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Abstract: Introduction: Gut microbiota is not only a taxonomic biologic ecosystem but is also involved
in human intestinal and extra-intestinal functions such as immune system modulation, nutrient
absorption and digestion, as well as metabolism regulation. The latter is strictly linked to non-
alcoholic fatty liver disease (NAFLD) pathophysiology. Materials and methods: We reviewed the
literature on the definition of gut microbiota, the concepts of “dysbiosis” and “eubiosis”, their role in
NAFLD pathogenesis, and the data on fecal microbiota transplantation (FMT) in these patients. We
consulted the main medical databases using the following keywords, acronyms, and their associations:
gut microbiota, eubiosis, dysbiosis, bile acids, NAFLD, and FMT. Results: Gut microbiota qualitative
and quantitative composition is different in healthy subjects vs. NALFD patients. This dysbiosis is
associated with and involved in NAFLD pathogenesis and evolution to non-acoholic steatohepatitis
(NASH), liver cirrhosis, and hepatocellular carcinoma (HCC). In detail, microbial-driven metabolism
of bile acids (BAs) and interaction with hepatic and intestinal farnesoid nuclear X receptor (FXR) have
shown a determinant role in liver fat deposition and the development of fibrosis. Over the use of pre-
or probiotics, FMT has shown preclinical and initial clinical promising results in NAFLD treatment
through re-modulation of microbial dysbiosis. Conclusions: Promising clinical data support a larger
investigation of gut microbiota dysbiosis reversion through FMT in NAFLD using randomized
clinical trials to design precision-medicine treatments for these patients at different disease stages.

Keywords: gut microbiota; eubiosis; dysbiosis; bile acids; NAFLD; FMT

1. Introduction

Gut microbiota can be defined as a complex ecosystem encompassing more than
100 trillion microbes belonging to bacteria, viruses, archaea, protozoa, fungi, and yeasts
living in our intestines. However, this taxonomic definition does not describe its func-
tioning, which strictly relies on qualitative and quantitative composition [1]. When the
qualitative and quantitative composition of gut microbiota remains stable we can speak
about “eubiosis” [1]. When this composition is altered by intestinal and environmental
factors (e.g., use of antibiotics, or gastrointestinal and extraintestinal infections), “dys-
biosis” is established [2]. There are different dysbioses for different gastrointestinal and
extra-intestinal diseases [3,4]. Thus, this significant association is gaining more and more
attention from researchers as it can help the development of “personalized” medicine [5].
Non-alcoholic fatty liver disease (NAFLD) is a complex condition characterized by fat
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deposits within hepatocytes [6]. Liver fat deposition is significantly associated with obesity,
dyslipidemia, type 2 diabetes, and insulin resistance as comorbidities [7,8]. Almost one-
quarter of the Westernized population is affected by this condition which has a spectrum of
stages [9]. Aside from fat deposition, about 10–15% of patients can develop liver fibrosis
because of progressive liver inflammation [10]. Liver fibrosis characterizes non-alcoholic
steatohepatitis (NASH). If liver fibrosis is not reverted and/or stopped by treatments and
lifestyle changes, patients can develop liver cirrhosis as well [11]. Particularly, NAFLD
patients can show hepatocellular carcinoma (HCC) also without liver cirrhosis at any
stage [12]. In NAFLD, gut microbiota derangement, namely dysbiosis, is resembled by
an increased abundance of Bacteroidetes and a decrease of those of Firmicutes [13]. This
starts a pathophysiological process through the “gut-liver axis “ where antigens from
intestinal pathogens enter the portal blood cycle via a deranged intestinal permeability
through damage-associated molecular patterns (DAMPS) and pathogen-associated molecu-
lar patterns (PAMPS) [14]. This pathophysiological cascade leads the liver to be exposed to
detrimental antigens that start and perpetuate liver damage [14]. Conversely, liver inflam-
mation favors altered intestinal permeability increase [14]. Bile acids (BA) are involved in
lipid absorption and metabolism regulation [15]. Gut microbiota is also implicated in such
regulation and actively interacts with the free BAs pool and their receptors, particularly
the farnesoid X receptor (FXR), present both in enterocytes and hepatocytes, with different
and tissue-specific effects on liver fat deposition and fibrosis [16]. The use of antibiotics,
pre-, and probiotics to restore gut “eubiosis” in NAFLD patients has shown limitations as
well as promising results. Probiotics can protect the liver from toxic substances driven to
the liver by altered intestinal permeability. In addition, they can restore altered intestinal
permeability, and gut eubiosis and exert a direct anti-inflammatory effect on gut and liver
tissue. Antibiotics can restore gut eubiosis and prevent the pathophysiologic cascade char-
acteristic of the “gut-liver axis”. Unfortunately, probiotics efficacy needs larger randomized
clincal trials (RCT)s investigating their safety. Antibiotics suffer from the emerging issue of
antibiotic resistance development within the gut, with potential deleterious side effects for
the whole human body [17]. Direct fecal microbiota transplantation (FMT) is a safe and
very successful treatment for GI infections such as those by Clostridium difficile and other
Clostridiales [18]. In particular, Clostridium difficile infection (CDI) is a worldwide healthcare
problem as it is associated with severe diarrhea until toxic megacolon occurrence. CDI is
typically associated with the use of antibiotics, and recurrent CDI (rCDI) has significant
mortality. FMT has been seen to confer a high success rate in the treatment of CDI and rCDI
as it restores the commensal gut microbiota and re-establish “indirect mechanisms“ of colo-
nization resistance. Indeed, FMT restores microbiome-mediated regulation of the integrity
of the gut barrier function to prevent penetration/translocation of potential pathogens
(namely, Clostridiales). Several preclinical and some clinical evidence support the use of
FMT also in NAFLD patients [19]. However, the role of FMT as a therapeutic choice in
NAFLD has not been fully elucidated. Thus, we first review the literature on gut microbiota
physiologic composition, the concepts of “dysbiosis” and “eubiosis”, and their role in the
pathogenesis and pathophysiology of NAFLD. Finally, we reviewed the data on FMT use
in preclinical and initial human studies.

