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Abstract: Short-chain fatty acids (SCFAs) play a key role in health and disease, as they regulate
gut homeostasis and their deficiency is involved in the pathogenesis of several disorders, including
inflammatory bowel diseases, colorectal cancer, and cardiometabolic disorders. SCFAs are metabolites
of specific bacterial taxa of the human gut microbiota, and their production is influenced by specific
foods or food supplements, mainly prebiotics, by the direct fostering of these taxa. This Review
provides an overview of SCFAs’ roles and functions, and of SCFA-producing bacteria, from their
microbiological characteristics and taxonomy to the biochemical process that lead to the release of
SCFAs. Moreover, we will describe the potential therapeutic approaches to boost the levels of SCFAs
in the human gut and treat different related diseases.
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1. Introduction on Human Gut Microbiota

The human gut microbiota comprises an ecological community that includes bacteria,
yeasts, viruses and parasites, yielding nearly 100 trillion microorganisms [1–4]. At birth,
the human gut is almost sterile, and is soon populated by the mother microbiome. The type
of delivery, vaginal or cesarean, plays a main role in the composition of the gut microbiome
in the newborn [4]. Healthy gut microbiota mainly comprises (nearly 90%) two phyla, Fir-
micutes and Bacteroidetes, and also contain less-represented phyla, such as Proteobacteria,
Verrucomicrobia, or Actinobacteria [5]. The phylum Firmicutes includes several genera,
of which the most common (up to 95% of the total) are Lactobacillus, Bacillus, Enterococcus,
Ruminicoccus and Clostridium [5]. the Bifidobacterium genus is the most abundant of the
Actinobacteria phyla; however, the phylum itself is less present overall [5]. Many of the
microorganisms in the normal microbiota are opportunistic pathogens [6,7]. The distinction
between opportunistic pathogens and commensal microbes is largely determined by the
host immunity, rather than any intrinsic feature of that microorganism. Therefore, com-
petent human immunity can shape potential pathogenic microbes into symbiotic ones.
Microbes also colonize other sites of the gastrointestinal tract, and the composition of the
esophageal or gastric microbiome differs from that of the microbiome in the gut [8,9].
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Gut microbiota is one of the key components of the intestinal ecosystem, and plays
an essential role in human health, including a barrier effect against pathogens, in the
shaping and maturation of immunity, in the regulation of metabolic intake and in the
absorption of nutrients and drugs [10–16]. The imbalance of gut microbiota has been
associated with several gastrointestinal [17] and extraintestinal disorders [18,19], and
several therapeutic approaches, including diet [20], antibiotics [21], prebiotics, probiotics
or postbiotics [22,23] or fecal microbiota transplantation [24], are increasingly investigated
for use in microbiome-based disorders. One of the most relevant therapeutic pathways
of microbiome modulation includes the restoration of the levels of short-chain fatty acids
(SCFAs), microbial metabolites that are essential for human health. In this review article,
we will provide an overview of the functions of SCFAs in human health, SCFA-producing
bacteria, and potential ways to boost their levels in the human gut.

2. Structure and Functions of SCFAs in Physiological Conditions

Short-chain fatty acids (SCFAs) are organic acids whose carbon chain is composed of
less than six carbons. Among these, acetate (C2), propionate (C3) and butyrate (C4) are
the most represented [25]. Acetate contributes to approximately 60% of the total SCFAs
while propionate and butyrate comprise 20% each [26]. Additional acids, including lactate
isomers, valerate, and branched chain SCFAs such as isobutyrate and iso-valerate, can be
found in our gut metabolome (the metabolites of our gut microbiome), but their levels are
noticeably lower compared with the main acids [27].

The main functions of SCFAs are carried out with the aid of Free Fatty Acid Receptor
2 (FFAR2) and FFAR3, while FFAR1 and FFAR4 are used by medium- and long-chain
fatty acids. FFARs are G-protein-coupled transmembrane receptors located on the surface
of many different cells (neurons, colonocytes, pancreatic cells, neutrophils, adipocytes,
enteroendocrine cells, etc.) [28]. Acetate, a C2 SCFA, is more effective in the activation
of the FFAR2 receptor, while propionate, a C3 SCFA, mainly effects the FFAR3 receptor.
These receptors play key roles in various cells. FFAR2 and FFAR3 could mediate both
the anti-inflammatory effect of acetate and propionate, and the proinflammatory effect of
butyrate on innate immune system cells [29]. Moreover, the action of those two receptors
may influence the energy consumption of neurons [30], insulin secretion from Langerhans
islets beta cells [31,32] and enteroendocrine function [33,34].

The effects of SCFAs on the human gut are mediated by the presence of SCFA trans-
porters on colonic epithelium. These transporters can be grouped into three main trans-
porter classes: proton-coupled transporters, such as MCT1 and MCT4; sodium-coupled
transporters, using the energy of two sodium ions, such as SMCT1; and ATP-dependent
transporters, such as ABCG2, also known as breast cancer resistance protein (BCRP) [35].

