

Disclosing Fast Detection Opportunities with Nanostructured Chemiresistor Gas Sensors Based on Metal Oxides, Carbon, and Transition Metal Dichalcogenides

Michele Galvani¹, Sonia Freddi^{1,2}, and Luigi Sangaletti^{1,*}

- ¹ Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; michele.galvani@unicatt.it (M.G.); sonia.freddi@unicatt.it (S.F.)
- ² Institute of Photonics and Nanotechnologies-Consiglio Nazionale delle Ricerche (IFN-CNR), Laboratory for Nanostructure Epitaxy and Spintronics on Silicon (LNESS), Via Anzani 42, 22100 Como, Italy
- Correspondence: luigi.sangaletti@unicatt.it

Abstract: With the emergence of novel sensing materials and the increasing opportunities to address safety and life quality priorities of our society, gas sensing is experiencing an outstanding growth. Among the characteristics required to assess performances, the overall speed of response and recovery is adding to the well-established stability, selectivity, and sensitivity features. In this review, we focus on fast detection with chemiresistor gas sensors, focusing on both response time and recovery time that characterize their dynamical response. We consider three classes of sensing materials operating in a chemiresistor architecture, exposed to the most investigated pollutants, such as NH₃, NO₂, H₂S, H₂, ethanol, and acetone. Among sensing materials, we first selected nanostructured metal oxides, which are by far the most used chemiresistors and can provide a solid ground for performance improvement. Then, we selected nanostructured carbon sensing layers (carbon nanotubes, graphene, and reduced graphene), which represent a promising class of materials that can operate at room temperature and offer many possibilities to increase their sensitivities via functionalization, decoration, or blending with other nanostructured materials. Finally, transition metal dichalcogenides are presented as an emerging class of chemiresistive layers that bring what has been learned from graphene into a quite large portfolio of chemo-sensing platforms. For each class, studies since 2019 reporting on chemiresistors that display less than 10 s either in the response or in the recovery time are listed. We show that for many sensing layers, the sum of both response and recovery times is already below 10 s, making them promising devices for fast measurements to detect, e.g., sudden bursts of dangerous emissions in the environment, or to track the integrity of packaging during food processing on conveyor belts at pace with industrial production timescales.

Keywords: chemiresistors; fast recovery; TMDs; carbon; MOXs

1. Introduction

1.1. General Context

The first 10 years of the 21st century have been called by some the "Sensor decade" [1]. The sensors market is indeed growing fast. In 2021, its worldwide value was around 190 billion dollars and it is expected to reach the value of 1 trillion dollars in 2025, with 1 trillion sensors deployed [2,3]. The reason for this growth can be ascribed to the increasing number of fields where sensors can be used and make a difference. Sensors are at the forefront of IoT applications, providing data to be integrated in large datasets and processed via machine learning approaches [4,5]. Focusing on gas sensors, the largest and most promising sectors that need fast sensors are (i) environmental monitoring and safety and (ii) track and trace in the food and beverage industry [6].

Environmental monitoring, both outdoor and indoor [7], is by far the most assessed application field for chemiresistor sensing. The growing awareness of pollution dangers

Citation: Galvani, M.; Freddi, S.; Sangaletti, L. Disclosing Fast Detection Opportunities with Nanostructured Chemiresistor Gas Sensors Based on Metal Oxides, Carbon, and Transition Metal Dichalcogenides. *Sensors* 2024, 24, 584. https://doi.org/10.3390/s24020584

Academic Editor: Victor Sysoev

Received: 28 November 2023 Revised: 9 January 2024 Accepted: 12 January 2024 Published: 17 January 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). and their consequences on human heath underlined the importance of monitoring and analyzing air quality. Anthropic activity causes the release of several harmful gases in the atmosphere, such as NO, NO₂, NH₃, CO, CO₂, and CH₄ [8–10]. These gases, called primary pollutants, are not only are dangerous for health [11] and the climate, but, in atmosphere, they can react with each other, water, and other gases, forming the so-called secondary pollutants, such as HNO₃, H₂SO₄, and H₂O₂, yielding many destructive phenomena such as acid rain [2]. Hence, controlling the emitted pollutants in factories, farms, and industries and checking air quality in cities is becoming more and more important.

In terms of dynamical response (i.e., sensor response vs. time), chemiresistor-based gas sensing has potential in many areas of industrial and environmental monitoring and safety, where it can help detect and localize harmful gases or pollutants, even when odors are dispersed by turbulent plumes, thus requiring fast response and recovery times. While response time is usually short, recovery can be much longer; therefore, solutions are needed to tackle this issue, both in terms of signal and device engineering, or in terms of novel materials and architectures [12].

The use of fast gas sensors can be pushed even further as they can be introduced also in the world of food and beverage. Indeed, as discussed in Refs. [6,13], gases are leading actors in production, packaging, and storage of foods. Hence, it is extremely important to have a real-time monitoring of the air composition, integrity, and losses in the production lines. An example is represented by the detection of disinfectants, such as ozone, which are used to sterilize packages but must be completely removed before placing the food in the package. Another example is the monitoring of controlled-atmospheres, i.e., special environments used for the packaging of perishable products to increase their shelf life. In the food industry, a great amount of products is processed every minute, usually along conveyor lines [14,15]. Thus, it is clear that if a sensor is used here, it has to operate as fast as possible. Moreover, gases are also considered markers of the quality, as well as of the spoilage, food, and beverages. For instance, the processes of fermentation and rotting produce very specific molecules [13], such as NH₃, whose detection is extremely important in quality and packaging checks.

These diverse applications have ultimately led to unexpected challenges in terms of selectivity, stability, sensitivity, and detection speed. This aspect deals with both response and recovery times, with the latter being less explored despite the potentialities highlighted from the literature. Typically, recovery time is investigated to demonstrate that the sensor can restore the initial conditions before starting a new exposure to gas. Once this is assessed, the optimization of recovery time is often overlooked, while much more attention is usually payed to response time. However, minimization of both parameters can lead to devices with the suitable properties to meet the strict requirements of track-and-trace approaches in production line monitoring and quality control or fast gas transients' detection in environmental monitoring. These factors stand among the driving forces shaping the future applications of sensors.

Figure 1 shows the number of papers containing the keywords "gas sensor" (Figure 1a) and "gas sensor" AND "fast" (Figure 1b) vs. the publication year. Panels (c) and (d) of Figure 1 show the normalized data trend and the ratio between the values displayed in panels (a) and (b), respectively. The data were retrieved from the Web of Science database [16]. As we can see, the number of papers dealing with gas sensors increased sharply in the last few years, reaching a value greater than 7000 in 2022. Among all these publications, the trend followed by papers presenting fast gas sensors is as sharp as the general one, with an increase in its relative weight, underling the importance of the topics.

Figure 1. (a) Number of papers containing the words "gas sensor" at different publishing years, starting from 2000; (b) number of papers containing "gas sensor" and "fast" as a function of the year; (c) comparison of the two normalized trends; (d) rate between the number of papers containing the keywords "fast" and "gas sensors" and just "gas sensors" as a function of the publishing year. Data from Web of Science database [16].

1.2. Aim of the Work and Outline

Our study is aimed (i) to retrieve data from recent studies (since 2019), reporting both response and recovery times of the fastest nanostructured chemiresistive gas sensors; (ii) to contrast and compare these data in order to describe the state of the art on this topic for selected categories of nanostructured chemiresistors; (iii) to compare the reported times with those expected from elementary adsorption/desorption processes; and (iv) to discuss factors that can limit or enhance the response speed. In addition to the paper publishing year, we chose only sensors in which at least the response time or the recovery time is below 10 s. In case a paper reports on more sensors, the data of the best among them will be considered.

After the general context presented in the former paragraph, in Section 2, we proceed by giving some information about chemiresistors' working principle. Then, we discuss the phenomena of adsorption and desorption of a molecule by a surface, with the aim to underline the most important physical quantities that characterize these processes, in particular the desorption time. Finally, we show how response and recovery times affect adsorption isotherms. In Section 3, we present the three selected categories of chemiresistors, i.e., sensors based on metal oxides (MOX), nanostructured carbon, and transition metal dichalcogenides (TMDs). MOX represents by far the most studied and used chemiresistors [17,18]. Many of them are commercially available and represent a benchmarking for novel classes of chemiresistors. They usually operate at high temperatures (200–300 °C). Then, we present nanostructured carbon chemiresistors, with a focus on carbon nanotubes and graphene. They usually work at room temperature and have been so far widely explored in the literature [19,20]. While commercially available devices are by far less diffuse than in the case of MOX, these systems can provide a manifold of functionalization/doping/decoration strategies to tailor their response to target gas molecules in view of specific applications. Finally, we present chemiresistors based on TMDs [21–23] as an emerging class of materials that display interesting properties in the field of gas sensing. For each sensor, we report the material of the active layer, the sensitivity, the working temperature, and the response and recovery times.

In the context of the literature, reviews on these three classes of materials are already present (see, e.g., Refs. [24,25]), but a review addressing points (ii) and (iii) is virtually missing, as most of papers report on response/recovery times in tables aimed to characterize the sensing layers' performances without specific comments on these values (see, e.g., Refs. [25–28]). In order to focus on the materials, we will not consider the methods that can reduce the desorption time, such as UV irradiation (described, e.g., in Ref. [29] and tested in [30]), pulsed heating [31], or signal processing of dynamical response curves [32].

2. Chemiresistors: Dynamical Response and Time Scales in Adsorption and Desorption Processes

2.1. Chemiresistors

There are several categories of gas sensors, with different working principles and features. Ref. [33] proposes a classification divided into a few main categories. Among them, the fastest are optical [34,35] and infrared gas sensors [36] that exploit emission and adsorption of radiation by gases to quantify their concentration. Therefore, some of them outperform chemiresistors in terms of response speed. Nevertheless, chemiresistors still represent the first choice in terms of low cost, simple measurement set up, versatility, miniaturization, and selectivity, especially when run in arrays operating as electronic noses.

Chemiresistors' working principle is explained in detail in Ref. [37]. Here, we briefly outline their main features, focusing on the dynamical response, i.e., the response vs. time.

In a chemiresistor, the sensing layer is connected to a voltage source (Figure 2). Under normal conditions, the current flows in it, and it is possible to measure an initial resistance, R_0 . When the sensor is exposed to a gas, the active layer exhibits a change in its resistance from R_0 to R_{gas} . This is due to the fact that when a molecule is adsorbed by a surface, it can behave as a p or n dopant, changing the internal band structure of the active layer (band bending at the surface) and the carrier charge density. In addition, for MOX, oxygen in the environment is also known to play an active role in the sensor response. As shown in Figure 2, the dynamical response curve consists of a rising part of the electrical signal (e.g., the properly normalized sensing layer resistance) corresponding to the transient in which the sensor detects the gas and its resistance changes. This is followed by a stationary part in which the resistance R_{gas} is constant. The value of R_{gas} , is proportional to the gas concentration. This phase lasts till the end of the exposure to the target gas molecules. Then, the electrical signal recovers its original value in a characteristic time that is defined as recovery time, t_{rec} .

Each material has a characteristic response, which quantifies the relative increase (or decrease) in the resistance when exposed to a gas. The response *S* can be evaluated with different formulas. The most used are

$$S = \begin{cases} R_{gas}/R_0 & \text{if} \quad R_{gas} > R_0 \\ R_0/R_{gas} & \text{if} \quad R_{gas} < R_0 \end{cases}$$
(1)

and

$$S = \Delta R / R_0 = |R_{gas} - R_0| / R_0$$
(2)

Another formula quite often used is similar to the latter, though it uses the current intensities.

$$S = \Delta I / I_0 = |I_{gas} - I_0| / I_0 \tag{3}$$

While presenting the data, we indicate with ^a, ^b and ^c the results coming from the three respective formulas. The response is reported in absolute values and rounded at the second decimal digit.