2. Materials and Methods

We conducted a PubMed and Medline search for original articles, reviews, meta-
analyses, and case series using the following keywords, their acronyms, and associations:
«gut microbiota», «eubiosis», «dysbiosis», «bile acids», «NAFLD», «FMT». When appro-
priate, preliminary evidence from abstracts belonging to main national and international
gastroenterological meetings (e.g., United European Gastroenterology Week, Digestive
Disease Week) was also included. The papers found from the above-mentioned sources
were reviewed by two of the authors (ES and ER) according to PRISMA guidelines [20].
The last MEDLINE search was dated 31 July 2022.
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3. Results
3.1. Gut Microbiota Composition in Health and Its “dysbiosis” in NAFLD Patients

The human intestine hosts over 100 trillion microbes, prevalently bacteria. There are
also viruses, fungi, archaea, and protozoa [21]. Gut microbiota participates in nutrient
absorption and fermentation, modulates intestinal permeability (IP), and is implicated
in host metabolism (e.g., carbohydrates absorption and processing, proteins putrefac-
tion, bile acids formation, insulin sensitivity), and modulation of mucosal and systemic
immunity [22]. Firmicutes and Bacteroidetes represent the most abundant phyla of the
bacterial microbiota. Their ratio is a fundamental factor in the host’s health [23]. Among
the other phyla present, we find Fusobacteria, Actinobacteria, Proteobacteria, and Verru-
comicrobia [24]. Eubiosis defines the balanced qualitative and quantitative condition of the
intestinal microflora and is essential to preserving the host’s health [22–24]. On the contrary,
its qualitative/quantitative perturbation–dysbiosis is associated with the development
of various diseases such as NAFLD, NASH until HCC, diabetes type 2, cardiovascular
disorders, and, undoubtedly, obesity [25–28]. Patients with NAFLD, during their stages
of disease evolution, also have an increased number of Bacteroidetes and a reduction of
Firmicutes abundance (a decreased F/B ratio) [29]. However, the F/B ratio may vary across
studies mainly because of the gut microbiota studying technique. There are available
culture-based and culture-free methods such as 16S rRNA gene sequencing until whole-
genome shotgun sequencing. Finally, there are newer metagenomics approaches that allow
whole genomic sequence reconstruction starting from a few genetic fragments present in
the biological sample in the study. Interestingly, there are diversities in the microorganisms’
abundance within each phylum. NAFLD patients also show an increased proportion of
species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus,
whereas Oscillibacter, Flavonifractor, Odoribacter, Alistipes spp. are less abundant [30]. More
interestingly, the hallmark of decreased F/B ratio is not typical of patients suffering from
HCC. Of interest, in children with NAFLD and NASH, there is a peculiar gut dysbiosis
characterized by decreased abundance of Oscillospira spp. and by an increased concentra-
tion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. vs. in healthy children [31]. In
terms of diversity, adult NAFLD gut microbiota shows decreased α-diversity (richness and
evenness), significantly altered β-diversity, and significant differences in the abundance
of bacteria at the phylum, class, family, or genus level vs. healthy subjects. Interestingly,
NAFLD children show decreased α-diversity, distinct differences in β-diversity, or differing
abundance of bacteria at the phylum or genus levels vs. healthy subjects.