SCFAs have several beneficial effects on human health, at different levels and on
body sites.

First, SCFAs promote the integrity and permeability of the gut barrier in different
ways. These molecules, mainly butyrate, increase the concentration of tight junctions,
such as claudin-1, zonula occludens-1 and occludin through the upregulation of genes
that encode for these proteins [36]. Moreover, butyrate is able to strengthen the mucus
layer of the gut epithelium by increasing the expression of Mucin 2 [37]. Butyrate is also
involved in the modulation of oxidative stress, as it reduces H2O2-induced DNA damage,
restoring the levels of antioxidant glutathione. Additionally, SCFAs can induce both the
differentiation and apoptosis of colonic cells, ideally preventing the development of colon
cancer, as discussed further in this Review [38].

SCFAs also play an important role in the regulation of several physiological pathways
within the nervous system. First, SCFAs modulate brain-induced intestinal gluconeoge-
nesis. In particular, when propionate is absorbed and passes through the portal vein, it
activates the FFAR3s present on the surface of afferent periportal neurons [39]. SCFAs also
regulate the inhibition of histone deacetylase (HDAC), with a potential impact on several
neuropsychiatric diseases such as depression, schizophrenia and Alzheimer’s disease [40].
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Moreover, SCFAs control systemic and neuroinflammation through the modulation of func-
tions and structures of microglia cells, resulting in the modulation of emotion, cognition
and mental disorders. Additionally, high concentrations of SCFAs seem to be related to
the major expression of neurotrophic factors [41]; SCFAs may induce the expression of
tryptophan 5-hydroxylase 1, an enzyme involved in serotonin biosynthesis [42], and there
is also evidence that they may positively affect the brain barrier’s integrity [43,44].

SCFAs, especially acetate, are also involved in the regulation of appetite and human
metabolism. In animal models, diets with a high abundance of fermentable carbohydrates,
whose catabolism in the colon generates SCFAs, relate to a minor appetite [45]. Moreover,
acetate may reduce body weight through the secretion of glucagon-like peptide 1 and
peptide YY [46]. SCFAs are also able to modulate both glucose and lipid metabolism.
Propionate suppresses hepatic gluconeogenesis [47], while both acetate and butyrate reduce
lipogenesis and increase leptin secretion [48–51]. Furthermore, SCFA administration in
animal models seems to reduce liver steatosis [52,53], and vinegar, a food rich in acetate,
was demonstrated to be useful in reducing body weight, serum triglycerides and body fat
mass [54]. However, most experiences on humans are biased by a small sample size, and
more evidence from adequately sized clinical studies is needed to understand the effects of
SCFAs on lipidic metabolism [55].

Increasing evidence suggests that SCFAs are able to influence other components of
cardiometabolic health. Increased levels of butyrate and propionate are associated with
the reduction in blood pressure [56] and plasminogen activator inhibitor-1 (PAI-1) levels, a
pro-thrombotic factor [57].

Notably, SCFAs have a relevant impact on both innate and adaptive immunity. Re-
garding innate immunity, SCFAs can act directly on neutrophils, reducing their production
of reactive oxygen species (ROS) and myeloperoxidase (MPO), and can even enhance
their apoptosis [58]. They also reduce the chemotaxis of inflammatory cells due to a de-
crease in the expression of monocyte chemoattractant protein-1 (MCP-1), vascular cell
adhesion molecule-1 (VCAM1) and chemokines signals [59,60]. In addition, regarding
the T cell lineage, SCFAs can increase the Treg cell number and their activity and inhibit
CD4+ [61,62]. Finally, treatment with SCFAs, and especially with butyrate, is able to reduce
gut inflammation, reducing the NF-κB signaling pathway and enhancing the expression of
anti-inflammatory cytokines such as IL-10 [63].

3. SCFAs-Producing Bacteria of the Human Gut Microbiota

Intestinal microbiota is the main source of bacteria, producing SCFAs through the
degradation of substrates, mainly non-digestible polysaccharides, including dietary fibers
and resistant starches. Interestingly, the concentration of SCFA fluctuates throughout
our life, and these longitudinal changes appear to be related to the composition of our
gut microbiome, which also varies during our life cycle [64,65]. Notably, the variety of
our diet, which changes during our life, has a heavy influence on the quantity of SCFAs
released in the intestine, modulating the amount of substrate sources for SCFAs-producing
bacteria [66].