Figure 2. Schematic drawing of a chemiresistor experimental setup. The sensing (active) layer is connected to a circuit with a voltage supply and a load resistance (top panel). The current flowing in the circuit is measured vs. time to record the dynamical response curve (bottom panel) that displays changes in the electrical signal (current, voltage, and resistance, depending on the circuit read-out scheme) upon gas exposure.

Two other important parameters are response and recovery time, t_{res} and t_{rec} , respectively. They describe "how fast" a sensor properly quantifies the gas concentration and how fast it recovers after exposure. In the great majority of papers, they are calculated as the time needed to reach the 90% of the final state. In general, the goal is to achieve the highest sensitivity while minimizing response and recovery times.

A specific analysis of the physical quantities which influence response and recovery times is reported in the next section.

2.2. Adsorption-Desorption Processes and Models

In this section, we outline the time scale of adsorption and desorption processes, starting from the average stay time τ of a molecule on a surface, which can be regarded as the basic event of gas–surface interaction. This value has critical importance in fast sensors, since both response and recovery times depend on it. We start by showing the widely used Frenkel formula, briefly explaining how it can be derived and what its physical meaning is. Then, we consider a model presented in 1981 by D. Lucas et al. (Ref. [38]), which adds to the Frankel model effects of an excited vibrational state.

Frenkel's approach, also seen in the De Boer model (Ref. [39]), is very popular and widely used by many authors. In this model, the average "stay time" τ of a molecule adsorbed by a surface is given by

$$\tau = \tau_0 e^{\frac{q}{K_B T}} \tag{4}$$

where τ_0 is a constant, generally of the order of 10^{-13} – 10^{-12} s; *q* is the depth of the potential well in which the molecule is trapped; k_B is the Boltzmann constant; and *T* is the temperature. The derivation of this formula can be retrieved in, e.g., Ref. [40]. In the derivation, it is assumed that (i) a molecule is physisorbed on a surface at temperature T and (ii) the interaction between the molecule and other bodies adsorbed by the surface is negligible. The molecule is therefore in a potential well, with an equilibrium position z_0

above the surface and a minimum energy q, as shown in Figure 3a. The potential, at least around its minimum, allows for oscillations. Thus, in those regions, it can be approximated by some harmonic oscillator potential, such as $V_{HO} = \frac{1}{2}m\omega^2 z^2$.

Figure 3. (a) Comparison between Morse and harmonic potentials; (b) trend of the average stay time τ as a function of the energy *q* at RT according to the Frenkel formula and for the Lucas model with quantum numbers n = 0, 3, 10; (c) left axis: trend of the average stay time τ as a function of the temperature with q = 0.5 eV, right axis: trend of the *K* coefficient as a function of the temperature; (d) relative surface coverage θ as a function of $P_G/P_{atm} = c_G$ at different temperatures.

Right after the adsorption, the molecule starts exchanging energy with the surface, which behaves as a thermal bath, attempting to escape the potential well. In this frame, the inverse of τ_0 can be assumed as the surface bond vibration frequency, which depends on the adsorption energy (i.e., the depth of the well) and the adsorbate mass. The values of τ_0 and q, obtained experimentally for different pairs of the gas–surface, can be found in the literature (see, e.g., chapter 9 of Ref. [41]). Figure 3b and 3c show the trend of τ as a function of q, and T, respectively. It can be noticed that for low T or high q, the molecule remains adsorbed for quite long times. On the other hand, for high T and low q, the desorption is basically instantaneous, as compared to the electronics driving the data acquisition.

A more refined approach to this topic was proposed by D. Lucas et al. (Ref. [38]) by including vibrationally excited states of the adsorbate molecule. They started by considering an adsorbed diatomic molecule of mass m_{AB} , with atoms of mass m_A and m_B , in a Morse potential $V_M(z)$ (Figure 3a) for the adsorbate–surface interaction.

$$V_M(z) = q(e^{-2a(z-z_0)} - 2e^{-a(z-z_0)})$$
(5)

a is a parameter which defines the "width" of the well, and in general, of the order of a few $Å^{-1}$ [42].

In this molecule, a chemical bond within the adsorbate is vibrationally excited. The energy in the vibrating chemical bond usually exceeds that needed to break a Van der Waals surface bond. After a time, energy transfer from the excited chemical bond to the surface bond causes the surface bond to break, and the adsorbed molecule is released.

This approach allows us to calculate the total energy of the molecule before the desorption.

$$E_n = -\frac{[a\hbar(2d-1-2n)]^2}{8m_{AB}} + q$$
(6)

Here, the value of the energy is given to the respect of the potential well minimum, where *d* is an a-dimensional parameter defined as

$$d = \frac{\sqrt{2m_{AB}q}}{a\hbar}$$

and *n* is a natural number, corresponding to the energetic level of the oscillator.

Thus, inserting this new value in the Frenkel formula, the desorption time results to be

$$\tau = \frac{8hm_{AB}}{[a\hbar(2d-1-2n)]^2} \exp\left(\frac{[a\hbar(2d-1-2n)]^2}{8k_B T m_{AB}}\right)$$
(7)

Its trend is shown in Figure 3b for n = 0, 3, 10. To plot the expression, we will work with an H₂ molecule. Thus, $m_{AB} = m_{H_2} = 3.34 \times 10^{-27}$ kg. The value of the *a* parameter was set to 1 Å⁻¹.

In both models, there is a strong dependence of τ on temperature and on the potential well depth. This implies that the operating temperature of the sensors plays a crucial role in its velocity and that different types of materials and bindings can result in response/recovery times that differ of several orders of magnitude. Usually with MOX, where the adsorption energies are large (1 eV or more [43]), desorption times are reduced by operating at high temperatures, while in the case of CNTs [44] and graphene [45], the lower adsorption energies allow for setting the sensing layer temperature at RT.

The information so far presented need to be matched with the adsorption isotherms characteristic of the sensing processes. Recovery times are indeed of the order of a few seconds (at least for the fastest sensing layers that will be presented in the following sections), which are much longer than the typical time of a single desorption event. Indeed, the average stay time of a molecule on a surface appears in the equation for adsorption isotherms such as the Langmuir model. In this section, we briefly present this widely used model, giving particular attention to its dependence on τ . Its derivation is well described in [41,46,47].

In this context, two main assumptions are made: (i) the adsorption of the gas is complete when a monolayer of molecules on the surface is completed; (ii) when an arriving molecules hits an already occupied site, it is back scattered.

Suppose we have a gas G with partial pressure P_G , where its molecules have mass *m*. Thus, the arrival rate *F* of G per unit area is defined as

$$F = \frac{p_G}{\sqrt{2\pi m k_B T}}$$

Thus, if we work with a surface σ_A corresponding to the area of a single active site ($\approx 10^{-19} \text{ m}^2$), as well as we suppose that the molecules hitting a free site have probability *s* to stick, so we can define the rate of adsorption on a site as

$$k_{ad} = F\sigma_A s = \frac{P_G}{\sqrt{2\pi m k_B T}} \sigma_A s \tag{8}$$

On the other hand, the rate of desorption k_{de} is equal to the inverse of τ

$$k_{de} = \frac{1}{\tau} = \frac{1}{\tau_0} e^{-\frac{q}{k_B T}}$$
(9)

Here, the Frenkel formula for τ is used (Equation (4)).

We can call σ_0 the total number of active sites and σ the number of occupied ones. The variation in σ with respect to the time will have a positive contribution due to k_{ad} and will be proportional to the free sites $\sigma_0 - \sigma$, and will have a negative contribution due to k_{de} and will be proportional to σ . Thus

$$\frac{d\sigma}{dt} = k_{ad}(\sigma_0 - \sigma) - k_{de}\sigma$$

Defining the fractional coverage $\theta = \sigma / \sigma_0$ and using it in the former equation, we obtain

$$\frac{d\theta}{dt} = k_{ad}(1-\theta) - k_{de}\theta \tag{10}$$

At equilibrium, the number of adsorbed molecules is equal to the number of desorbed ones; therefore

$$\theta = \frac{KP_G}{1 + KP_G} \tag{11}$$

with

$$K = \frac{N_A \sigma_A s \tau_0}{\sqrt{2\pi M_{mol} RT}} e^{\frac{q}{k_B T}}$$

The trend of the coverage as a function of the concentration at different temperatures is shown in Figure 3d. In this case, we will work with a graphene layer ($q \simeq 0.5$ eV) sensing ammonia ($M_{mol} \simeq 17$ g/mol). The value of θ at a fixed concentration depends crucially on T. Hence, as the temperature increases, the value of τ decreases, leading to a reduction in coverage. The trend of the Langmuir coefficient K at different temperatures is displayed in Figure 3c.

A relevant point to discuss is the relation between the average stay time τ of a molecule on a surface and the recovery time of a sensor. One could wonder why, since τ can easily be in the order of milliseconds, t_{rec} is in general in the 1–100 s range. This issue was addressed in a recent statistical analysis of ethanol sensing via SnO₂-based MOX chemiresistors [48] by considering that the time scales of a sensor response are defined by both the intrinsic features of the active layer and the experimental setup used for gas exposure. From this study, the relevance of fluid dynamics of the exposure to gas clearly emerges both in static and dynamic gas exposure conditions. In this context, the characteristic time of fluid dynamics is expected to increase the adsorption and desorption times retrieved from the dynamical response curves.

To be more specific, this aspect can be further explored by considering the solution of the isotherm equation (Equation (10)).

Starting at t = 0 with zero coverage, Equation (10) can be solved to yield:

$$\theta(t) = \frac{k_{ad}}{k_{ad} + k_{de}} \left(1 - e^{-(k_{ad} + k_{de})t} \right)$$
(12)

for the adsorption phase, and for the desorption phase, started at t_0

$$\theta(t) = \theta(t_0)e^{-k_{de}(t-t_0)} \tag{13}$$

Apparently, the fitting of experimental data with these two curves can be use to retrieve response and recovery times by setting, e.g., $t_{rec} = k_{de}^{-1}$ in Equation (13). This seems to be consistent with Equation (6) in Ref. [47] (where k_{de} is defined as α). However, recovery time of the order of 100 s have been obtained in Table 1 of Ref. [47] for graphene and also in Ref. [49] for CNT sensing layers. Therefore, in light of the remarks of Ref. [48], the inverse of the α coefficient, introduced by S. Liang et al. (Ref. [47]) in the analysis of the dynamical behavior of CNT and graphene, has to be regarded as an effective average stay time, which includes both the elementary events of adsorption/desorption and the time scale of the extrinsic effects of the experimental chamber.

3. Selected Categories of Ultrafast Chemiresistors

3.1. Metal Oxide Chemiresistors

Nanostructured MOX are the most used materials for chemiresistive gas sensing. Most of the commercial sensors are in fact based on these materials. An interesting and detailed history of their development and a list of the possible candidates is reported in Ref. [50]. Among MOX, the ones that can be used for gas sensing can be selected according to their electronic structure [51]. Considering this parameter, we can divide them into three categories: pre-transition metal oxides (such as MgO), transition metal oxides (TiO₂, Fe₂O₃, etc.), and post-transition metal oxides (SnO₂, ZnO etc.). A typical feature that characterizes the great majority of active layers based on MOX is the operating temperature *T* [51]. Metal oxides need high temperatures to start significantly changing their resistance when exposed to gases. This aspect, which complicates the sensing operation from an experimental and engineering point of view, allows MOX sensors to reach the highest sensitivity and the fastest response and recovery times that can be found in the literature.

