𝑥0,−𝑦0)
of the symmetric cycle 𝑈2𝐿, its existence condition −𝑦0 > −𝑥0 + ℎ
obviously leads to the same inequality. In Fig. 6b, the 3-cycles 𝐿2𝑈
and 𝑈2𝐿 are near this BCB.

For a generic cycle 𝐿𝑚𝑈𝑚−1 (as well as for the symmetric cycle
𝑈𝑚𝐿𝑚−1), the existence conditions are given by (c1) and (c2) in (24).
Substituting 𝑥0 and 𝑦0 from (30) to condition (c1) in (24), we get
2𝑑(𝑘1(−𝑎2𝑚−2 + 𝑏𝑎2𝑚−3 + 1) + 𝑘2(𝑎2𝑚−1 − 𝑏𝑎2𝑚−2 − 1))

𝑃𝐽2𝑚−1 (1)𝑐
≤ −ℎ. (31)

Equality defines the lower BCB boundary 𝐵1,1
2𝑚−1 of the (2𝑚 − 1) -

periodicity regions of the first kind of family of cycles (i.e., cycles
without points in 𝐷𝑂), which are plotted for 𝑚 = 2,… , 8 in Fig. 6a.

For condition (c2) in (24), we need point 𝑝𝑚−1 = 𝑇 𝑚−1
𝐿 (𝑝0), which

after straightforward computations, can be defined as
(

𝑥𝑚−1
𝑦𝑚−1

)

= 𝐽𝑚−1 𝑑∕𝑐
𝑃𝐽 2𝑚−1 (1)

(

𝑃𝐽 2𝑚−1 (1) − 2(𝑏𝑎2𝑚−3 + 1)𝑘1 + 2𝑏𝑎2𝑚−2𝑘2
𝑃𝐽 2𝑚−1 (1) − 2𝑎2𝑚−2𝑘1 + 2(𝑎2𝑚−1 − 1)𝑘2

)

+ 𝑑
𝑐

(

𝑘1
𝑘2

)

, (32)

where the macro parameters 𝑘1, 𝑘2, and 𝑃𝐽2𝑚−1 (1) are the same as
above.

In particular, for the 3-cycle 𝐿2𝑈 (𝑚 = 2), its point (𝑥1, 𝑦1) is as
follows:

𝑥1 =
𝑑(𝑏2 + 𝑏 + 1 − 𝑐(1 + 3𝑏 − 𝑐))

𝑐
(

3(𝑏 + 𝑏2 + 1) − 𝑐(3𝑏 − 𝑐 + 3)
) , 𝑦1 =

𝑑
(

𝑏2 + 𝑏 + 1 − 𝑐 (𝑏 − 𝑐 + 3)
)

𝑐
(

3(𝑏 + 𝑏2 + 1) − 𝑐(3𝑏 − 𝑐 + 3)
) .

Inequality 𝑦1 ≤ 𝑥1 − ℎ leads to the condition −2𝑑(1 − 𝑏) ≤ −ℎ[3(𝑏+ 𝑏2 +
1) − 𝑐(3𝑏 − 𝑐 + 3)], that is

2𝑑(1 − 𝑏) ≥ ℎ[3(𝑏 + 𝑏2 + 1) − 𝑐(3𝑏 − 𝑐 + 3)].

For 𝑏 < 1, the existence condition is always satisfied in the case ℎ = 0,
while for ℎ > 0, equality defines the upper BCB boundary 𝐵2,1

3 of the
related periodicity region (see Fig. 6a). When these boundaries are
crossed, cycles 𝐿2𝑈 and 𝑈2𝐿 disappear. As can be seen in Fig. 6a,
boundary 𝐵2,1

3 can be crossed when the cycles under consideration are
attracting (for 𝑐 < 2(𝑏 + 1)) or saddle (for 𝑐 > 2(𝑏 + 1)). Moreover,
this BCB can also occur when almost all the trajectories are diverging
(above the homoclinic bifurcation curve of the 2-cycle 𝐿𝑈).