Specifically, in early life, the microbiota evolves from being dominated by Enter-
obacteriaceae to being dominated by Bifidobacteriaceae while later, along with the end of
breastfeeding, an increase in the abundance of Firmicutes can be observed [67,68]. Firmi-
cutes species, including Lactobacillaceae, Ruminococcaceae and Lachnospiraceae, are able to
break down complex polysaccharides and other sugars through hydrolysis, resulting in
the production of butyrate and other SCFAs [69,70]. Finally, in older age, the microbiota
changes again and the abundance of Enterobacteriaceae increases [68,71]. These changes in
the microbiota are also reflected in the production and diversity of SCFA, or even in the
profile of branched short-chain fatty acids (BCFA) [72,73], as shown in Figure 1.
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Figure 1. Microbiota development and short-chain fatty acid production at different stages of human
life [65,67,68,71]. Manuel Bernabeu Lorenzo, Maria Carmen Collado. Underline: emphasis.

The levels of the SCFAs detected in the gut, acetate, propionate and butyrate are
affected by these age-driven changes in the human gut microbiota. Acetate concentration
is higher in the early stages of life as it is the main product of Bifidobacteria strains that
characterise the infant gut microbiota: strains B. bifidum, B. infantis and B. breve are the main
players [68,74] Bifidobacterium strains are able to utilize the human milk oligosaccharides
(HMOs) [75] to obtain carbon and energy [76]. HMOs have galactose and glucose as
their main components and Bifidobacteriaceae can transform galactose into glucose. The
consumption of this glucose is associated with an increase in acetate and formate, 1,2-
propanediol, and lactate, as has been seen by the increase in such metabolites during
in vitro Bifidobacterium co-cultivation [77].

Healthy infant microbiota development is characterized by the predominance of
certain Bifidobacterium species, and the absence of HMO-metabolizing bifidobacterial genes
has been correlated with systemic and intestinal inflammation [78,79]. In addition, in vitro
studies suggest that acetate-producing Bifidobacterium is able to protect against bacterial
infections, as has been observed with pathogenic E. coli [80]. Interestingly, the produced
acetate benefits the growth of propionate and butyrate-producing bacteria and, at the same
time, butyrate favors the growth of Bifidobacterium, leading to a cross-feeding between
SCFA-producing bacteria [72,81].

Acetate production requires substrates described as acetogenic fibers (inulin, galacto-
ligosaccharides, etc.) [66]. Those fibers may then enter two possible pathways: acetogenesis
or carbon fixation pathway. Acetogenesis is the production of acetate, mediated by ho-
moacetogenic bacteria, which can use both H2 and CO2, while the carbon-fixation pathway
produces acetate directly from CO2 [66,82,83].

Gut propionate levels increase after the cessation of breastfeeding and the introduction
of a more varied diet. Due to the presence of more diverse food, the microbiota change, with
a greater proportion of Firmicutes, mainly of the Clostridia class [73,84]. Propionate can be
formed from the fermentation of sugars in three ways. The succinate pathway processes
hexoses and pentoses (via a pathway that, thanks to vitamin B12, converts succinyl-Coa
into proprionate), while the acrylate pathway converts lactate into propionate, and, through
the propanediol pathway, deoxy sugars (e.g., fucose and rhamnose) are processed [85].
Bacteria that use the succinate route belong mostly to the Bacteroidetes (Prevotella spp.) and
Negativicutes classes, such as Phascolarctobacterium succinatutens or Veillonella spp. [86–88].
In the case of the acrylate route, the best-studied bacteria are Coprococcus spp. which belongs
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to the Lachnospiraceae family. Strikingly, some of the members of this genus are capable of
producing butyrate in addition to propionate, depending on the initial substrate used [85].
Finally, propanediol-dependent metabolic pathways have been observed in Roseburia
inilivorans and in Blautia species, which also belong to the Lachnospiraceae family [89,90].

Among the three main SCFAs, butyrate has the greatest impact at the physiological
level; therefore, the bacteria that produce this have the highest relevance.

Butyrate derives from the condensation of two molecules of acetyl-CoA to form
acetoacetyl-CoA, which is then gradually reduced to butyryl-CoA. Butyryl-CoA is then
transformed in butyrate via butyryl-CoA:acetate CoA-transferase or via phosphotransbu-
tyrylase and butyrate kinase [89].

Butyrate-producing microbial communities in the gut are essential for maintaining
a healthy gut environment. These communities play a critical role in limiting the entry
and establishment of other bacteria, particularly harmful pathogens. The production of
butyrate by these bacteria is necessary for the colonocytes to generate energy and to in-
crease epithelial oxygen consumption [91,92]. This, in turn, helps to maintain an anaerobic
gut environment that is harsh for opportunistic aerobic pathogens such as Salmonella and
E. coli [93,94]. As previously mentioned, the main species involved in the production of
butyrate are found within the Lachnospiraceae and Ruminococcaceae families [95,96]. As an
example of the Lachnospiraceae family, the genera Roseburia and Blautia have been seen as
being related to the maturation of the immune system or intestinal inflammation [97,98]; E.
hallii, which interacts with other SCFA-producing bacteria, provides another example [99].
Roseburia intestinalis and acetogenic species work together in a cooperative manner to
carry out butyric metabolism, which occurs without the production of H2 [100]. On the
other hand, when degrading L-fucose and fucosyllactoses, E. hallii engages in a trophic
interaction with B. breve and B. infantis, highlighting the metabolic versatility of E. hal-
lii, as it can utilize the intermediates produced during bifidobacterial oligosaccharide
fermentation [101]. In the case of the Ruminococcaceae family, Faecalibacterium prausnitzii rep-
resents up to 5% of the fecal microbiota of healthy adults, being one of the most abundant
butyrate-producing bacteria [102,103]. Different studies indicate the relationship between
lower levels of this bacterium and various diseases, such as inflammatory bowel disorders
(IBD) [104,105]. While most butyrate-producing microbes are classified under the Firmi-
cutes phylum, research has indicated that some species from Actinobacteria, Fusobacteria
or even Proteobacteria can also generate butyrate [106,107].