In Table 1, the active layers based on metal oxides that, once exposed to gases, exhibit a response or recovery time lower than 10 s are listed. For each system, the composition of the active layer, the target gas molecule and its concentration, the operating temperature, the sensor response, and the response and recovery times are reported. To ease the reading, we use the following abbreviations: NFs, NWs, NBs, NSs, and NPs for nanoflakes, nanowires, nanobricks, nanosheets, and nanoparticles, respectively.

Further information about the limit of detection, dynamical range, and interfering gases of these MOX sensing layers is reported in Table A1 of Appendix A.

Ref.	Year	Active Layer	Gas	Conc. (ppm)	T (°)	Response	t_{res}/t_{rec} (s)
[52]	2020	ZnO NFs	NH ₃	3	250	0.8 ^b	3/5 s
[53]	2020	WO ₃ NBs	NH ₃	100	RT	0.75 ^b	8/5 s
[54]	2022	Co_3O_4 nanofibers + MoTe ₂ NPs	NH ₃	1	RT	0.56 ^b	7/7 s
[55]	2023	Ag-doped WO_3 nanostructures	NO ₂	1	150	316 ^b	0.5/3.5 s
[56]	2021	Nanohybrid of SnS ₂ MXene-derived TiO ₂	NO ₂	1000	RT	115 ^a	64/10 s
[57]	2022	$ZnO + Ti_3C_2T_x MXene NSs$	NO ₂	20	RT	3.68 ^b	22/10 s
[58]	2021	Au-functionalized CuO NRs	NO ₂	20	RT	3.0 ^a	8/176 s
[59]	2023	Pr ₂ Sn ₂ O ₇ /NiO heterojunction	NO ₂	60	180	13 ^a	5/53 s
[60]	2020	Three-dimensional flower-like Ni ₉ S ₈ /NiAl ₂ O ₄ (NAS)	NO _x	50	RT	18.76 ^a	1.06/40.26 s
[61]	2019	α -Fe ₂ O ₃ nano-ellipsoids	H ₂ S	50	260	8 ^a	0.8/2.2 s
[62]	2019	Cadmium sulfide CdS + ultrathin porous layer of Co_3O_4 hollow microspheres	H ₂ S	100	RT	12.78 ^a	0.6/1 s
[63]	2022	Carbon modification on coral-like WO_3	H ₂ S	50	275	25.5 ^a	1/20 s
			H ₂ S	50	275	25.5 ^a	7/9 s
[64]	2022	Pd-modified SnO ₂ NPs	H ₂	500	125	254 ^a	1/22 s
[65]	2023	TiO ₂ QDs-SnO ₂	H ₂	200	400	0.41 ^b	2/5 s
[66]	2023	Pd ₄ Ag/SnO ₂	H ₂	1000	75	2843 ^a	1/13 s
[67]	2021	Yolk shell Sb ₂ O ₃ /WO ₃	acetone	100	200	49.8 ^a	4/5 s
[68]	2020	Hierarchical-structured TiO ₂ NSs	acetone	200	400	21.6 ^a	$0.75/0.5 { m s}$

Table 1. Sensors based on metal oxides. Sensitivities are labeled with ^a, ^b or ^c if the formula used to calculate them is Equations (1), (2), or (3), respectively.

Ref.	Year	Active Layer	Gas	Conc. (ppm)	T (°)	Response	t_{res}/t_{rec} (s)
[69]	2021	WO ₃ NSs	acetone	50	350	14.7 ^a	5/8 s
[70]	2019	Pd-doped WO3 NSs	acetone	100	300	107.29 ^a	1/9 s
[71]	2022	Flame-annealed porous TiO ₂ CeO ₂ NSs	СО	500	300	0.39 ^b	2/6 s
[72]	2023	Au/In ₂ O ₃	СО	50	200	1.41 ^a	2/10 s
[73]	2019	MgO:TiO ₂	methane	50	300	0.44 ^b	6/4 s
[74]	2019	WO ₃ NPs with porous nanostructure	toluene	100	225	132 ^a	2/6 s
[75]	2020	CuO NPs + $Ti_3C_2T_x$ MXene	toluene	50	250	11.4 ^a	270/10 s
[76]	2020	p-type Co ₃ O ₄	toluene	200	180	8.5 ^a	10/30 s
[77]	2019	MOF-based ZnO/ZnFe ₂ O ₄	triethylamine	100	170	7.6 ^a	1/9 s
[78]	2023	Bi ₂ O ₃ -ZnO heterojunction	triethylamine	100	270	2553 ^a	1/3600 s
[79]	2019	Pt-decorated MoO3 nanobelts	formaldehyde	100	RT	0.39 ^b	17.8/10.5 s
[80]	2022	Mg-doped NiO	formaldehyde	100	RT	12,593 ^a	5/5 s
[81]	2023	Co-doped Al ₂ O ₃	benzene	5	100	1.66 ^c	1.95/2.18 s
[82]	2021	LaCoO ₃ + ZnO	ethanol	100	320	55 ^a	2.8/9.7 s
[83]	2023	Ag-NiO	2-methoxy ethanol	100	RT	6419.57 ^a	10/10 s

Table 1. Cont.

First of all, we can see that MOX sensors can be used for an effective and rapid sensing of a high number of different gases. In fact, many gases, including triethylamine, formaldehyde, methane, toluene, and hydrogen sulfide, will not be present in the next two classes of materials. Figure 4 illustrates an example of metal oxide nanostructures and gas exposures, showing WO₃-based (Figure 4a,c) and TiO₂-based (Figure 4b,d) nanostructured sensing layers exposed to ammonia and hydrogen disulphide, respectively.

The sensor with the highest response has been developed by R. A. B. John et al. (Ref. [80]). This work reports on a formaldehyde sensor based on Mn-doped NiO. A response of 12,593 (using Equation (1)) is measured when sensing 100 ppm of this gas. Three other highly responsive sensors with a value of *S* greater than one thousand are the ones developed by R. A. B. John et al. [83], X. Meng et al. [66], and L. Chen et al. [74]. They reached response values of 6419.57, 2843, and 2553, respectively. It is also important to mention Refs. [55,56,64,70,74], in which sensors were developed with sensitivities higher than one hundred.

In terms of response times, the fastest results have been reached by the sensor developed by G. Mathankumar et al. (Ref. [55]), exhibiting a response time of 0.5 s, sensing NO₂ with a nanostructured Ag-doped WO₃ active layer. In three other studies, response times lower than 1 s were obtained. The first one is by Z. Wu et al. (Ref. [61]), who developed a sensor composed of α -Fe₂O₃ nano-ellipsoids, which detected hydrogen sulfide with a response time of 0.8 s. The second study is by M. Dun et al. (Ref. [62]), who obtained a recovery time of 0.6 s while sensing hydrogen sulfide with a cadmium sulfide active layer doped with cobalt tetraoxide. The last work is by W. Ge et al. (Ref. [68]), who developed an active layer based on titanium dioxide nanosheets that responded to acetone in 0.75 s.

The last two papers also yielded the fastest recovery times, with values of 1 s [62] and 0.5 s [68]. Refs. [61,62] also report fast recovery times of 2.2 s and 1 s. Several of these sensors also have the sum of response and recovery times lower than 10 s, which are reported in a summarizing table in the Section 4. The fastest sensors are those developed in [62,68], with a sum of response and recovery times of 1.6 and 1.25 s, respectively.

Figure 4. (a) FE-SEM image of WO_3 nanobricks' active layer, reprinted from Ref. [53]; (b) SEM image of TiO₂ nanotubes, reprinted from Ref. [84]; (c) exposure of the sensor presented in Ref. [53] to ammonia; (d) exposure of the sensor presented in Ref. [84] to hydrogen sulfide. Reproduced from multiple sources with permission from Ref. [84]. Copyright 2017 Elsevier [84].

3.2. Chemiresistors Based on Nanostructured Carbon

For years, nanostructured carbon has been an incredibly active field of research [85–88]. In particular, due to their physical and chemical properties, including high surface-to-volume ratio [89], high sensitivity to the surface adsorption of gas molecules [90], and low electrical intrinsic noise [91], graphene and carbon nanotubes are still receiving great attention in the gas sensors and electronic noses field [92–95]. Graphene is a 2D material composed of a single layer of carbon atoms arranged with a hexagonal symmetry [96]. A carbon nanotube (CNT) could be seen as a rolled sheet of graphene. In any case, the atoms on each layer are strongly bonded with σ bonds ,making graphene one of the strongest material ever built. On the axis perpendicular to the surface, the unfilled p_z orbital of each carbon atom forms weaker π bonds. These p_z orbitals are responsible for graphene and CNT's high chemical sensitivity. As it is possible to notice in Table 2, different functionalizations can also increase their chemical selectivity [97–99], making them a very well-working active layer for the detection of many different target gas molecules.

In Table 2, the fastest sensors with an active layer based on nanostructured carbon are listed.

Further information about the limit of detection, dynamical range, and interfering gases of these nanostructured carbon sensing layers is reported in Table A1 of Appendix A.

Ref.	Year	Active Layer	Gas	Conc. (ppm)	T (°)	Response	t_{res}/t_{rec} (s)
[100]	2020	SWCNT-PANI composite	NH ₃	10	RT	0.25 ^b	4/10 s
[101]	2020	SWCNT	NO ₂	16	RT	1.00 ^b	8/8 s
[102]	2022	Pd-doped rGO + ZnO-SnO ₂	H ₂	100	RT	9.4 ^a	4/8 s
[103]	2022	Pd-decorated CNT	H ₂	10	RT	0.08 ^b	9/50 s
[104]	2019	flower-like α -Fe ₂ O ₃ and MWCNT nanocomposites	Acetone	50	220	20.32 ^a	2.3/10.6 s
[105]	2019	non-covalently functionalized MWCNT	O ₃	0.08	RT	0.013 ^b	6.9/5.4 s
[106]	2023	rGO + WSe ₂	ethanol	100	180	5.5 ^a	15/10 s
[107]	2019	α -Fe ₂ O ₃ + rGO	СО	10	RT	4 ^b	21/8 s
[108]	2019	3D TiO ₂ /G-CNT	Toluene	500	RT	0.43 ^b	7/9 s
[109]	2019	Fe ₂ O ₃ /CNT	LPG	50,000	RT	0.02 ^b	10/59 s

Table 2. Carbon-based sensors table. Sensitivities are labeled with ^a or ^b if the formula used to calculate them is Equations (1) or (2), respectively.

As we can observe in Table 2, in the majority of reported cases, the active layers consist of reduced graphene oxide, rGO, and single or multiwalled carbon nanotubes (SWCNT and MWCNT, respectively). In Figure 5, the graphene [102] and CNT [110] samples' functionalizations (Figure 5a and 5b, respectively) and gas sensing measurements (Figure 5c and 5d for graphene and CNT, respectively) are shown.

Among the materials of this class, the highest sensitivity (i.e., 20.32, according to Equation (1)) is reported by X. Jia et al. [104]. The same work features the shortest response time. Indeed, with a nanocomposite of flower-like α -Fe₂O₃ and MWCNT, a response time of 2.3 s is obtained while sensing 50 ppm of acetone. In turn, the fastest recovery time is reported by Q. Sun et al. [105]. In this work, the authors developed active layers based on MWCNT with non-covalent functionalizations. The sensors achieved a recovery time of 5.4 s while sensing 0.08 ppm of ozone. A very important aspect is that many of these active layers can work at room temperature, thus featuring a low power consumption.