For a generic cycle 𝐿𝑚𝑈𝑚−1 (as well as for the symmetric cycle
𝑈𝑚𝐿𝑚−1), substituting 𝑥 , 𝑦 from (32) to 𝑦 ≤ 𝑥 − ℎ, the
10

𝑚−1 𝑚−1 𝑚−1 𝑚−1
existence condition (c2) in (24) can be simplified as follows:

𝑏𝑎2𝑚−2(𝑎𝑚−3(1 + 𝑏𝑎𝑚−3) − 𝑎2𝑚−2) − 𝑎𝑚−2(𝑏𝑎2𝑚−3 + 1)(1 − 𝑎𝑚−1 + 𝑏𝑎𝑚−3)
𝑃𝐽2𝑚−1 (1)

≤ −ℎ𝑐∕2𝑑.

Equality defines the upper BCB boundaries 𝐵2,1
2𝑚−1 of the (2𝑚 − 1)-

periodicity regions of the first family of cycles, which are plotted for
𝑚 = 2,… , 8 in Fig. 6a.

4.5. Even-period cycles in three partitions, 𝐿𝑚𝑂𝑈𝑚𝑂, 𝑚 ≥ 1

We now turn to the second kind of families of cycles, with points
in all three partitions. The simplest symbolic sequences are those of
even-period cycles 𝐿𝑚𝑂𝑈𝑚𝑂, 𝑚 ≥ 1. Let us denote again as 𝑝0 = (𝑥0, 𝑦0)
the leftmost point in 𝐷𝐿 of a cycle 𝐿𝑚𝑂𝑈𝑚𝑂. By using the symmetry
with respect to the origin, it can be obtained from 𝑇𝑂◦𝑇 𝑚

𝐿 (𝑥0, 𝑦0) =
(−𝑥0,−𝑦0), leading to
(

𝑥0
𝑦0

)

=
𝑑∕𝑐

𝑃𝐽𝑚+1 (−1)

(

𝑐(1 − 𝑎𝑚 − 𝑏𝑎𝑚−1) + 𝑎𝑚(1 − 𝑏) + 𝑏𝑚+1 − 1
𝑎𝑚(1 − 𝑏) + 𝑏𝑚+1 − 1

)

,

(33)

where

𝑃𝐽𝑚+1 (−1) = 1 + 𝑎𝑚+1 − 𝑏𝑎𝑚−1 + 𝑏𝑚+1.

The existence conditions of the cycle 𝐿𝑚𝑂𝑈𝑚𝑂 are given by the follow-
ing inequalities, which must be satisfied simultaneously:

⎧

⎪

⎨

⎪

⎩

(c1) 𝑦0 ≤ 𝑥0 − ℎ (𝑝0 ∈ 𝐷𝐿),
(b1)–(b2) 𝑥𝑚 − ℎ ≤ 𝑦𝑚 ≤ 𝑥𝑚 + ℎ (𝑝𝑚 ∈ 𝐷𝑂),
(c2) 𝑦𝑚−1 ≤ 𝑥𝑚−1 − ℎ (𝑝𝑚−1 ∈ 𝐷𝐿),

(34)

where conditions (c1) and (c2) are as in (24), and now condition
(c2) can be equivalently written as 𝑦𝑛−2 ≥ 𝑥𝑛−2 + ℎ (𝑝𝑛−2 ∈ 𝐷𝑈 ).
Similarly, conditions (b1) and (b2) in (34) can be equivalently written
as 𝑥𝑛−1 − ℎ ≤ 𝑦𝑛−1 ≤ 𝑥𝑛−1 + ℎ (𝑝𝑛−1 ∈ 𝐷𝑂).

Substituting (33) to condition (c1) leads to the following inequality:
𝑑(𝑎𝑚 + 𝑏𝑎𝑚−1 − 1)

𝑃𝐽𝑚+1 (−1)
≤ −ℎ,

where equality corresponds to the BCB occurring when 𝑝0 ∈ 𝐶−1,𝐿.
The corresponding curve is denoted by 𝐵1,2

𝑛 (here, the upper index 2
indicates the second kind of family of cycles, to distinguish from the
previous kind of family with no points in 𝐷𝑂).