This finding adds to the evidence that, beyond carbohydrates, SCFAs can also derive
from the fermentation of proteins and amino acids. Rasmussen et al. showed that the
addition of albumin resulted in an increase in fecal C2-C5-SCFAs and that the incubation of
fecal samples with specific amino acids resulted in the increase in specific SCFAs: hydrox-
yproline, serine, and glutamate resulted in an increased concentration of both acetate and
butyrate, whereas histidine resulted in the increased production of acetate, and propionate
was also produced from aspartate [108]. These findings were confirmed by Macfarlane et al.,
who found an increase in the concentration of SCFAs after the application of casein and
bovine serum albumin to washed-gut bacteria, obtained from fresh faeces [109].

Although the main SCFAs are acetate, propionate and butyrate, other minor ones
such as formate and lactate are also produced as a result of microbiota metabolism. In this
way, the producing bacteria of these SCFAs and their role in the physiology of the host are
drawing attention.

Formate appears as one of the end products of Bifidobacteria metabolism consuming
HMOs, as occurs with acetate, lactate and 1,2-propanediol [77]. The formate can derive from
an inadequate metabolism of LnNT, one of the main HMOs, by B. infantis, which leads to the
production of formate and ethanol, instead of acetate and lactate [110]. E. hallii has also been
identified as a format-producing bacteria. In this case, the production is carried out from 1,2-
propanediol, obtaining both formate and propionate and butyrate [101,111]. This example
further shows the relationship between SCFA-producing bacteria and their metabolisms.
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Besides, as previously indicated, lactate is one of the metabolites produced in the early
stages of life, along with formate and acetate. Therefore, lactate-producing bacteria are
related to the first stage of the intestinal microbiota, mainly Bifidobacteria and Lactobacilli, but
also Staphylococci and Streptococci [112,113]. Lactate can be used by the bacteria present in
gut microbiota, such as E. hallii and Anaerostipes caccae, which produce propionate and bu-
tyrate as a result [85,86]. Although the main SCFA-producing bacteria have been described,
further research is needed in this field. The development of new methodologies and the
use of novel approaches, mainly whole-genome sequencing and metabolomics, will allow
for the identification of specific SCFAs-producing bacteria and also increase knowledge
of the interactions between them and our organism, and the related consequences for
human health.

4. SCFAs Production as a Marker of Healthy Gut Ecosystem

SCFAs production is essentially a biochemical process carried out by gut bacteria, but
it may reflect the homeostasis of the gut. Several lines of evidence support the concept of
SCFA production as a marker of a healthy gut ecosystem.

First, SCFAs-producing taxa are usually commensal, beneficial bacteria, with a direct
positive effect on the gut barrier and immunity beyond the production of SCFAs [55,114].

Moreover, the mucus colonic layer is another element that is positively influenced
by SCFAs.

The health of the mucus barrier can be considered a result of host–microbiota and
within-taxa microbiome cross-talk, and these interactions also influence the production
of SCFAs. As an example, the phenomenon of cross-feeding allows for taxa such as
Akkermansia muciniphila, which is able to use the carbohydrates included in the mucus as a
source of energy, to release oligosaccharides and acetate in the intestinal microenvironment
and feed other bacteria [115,116]. Those molecules are then captured by bacteria such as
Eubacterium hallii, which then can produce propionate, butyrate and vitamin B12, which are
released in the lumen and can exert their trophic effects on colonocytes [111,117].

Conversely, SCFAs, mainly butyrate, may influence both the quality and the quantity
of the mucus produced by the intestinal goblet cells. The induction of mucus production
by SCFAs can be assessed by measuring the expression of MUC2, a gene coding for mucin
2. In mice, butyrate enemas may enhance MUC2 expression in the colon, indicating an
increase in its production, and can reduce mucus’ thickness [118]. Butyrate may enrich
the mucus layer, improving the processes of sulphation, acetylation, and sialylation, and
creating different kinds of mucins that can be used as substrates for different metabolic
pathways by the gut bacteria [119]. Sialylation plays a key role in mucus homeostasis,
and its defects are linked to inflammatory diseases [120]. Moreover, butyrate favors the
adherence of Bifidobacteria to the epithelial barrier, reducing the adhesion of potentially
pathogenic species such as E. coli [121].