Figure 5. Cont.

Figure 5. (a) SEM image of Pd-doped rGO functionalized with ZnO and SnO₂, reprinted from Ref. [102]; (b) TEM image of phthalocyanine-functionalized CNT, reprinted from Ref. [110]; (c) response of the sensor presented in Ref. [102] while exposed to molecular hydrogen; (d) exposure of the active layer showed in Ref. [110] to different concentration of ammonia. Reproduced from multiple sources with permission from Ref. [110]. Copyright 2022 Elsevier [110].

3.3. Chemiresistors Based on Transition Metal Dichalcogenides (TMD)

TMDs are materials composed of a transition metal M (such as Mo or W) and a chalcogen element X (S, Se, or Te) in the MX₂ form. TMDs are receiving great attention from the scientific community, as they are an alternative to graphene in the world of 2D materials [111]. Examples of TMDs are molybdenum disulfide, MoS₂, molybdenum diselenide, MoSe₂; tungsten disulfide, WS₂; and molybdenum ditelluride, MoTe₂. Moreover, many TMDs, such as MoS₂, WS₂, and MoSe₂, are direct bandgap semiconductors [111]. The structure of a TMD monolayer consists of a layer of M atoms sandwiched between layers of X atoms. The phases of both the bulk and 2D TMDs are well described in Ref. [112]. The two most important structures are the trigonal and the octahedral. The first one is represented as 2H or 1H if the solid is 2D or bulk, respectively. In this phase, the atoms have a hexagonal symmetry. In the second one, indicated with 1T, atoms have an octahedral symmetry. Other phases can be obtained by stacking the layers in different configurations.

In Table 3, the fastest sensors with an active layer based on TMDs are listed. Further information about the limit of detection, dynamical range, and interfering gases of these sensing layers is reported in Table A3 of Appendix A. TMDs, in particular MoS_2 , play an important role in the development of gas-sensing active layers. The main reasons are the operating temperature, which is in general room temperature, and the remarkable response and recovery times. With many TMD-based architectures, it is rather easy to obtain response and recovery times lower than 10 s. Nanostructured TMDs also exhibit high sensitivity to different gases, which opens the road to their use in the field of electronic noses. An example of TMDs' nanostructures and gas exposures is shown in Figure 6, for nanostructures of MoS_2 that are used as H_2 (Figure 6a,c, adapted from Ref. [113]) and ethanol (Figure 6b,d, adapted from Ref. [114]) sensing layers.

The target gas molecule sensing and the most common surface functionalizations of MoS_2 and other TMDs are discussed in Refs. [29,115]. The highest responses are reached with ammonia and nitrogen oxides. Table 3 contains some of the most recent studies that report on fast TMDs chemiresistors. The "+" sign indicates a nanocomposite or a functionalization, where each case can be clearly understood in the context. To ease the reading, we use the following abbreviations: NPs, NSs, NRs, NFs, FL-material, and ML-material for nanoparticles, nanosheets, nanorods, nanoflakes, few layer material, and multilayer material, respectively.

Ref.

[116] [117]

[118]

[119]

[120]

[121]

[122] [123]

[124]

[125]

[126]

[127]

[128] [129]

[113]

[130]

[131]

[132]

[133] [134] 2019

2019

2020

2019

2021

2020

2023

2019

MoS₂ NSs on mesoporous cubic In₂O₃

ZnO + MoS₂ core/shell heterojunctions

UNCD + ZnO NRs + MoS₂

MoS₂ nanoflowers + CeO₂ NPs

MoS₂ + Pt NPs

 $Ti_3C_2T_x/WSe_2$

MoSe₂ NSs + Zno

MoS₂ NSs

Voar	Active Lever	Cas	Conc (nnm)	T (°)	Rosponso	t / t (c)
Ieal	Active Layer	Gas	Conc. (ppin)	1()	Response	tres/trec (8)
2020	$MoS_2 NSs + SnO_2 NPs$	NH ₃	50	22	91.26 ^a	23/1.6 s
2022	$Ti_3C_2T_x$ MXene + MoS ₂	NH ₃	100	RT	0.82 ^b	3/2.4 s
2022	$Ti_3C_2T_x$ MXene + TiO_2 NSs + MoS_2 NFs	NO_2	50	RT	55.16	1.6/n.a.
2022	MoS ₂ NFs	NO_2	3	RT	0.03 ^b	9/3 s
2019	$MoS2 NSs + ML-WS_2$	NO_2	50	RT	26.12 ^a	1.6/27.7 s
2019	MoO_2 nanoplates + $ML-MoS_2$	NO_2	100	RT	19.4 ^a	1.06/22.9 s
2019	$FL-MoS_2 NSs$	NO_2	100	RT	4.4 ^a	42/2 s
2021	MoS_2/SnS_2 composites	NO_2	5	RT	6 ^a	28/3 s
2019	MoS_2 /graphene 2D heterostructures	NO_2	10	200	0.69 ^b	0.7/0.9 s
2021	$MoS_2 NFs + SnO_2 NTs$	NO_2	100	RT	34.67 ^a	2.2/10.5 s
2022	UV-activated WS_2/SnO_2 heterostructures	NO_2	0.5	RT	0.51 ^c	9/8 s
2019	WS2/ZnS heterostructures	NO_2	5	RT	32.5 ^a	4/1000 s

NO_x

 H_2

 H_2

 H_2

ethanol

ethanol

ethanol

acetone

Table 3. TMDs-based sensors table. Sensitivities are labeled with ^a, ^b or ^c if the formula used to calculate them is Equations (1), (2), or (3), respectively.

The sensed gases are ammonia, nitrogen oxides, hydrogen, ethanol, and acetone. The nanostructures in which TMDs appear most are nanosheets (Refs. [116,120,122,128,130]). TMDs are also found in nanoflakes' structure [118,119,125] and nanoflowers [131].

100

100

100

100

50

40

500

0.5

RT

RT

150

RT

RT

RT

RT

350

10.13 ^a

0.50^b

0.49^b

7.78^a

9.2 ^b

37.8 a

1.50^b

10 ^a

1/n.a. s

8/12 s

 $4/19 \, s$

 $10/9 \, s$

 $7/5 \, {\rm s}$

9/17 s

9.7/6.6 s

8.4/14.7 s

The materials that are more often combined with MoS_2 are $T_3C_2T_x$ MXene (Refs. [116,118,132]), tin oxide SnO_2 [116,125,126], and zinc oxide ZnO [129,132]. SnO_2 is used in the form of nanoparticles [116] and nanotubes [125]. ZnO is used in the form of nanorods [129] or other composites [134].

Nanoparticles' functionalization is also widely used. In addition to the already mentioned SnO_2 , we can find Pt [113] and CeO_2 [131]. The highest sensitivity is reached by the sensors developed by W. Wang et al. (Ref. [116]), which detect 50 ppm of ammonia at room temperature with a sensitivity of 91 (calculated with Equation (1)). The lowest response time is obtained by H. S. Hong et al. in Ref. [124], where the developed active layer reacted at 10 ppm of NO₂ in 0.7 s. The sensor developed in this work also achieves the fastest recovery time of 0.9 s. This makes it the fastest sensor based on TMDs. It is in fact capable of reacting and recovering upon NO₂ in 1.6 s. Another fast sensor is the one developed by Z. Liu et al. in Ref. [118]. This active layer, made by a titanium carbide MXene and MoS₂ heterostructure, allows us to detect 100 ppm of ammonia in 3 s and to fully recover in 2.4 s.

Figure 6. (a) SEM image of nanostructured MoS₂, reprinted from Ref. [113]; (b) SEM images of MoS₂ nanosheets, reprinted from Ref. [114]; (c) trend of the resistance of the active layer of Ref. [113] while exposed to molecular hydrogen; (d) exposure of the active layer of Ref. [114] to ethanol. Reproduced from multiple sources with permission from Refs. [113,114]. Copyright 2020 Elsevier [113], copyright 2018 Elsevier [114].

4. Discussion

A statistical analysis of the selected studies is made difficult by the inhomogeneity of data, as three different classes of nanostructured compounds exposed to about 20 different target gas molecules are considered. Attempts to find correlations between the considered parameters (T, t_{rec} , t_{res} , S) did not lead to statistically relevant results, as the correlation coefficient was quite low in all cases. However, a simple statistical analysis carried out on the separate classes (see Figure 7) shows that the median value of the times, represented with the horizontal line inside the boxes, assume different values according to the class. More specifically, MOXs t_{res} is about five seconds lower than carbon and the TMDs categories (Figure 7a). Regarding recovery times (Figure 7b), all groups show a median value of about nine seconds.

As already remarked, the use of different chambers can affect both exposure and recovery times (static vs. dynamic sampling). Furthermore, attention should be paid to possible differences in recovery time resulting from the length of the plateau achieved after the exposure. Some papers report a quick recovery after reaching saturation, while others leave the sensor for tens of seconds at the saturation condition before starting the recovery procedure. Gas diffusion via the sensing layer can also affect the overall response, depending on the texture of the nanoparticle assembly, which can differ a lot among different sensing layers: bundles, platelets, nanowires, nanoparticles, rods, whiskers, and all possible hybrids of these forms.

Figure 7. Box plot of response (**a**) and recovery times (**b**) for the three categories of sensors considered in the work. Full markers identify outliers. For both panels: left box plot: MOX; mid box plot: carbon-based sensors; and right box plot: TMDs.

Indeed, the morphology and the surface/interface properties of nanostructured materials are expected to determine both the extent and the speed of the response to target gas molecules. These aspects have been considered in several studies on MOX chemiresistive layers, such as SnO_2 layers when exposed to ethanol [48], nanostructured MOX [135], Pd-doped In_2O_3 /CeO₂ nanofibers [136], and SnO_2 –ZnO composite nanofibers [137]. From these studies, it is possible to understand that the morphology of the nanoparticles and their assembly to yield the sensing layers can affect the response time. Indeed, the sluggish gas diffusion through the pores of a sensing layer can greatly reduce the response speed, unless one resorts to hollow and hierarchical nanostructures that provide well-defined and well-aligned micro-, meso-, and nanoporosity for an effective gas diffusion [48,135]. Furthermore, as nanostructured chemiresistive layers are quite often functionalized with nanoparticles, the role of heterojunctions in the sensors response can be relevant to increase sensitivity and reduce the response time. This aspect was remarked in Refs. [136,137] by proposing a bifunctional (or dual) sensing mechanism in the detection of H₂.

Finally, by considering the results displayed in Table 4, some indication about the best performing layers for the most targeted gas can be obtained. For NH₃, the fastest is a TMD sensor that detects 100 ppm at room temperature with t_{res}/t_{rec} equal to 3/2.4 s (Ref. [117]). For NO₂, the best performing is the MOX sensor presented in Ref. [55] (1 ppm at 150 °C, with $t_{res}/t_{rec} = 0.5/3.5$ s) and the TMD sensor of Ref. [124] (10 ppm at 200 °C, with $t_{res}/t_{rec} = 0.7/0.9$ s). For H₂S, the best results are achieved by the MOX chemiresistor of Ref. [62] (100 ppm at RT, with $t_{res}/t_{rec} = 0.6/1$ s), while for H₂, the MOX layer sensor of Ref. [65] is determined to be the fastest (200 ppm at 400 °C, with $t_{res}/t_{rec} = 2/5$ s). Several

MOX layers can quickly detect acetone [67,68,70], with the fastest being the one presented in Ref. [68] (200 ppm at 400 °C, with $t_{res}/t_{rec} = 0.7/0.5$ s).