It is worth mentioning the role of other factors in maintaining the dynamic balance
of gut eubiosis in the every-day life of humans: diet, use of antibiotics, aging, diseases
affecting GI nutrients absorption, motility, and inflammatory state. For example, animal
experiments have shown how a high-fat diet is able to give an “obese shape” to our gut
microbiota. On the other hand “obese gut microbiota transplantation” is able to change gut
microbiota behavior in lean mice [32].

Diet, and related lifestyle, have a particular impact on NAFLD pathogenesis and
physiopathologic evolution. However, the gut microbiota is a peculiar actor in NAFLD’s
natural history that interacts with other specific actors within the gut, leading to specific
liver steatosis and fibrosis features [6] (Figure 1).

3.2. Bile Acids (BA), Gut Microbiota, and NAFLD

The first physiologic interaction between BAs and microbiota happens in the large
intestine where the microorganisms carry out several enzymatic reactions (e.g., deconju-
gation, dihydroxylation, and epimerization) to form secondary BAs such as deoxycholic
acid (DCA) from cholic acid, and ursodeoxycholic acid (UDCA) and lithocholic acid (LCA)
from chenodeoxycholic acid (CDCA) [33,34]. Indeed, BAs deconjugation is crucial to make
BAs more lipophilic. Secondary BAs can be reabsorbed in the large bowel and return to
the liver, via systemic circulation, allowing their “entero-hepatic circle” [23,35]. One proof
of the strict relationship and evolutive interaction between intestinal microbiota and BAs
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is the presence of BAs hydrolases (BSH) in these microbes. In particular, BSH is present
in most bacterial phyla; in Gram-positive bacteria, like Lactobacillus, Bifidobacterium,
Clostridium spp., and Enterococcus, and in some commensal Gram-negative strains such
as the Bacteroides spp. [36–39]. In pathogens such as Listeria monocytogenes, BSH activity
probably represents an adaptive quality guaranteeing its gut persistence [40]. Interestingly,
this adaptive quality has a horizontal transmission amongst bacteria [41]. More interest-
ingly, the human gut can affect BSH activity in gut bacteria through a “host species-specific
selection” of microbial BSH activities according to “species-specific” differences in BAs
pools [42]. Indeed, BSH activity is a “protective shield” for bacteria colonizing the human
gut [43]. In the frame of NAFLD, the consolidated concept of the gut–liver axis helps
the understanding of the multi-directional interaction of BAs, gut microbiota, and liver
“through” the intestine [14]. BAs are ligands for several receptors. They include FXR and
G-protein-coupled bile acid receptor 1 (or TGR5). They mainly modulate host metabolism
and BAs enterohepatic circulation [44]. BAs are natural antibacterial substances and main-
tain gut microbial eubiosis through the activation of FXR [45]. Physiologically, hepatic FXR
activation by BAs induces the expression of atypical nuclear receptors small heterodimer
partner (SHP), which promotes the inhibition of the sterol-regulatory element-binding
protein-1c (SREBP-1c) with a reduced hepatic synthesis of triglycerides. In addition, FXR
physiologically limits fat accumulation in the liver [46,47]. Moreover, FXR activation in
the liver results in the inhibition of gluconeogenesis and glycolysis. These two effects
have a potential protective role in insulin resistance and type II diabetes [46,47]. Interest-
ingly, in NAFLD patients the BAs-FXR interaction is altered such as the resulting lipid
and glucose metabolism [16]. Gut microbiota derangements are dynamically affected by
BAs pool changes, and, conversely, BAs pool composition and abundance are affected by
gut microbiota eubiosis and dysbiosis. In NAFLD patients, gut dysbiosis can alter the
BAs pool and start a pathophysiological cascade that favors liver fat accumulation and
microinflammation, which can result in fibrosis. The latter is a typical feature of NASH [48]
(Figure 1). Bariatric surgery patients offer an example of FXR regulation by bile acids. In
bariatric surgery on obese patients, the metabolic improvements obtained upon the proce-
dure follow both weight-dependent and weight-independent mechanisms. Substantially,
increased volumes of digestate-free BAs are delivered to the distal gut, with increased
hepatic flux/enterohepatic circulation, increased plasma BA levels and composition, and,
subsequent normalization of the blunted postprandial plasma BA concentration typical of
obesity. Altogether, this results in modulation of satiety, improvement of lipid and choles-
terol metabolism, incretins and glucose homeostasis, and energy storage and distribution
via fine FXR and TGR5 interaction of BAs.
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3.3. From Probiotics Use to Fecal Microbiota Transplantation (FMT) in NALFD Treatment