To obtain conditions (b1)–(b2) in (34) in the form 𝑥𝑛−1−ℎ ≤ 𝑦𝑛−1 ≤
𝑥 + ℎ, we need point 𝑝 , which can be obtained by taking the
𝑛−1 𝑛−1
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(

preimage by 𝑇 −1
𝑂 of point 𝑝0 ∶

𝑥𝑛−1
𝑦𝑛−1

)

=
(

𝑦0
(−𝑥0 + 𝑣𝑦0)∕𝑏

)

,

which leads to
(

𝑥𝑛−1
𝑦𝑛−1

)

=
𝑑∕𝑐

𝑃𝐽𝑚+1 (−1)

(

𝑎𝑚(1 − 𝑏) + 𝑏𝑚+1 − 1
𝑎𝑚(1 − 𝑏) + 𝑏𝑚+1 − 1 + 𝑐(𝑎𝑚−1 + 𝑎𝑚 − 𝑏𝑚)

)

.

(35)

Then conditions (b1)–(b2) simplifies to

−ℎ ≤
𝑑(𝑎𝑚−1 + 𝑎𝑚 − 𝑏𝑚)

𝑃𝐽𝑚+1 (−1)
≤ ℎ,

where the left equality corresponds to the BCB at which 𝑝𝑛−1 ∈ 𝐶−1,𝐿,
and the right equality to the BCB at which 𝑝𝑛−1 ∈ 𝐶−1,𝑈 . The related
BCB curves are denoted by 𝐵2,2

𝑛 and 𝐵3,2
𝑛 , respectively.

Finally, to obtain condition (c2) in the form 𝑦𝑛−2 ≥ 𝑥𝑛−2 + ℎ (𝑝𝑛−2 ∈
𝐷𝑈 ), we need point 𝑝𝑛−2, which we obtain by taking the preimage by
𝑇 −1
𝑈 of point 𝑝𝑛−1 ∶

(

𝑥𝑛−2
𝑦𝑛−2

)

=
(

𝑦𝑛−1
(−𝑥𝑛−1 + 𝑣𝑦𝑛−1 − 𝑑)∕𝑏

)

,

(

𝑥𝑛−2
𝑦𝑛−2

)

=
𝑑∕𝑐

𝑃𝐽𝑚+1 (−1)

(

𝑎𝑚(1 − 𝑏) + 𝑏𝑚+1 − 1 + 𝑐(𝑎𝑚−1 + 𝑎𝑚 − 𝑏𝑚)
((𝑏 − 𝑐)𝑘 + 𝑣𝑐(𝑎𝑚−1 + 𝑎𝑚 − 𝑏𝑚) − 𝑐(1 + 𝑎𝑚+1 − 𝑏𝑎𝑚−1 + 𝑏𝑚+1))∕𝑏

)

.

Condition (c2) can then be written as (−𝑥𝑛−1 + 𝑣𝑦𝑛−1 − 𝑑)∕𝑏 ≥ 𝑦𝑛−1 + ℎ,
and substituting 𝑥𝑛−1, 𝑦𝑛−1 from (35), this condition simplifies to
(1 + 2𝑏 − 𝑐)(𝑎𝑚−1 − 𝑏𝑚) − 𝑎𝑚

𝑃𝐽𝑚+1 (−1)
≥ 𝑏ℎ

𝑑
,

where equality corresponds to the BCB at which 𝑝𝑛−2 ∈ 𝐶−1,𝑈 . The
elated BCB curve is denoted by 𝐵4,2

𝑛 .
In Fig. 7a, the BCB curves bounding the existence regions of even-

eriod cycles 𝐿𝑚𝑂𝑈𝑚𝑂 are plotted for 𝑚 = 1,… , 5. In particular, the
ndicated BCB curves 𝐵1,2