In light of these results, it is clear that a shared protocol for benchmarking is needed for a future effective comparison of the sensing performances. This protocol should assess the proper choice of sampling conditions (static or dynamic) and determine a sampling chamber volume and geometry; establish a relative humidity standard condition; and define, for the most tested target gas molecules, a reference concentration (e.g., 10 ppm, or a set of them: 1, 10, and 50 ppm) and the time the sensor is maintained at saturation conditions.

Table 4. Sensors displaying both t_{res} and $t_{rec} < 10$ s. Subset of sensors with $t_{res} + t_{rec} \le 10$ s is highlighted (\checkmark) in the rightmost column.

Ref.	Category	Gas	Conc. (ppm)	T (°)	t_{res}/t_{rec} (s)	$t_{res} + t_{rec} \leq 10 \text{ s}$
[53]	MOX	NH ₃	100	RT	8/5 s	
[54]	MOX	NH ₃	1	RT	7/7 s	
[55]	MOX	NO ₂	1	150	0.5/3.5 s	\checkmark
[61]	MOX	H_2S	50	260	0.8/2.2 s	\checkmark
[62]	MOX	$H_{2}S$	100	RT	0.6/1 s	\checkmark
	MOX	H_2S	50	275	7/9 s	
[65]	MOX	H_2	200	400	2/5 s	\checkmark
[67]	MOX	acetone	100	200	4/5 s	\checkmark
[68]	MOX	acetone	200	400	0.75/0.5 s	\checkmark
[69]	MOX	acetone	50	350	5/8 s	
[70]	MOX	acetone	100	300	1/9 s	\checkmark
[71]	MOX	CO	500	300	2/6 s	\checkmark
[72]	MOX	CO	50	200	2/10 s	
[73]	MOX	methane	50	300	6/4 s	\checkmark
[74]	MOX	toluene	100	225	2/6 s	\checkmark
[77]	MOX	triethylamine	100	170	1/9 s	\checkmark
[80]	MOX	formaldehyde	100	RT	5/5 s	\checkmark
[81]	MOX	benzene	5	100	1.95/2.18 s	\checkmark
[82]	MOX	ethanol	100	320	2.8/9.7 s	
[83]	MOX	2-methoxy ethanol	100	RT	10/10 s	
[100]	Carbon	NH ₃	10	RT	4/10 s	
[101]	Carbon	NO ₂	16	RT	8/8 s	
[102]	Carbon	H ₂	100	RT	4/8 s	
[105]	Carbon	O ₃	0.08	RT	6.9/5.4 s	
[108]	Carbon	Toluene	500	RT	7/9 s	
[117]	TMD	NH ₃	100	RT	3/2.4 s	\checkmark
[119]	TMD	NO ₂	3	RT	9/3 s	
[124]	TMD	NO ₂	10	200	0.7/0.9 s	\checkmark
[126]	TMD	NO ₂	0.5	RT	9/8 s	
[130]	TMD	H ₂	100	RT	10/9 s	
[131]	TMD	ethanol	50	RT	7/5 s	
[132]	TMD	ethanol	40	RT	9.7/6.6 s	

5. Conclusions

Driven by emerging application fields in environmental analysis and safety, as well as in food and beverage production, fast response and recovery times are features of gas sensors that will be of crucial importance in the close future. While response time accounts for the capability of the chemiresistor to promptly alert us to the presence of target gas molecules, recovery time accounts for the system readiness in repeated measurements; therefore, it is a fundamental parameter to determine the sensing system performances across a series of measurements.

After a discussion of the relationship between the gas adsorption–desorption processes at a surface and the time scale of the t_{res} and t_{rec} values obtained from dynamical curves, we reported the recent papers (since 2019) on chemiresistors where at least one between t_{res}

and t_{rec} was lower than 10 s. Three classes of chemiresistors have been selected depending on their active layer, namely MOXs, nanostructured carbon, or TMDs.

Several sensors are found to have the sum of t_{res} and t_{rec} lower than 10 s. Fourteen are in the metal oxides category and two in the TMDs one. Though MOX-based chemiresistors appear to be better performing, the other two classes of materials are nevertheless promising, as well as in light of gas detection with the sensing layers operated at room temperature.

Finally, the use of benchmarking protocols properly addressing the exposure conditions emerges as a need to properly compare the performances among otherwise inhomogeneous layers and to disclose the main features affecting the response and recovery speed at surface level.

Author Contributions: Conceptualization, L.S.; writing—original draft preparation, M.G.; writing—review and editing, L.S. and S.F.; funding acquisition, L.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research is partially supported by the PNRR-DM352 2022 funding scheme of the Italian Ministero dell'Università e della Ricerca (MUR) and by Antares Vision Group.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The following tables show further information about the chemiresistors presented in the paper. We report, when available, the value of the limit of detection (LOD), range of detection, and the gases used to test the chemical selectivity of the active layers.

Table A1. Limit of detection, target gas, and gases used to test selectivity for MOX chemiresistors.

Ref.	LOD (ppm)	Range of Det. (Min–Max) (ppm)	Target Gas	Gases Used to Test Selectivity
[52]		0.6–3	NH ₃	acetone, ethanol, toluene
[53]			NH ₃	ethanol, methanol, acetone, toluene
[54]	0.026	0.1–10	NH ₃	n-hexane, methanol, benzene, NO ₂ , CO, ethanol
[55]			NO ₂	N ₂ O, NH ₃ , SO ₂ , H ₂ S
[56]		100-1000	NO ₂	H ₂ , NH ₃ , HCOH, CO, C ₂ H ₅ OH
[57]	0.05	0.5–100	NO ₂	NH ₃ , CO ₂ , H ₂ , hexanal
[58]		1–20	NO ₂	NO_2 , SO_2 , H_2 , ethanol, NH_3 , C_8H_{10}
[59]	0.001	0.001–250	NO ₂	ethanol, acetone, xylene, methylbenzene, formaldehyde, NH_3
[60]	0.01	0.01–100	NO _x	H ₂ , H ₂ S, CH ₄ , CO, NH ₃
[61]	0.1	0.1–400	H ₂ S	NH_3 , CO, NO_2 , H_2 , dichloromethane, ethanol
[62]	1–5	1.0–100	H_2S	acetone, toluene, propanol, ethanol, hydrogen
[63]	0.001	0.3–200	H_2S	acetaldehyde, methanol, ethanol, acetone, N-amyl alcohol, methane, ethylene, and CO
[64]	10	10.0–100	H ₂	ammonia, ethanol, methane
[65]	4.8	20–5000	H ₂	CO, CH_4, C_2H_6
[66]	0.012	100-1000	H ₂	ammonia, methanol, ethanol

Ref.	LOD (ppm)	Range of Det. (Min–Max) (ppm)	Target Gas	Gases Used to Test Selectivity
[67]	2	2.0–200	acetone	Formaldehyde, methanol, ethanol, ammonia, hydrogen, toluene, CO
[68]		0.5–8, 200–1000	acetone	ethanol, formaldehyde, ammonia
[69]	0.001	0.17–500	acetone	Ammonia, ethanol, formaldehyde, isopropanol
[70]	0.05		acetone	methanol, ethanol, ammonia, formaldehyde, toluene, n-hexane, methylbenzene
[71]		0.5–5000	СО	Methane, ammonia, hydrogen, NO ₂
[72]		10.0-500	СО	CH ₄ , H ₂ S, toluene, formaldehyde and methanol
[73]			methane	
[74]		10.0–100	toluene	methanol, acetone, glycol, formaldehyde, ethanol, $C_2H_{2'}NH_3$, NO_2 , CO
[75]	0.32	10.0–50	toluene	Ethanol, H_2 , acetone, methanol
[76]	5	5.0-500	toluene	ethanol, formaldehyde, acetone, benzene trimethylamine, ammonia
[77]		2.0–100	triethylamine	Benzene, methylbenzene, ammonia, methanal, trimethylamine, triethylamine
[78]	0.008	1.0–100	triethylamine	Ammonia, ethanol, acetone, methanol, toluene
[79]	1	1.0-200	formaldehyde	methylbenzene, methanol, ethanol acetone
[80]	0.002	1.0–50	formaldehyde	Xylene, n-butyl alcohol, carbinol, toluene, 2-methoxy ethanol, methanol, ethanol, acetone, ammonia
[81]		5.0-300	benzene	acetone, propanol, ethanol, ammonia, triethylamine, benzene.
[82]	0.001	0.5–100	ethanol	Acetone, toluene, formaldehyde, 2-butanone, ammonia, SO_2 , NO_2
[83]	40	5–70	2-methoxy ethanol	Xylene, n-butyl alcohol, carbinol, toluene, 2-methoxy ethanol, methanol, ethanol, acetone, formaldehyde, ammonia

Table A1. Cont.

Table A2. Limit of detection, target gas, and gases used to test selectivity for carbon-based chemiresistors.

Ref.	LOD (ppm)	Range of Det. (Min–Max) (ppm)	Target Gas	Gases Used to Test Selectivity
[100]		2–15	NH ₃	Ammonia, hydrogen, acetone, LPG
[101]	0.069	0.5–16	NO ₂	
[102]	0.05	50-500	H ₂	H ₂ , HCHO, C ₄ H ₁₀ , C ₇ H ₈ , CO ₂
[103]	0.1	0–300	H ₂	H_2S , NO_2
[104]		5.0-800	Acetone	ammonia, ethanol, methanal, toluene
[105]	0.024		O ₃	C ₂ H ₆ O, CH ₂ O, C ₃ H ₆ O, NO ₂ , 75% RH, 100% RH
[106]		25–500	ethanol	methanol, acetone, toluene, isopropyl alcohol, ammonia
[107]	10	10.0–100	СО	O ₂ , H ₂ , N ₂
[108]		50–500	Toluene	diethylamine, acetone, DMF, ammonia, ethanol, methanol, isopropanol, formalin, H ₂ , CO ₂
[109]			LPG	

Ref.	LOD (ppm)	Range of Det. (Min–Max) (ppm)	Target Gas	Gases Used to Test Selectivity
[116]		1.0-200	NH ₃	ethanol, CH ₄ , H ₂ , CO, H ₂ S, NO ₂
[117]	0.2	0.2-100	NH ₃	Ethanol, acetone, ethylene, toluene, ammonia, NO_2 , CO_2 , CH_4
[118]			NO_2	
[119]	0.190	3.0-150	NO ₂	NH ₃ , 2NT, H ₂ O, CH ₃ OH, C ₂ H ₅ OH, (CH ₃) ₂ CO
[120]	0.01	0.01-50	NO ₂	NH ₃ , CO, H ₂ ,H ₂ S, C ₂ H ₅ OH, CH ₃ COCH ₃
[121]	0.1	0.1-100	NO ₂	NH ₃ , CO, H ₂
[122]		5.0-200	NO ₂	
[123]		5.0-50	NO ₂	NH ₃ , ethanol, formaldehyde, acetone, methanol
[124]	0.2	0.2-10	NO ₂	
[125]	0.01	0.01-100	NO ₂	H ₂ S, NH ₃ , H ₂ , CO
[126]		0.5-20	NO ₂	NO ₂ , SO ₂ , H ₂ S, NH ₃ , CO, C ₂ H ₆ OH
[127]	0.01	0.01-5	NO ₂	Ethanol, methanol, toluene, acetone, ammonia
[128]		0.1-100	NO _x	NH ₃ , CO, H ₂
[129]		5.0-500	H ₂	C_3H_6O , NH_3 , CO , H_2S
[113]		10.0-100	H ₂	NH_3 , NO_2 , CO
[130]	10	10.0-500	H ₂	C_3H_6O , NH_3
[131]		1.0-50	ethanol	C ₃ H ₆ O, CH ₂ O, NH ₃ , C ₆ H ₆ , C ₂ H ₆ O
[132]		1.0-40	ethanol	Methanol, acetone, hexane, benzene, toluene
[133]	0.3	10.0-500	ethanol	Formaldehyde, benzene, acetone
[134]	0.005	0.01–0.5	acetone	CO ₂ , CH ₄ , NH ₃ , H ₂ S, H ₂

Table A3. Limit of detection, target gas, and gas used to test selectivity for TMDs chemiresistors.