Several pieces of evidence from both in vitro and in vivo studies have shown that
probiotics—“alive organisms beneficially affecting host (human) health”—can compete
with pathogenic bacteria, improve intestinal permeability to pathogens and/or their
molecules, exert immune-modulatory effects and gut-brain axis effects with the production
of neurotransmitters [49]. In detail, probiotics can significantly decrease endotoxin levels
within the gut [50]. Subsequently, the first human studies have revealed how probiotics can
also clinically ameliorate NAFLD fat deposition, micro-inflammation, and fibrosis onset
and progression. In detail, in overweight NAFLD patients, administration of multistrain
probiotic mixtures reduces the systemic inflammatory state and, more interestingly, brings
back the gut microbiota towards a “commensal” one [51,52]. However, these promising
shreds of evidence have to face a solid Cochrane meta-analysis from 2007 that did not come
to a clear conclusion substantially because of the lack of a sufficient number of randomized
controlled trials [53]. Thus, RCTs have been doubling in the few last years. The multistrain
VSL#3®and a combination of pro/prebiotics as symbiotics were able to reduce levels of
TNF-α, liver transaminases, and oxidative stress markers in NAFLD patients for a duration
of 2- 3 months [54]. Similar results have been obtained in children [55–58]. (Table 1).

Table 1. Clinical trials using probiotics for NAFLD patients’ treatment.

Patients Type of Study Probiotics Used Outcomes Ref

48 children with NAFLD Randomized clinical
trials (RCT)

VSL#3
supplementation for
4 months vs. placebo

NAFLD reversal [57]

64 children with obesity
and NAFLD RCT (triple blind)

L. acidophilus,
B. lactis,

B. bifidum,
L. rhamnosus

↓ALT, AST, mean
cholesterol, LDL-C, and TG

in the probiotic-
administered group

[58]

38 patients (16 with NASH
diagnosis): 7 treated with

Probiotics, 9 with the standard of
care vs. 22 healthy controls

RCT
Lactobacillus ssp. and

Bifidobacterium
bifidum

In NASH patients there
was gut microbiota

modulation:
↓Faecalibacterium
↓Anaerosporobacter
↑Parabacteroide
↑Allisonella

[59]

48 T2DM NAFLD patients RCT
“Symbiter Omega”

probiotic biomass vs.
placebo

↓Fatty acids, ↓serum
gamma-glutamyl

transpeptidase
↓TG ↓TC

[60]

58 patients with NAFLD
and T2DM:

30 treated with probiotics vs.
28 receiving a placebo

RCT
biomass

of 14 probiotic
bacterial genera

In NAFLD patients: ↓Liver
fat deposition

↓aminotransferase
↓TNF-α and IL-6

[51]

200 patients with NAFLD
randomized to control group

(standard of care treatment) and
add-on treatments

groups A, B, and C.

RCT

Bifidobacterium,
Lactobacillus,
Enterococcus,

Bacillus subtilis,
and Enterococcus

Amelioration of fatty
liver deposition, ↓ALT,

AST and
TNF-α

↑HMW-APN

[61]

75 patients with NASH under a
low-fat/low-calorie diet RCT

Lactobacilli,
Bifidobacteria,
Streptococcus
thermophilus

Gut microbiota modulation
towards “healthy” one,
↓BMI, ↓cholesterol in the
probiotic-treated group

[62]
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Table 1. Cont.