4 , 𝐵2,2
4 , 𝐵3,2

4 , and 𝐵4,2
4 bound the existence

egion of the 4-cycle 𝐿𝑂𝑈𝑂. Note that in this specific case, curves 𝐵1,2
4

and 𝐵4,2
4 coincide. In fact, for cycle 𝐿𝑂𝑈𝑂, the condition 𝑝0 ∈ 𝐶−1,𝐿 of

𝐵1,2
4 and 𝑝𝑚−1 ∈ 𝐶−1,𝐿 of 𝐵4,2

4 are the same, since in the considered
case 𝑚 = 1. Other even-period regions in Fig. 6a are bounded by
curves 𝐵2,2

𝑛 , 𝐵3,2
𝑛 , and 𝐵4,2

𝑛 only, that is, for the parameter values under
consideration, curve 𝐵1,2

𝑛 is not involved.

4.6. Odd-period cycles in three partitions, 𝐿𝑚𝑂𝑈𝑚, 𝑈𝑚𝑂𝐿𝑚, 𝑚 ≥ 1

Let us now consider the simplest odd-period cycles with points in
all three partitions, namely, cycles 𝐿𝑚𝑂𝑈𝑚 and their symmetric cycles
with respect to the origin, with symbolic sequence 𝑈𝑚𝑂𝐿𝑚, 𝑚 ≥ 1.
As before, let 𝑝0 = (𝑥0, 𝑦0) be the point of cycle 𝐿𝑚𝑂𝑈𝑚, which is
the leftmost point in region 𝐷𝐿. This point can be obtained from
𝑇 𝑚
𝑈 ◦𝑇𝑂◦𝑇 𝑚

𝐿 (𝑥0, 𝑦0) = (𝑥0, 𝑦0), leading to
(

𝑥0
𝑦0

)

=
𝑑∕𝑐

𝑃𝐽 2𝑚+1 (1)

(

𝑏𝑎2𝑚
(

𝑘3 − 𝑐𝑎𝑚−1
)

−
(

𝑏𝑎2𝑚−1 + 1
) (

𝑘3 + 𝑐(𝑎𝑚 − 𝑎2𝑚)
)

−𝑎2𝑚
(

𝑘3 + 𝑐(𝑎𝑚 − 𝑎2𝑚)
)

+
(

𝑎2𝑚+1 − 1
) (

𝑘3 − 𝑐𝑎𝑚−1
)

)

,

(36)

where

𝑘3 = 2𝑏𝑎𝑚−1 − 2𝑎𝑚 + 𝑎2𝑚 − 𝑏𝑎2𝑚−1 + 1,

𝑃𝐽2𝑚+1 (1) = 1 − 𝑎2𝑚+1 + 𝑏𝑎2𝑚−1 + 𝑏2𝑚+1.

The existence conditions of cycle 𝐿𝑚𝑂𝑈𝑚 are given by the con-
11

ditions (c1), (b1)–(b2) in (34), that must be satisfied simultaneously.
Condition (c1) holds for
−𝑎2𝑚(𝑎𝑚−1(2𝑏 − 𝑐) − 2𝑎𝑚 + 2) + (𝑏𝑎2𝑚−1 − 𝑎2𝑚 + 1)(𝑎𝑚 + 𝑎𝑚−1)

𝑃𝐽2𝑚+1 (1)
≤ ℎ∕𝑑,

here equality corresponds to the BCB of 𝐿𝑚𝑂𝑈𝑚 occurring when
0 ∈ 𝐶−1,𝐿 (and it holds also that the symmetric point of cycle 𝑈𝑚𝑂𝐿𝑚

elongs to 𝐶−1,𝑈 ). We denote the related bifurcation curve as 𝐵1,2
𝑛 .

To obtain conditions (b1)-(b2), we need point 𝑝𝑚 of cycle 𝐿𝑚𝑂𝑈𝑚,
which can be obtained from (𝑥𝑚, 𝑦𝑚) = 𝑇 𝑚

𝑈 (𝑥0, 𝑦0) ∶

𝑥𝑚
𝑦𝑚

)

=
(

𝑑∕𝑐(1 − 𝑎𝑚 + 𝑏𝑎𝑚−1) + 𝑎𝑚𝑥0 − 𝑏𝑎𝑚−1𝑦0
𝑑∕𝑐(1 − 𝑎𝑚−1 + 𝑏𝑎𝑚−2) + 𝑎𝑚−1𝑥0 − 𝑏𝑎𝑚−2𝑦0

)

.