References

- 1. Wilson, J.S. Sensor Technology Handbook; Elsevier: Amsterdam, The Netherlands, 2004.
- 2. Dhall, S.; Mehta, B.; Tyagi, A.; Sood, K. A review on environmental gas sensors: Materials and technologies. *Sens. Int.* **2021**, 2, 100116. [CrossRef]
- 3. Hayat, H.; Griffiths, T.; Brennan, D.; Lewis, R.P.; Barclay, M.; Weirman, C.; Philip, B.; Searle, J.R. The state-of-the-art of sensors and environmental monitoring technologies in buildings. *Sensors* **2019**, *19*, 3648. [CrossRef]
- 4. Sagar, M.S.I.; Allison, N.R.; Jalajamony, H.M.; Fernandez, R.E.; Sekhar, P.K. Review–Modern Data Analysis in Gas Sensors. *J. Electrochem. Soc.* **2022**, *169*, 127512. [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on smart gas sensing technology. Sensors 2019, 19, 3760. [CrossRef] [PubMed]
- 6. Milone, A.; Monteduro, A.G.; Rizzato, S.; Leo, A.; Di Natale, C.; Kim, S.S.; Maruccio, G. Advances in Materials and Technologies for Gas Sensing from Environmental and Food Monitoring to Breath Analysis. *Adv. Sustain. Syst.* **2023**, *7*, 2200083. [CrossRef]
- 7. Caron, A.; Redon, N.; Thevenet, F.; Hanoune, B.; Coddeville, P. Performances and limitations of electronic gas sensors to investigate an indoor air quality event. *Build. Environ.* **2016**, *107*, 19–28.
- 8. Vichi, F.; Ianniello, A.; Frattoni, M.; Imperiali, A.; Esposito, G.; Tomasi Scianò, M.C.; Perilli, M.; Cecinato, A. Air quality assessment in the central mediterranean sea (Tyrrhenian sea): Anthropic impact and miscellaneous natural sources, including volcanic contribution, on the budget of volatile organic compounds (VOCs). *Atmosphere* **2021**, *12*, 1609. [CrossRef]
- 9. Sofia, D.; Giuliano, A.; Gioiella, F. Air quality monitoring network for tracking pollutants: The case study of Salerno city center. *Chem. Eng. Trans.* 2018, *68*, 67–72.
- Lay-Ekuakille, A.; Ikezawa, S.; Mugnaini, M.; Morello, I.; De Capua, C. Detection of specific macro and micropollutants in air monitoring: Review of methods and techniques. *Measurement* 2017, *98*, 49–59. [CrossRef]
- 11. Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [CrossRef]
- 12. Drix, D.; Schmuker, M. Resolving fast gas transients with metal oxide sensors. ACS Sens. 2021, 6, 688–692. [CrossRef]
- 13. Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in food production and monitoring: Recent advances in target chemiresistive gas sensors. *Chemosensors* **2022**, *10*, 338. [CrossRef]
- Scarabottolo, N.; Fedel, M.; Cocola, L.; Poletto, L. In-line inspecting device for leak detection from gas-filled food packages. In Proceedings of the Sensing for Agriculture and Food Quality and Safety XII, Online, 27 April–9 May 2020; Volume 11421, p. 1142103.
- Andrighetto, C.; Cocola, L.; De Dea, P.; Fedel, M.; Lombardi, A.; Melison, F.; Poletto, L. Determination of CO₂ and H₂ content in the headspace of spore contaminated milk by Raman gas analysis. In Proceedings of the Sensing for Agriculture and Food Quality and Safety XIV, Orlando, FL, USA, 3 April–13 June 2022; Volume 12120, pp. 8–15.
- 16. Clarivate Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 23 May 2023).
- 17. Moumen, A.; Kumarage, G.C.; Comini, E. P-type metal oxide semiconductor thin films: Synthesis and chemical sensor applications. *Sensors* **2022**, *22*, 1359. [CrossRef] [PubMed]

- 18. Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. *Sens. Actuators A Phys.* **2022**, *341*, 113578. [CrossRef]
- Goldoni, A.; Alijani, V.; Sangaletti, L.; D'Arsiè, L. Advanced promising routes of carbon/metal oxides hybrids in sensors: A review. *Electrochim. Acta* 2018, 266, 139–150. [CrossRef]
- 20. Dariyal, P.; Sharma, S.; Chauhan, G.S.; Singh, B.P.; Dhakate, S.R. Recent trends in gas sensing via carbon nanomaterials: Outlook and challenges. *Nanoscale Adv.* 2021, *3*, 6514–6544. [CrossRef]
- Parichenko, A.; Huang, S.; Pang, J.; Ibarlucea, B.; Cuniberti, G. Recent advances in technologies toward the development of 2D materials-based electronic noses. *TrAC Trends Anal. Chem.* 2023, 166, 117185. [CrossRef]
- Wang, Z.; Bu, M.; Hu, N.; Zhao, L. An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge. *Compos. Part B Eng.* 2023, 248, 110378. [CrossRef]
- Kim, Y.; Sohn, I.; Shin, D.; Yoo, J.; Lee, S.; Yoon, H.; Park, J.; Chung, S.m.; Kim, H. Recent Advances in Functionalization and Hybridization of Two-dimensional Transition Metal Dichalcogenide for Gas Sensor. *Adv. Eng. Mater.* 2024, 26, 2301063. [CrossRef]
- 24. Yaqoob, U.; Younis, M.I. Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. *Sensors* **2021**, *21*, 2877. [CrossRef]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. *Microchim. Acta* 2018, 185, 1–16. [CrossRef] [PubMed]
- Jimenez-Cadena, G.; Riu, J.; Rius, F.X. Gas sensors based on nanostructured materials. *Analyst* 2007, 132, 1083–1099. [CrossRef] [PubMed]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. *Solid State Ionics* 2021, 360, 115544. [CrossRef]
- Tian, X.; Wang, S.; Li, H.; Li, M.; Chen, T.; Xiao, X.; Wang, Y. Recent advances in MoS₂ based nanomaterials sensors for room temperature gas detection: A review. *Sens. Diagn.* 2023, *5*, 1901062. [CrossRef]
- Zhou, Y.; Zou, C.; Lin, X.; Guo, Y. UV light activated NO₂ gas sensing based on Au nanoparticles decorated few-layer MoS₂ thin film at room temperature. *Appl. Phys. Lett.* 2018, *113*, 082103. [CrossRef]
- Suematsu, K.; Harano, W.; Oyama, T.; Shin, Y.; Watanabe, K.; Shimanoe, K. Pulse-driven semiconductor gas sensors toward ppt level toluene detection. *Anal. Chem.* 2018, 90, 11219–11223. [CrossRef]
- 32. Kanaparthi, S.; Singh, S.G. Reduction of the Measurement Time of a Chemiresistive Gas Sensor Using Transient Analysis and the Cantor Pairing Function. *ACS Meas. Sci. Au* 2021, 2, 113–119. [CrossRef]
- 33. Awang, Z. Gas sensors: A review. Sens. Transducers 2014, 168, 61–75.
- 34. Elosua, C.; Matias, I.R.; Bariain, C.; Arregui, F.J. Volatile organic compound optical fiber sensors: A review. *Sensors* 2006, 6, 1440–1465. [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced micro-and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [CrossRef] [PubMed]
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. *Sens. Actuators B Chem.* 2016, 231, 529–538. [CrossRef]
- 37. Banica, F.G. Chemical Sensors and Biosensors: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012.
- Lucas, D.; Ewing, G.E. Spontaneous desorption of vibrationally excited molecules physically adsorbed on surfaces. *Chem. Phys.* 1981, 58, 385–393. [CrossRef]
- 39. de Boer, J.H. The Dynamical Character of Adsorption; Oxford University Press: Oxford, UK, 1953; Volume 76.
- 40. Chambers, A. Modern Vacuum Physics; CRC Press: Boca Raton, FL, USA, 2004.
- 41. Butt, H.J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces; John Wiley & Sons: Hoboken, NJ, USA, 2023.
- 42. Morse, P.M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 1929, 34, 57. [CrossRef]
- Giraud, F.; Geantet, C.; Guilhaume, N.; Loridant, S.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Individual amounts of Lewis and Brønsted acid sites on metal oxides from NH₃ adsorption equilibrium: Case of TiO₂ based solids. *Catal. Today* 2021, 373, 69–79. [CrossRef]
- 44. Peng, S.; Cho, K.; Qi, P.; Dai, H. Ab initio study of CNT NO₂ gas sensor. Chem. Phys. Lett. 2004, 387, 271–276. [CrossRef]
- Bagsican, F.R.; Winchester, A.; Ghosh, S.; Zhang, X.; Ma, L.; Wang, M.; Murakami, H.; Talapatra, S.; Vajtai, R.; Ajayan, P.M.; et al. Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide. *Sci. Rep.* 2017, *7*, 1774. [PubMed]
 Somorjai, G.A.; Li, Y. *Introduction to Surface Chemistry and Catalysis*; John Wiley & Sons: Hoboken, NJ, USA, 2010.
- 47. Liang, S.Z.; Chen, G.; Harutyunyan, A.R.; Cole, M.W.; Sofo, J.O. Analysis and optimization of carbon nanotubes and graphene sensors based on adsorption-desorption kinetics. *Appl. Phys. Lett.* **2013**, *103*, 233108. [CrossRef]
- 48. Ponzoni, A. A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO₂. *Sensors* **2022**, 22, 6346. [CrossRef]
- Rigoni, F.; Freddi, S.; Pagliara, S.; Drera, G.; Sangaletti, L.; Suisse, J.M.; Bouvet, M.; Malovichko, A.; Emelianov, A.; Bobrinetskiy, I. Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers. *Nanotechnology* 2017, 28, 255502. [CrossRef]