This hypothesis is strengthened by the evidence of SCFA imbalances in disease conditions.
As an example, in ulcerative colitis (UC), both detrimental shifts in the gut microbiome

(and, more specifically, a reduction in SCFA-producing bacteria) and alterations in the
mucus layer can be found [122]. Although the pathogenesis of UC and other chronic
conditions is still poorly known, the complex relationship between the gut microbiome,
SCFAs, colonocytes and intestinal mucus appears to be a promising therapeutic target, and
deserves further research [104,123].

5. Mechanistic Involvement of SCFAs in the Development of Human Diseases

SCFAs play a significant anti-inflammatory role in the regulation of immune function [58],
taking part in the prevention of various inflammatory chronic disorders [104,124–126].

In gut diseases, both acute and chronic inflammation are relevant. Transient acute
inflammation, an essential defense mechanism of the immune system against injurious
stimuli, is of particular relevant [127,128]. In this condition, when cells are damaged,
instead of directly targeting the injurious stimuli, such as any invading viruses or bacteria,
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the immune system will use the “self-destroy and rebuild” strategy, targeting the damaged
cells. By using a programmed cell death such as pyroptosis [129] and necroptosis [130] to
actively destroy the cells, stimuli such as viruses or bacteria are also effectively cleared. On
the other hand, chronic inflammation develops when the stimulus cannot be removed and
is associated with diseases like IBDs, where SCFAs play a key role [131].

5.1. SCFAs and IBD

IBD includes chronic inflammatory disorders of the gastrointestinal tract associated
with a gut microbiota imbalance. Patients with IBD are known to share, compared with
healthy subjects, a reduction in butyrate producers of the Firmicutes phylum, mainly
Roseburia spp and Faecalibacterium prausnitzii, and an increase in opportunistic bacte-
ria [104,132]. In addition to a reduced SCFAs production, the uptake and oxidation of
butyrate appears to be inhibited in patients with UC [133]. This leads to a weakening of
their anti-inflammatory activity, thus promoting disease progression. More specifically, pro-
pionate and butyrate stimulate T-reg proliferation and function through GPR-43 pathways
and HDACs’ inhibition [134–136]. SCFAs also lead to a downregulation of proinflammatory
cytokines levels because of the inhibition of NF-κB and HDCAs activity [137–139], and to
an increase in the anti-inflammatory ones through GPCRs [60].

Furthermore, acetate controls tissue homeostasis through NLRP-3 activation [140] and
butyrate regulates the intestinal barrier, which is known to be impaired in IBD, through
increased AREG, IL-22 and claudin-1 production [141,142].

5.2. SCFAs and Colorectal Cancer (CRC)

CRC is a multifactorial disease and the gut microbiota play an important role in its
development [143]. Patients with CRC showed an increase in pathogenic bacteria (e.g.,
Fusobacterium nucleatum) and a depletion in butyrate producers [138,144,145]. The reduced
production of SCFAs leads to a pro-inflammatory environment, which can contribute to
the initiation and progression of CRC [146]. In addition, butyrate can change redox state
and D-glucose metabolism, enhancing cancer cells’ apoptosis [147], while the inhibition
of HDCAs regulates the expression of p21, arresting cell cycle and consequent cancer
proliferation [148]. Proliferation is also inhibited by propionate via GPR-43, which is often
lost in colon cancer cells [124].

5.3. SCFAs and Cardiovascular Diseases (CVDs)

There is a large body of evidence suggesting that SCFAs play a role in the pathogenesis
of CVDs, a group of disorders that include hypertension and atherosclerosis. A reduction
in butyrate producers in the gut microbiota and the deficient intestinal absorption of SCFAs
have been observed in patients with hypertension [149,150]. Moreover, SCFAs appear to
have a dual effect on the regulation of blood pressure. For example, when binding Olfr-78,
acetate and propionate lead to renin release, increasing blood pressure [151]. By contrast,
when binding GPR-41, they reduce blood pressure via vasodilatation [152], which is also
obtained by the effect of butyrate on afferent vagal terminals [153]. In atherosclerosis,
a similar pathway has been noted [154], as SCFAs, mainly butyrate, appear to play a
protective role in the regulation of inflammation and stabilization of plaques by downregu-
lating the expression of CCL-2, VCAM-1, and MMP-2, resulting in the lower migration of
macrophages, increased collagen deposition and ultimate plaque stability [155].