Condition (b1), that is, 𝑦𝑚 ≥ 𝑥𝑚 − ℎ, can be written as

𝑎𝑚−1𝑑 + (𝑎𝑚−1 − 𝑎𝑚)𝑥0 − (𝑎𝑚−2 − 𝑎𝑚−1)𝑏𝑦0 ≤ −ℎ,

nd condition (b2), that is, 𝑦𝑚 ≤ 𝑥𝑚 + ℎ, as

𝑎𝑚−1𝑑 + (𝑎𝑚−1 − 𝑎𝑚)𝑥0 − (𝑎𝑚−2 − 𝑎𝑚−1)𝑏𝑦0 ≥ ℎ,

here 𝑥0, 𝑦0 are given in (36). The corresponding BCB boundaries,
elated to equalities, are denoted by 𝐵2,2

𝑛 (𝑝𝑚 ∈ 𝐶−1,𝐿) and 𝐵3,2
𝑛 (𝑝𝑚 ∈

−1,𝑈 ), respectively.
In Fig. 7a, the BCB curves bounding the existence regions of the

dd-period cycles 𝐿𝑚𝑂𝑈𝑚 are plotted for 𝑚 = 1,… , 4. In particular, the
ndicated BCB curves 𝐵1,2

5 , 𝐵2,2
5 , and 𝐵3,2

5 bound the existence region of
he 5-cycles 𝐿2𝑂𝑈2, 𝑈2𝑂𝐿2. As one can see, this region overlaps with
he region of the 6-cycle 𝐿2𝑂𝑈2𝑂; in Fig. 7b, we show an example of
he phase portrait with basins of these coexisting cycles, as well as the
asin of attracting fixed point 𝑃𝑂.

For example, the existence conditions of cycles 𝐿𝑂𝑈 and 𝑈𝑂𝐿
𝑚 = 1) are as follows:

(c1) 4𝑏 − 3𝑐 + 5 − (3𝑏𝑣 + 𝑐(𝑐 − 3) + 3)ℎ∕𝑑 ≤ 0,
(b1) 𝑐 − 3 + (3𝑏𝑣 + 𝑐(𝑐 − 3) + 3)ℎ∕𝑑 ≤ 0,
(b2) 𝑐 − 3 − (3𝑏𝑣 + 𝑐(𝑐 − 3) + 3)ℎ∕𝑑 ≥ 0,
where equalities define the BCB boundaries 𝐵1,2

3 , 𝐵2,2
3 , and 𝐵3,2

3 ,
respectively, of the existence region of cycles 𝐿𝑂𝑈 and 𝑈𝑂𝐿. For the
example shown in Fig. 7a, only boundaries 𝐵2,2

3 and 𝐵3,2
3 are involved.

In contrast, the existence region of cycles 𝐿2𝑂𝑈2 and 𝑈2𝑂𝐿2 are
bounded by three BCB curves, namely 𝐵1,2

5 , 𝐵2,2
5 , and 𝐵3,2

5 .

4.7. Center bifurcation and issuing points for two period-adding structures

It is useful to compare the 𝑛-periodicity regions of the first kind of
family of cycles, related to periodic points only in the two partitions, 𝐿
and 𝑈 , and the second kind of family of cycles, with periodic points
in the three partitions 𝐿, 𝑈 , and 𝑂. Our aim is to show that their
issuing points belong to the line defined by 𝑏 = 1, which, in turn,
is related to the center bifurcation of the fixed point 𝑃𝑂. In fact, we
demonstrate that two periodicity regions related to two different kinds
of families of attracting cycles are issuing from the same point of the
center bifurcation line.