Patients Type of Study Probiotics Used Outcomes Ref

50 patients (42 NAFLD) were
randomized to probiotic or

placebo
RCT

L. casei,
L. acidophilus,
L. rhamnosus,
L. bulgaricus,

B. breve, B. longum,
S. thermophilus

↓glycemic,
inflammatory markers,

Insulin, insulin
resistance in NAFLD

patients

[63]

30 patients with NAFLD RCT L. bulgaricus and
S. thermophilus

↓ALT, AST, GGT in the
probiotics group [56]

72 patients with NAFLD RCT Probiotic yogurt ↓ALT, AST, TC, LDL-C [64]

NAFLD: non-alcoholic fatty liver disease, NASH: non-alcoholic steatohepatitis, T2DM: type 2 diabetes mellitus,
TNF-α tumor necrosis factor-α, IL-6: interleukin 6, BMI: body mass index, LDL: low-density lipoprotein, TC:
total cholesterol, LDL-C: LDL cholesterol, HMW-APN high molecular weight adiponectin, LDL-C: low-density
lipoprotein cholesterol, TG: triglycerides, GGT: gamma-glutamyl transferase, ALT alanine aminotransferase, AST
aspartate aminotransferase, ↑ increase, ↓ decrease.

In more detail, multistrain preparations show a significant gut microbiota reshaping in
both NAFLD and NASH patients. In addition, their effect on liver function and biochemical
lipid profile is positive: several RCTs report liver transaminases reduction with cholesterol
and triglycerides reduction. There is also a significant reduction in inflammatory cytokines.
It is important to mention that most of the enrolled patients were also type 2 diabetes
subjects (Table 1).

However, dose- and strain(s)-finding studies are still missing and data on adverse
effects linked to the use of probiotics in NAFLD patients. Thus, the use of live commensals
coming directly from a healthy gut is appealing and may (in theory) guarantee a safer
use than probiotics. These issues have paved the road for use of FMT in NAFLD patients.
Several animal studies offered the first evidence of FMT in NAFLD. Leroy et al. showed
that NAFLD- mice are able to induce the development of NAFLD in the vast majority of
recipients of FMT. This finding was confirmed by the species-specific rise of bacteria being
predominant colonizers upon FMT [65]. Furthermore, Zhou et al. studied two groups
of high-fat diet (HFD)-fed mice; one of those underwent FMT from healthy donors. This
group showed a significant reduction in histological findings typical of NAFLD (namely,
intracellular hepatic lipid and proinflammatory cytokines concentration) vs. those not
receiving healthy FMT [66]. More systematically, FMT has been successfully used in HFD-
NAFLD mice. Interestingly, also NASH histological findings (namely, liver fibrosis and
inflammatory infiltrates) have been demonstrated to improve after FMT. This healing
was correlated with body weight, fat content, and serum reduction of transaminases
levels [67]. Anecdotal reports show a fine interaction between gut microbiota and NAFLD
in humans, including eighteen patients with metabolic syndrome diagnosis received either
self-FMT or from lean healthy subjects. Interestingly, six weeks after FMT, insulin sensitivity
significantly improved, and this improvement was correlated with an increase in butyrate-
producing bacteria [68]. Phillips et al. confirmed the efficacy of FMT in the treatment of
alcoholic hepatitis patients, also describing the gut dysbiosis changes after treatment [69].
In this pilot study, eight male patients with severe acute alcoholic hepatitis (SAH) consented
to the FMT procedure. FMT consisted of thirty grams of donor stool samples, obtained
after screening from consenting family members, homogenized with 100 mL of sterile
normal saline, and filtered using sterile gauze. Therefore, small amounts were infused
through a nasoduodenal tube daily for one week. Control subjects were historical patients
with SAH under standard-of-care treatment. Samples for the gut microbiota study were
collected at baseline, 6-month, and one-year intervals. Interestingly, one week of FMT
was able to improve liver disease severity indexes and, more importantly, the survival
rate at 1 year after treatment. In addition, FMT was confirmed to be a safe procedure,
recording just flatulence as a mild side effect. In detail, and more intriguingly, there was
the coexistence of donor and recipient gut microbial species at 6 and 12 months after FMT
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in treated patients. This finding describes a peculiar behavior of transplanted microbial
species from donors: they are less pathogenic and beneficial and coexist with pre-existing
bacterial communities instead of replacing those of the recipient. The latter are “beneficially”
modified by bacteria from donors, resulting in a new-one “symbiotic coexistence”. This data
finds initial agreement in the literature [70]. Very recently, a study by Xue et al. has better
highlighted the different impacts of FMT on NAFLD according to the presence or absence
of obesity [71]. NAFLD patients were randomized to receive either oral probiotics or FMT.
FMT was prepared from donor stool (heterologous), administered through colonoscopy,
and followed by three enemas over 3 days. Both groups were required to undergo healthy
lifestyle changes (namely, a healthy diet and regular physical exercise for more than 40 min
per day). Patients were rechecked 1 month after treatment (e.g., liver fat deposition, fecal
microbiota composition). Interestingly, FMT was able to significantly decrease liver fat
accumulation and reduce gut microbiota dysbiosis. Importantly, FMT had a significantly
higher healing efficacy on lean NAFLD vs. obese patients. This finding was consensual
with a more marked restoration of gut eubiosis in lean vs. obese patients. Indeed, this
study reinforces evidence from the literature showing a different impact of gut dysbiosis in
lean fatty liver, which is not correlated to impaired lipid and glucose metabolism issues
such as obese fatty liver disease [72]. Currently, it remains to be investigated whether or
not the FMT impact NAFLD and NASH complications. In detail, the RCTs available in
the literature have shown a good efficacy of FMT used in NAFLD, NASH diabetic, and
non-diabetic patients with improvement of glycemic control, and liver steatosis. However,
some trials showed better efficacy in liver fibrosis reversal (NASH feature) vs. liver steatosis
(namely, NAFLD subjects). Finally, some promising report confirms FMT safety also in
liver cirrhosis patients, considered as an evolution of NASH (Table 2).