- 50. Meixner, H.; Lampe, U. Metal oxide sensors. Sens. Actuators B Chem. 1996, 33, 198–202. [CrossRef]
- 51. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. *Sensors* 2010, 10, 2088–2106. [CrossRef]
- 52. Kanaparthi, S.; Singh, S.G. Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes. *Mater. Sci. Energy Technol.* **2020**, *3*, 91–96.
- Shaikh, S.F.; Ghule, B.G.; Shinde, P.V.; Raut, S.D.; Gore, S.K.; Ubaidullah, M.; Mane, R.S.; Al-Enizi, A.M. Continuous hydrothermal flow-inspired synthesis and ultra-fast ammonia and humidity room-temperature sensor activities of WO₃ nanobricks. *Mater. Res. Express* 2020, 7, 015076. [CrossRef]
- 54. Chen, F.; Zhang, Y.; Wang, D.; Wang, T.; Zhang, J.; Zhang, D. High performance ammonia gas sensor based on electrospinned Co₃O₄ nanofibers decorated with hydrothermally synthesized MoTe₂ nanoparticles. *J. Alloys Compd.* **2022**, *923*, 166355. [CrossRef]
- Mathankumar, G.; Harish, S.; Mohan, M.K.; Bharathi, P.; Kannan, S.K.; Archana, J.; Navaneethan, M. Enhanced selectivity and ultra-fast detection of NO₂ gas sensor via Ag modified WO₃ nanostructures for gas sensing applications. *Sens. Actuators B Chem.* 2023, 381, 133374. [CrossRef]
- Chen, T.; Yan, W.; Wang, Y.; Li, J.; Hu, H.; Ho, D. SnS₂/MXene derived TiO₂ hybrid for ultra-fast room temperature NO₂ gas sensing. *J. Mater. Chem. C* 2021, *9*, 7407–7416. [CrossRef]
- Fan, C.; Shi, J.; Zhang, Y.; Quan, W.; Chen, X.; Yang, J.; Zeng, M.; Zhou, Z.; Su, Y.; Wei, H.; et al. Fast and recoverable NO₂ detection achieved by assembling ZnO on Ti₃C₂T_x MXene nanosheets under UV illumination at room temperature. *Nanoscale* 2022, 14, 3441–3451. [CrossRef]
- Chen, X.; Zhao, S.; Zhou, P.; Cui, B.; Liu, W.; Wei, D.; Shen, Y. Room-temperature NO₂ sensing properties and mechanism of CuO nanorods with Au functionalization. *Sens. Actuators B Chem.* 2021, 328, 129070. [CrossRef]
- Zhao, H.; Ge, W.; Tian, Y.; Wang, P.; Li, X.; Liu, Z. Pr₂Sn₂O₇/NiO heterojunction for ultra-fast and low operating temperature to NO₂ gas sensing. *Sens. Actuators A Phys.* 2023, 349, 114100. [CrossRef]
- Xue, J.; Zhang, X.; Ullah, M.; He, L.; Ikram, M.; Khan, M.; Ma, L.; Li, L.; Zhang, G.; Shi, K. Three-dimensional flower-like Ni₉S₈/NiAl₂O₄ nanocomposites composed of ultra-thin porous nanosheets: Fabricated, characterized and ultra-fast NOx gas sensors at room temperature. *J. Alloys Compd.* 2020, *825*, 154151. [CrossRef]
- Wu, Z.; Li, Z.; Li, H.; Sun, M.; Han, S.; Cai, C.; Shen, W.; Fu, Y. Ultrafast response/recovery and high selectivity of the H₂S gas sensor based on α-Fe₂O₃ nano-ellipsoids from one-step hydrothermal synthesis. *ACS Appl. Mater. Interfaces* 2019, *11*, 12761–12769. [CrossRef]
- Dun, M.; Tan, J.; Tan, W.; Tang, M.; Huang, X. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co₃O₄ microspheres: A room-temperature H₂S gas sensor with ultra-fast response and recovery. *Sens. Actuators B Chem.* 2019, 298, 126839. [CrossRef]
- Wang, X.; Lu, J.; Han, W.; Cheng, P.; Wang, Y.; Sun, J.; Ma, J.; Sun, P.; Zhang, H.; Sun, Y.; et al. Carbon modification endows WO₃ with anti-humidity property and long-term stability for ultrafast H₂S detection. *Sens. Actuators B Chem.* 2022, 350, 130884. [CrossRef]
- Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO₂ nanoparticles. Int. J. Hydrogen Energy 2022, 47, 3157–3169. [CrossRef]
- 65. Wang, Z.; Zhang, D.; Tang, M.; Chen, Q.; Zhang, H.; Shao, X. Construction of ultra-fast hydrogen sensor for dissolved gas detection in oil-immersed transformers based on titanium dioxide quantum dots modified tin dioxide nanosheets. *Sens. Actuators B Chem.* **2023**, 393, 134141. [CrossRef]
- Meng, X.; Bi, M.; Gao, W. PdAg alloy modified SnO₂ nanoparticles for ultrafast detection of hydrogen. *Sens. Actuators B Chem.* 2023, 382, 133515. [CrossRef]
- 67. Wang, Q.; Wu, H.; Wang, Y.; Li, J.; Yang, Y.; Cheng, X.; Luo, Y.; An, B.; Pan, X.; Xie, E. Ex-situ XPS analysis of yolk-shell Sb₂O₃/WO₃ for ultra-fast acetone resistive sensor. *J. Hazard. Mater.* **2021**, *412*, 125175. [CrossRef]
- Ge, W.; Jiao, S.; Chang, Z.; He, X.; Li, Y. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO₂ nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 13200–13207. [CrossRef]
- Chang, X.; Xu, S.; Liu, S.; Wang, N.; Sun, S.; Zhu, X.; Li, J.; Ola, O.; Zhu, Y. Highly sensitive acetone sensor based on WO₃ nanosheets derived from WS₂ nanoparticles with inorganic fullerene-like structures. *Sens. Actuators B Chem.* 2021, 343, 130135. [CrossRef]
- He, K.; Jin, Z.; Chu, X.; Bi, W.; Wang, W.; Wang, C.; Liu, S. Fast response–recovery time toward acetone by a sensor prepared with Pd doped WO₃ nanosheets. *RSC Adv.* 2019, *9*, 28439–28450. [CrossRef] [PubMed]
- Chen, B.; Li, P.; Wang, B.; Wang, Y. Flame-annealed porous TiO₂/CeO₂ nanosheets for enhenced CO gas sensors. *Appl. Surf. Sci.* 2022, 593, 153418. [CrossRef]
- Li, D.; Li, Y.; Wang, X.; Sun, G.; Cao, J.; Wang, Y. Surface modification of In₂O₃ porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO. *Appl. Surf. Sci.* 2023, *613*, 155987. [CrossRef]
- Sertel, B.C.; Sonmez, N.A.; Kaya, M.D.; Ozcelik, S. Development of MgO: TiO₂ thin films for gas sensor applications. *Ceram. Int.* 2019, 45, 2917–2921. [CrossRef]
- 74. Wang, X.; Chen, F.; Yang, M.; Guo, L.; Xie, N.; Kou, X.; Song, Y.; Wang, Q.; Sun, Y.; Lu, G. Dispersed WO₃ nanoparticles with porous nanostructure for ultrafast toluene sensing. *Sens. Actuators B Chem.* **2019**, *289*, 195–206. [CrossRef]

- 75. Hermawan, A.; Zhang, B.; Taufik, A.; Asakura, Y.; Hasegawa, T.; Zhu, J.; Shi, P.; Yin, S. CuO Nanoparticles/Ti₃C₂T_x MXene Hybrid Nanocomposites for Detection of Toluene Gas. *ACS Appl. Nano Mater.* **2020**, *3*, 4755–4766. [CrossRef]
- Zhang, R.; Gao, S.; Zhou, T.; Tu, J.; Zhang, T. Facile preparation of hierarchical structure based on p-type Co₃O₄ as toluene detecting sensor. *Appl. Surf. Sci.* 2020, 503, 144167. [CrossRef]
- 77. Zhai, C.; Zhao, Q.; Gu, K.; Xing, D.; Zhang, M. Ultra-fast response and recovery of triethylamine gas sensors using a MOF-based ZnO/ZnFe₂O₄ structures. *J. Alloys Compd.* **2019**, *784*, 660–667. [CrossRef]
- Cheng, L.; Li, Y.; Sun, G.; Cao, J.; Wang, Y. Modification of Bi₂O₃ on ZnO porous nanosheets-assembled architecture for ultrafast detection of TEA with high sensitivity. *Sens. Actuators B Chem.* 2023, 376, 132986. [CrossRef]
- 79. Fu, X.; Yang, P.; Xiao, X.; Zhou, D.; Huang, R.; Zhang, X.; Cao, F.; Xiong, J.; Hu, Y.; Tu, Y.; et al. Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO₃ nanobelts. J. Alloys Compd. 2019, 797, 666–675. [CrossRef]
- 80. John, R.A.B.; Shruthi, J.; Ramana Reddy, M.; Ruban Kumar, A. Manganese doped nickel oxide as room temperature gas sensor for formaldehyde detection. *Ceram. Int.* 2022, *48*, 17654–17667. [CrossRef]
- Venkatraman, M.; Kadian, A.; Choudhary, S.; Subramanian, A.; Singh, A.; Sikarwar, S. Ultra-Fast Benzene Gas (C₆H₆) Detection Characteristics of Cobalt-Doped Aluminum Oxide Sensors. *ChemistrySelect* 2023, *8*, e202204531. [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO₃ modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. *Sens. Actuators B Chem.* 2021, 341, 130015. [CrossRef]
- John, R.A.B.; Shruthi, J.; Ramana Reddy, M.; Ruban Kumar, A. Hole concentration modulated gas sensor for selective detection of 2-methoxy ethanol. *Ceram. Int.* 2023, 49, 9122–9129. [CrossRef]
- 84. Tong, X.; Shen, W.; Chen, X.; Corriou, J.P. A fast response and recovery H₂S gas sensor based on free-standing TiO₂ nanotube array films prepared by one-step anodization method. *Ceram. Int.* **2017**, *43*, 14200–14209. [CrossRef]
- Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent advancement of nanostructured carbon for energy applications. *Chem. Rev.* 2015, 115, 5159–5223. [CrossRef]
- 86. Freddi, S.; Achilli, S.; Soave, R.; Pagliara, S.; Drera, G.; De Poli, A.; De Nicola, F.; De Crescenzi, M.; Castrucci, P.; Sangaletti, L. Dramatic efficiency boost of single-walled carbon nanotube-silicon hybrid solar cells through exposure to ppm nitrogen dioxide in air: An ab-initio assessment of the measured device performances. J. Colloid Interface Sci. 2020, 566, 60–68. [CrossRef] [PubMed]
- 87. Molaei, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. *Talanta* 2019, 196, 456–478. [CrossRef]
- 88. Kumar, R.; Joanni, E.; Sahoo, S.; Shim, J.J.; Tan, W.K.; Matsuda, A.; Singh, R.K. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials. *Carbon* **2022**, *193*, 298–338. [CrossRef]
- Yin, F.; Yue, W.; Li, Y.; Gao, S.; Zhang, C.; Kan, H.; Niu, H.; Wang, W.; Guo, Y. Carbon-based nanomaterials for the detection of volatile organic compounds: A review. *Carbon* 2021, 180, 274–297. [CrossRef]
- 90. Varghese, S.S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. *Sens. Actuators B Chem.* **2015**, *218*, 160–183. [CrossRef]
- 91. Bogue, R. Nanomaterials for gas sensing: A review of recent research. Sens. Rev. 2014, 34, 1–8. [CrossRef]
- 92. Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [CrossRef]
- 93. Liu, J.; Bao, S.; Wang, X. Applications of graphene-based materials in sensors: A review. *Micromachines* 2022, 13, 184. [CrossRef] [PubMed]
- Freddi, S.; Sangaletti, L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. *Nanomaterials* 2022, 12, 2992. [CrossRef]
- 95. Bogue, R. Graphene sensors: A review of recent developments. Sens. Rev. 2014, 34, 233–238. [CrossRef]
- 96. Geim, A.K.; Novoselov, K.S. The rise of graphene. *Nat. Mater.* **2007**, *6*, 183–191. [CrossRef]
- 97. Freddi, S.; Gonzalez, M.C.R.; Carro, P.; Sangaletti, L.; De Feyter, S. Chemical defect-driven response on graphene-based chemiresistors for sub-ppm ammonia detection. *Angew. Chem. Int. Ed.* **2022**, *61*, e202200115. [CrossRef]
- 98. Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.P. A review on functionalized graphene sensors for detection of ammonia. *Sensors* **2021**, *21*, 1443. [CrossRef]
- 99. Kamran, U.; Heo, Y.J.; Lee, J.W.; Park, S.J. Functionalized carbon materials for electronic devices: A review. *Micromachines* **2019**, 10, 234. [CrossRef]
- Ansari, N.; Lone, M.Y.; Shumaila; Ali, J.; Zulfequar, M.; Husain, M.; Islam, S.S.; Husain, S. Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers. *J. Appl. Phys.* 2020, 127, 044902. [CrossRef]
- 101. Wang, X.; Wei, M.; Li, X.; Shao, S.; Ren, Y.; Xu, W.; Li, M.; Liu, W.; Liu, X.; Zhao, J. Large-Area Flexible Printed Thin-Film Transistors with Semiconducting Single-Walled Carbon Nanotubes for NO₂ Sensors. ACS Appl. Mater. Interfaces 2020, 12, 51797–51807. [CrossRef]
- Zhang, X.; Sun, J.; Tang, K.; Wang, H.; Chen, T.; Jiang, K.; Zhou, T.; Quan, H.; Guo, R. Ultralow detection limit and ultrafast response/recovery of the H₂ gas sensor based on Pd-doped rGO/ZnO-SnO₂ from hydrothermal synthesis. *Microsyst. Nanoeng.* 2022, *8*, 67. [CrossRef] [PubMed]
- 103. Liu, F.; Xiao, M.; Ning, Y.; Zhou, S.; He, J.; Lin, Y.; Zhang, Z. Toward practical gas sensing with rapid recovery semiconducting carbon nanotube film sensors. *Sci. China Inf. Sci.* 2022, 65, 162402. [CrossRef]
- 104. Jia, X.; Cheng, C.; Yu, S.; Yang, J.; Li, Y.; Song, H. Preparation and enhanced acetone sensing properties of flower-like *α*-Fe₂O₃/multi-walled carbon nanotube nanocomposites. *Sens. Actuators B Chem.* **2019**, *300*, 127012. [CrossRef]