In Fig. 8a, b, c, d, such periodicity regions are superimposed for
𝑛 = 3, 4, 5, 6, respectively. Let the points of the first kind of family
of cycles (i.e., of even-period cycles 𝐿𝑚𝑈𝑚, 𝑛 = 2𝑚, and odd-period
cycles 𝐿𝑚𝑈𝑚−1, 𝑈𝑚𝐿𝑚−1, 𝑛 = 2𝑚 − 1) be denoted by {𝑝𝑖}𝑛−1𝑖=0 , and the
points of the second kind of families of cycles (i.e., of even-period
cycles 𝐿𝑚𝑂𝑈𝑚𝑂, 𝑛 = 2𝑚 + 2, and odd-period cycles 𝐿𝑚𝑂𝑈𝑚, 𝑈𝑚𝑂𝐿𝑚.
𝑛 = 2𝑚 + 1) be denoted by {𝑞𝑖}𝑛−1𝑖=0 . In Fig. 8, we have plotted the BCB
conditions corresponding to each BCB curve. It can be shown that the
periodicity regions of both kinds of families issue from the line defined
by det 𝐽 = 𝑏 = 1 (for 0 < 𝑐 < 4).

Moreover, we can state that for both kinds of families, a periodicity
region related to attracting cycles with rotation number 𝑚∕𝑛 issues from
point (𝑏, 𝑐) = (1, 𝑐𝑚∕𝑛), where 𝑐𝑚∕𝑛 = 2(1 − cos 2𝜋𝑚∕𝑛). For example,
𝑐1∕3 = 3, 𝑐1∕4 = 2, 𝑐1∕5 = (5 −

√

5)∕2 ≈ 1.382, 𝑐2∕5 = (5 +
√

5)∕2 ≈ 3.618,
𝑐 = 1, etc.
1∕6
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Fig. 7. (a) BCB boundaries of the periodicity regions related to even-period cycles 𝐿𝑚𝑂𝑈𝑚𝑂 and pairs of odd-period cycles 𝐿𝑚𝑂𝑈𝑚−1, 𝑈𝑚𝑂𝐿𝑚 for 𝑚 = 1,… , 4; (b) basins of
coexisting attracting fixed point 𝑃𝑂 , 6-cycle 𝐿2𝑂𝑈 2𝑂, and 5-cycles 𝐿2𝑂𝑈 2, 𝑈 2𝑂𝐿2 at 𝑏 = 0.35, 𝑐 = 1.3 (the related parameter point is indicated by a black circle in (a)). Other
parameters 𝑑 = 0.02, ℎ = 0.01.
Fig. 8. 𝑛-periodicity regions of the first and second kinds of families of cycles for 𝑛 = 3 (a), 𝑛 = 4 (b), 𝑛 = 5 (c), and 𝑛 = 6 (d) in the (𝑏, 𝑐)-parameter plane for ℎ = 0.01, 𝑑 = 0.02.
This case, at det 𝐽 = 𝑏 = 1 in all the points of the plane, except for
the two lines of discontinuity, is associated with a conservative case,
and in a suitable portion of the phase plane, belonging to region 𝐷𝑂,
the map has bounded dynamics. That is, we expect the existence of an
invariant region in the strip between the two discontinuity lines at the
center bifurcation value 𝑏 = 1. Since map 𝑇𝑂 is linear, its dynamics at
𝑏 = 1 is well known: locally, the trajectories belong to invariant ellipses
on which the trajectories are

∙ either all periodic (and dense on each ellipse) when the rotation
number is rational, say 𝑚∕𝑛, moreover, when 𝑛 is odd, due the sym-
metry, the existing invariant ellipses are filled with couples of cycles
symmetric to each other with respect to the origin;

∙ or quasiperiodic (also dense on each ellipse) when the rotation
number is irrational.
12
Here the term ‘‘locally’’ is related to the size of an invariant region
that depends on the distance of the fixed point from the discontinuity
lines. To determine the boundary of the invariant region at the center
bifurcation value 𝑏 = 1, we can follow arguments similar to those
used in [25]. In fact, we have two different kinds of invariant regions,
depending on the rotation number of the linear map 𝑇𝑂, rational or
irrational:

∙ when the rotation number is irrational, then an invariant region
exists between the two discontinuity lines, bounded by an invariant
ellipse that is tangent to the two discontinuity lines; the region is
filled with invariant ellipses and each ellipse is densely filled with
quasiperiodic trajectories (an example is shown in Fig. 9a);

∙ when the rotation number is rational, say 𝑚∕𝑛, then invariant
ellipses exist filled with periodic points of period 𝑛, and there exists
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Fig. 9. Center bifurcation of the fixed point 𝑃𝑂 . In (a) rotation number is irrational, in (b) rotation number is rational, 𝑚∕𝑛 = 2∕5. Parameter values are 𝑏 = 1 and
𝑐 = 2(1 − cos(𝜋(1 −

√

5))) in (a), 𝑐 = 𝑐2∕5 = (5 +
√

5)∕2 in (b).
an invariant ellipse that is tangent to the two discontinuity lines. More-
over, other periodic trajectories exist, filling a polygon whose boundary
is determined by generating segments belonging to the discontinuity
lines, 𝑆−1,𝐿 ⊂ 𝐿𝐶−1,𝐿 and 𝑆−1,𝑈 ⊂ 𝐿𝐶−1,𝑈 , symmetric with respect to
the origin. When 𝑛 is even, then each segment and its images form 𝑛
sides of the invariant polygon filled with cycles of even period 𝑛. When
𝑛 is odd, then due the symmetry, both segments and their images are
to be used, giving 2𝑛 sides of the invariant polygon filled with cycles of
odd period 𝑛. An example is shown in Fig. 9b for 𝑐 = 𝑐2∕5 = (5+

√

5)∕2.
This is the dynamic behavior at the bifurcation value 𝑏 = 1; outside

the invariant region, the trajectories (due to the discontinuities) are
diverging. However, for low values of 𝑏, say 𝑏 = 1 − 𝜀, the fixed
point 𝑃𝑂 is an attracting focus, and we have seen that BCB curves
are issuing from the points associated with rational rotation numbers.
The peculiarity of the map on three partitions is that from each point
(𝑏, 𝑐) = (1, 𝑐𝑚∕𝑛), where 𝑐𝑚∕𝑛 = 2(1 − 𝑐𝑜𝑠(2𝜋𝑚∕𝑛)), related to a rational
rotation number 𝑚∕𝑛, two different overlapping periodicity regions are
issuing. The rotation numbers of the Jacobian matrix 𝐽 at 𝑏 = 1,
0 < 𝑐 < 4, can be ordered according to the Farey summation rule, so
that in a left neighborhood of the line 𝑏 = 1, the periodicity regions
issuing from the related points (𝑏, 𝑐) = (1, 𝑐𝑚∕𝑛) are organized in two
overlapping period-adding bifurcation structures.

Note that this is a peculiarity of the case with ℎ > 0, for map
𝑇 defined on three partitions, since for ℎ = 0, the strip between the
two discontinuity lines does not exist, and from point (𝑏, 𝑐) = (1, 𝑐𝑚∕𝑛)
associated with rotation number 𝑚∕𝑛, only one periodicity region is
issuing, bounded by BCB curves of cycles with periodic points in two
partitions only.

5. Conclusions

To improve our understanding of the excessively volatile boom-
bust behavior of stock markets, we generalized the stock market model
proposed by [10]. To be precise, we considered a trading environment
in which market makers adjust stock prices with respect to the orders
placed by chartists, fundamentalists, and sentiment traders. As usual,
chartists place buying orders when the stock price increases and selling
orders when it decreases. In contrast, fundamentalists place buying
orders when the stock market is undervalued and selling orders when
it is overvalued. The order sizes of chartists and fundamentalists are
proportional to their trading signals. Moreover, sentiment traders, be-
ing subject to animal spirits, display three generic sentiment states.
Sentiment traders optimistically buy a certain amount of stocks when
the stock market is sufficiently rising, pessimistically sell a certain
amount of stocks when the stock market is sufficiently falling, and
neutrally abstain from trading otherwise. Clearly, the stock market
13
model proposed by [10] captures only two generic sentiment states,
namely optimism and pessimism.