5.4. SCFAs and Metabolic Diseases

As anticipated above, SCFAs regulate metabolic pathways and food intake, thereby
playing a role in the development of metabolic diseases. Obesity is associated with an
imbalance in the gut microbiota, mainly an increased Firmicutes/Bacteroidetes ratio, and
an increase in fecal-SCFAs [126,156], although circulating SCFAs are reduced [157]. Type
2 diabetes (T2D) is instead characterized by a decrease in butyrate producers in the gut
microbiota [158].
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Normally, SCFAs moderate food intake, stimulating the secretion of satiety hormones
such as PYY and GLP-1 via GPR-41 and GPR-43 [159,160] and through the inhibition of
HDACs [161]. Furthermore, acetate can cross the blood–brain barrier, causing a decreasee in
appetite [45]. SCFAs can also improve glucose homeostasis in an AMPK-dependent manner
involving PPARγ-regulated effects on gluconeogenesis and lipogenesis [48]. Moreover,
propionate enhances glucose-stimulated insulin release via GPR-43 and increases β-cell
mass [162]. SCFAs can stimulate adipocyte differentiation [163,164] and decrease lipid
plasma levels through the inhibition of lipolysis and stimulation of lipogenesis [165–167]
and cholesterol plasma levels, enhancing its hepatic uptake [168].

Overall, these mechanistic pathways of SCFAs in different disorders pave the way for
the therapeutic use of SCFAs in clinical practice. Table 1.

Table 1. The role of short-chain fatty acids in different disorders.

Disease SCFA Model Function Ref.

Inflammatory bowel
disease Acetate

Gpr43−/−, Gpr109a−/−,
Nlrp3−/− and Nlrp6−/−

mice

Induces NLRP3 inflammosome
activation to maintain tissue

homeostasis
[133]

Butyrate
Niacr1+/− Apc min/+
and Niacr1−/− Apc

min/+ mice

Increases colonic DCs and
macrophages’ production of IL-10,

inducing Treg generation
[127]

Foxp3 ∆CNS1, Foxp3 GFP,
Foxp3 Thy1.1 and
Gpr109a−/− mice

Promotes Treg differentiation through
enhancing Foxp3 activity [128]

GPR109a−/− and WT
mice

Inhibits AKT and NF-κB p65 signaling
pathways in macrophages [131]

BMDM cells,
C57BL/6 and

CX3CR1-GFP/+ mice

Reduces NO, IL-6 and IL-12p40
secretion by macrophages [132]

GPR43−/−, Prdm1−/−
and WT mice

Increases AREG expression levels in
DCs to promote tissue repair [134]

Cdx2-IEC monolayer Induces production of claudin-1 to
enhance barrier functions [138]

Propionate Gpr43−/− and Gpr43+/+
mice

Promotes Treg differentiation through
GPR-43 [129]

All SCFAs HeLa and HEK293 cell
lines

Inhibit NF-κB activity through
GPR43—βarrestin interactions [130]

Isolated human
neutrophils, monocytes

and PBMC

Promotes anti-inflammatory effects
via the regulation of PGE2, cytokine

and chemokine release
[58]

CD4+ T cells and ILCs Induces production of IL-22 to
promote barrier functions [135]

Colorectal cancer Butyrate Caco-2 cell line
Enhances cancer cells’ apoptosis by

alterations in the redox state and
D-glucose metabolism

[140]

MCF-7 (T5) and MDA MB
231 cell lines

Arrests cancer cells’ proliferation
through upregulation of p21 [141]

Propionate

Caco-2, HCT116, HCT8,
HT-29, SW620, SW480,

CBS, FET and MOSER cell
lines

Arrests cancer cells’ proliferation
through p21 upregulation and

decrease in cyclin D3, CDK-1 and
CDK-2

[142]
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Table 1. Cont.

Disease SCFA Model Function Ref.

Hypertension Acetate and
propionate

Olfr78−/− and
Gpr41−/− mice

Increase blood pressure through
Olfr-78 [144]

Gpr41−/− and WT mice Reduces blood pressure by binding
GRP-41 [145]

Butyrate Vagotomized Sheffield
strain male Wistar rats

Reduces blood pressure through the
regulation of afferent vagal terminals [146]

Atherosclerosis Butyrate ApoE −/− mice
Reduces CCL-2, VCAM-1, and MMP-2
production to stabilize atherosclerotic

plaques
[148]

Obesity Acetate C57BL/6 male mice Decreases appetite through central
hypothalamic mechanisms [43]

Propionate Isolated human colonic
cells

Reduces food intake through the
secretion of PPY and GLP-1 via

GPR-41
[153]

Propionate and
butyrate

NCI-h716 and HuTu-80
cells

Reduce food intake through the
secretion of PPY via inhibition of

HDACs
[154]

Metabolic syndrome Acetate Isolated adipocytes from
GPR43 knockout mice

Decreases lipid plasma levels through
inhibition of lipolysis via GPR-43 [159]

Propionate
Human subjects and

in vitro isolated human
islets

Enhances glucose-stimulated insulin
release and increases β-cell mass [155]

Human adipose tissue
culture

Decreases lipid plasma levels by
stimulating lipogenesis [160]

Propionate and
butyrate

Stromal vascular fraction
of the porcine

subcutaneous fat
Stimulates adipocyte differentiation [156]

All SCFAs PPARγ f/f and PPARγ
lox/lox mice

Regulate gluconeogenesis and
lipogenesis through PPARγ

downregulation
[46]

Male Golden hamsters Decrease cholesterol plasma levels by
enhancing its hepatic uptake [161]

6. Therapeutic use of SCFAs in Clinical Practice

Considering the involvement of SCFAs in the colon physiopathology, and also con-
sidering the effects those molecules have at the cardiovascular and metabolic levels, many
studies have investigated the potential of SCFAs as a therapeutic option for both intestinal
and cardiometabolic disorders.