Table 2. Clinical trials using FMT for NAFLD treatment.

Study Type Patients Outcomes RCT Number

FMT via nasojejunal tube Diabetes and NAFLD Improved HOMA index NCT02469272

FMT, pilot study NAFLD and NASH Improved degree of liver
steatosis as assessed by MRI NCT02469272

FMT via duodenal infusion NAFLD and NASH Efficacy in NASH treatment
vs. NAFLD NCT03803540

FMT via duodenal infusion NAFLD and NASH Reduction of hepatic venous
gradient pressure NCT02721264

FMT vs. standard treatment
(RCT)

Liver cirrhosis derived
from NASH

Safety (e.g., number of adverse
events, complications rate) NCT02868164

NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; FMT: fecal microbiota transplanta-
tion; HOMA: homeostasis model assessment; MRI: magnetic resonance imaging.

Overall, FMT can be considered a therapeutic, safe treatment in NAFLD patients, and
perhaps it is a step up from NASH.

4. Conclusions

Gut microbial dysbiosis is a validated pathogenic mechanism connected to the patho-
physiology of NAFLD and its stages. The type and severity of dysbiosis differ between
patients with NAFLD, NASH, cirrhotic, and HCC. In addition, it is worth mentioning the
recent evidence describing the different weights of gut dysbiosis in lean vs. obese NAFLD
patients. This evidence is mirrored by the major efficacy of amelioration of liver fat deposi-
tion and reduction of dysbiosis of FMT in lean vs. obese NAFLD patients. FMT is gaining
more and more evidence for use as a treatment of NAFLD, as probiotics and lifestyle
changes have several limits and risks for patients. Probiotics use should be “personalized”
for different NAFLD patients; accurate dose-finding and adverse events studies are needed.
Lifestyle changes show the best efficacy in the treatment of obese patients. However, this
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subset of patients shows compliance with short- and long-term difficulties in mining the use
of this life asset over the entire lifespan. Thus, FMT seems to be a safe, efficient treatment
for NAFLD patients. However, more RCT studies and long-term follow-ups are needed to
verify their efficacy, especially in lean NAFLD patients, often not beneficially affected by
lifestyle changes, cholesterol-lowering agents and probiotics use.
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