As it turns out, the generalized stock market model results in a 2D
piecewise-linear map defined on three partitions with two discontinuity
lines. We have shown that the model gives rise to coexisting attractors,
since a locally stable fixed point, at which the stock price matches its
fundamental value, may coexist with one or more attracting cycles, at
which the stock price oscillates around its fundamental value. We have
detected the border-collision bifurcation boundaries of the periodicity
regions related to attracting cycles with rotation number 1∕𝑛, 𝑛 ≥
3, belonging to two different kinds of families, with points in two
outermost partitions only and with points in all three partitions. These
two kinds of families are infinitely many, and all issuing from the center
bifurcation line at 𝑏 = 1. We have shown numerical evidence that
the corresponding periodicity regions are organized in two different
period-adding bifurcation structures issuing from the points associated
with rational rotation numbers. Moreover, the existence of the third
(middle) partition leads also to new dynamic results in the phase plane
structure associated with the center bifurcation. We have shown the
existence of an invariant polygon or an invariant ellipse (associated
with a rational or irrational rotation number, respectively) filled with
periodic or quasiperiodic trajectories.

This kind of structure has not been observed in other maps so far
and we emphasize that this is related to the map defined in three
partitions (each reflecting a different generic sentiment state). For the
original stock market model proposed by [10], in which sentiment
traders are either optimistic or pessimistic, this cannot occur.

We have shown that for parameters in the stability box all the
existing cycles are attracting, coexisting with the locally attracting
fundamental fixed point, and the associated basins of attraction are sep-
arated by segments of the discontinuity lines and the related preimages.
Knowledge of the properties of the basins of attraction of coexisting
attractors is important from an economic policy perspective. To achieve
efficient stock markets, policymakers may seek to influence the behav-
ior of market participants, e.g., by imposing transaction taxes, or to take
part in the trading process themselves, e.g., by offsetting orders placed
by chartists, such that the size of the basin of attraction for which the
stock price converges towards its fundamental value increases.

We have also shown that in our map, the 2-cycle is always a
saddle when it exists, for parameters outside the stability box of the
fixed point, when all the existing cycles are of saddle type. However,
bounded dynamics can exist, leading to a chaotic attractor whose
structure is similar to that of a Belykh map (the 𝜔-limit set of the
unstable set of the saddle 2-cycle). A chaotic attractor exists as long
as the saddle 2-cycle is not homoclinic, and we have detected the
homoclinic bifurcations curves, associated with the discontinuity lines

(since the contact between the stable and unstable sets of the 2-cycle
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b
i

may first occur with one or the other discontinuity), that lead to diver-
gence of almost all trajectories in the phase plane. This region is also
relevant in the applied context. Since these parameter combinations
are located outside the stability box, implying divergent stock market
dynamics in the absence of animal spirits, when fundamentalists trade
quite aggressively there are instances where the behavior of sentiment
traders lends the stock market at least some kind of stability. Overall,
this testifies the intricateness of the functioning of stock markets.

We conclude our paper by pointing out a few avenues for future
research. Note that our map is symmetric with respect to the origin.
Hence, it may be worthwhile to consider asymmetric specifications of
our stock market model, e.g., to assume that the buying behavior of
optimistic sentiment traders is not exactly the opposite of the selling
behavior of pessimistic ones. This may be achieved by introducing two
autonomous demand parameters, say 𝑑𝑈 and 𝑑𝐿, or by introducing
two different threshold levels, say ℎ𝑈 and ℎ𝐿. Moreover, it may also
e worth considering the case 0 < 𝑑 < ℎ. In fact, a preliminary
nvestigation has shown that similarly to the case 0 < ℎ < 𝑑, there exists

a region in the parameter space related to the coexistence of different
attracting cycles, although, unlike the case considered in our paper, a
larger region in which the fixed point is the unique attractor can exist
as well. Needless to say, more work is required to better understand the
behavior of piecewise-linear discontinuous maps and the functioning of
stock markets.
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