Several lines of evidence for the use of SCFAs in intestinal disorders derive from mouse
models. Butyrate enemas were effective in improving symptoms, inflammation and the
sodium absorption of colonocytes in mice with experimental distal colitis [169]. However,
these pre-clinical findings were not replicated in humans, regardless of the disease.

In a randomized placebo-controlled trial of 91 patients, where enemas of acetate,
propionate and butyrate were used to treat left-sided UC, SCFAs were not more effective
than placebo in improving the clinical picture, only levels of mucin depletion before and
after treatment [170].

In a recent systematic review of randomized controlled trials using butyrate enemas
in IBD, the study concluded that, for butyrate, enemas are not effective in UC, while for
Crohn’s disease, more studies are needed to clarify the role of SCFAs [171].
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Oral butyrate supplementation was also valued for IBDs. In UC patients, sodium
butyrate microcapsules were effective in reducing the Mayo score and faecal calprotectin
levels compared to mesalamine alone [172]. Thus, in a bigger, randomized, placebo-
controlled study conducted on paediatric patients, there was no significative difference
between the standard-of-care therapy and the addition of sodium butyrate oral capsules in
both newly diagnosed Crohn and UC [173].

In a systematic review of SCFAs enemas treatment for late-radiation proctitis, patients
experienced a significant decrease in the weekly episodes of rectal bleeding and conse-
quently higher levels of haemoglobin in only one study, without relevant results in other
studies [174,175].

For IBS, data from in mouse studies show conflicting results about the role of SCFAs
in the pathogenesis and physiopathology of this condition and its influence on visceral
hypersensitivity [176–178]. Nevertheless, in human studies, a reduction in SCFA-producing
bacteria was demonstrated for IBS-D and IBS-M [179], and the administration of butyrate
in a triglyceride matrix was significantly effective in reducing the clinical severity of
this disease [180]. However, double-blind, randomized, placebo-controlled studies are
necessary to better evaluate the impact of this supplementation for IBS.

A prospective placebo-controlled randomized study demonstrated a significant impact
of butyrate microcapsules in reducing episodes of diverticulitis in patients with divertic-
ular disease [181]. These promising but preliminary findings support further research in
this field.

Several pre-clinical lines of evidence that support the role of SCFAs in cardiometabolic
disorders have recently been revealed. In mice fed a high-fat diet, the addition of butyrate
was associated with a reduction in hepatic lipogenesis and hepatic steatosis, as well as with
improvements in hepatic function and lipid profile, suggesting a possible role for SCFA
supplementation in NAFLD [182].

In another mouse model, butyrate reduced heart ischemia-reperfusion damage [183],
improved vascular function and reduced tension [184–186]. However, as in gastrointestinal
disorders, these promising pre-clinical findings were not replicated in human studies [187].
Oral therapy with butyrate was not effective in improving metabolic outcomes in patients
with diabetes [188] or with metabolic syndrome [189].

One reason for these unsatisfactory results is the therapeutic formulation of SCFAs, as
butyrate supplements cannot reach high concentrations in the gut when administered by
mouth. Recently, the colonic-delivery formulation of butyrate was found to positively affect
quality of life and the gut microbiota composition of patients with UC [190], suggesting
that this approach deserves further research.

7. How to Foster the Production of SCFAs in the Human Gastrointestinal Tract

Diet can influence and modulate the gut microbiota of individuals [191]. The major
constituents of a normal diet, called macronutrients, are carbohydrates, protein, and fats.
Fibers, defined as nondigestible carbohydrates composed of more than three monomeric
units, could be considered the “fourth macronutrient”; fermentable fibers are used as
substrates by colonic microbes, from which they are transformed into various metabolites
including SCFAs [192]. Dietary fiber, prebiotic fiber supplements, and probiotics can
modulate the gut microbiota and increase the overall production of SCFAs, as shown in
Figure 2.
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7.1. Diet