- 105. Sun, Q.; Wu, Z.; Cao, Y.; Guo, J.; Long, M.; Duan, H.; Jia, D. Chemiresistive sensor arrays based on noncovalently functionalized multi-walled carbon nanotubes for ozone detection. *Sens. Actuators B Chem.* **2019**, 297, 126689. [CrossRef]
- 106. Hussain, A.; Lakhan, M.N.; Soomro, I.A.; Ahmed, M.; Hanan, A.; Maitlo, A.A.; Zehra, I.; Liu, J.; Wang, J. Preparation of reduced graphene oxide decorated two-dimensional WSe₂ nanosheet sensor for efficient detection of ethanol gas. *Phys. E Low-Dimens. Syst. Nanostruct.* 2023, 147, 115574. [CrossRef]
- 107. Basu, A.K.; Chauhan, P.S.; Awasthi, M.; Bhattacharya, S. α-Fe₂O₃ loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. *Appl. Surf. Sci.* **2019**, *465*, 56–66. [CrossRef]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room temperature toluene gas sensor based on TiO₂ nanoparticles decorated 3D graphene-carbon nanotube nanostructures. *Sens. Actuators B Chem.* 2019, 279, 69–78. [CrossRef]
- Chaitongrat, B.; Chaisitsak, S. Novel Preparation and Characterization of Fe₂O₃₃/CNT Thin Films for Flammable Gas Sensors. *Mater. Sci. Forum* 2019, 947, 47–51. [CrossRef]
- Gai, S.; Wang, B.; Wang, X.; Zhang, R.; Miao, S.; Wu, Y. Ultrafast NH₃ gas sensor based on phthalocyanine-optimized non-covalent hybrid of carbon nanotubes with pyrrole. *Sens. Actuators B Chem.* 2022, 357, 131352. [CrossRef]
- 111. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. *Nat. Rev. Mater.* 2017, 2, 1–15. [CrossRef]
- Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. *Chem. Soc. Rev.* 2015, 44, 2702–2712. [CrossRef] [PubMed]
- Gottam, S.R.; Tsai, C.T.; Wang, L.W.; Wang, C.T.; Lin, C.C.; Chu, S.Y. Highly sensitive hydrogen gas sensor based on a MoS₂-Pt nanoparticle composite. *Appl. Surf. Sci.* 2020, 506, 144981. [CrossRef]
- 114. Zhang, D.; Fan, X.; Yang, A.; Zong, X. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. *J. Colloid Interface Sci.* **2018**, *523*, 217–225. [CrossRef] [PubMed]
- 115. Yang, W.; Gan, L.; Li, H.; Zhai, T. Two-dimensional layered nanomaterials for gas-sensing applications. *Inorg. Chem. Front.* **2016**, *3*, 433–451. [CrossRef]
- 116. Wang, W.; Zhen, Y.; Zhang, J.; Li, Y.; Zhong, H.; Jia, Z.; Xiong, Y.; Xue, Q.; Yan, Y.; Alharbi, N.S.; et al. SnO₂ nanoparticles-modified 3D-multilayer MoS₂ nanosheets for ammonia gas sensing at room temperature. *Sens. Actuators B Chem.* **2020**, 321, 128471. [CrossRef]
- 117. You, C.W.; Fu, T.; Li, C.B.; Song, X.; Tang, B.; Song, X.; Yang, Y.; Deng, Z.P.; Wang, Y.Z.; Song, F. A Latent-Fire-Detecting Olfactory System Enabled by Ultra-Fast and Sub-ppm Ammonia-Responsive Ti₃C₂T_x MXene/MoS₂ Sensors. *Adv. Funct. Mater.* 2022, 32, 2208131. [CrossRef]
- 118. Liu, Z.; Lv, H.; Xie, Y.; Wang, J.; Fan, J.; Sun, B.; Jiang, L.; Zhang, Y.; Wang, R.; Shi, K. A 2D/2D/2D Ti₃C₂T_x@TiO₂@ MoS₂ heterostructure as an ultrafast and high-sensitivity NO₂ gas sensor at room-temperature. *J. Mater. Chem. A* 2022, *10*, 11980–11989. [CrossRef]
- Gorthala, G.; Ghosh, R. Ultra-Fast NO₂ Detection by MoS₂ Nanoflakes at Room Temperature. *IEEE Sens. J.* 2022, 22, 14727–14735. [CrossRef]
- 120. Ikram, M.; Liu, L.; Liu, Y.; Ma, L.; Lv, H.; Ullah, M.; He, L.; Wu, H.; Wang, R.; Shi, K. Fabrication and characterization of a high-surface area MoS₂@WS₂ heterojunction for the ultra-sensitive NO₂ detection at room temperature. *J. Mater. Chem. A* 2019, 7, 14602–14612. [CrossRef]
- 121. Ikram, M.; Liu, L.; Liu, Y.; Ullah, M.; Ma, L.; Bakhtiar, S.u.H.; Wu, H.; Yu, H.; Wang, R.; Shi, K. Controllable synthesis of MoS₂@MoO₂ nanonetworks for enhanced NO₂ room temperature sensing in air. *Nanoscale* 2019, 11, 8554–8564. [CrossRef] [PubMed]
- 122. Li, W.; Zhang, Y.; Long, X.; Cao, J.; Xin, X.; Guan, X.; Peng, J.; Zheng, X. Gas sensors based on mechanically exfoliated MoS₂ nanosheets for room-temperature NO₂ detection. *Sensors* **2019**, *19*, 2123. [CrossRef] [PubMed]
- 123. Liu, J.B.; Hu, J.Y.; Liu, C.; Tan, Y.M.; Peng, X.; Zhang, Y. Mechanically exfoliated MoS₂ nanosheets decorated with SnS₂ nanoparticles for high-stability gas sensors at room temperature. *Rare Met.* **2021**, *40*, 1536–1544. [CrossRef]
- 124. Hong, H.S.; Phuong, N.H.; Huong, N.T.; Nam, N.H.; Hue, N.T. Highly sensitive and low detection limit of resistive NO₂ gas sensor based on a MoS₂/graphene two-dimensional heterostructures. *Appl. Surf. Sci.* **2019**, *492*, 449–454. [CrossRef]
- 125. Bai, X.; Lv, H.; Liu, Z.; Chen, J.; Wang, J.; Sun, B.; Zhang, Y.; Wang, R.; Shi, K. Thin-layered MoS₂ nanoflakes vertically grown on SnO₂ nanotubes as highly effective room-temperature NO₂ gas sensor. *J. Hazard. Mater.* **2021**, *416*, 125830. [CrossRef]
- 126. Xia, Y.; Xu, L.; He, S.; Zhou, L.; Wang, M.; Wang, J.; Komarneni, S. UV-activated WS₂/SnO₂ 2D/0D heterostructures for fast and reversible NO₂ gas sensing at room temperature. *Sens. Actuators B Chem.* **2022**, *364*, 131903. [CrossRef]
- 127. Han, Y.; Liu, Y.; Su, C.; Wang, S.; Li, H.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; et al. Interface engineered WS₂/ZnS heterostructures for sensitive and reversible NO₂ room temperature sensing. *Sens. Actuators B Chem.* **2019**, 296, 126666. [CrossRef]
- 128. Ikram, M.; Liu, Y.; Lv, H.; Liu, L.; Rehman, A.U.; Kan, K.; Zhang, W.; He, L.; Wang, Y.; Wang, R.; et al. 3D-multilayer MoS₂ nanosheets vertically grown on highly mesoporous cubic In₂O₃ for high-performance gas sensing at room temperature. *Appl. Surf. Sci.* 2019, 466, 1–11. [CrossRef]
- 129. Saravanan, A.; Huang, B.R.; Chu, J.P.; Prasannan, A.; Tsai, H.C. Interface engineering of ultrananocrystalline diamond/MoS₂-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties. *Sens. Actuators B Chem.* **2019**, 292, 70–79. [CrossRef]
- 130. Kathiravan, D.; Huang, B.R.; Saravanan, A.; Prasannan, A.; Hong, P.D. Highly enhanced hydrogen sensing properties of sericin-induced exfoliated MoS₂ nanosheets at room temperature. *Sens. Actuators B Chem.* **2019**, 279, 138–147. [CrossRef]

- 132. Chen, W.Y.; Jiang, X.; Lai, S.N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. *Nat. Commun.* **2020**, *11*, 1302. [CrossRef] [PubMed]
- 133. Jain, N.; Puri, N.K. Zinc oxide incorporated molybdenum diselenide nanosheets for chemiresistive detection of ethanol gas. *J. Alloys Compd.* **2023**, 955, 170178. [CrossRef]
- Chang, X.; Li, X.; Qiao, X.; Li, K.; Xiong, Y.; Li, X.; Guo, T.; Zhu, L.; Xue, Q. Metal-organic frameworks derived ZnO@MoS₂ nanosheets core/shell heterojunctions for ppb-level acetone detection: Ultra-fast response and recovery. *Sens. Actuators B Chem.* 2020, 304, 127430. [CrossRef]
- 135. Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. *Sens. Actuators B Chem.* **2009**, 140, 319–336. [CrossRef]
- Hu, K.; Zhao, Q.; Guo, Y.; Zhang, J.; Bao, J.; Yang, Y.; He, T.; Su, Y. Dual mechanisms of Pd-doped In₂O₃/CeO₂ nanofibers for hydrogen gas sensing. ACS Appl. Nano Mater. 2022, 5, 6232–6240. [CrossRef]
- Katoch, A.; Kim, J.H.; Kwon, Y.J.; Kim, H.W.; Kim, S.S. Bifunctional sensing mechanism of SnO₂–ZnO composite nanofibers for drastically enhancing the sensing behavior in H₂ gas. ACS Appl. Mater. Interfaces 2015, 7, 11351–11358. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.