Even if there is not high homogeneity between studies on this issue, there is a general
agreement that diets rich in fiber increase the amount of SCFA, in particular, acetate
and butyrate [193]. Several studies reported that dietary interventions could increase
the SCFA-producing bacteria. Studies focusing on the effects of high-fiber diets, such
as Mediterranean, vegetarian, and vegan diets, on patients affected by IBD, resulted in
improvements in microbiome outcomes (increase in alpha diversity, increase in specific
microbial population, etc.), in laboratory exams (reduction in C-reactive protein (CRP),
reduction in fecal calprotectin, etc.), and IBD-specific outcomes (i.e., reduction in Mayo
Score), as well as in an increase in SCFA levels [194]. Likewise, a high-fiber diet led to a
significant reduction in glycated hemoglobin, and an increase in glucagon-like peptide-
1 (GLP-1) production, Bifidobacteria count, and total SCFA amount in patients affected
by T2D [195]. On the other hand, studies evaluating the use of ketogenic diet (a low-
carbohydrate, high-fat diet able to induce physiological ketosis) showed a decrease in
beneficial bacteria (i.e., Bifidobacteria, Eubacterium rectale, Roseburia) and total bacterial count
and abundance [20]. As a consequence, a ketogenic diet may induce a reduction in both
total SCFAs and their single components [196].

7.2. Prebiotics

Prebiotics, defined as «substrates that are selectively utilized by host microorganisms
conferring a health benefit», are widely used to increase SCFA levels [197]. Some studies
showed an increase in total SCFAs, butyrate, acetate, and propionate, using arabinoxylan
oligosaccharides (AXOS) at high doses (above 7.5 g per day) [198], and similar results were
obtained if AXOS was administered through fiber-enriched food [199,200]. Studies per-
formed on healthy people using different prebiotics, such as xylooligosaccharides, inulin,
resistant starch, raffinose, and galactooligosaccharides, did not show any impact regarding
SCFA levels [201]. In patients with T2D, resistant starch seems to increase SCFA levels, lead-
ing to a reduction in intestinal permeability, inflammation, and circulating cytokines [202].
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The increase in SCFAs was also observed in patients during enteral nutrition treated with
fiber-enriched formula, with a general reduction in diarrheal events [203,204].

7.3. Probiotics

Since the modulation of gut microbiota is a key way to induce a boost in SCFA levels,
the administration of probiotics could be the most effective strategy. Both in vitro and
in vivo studies confirmed a positive role of probiotics in increasing SCFAs [205]. The most
used probiotics are those of Lactobacillus genera, mainly Lactobacillus plantarum [206,207],
Lactobacillus paracasei [207], and Lactobacillus rhamnosus [208]; all the above studies con-
firmed, in animal models or in healthy volunteer humans, an increase in Bifidobacteria and
in other beneficial microbes, leading to an increase in total SCFAs [206–208]. Other studies,
using different probiotics species to enrich the beneficial bacteria count as well as the SCFA
amount, obtained the same results in different disease settings, such as colorectal cancer,
obesity, T2D, respiratory tract, and cardiovascular diseases [201,205,209,210].

7.4. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is the transfer of feces from a healthy donor
into the gut of a recipient to cure a disease associated with gut microbiome imbalance.
FMT is a well-established therapy for recurrent Clostridioides difficile infection [211] and
its complications [212], and has been investigated in other conditions with promising
results [213,214].

Several recent lines of evidence suggest that that the increase in SCFAs may be a key
determinant of FMT success in different diseases. First, in a mouse model of ischemic stroke,
mice transplanted with feces rich in SCFAs, mainly butyrate, experienced an amelioration
in neurological symptoms [215].

Moreover, in a randomized controlled trial where FMT from donors with balanced
microbiome was more effective than placebo in reducing IBS-related symptoms, FMT
increased the fecal SCFA levels, and the post-FMT increase in butyrate levels correlated
inversely with symptoms [216]. Finally, in a small pilot trial, FMT from mixed lean donors
was able to increase the levels of SCFAs-producing bacteria [217].

Overall, these findings suggest that FMT may be a therapeutic pathway to increase
SCFAs in the recipient, especially with the use of targeted donors [218]. However, the real
advantage of this therapeutic strategy in clinical practice has yet to be confirmed.

8. Conclusions

SCFAs, mainly butyrate, acetate and propionate, play several key roles in human
health, from the modulation of the immune system to the regulation of metabolic pathways
and the restoration of the gut barrier. Several bacteria are able to degrade substrate
sources (mainly non-digestible polysaccharides, but also, less frequently, proteins) to
produce SCFAs. The production of specific SCFAs changes over the lifetime, depending
on the variations in our diet and consequent shifts in our gut microbiome. SCFAs have
been investigated as a therapeutic option in several disorders, with promising findings in
pre-clinical models but without satisfactory findings in humans due to the poor colonic
availability of oral SCFAs. Moreover, the increase in SCFAs appears to be one of the
key therapeutic pathways in several approaches aiming to modulate the gut microbiome,
including diet, prebiotics, probiotics, or FMT. Further research, aiming to increase our
knowledge of the role of SCFAs in human disorders, investigate new delivery formulations
for SCFAs, and disentangle the value of SCFAs as a therapeutic pathway of microbiome
modulators, are advocated.
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