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Abstract 
The 21st century will challenge agriculture to feed and fuel a growing world while 

conserving the environment. In this thesis an alternative bioenergy land use scenario to the 

conversion of marginal land has been tested: the bioenergy buffers.  Given the 

environmental issues related to “food-energy-environment” trilemma, the Millennium 

Ecosystem Assessment framework on ES provides an opportunity to examine the 

environmental impacts of this new bioenergy land use scenario. In this thesis I aimed to 

determine to what extent do the perennial bioenergy crops affect the delivery of multiple 

ES when cultivated as bioenergy buffers. To reach this aim, I combined a systematic revision 

of literature on ES provided by perennial bioenergy crops with a field experiment on 

bioenergy buffers.  

Applying an impact scoring methodology to the effects on ES extracted from literature, 

I showed that, cultivating perennial bioenergy crops along field margins of former 

croplands offer a great opportunity to sustain the provision of multiple ES. The cultivation 

of perennial bioenergy crops on field margins can improve climate, biodiversity and water 

regulation services, sustain soil health and provide biomass for energetic purposes. On the 

contrary, grassland conversion showed a net negative impact on multiple ES provision. 

Nevertheless, I found two main shortcomings related to bioenergy buffers 

establishment and management. First, several site-specific factors along field margins must 

be taken into account, because they can affect crop establishment and buffers long-term 

productivity. Second, regarding to biomass supply chain, a limited working space for the 

farm machinery operations has been recognized as the main disadvantages of bioenergy 

buffers compared to large-scale bioenergy plantations. This spatial logistics constraint may 

inevitably increase harvest and collection operation times and fossil fuel consumption. 

Conducting a field experiment with bioenergy buffers in a nitrate-enriched shallow 

groundwater, I showed that miscanthus and willow buffers are able to efficiently intercept 

and remove from groundwater the incoming NO3-N as much as buffer strips with 

spontaneous species. Yet, due to their deep rooting systems, bioenergy buffers promote 

significant plant-microbial linkages along the soil profile. At deeper soil layers, a higher fine 

root biomass led perennial bioenergy crops to outperform patches of adventitious 

vegetation in terms of biological N removal from soil and belowground GHG mitigation 

potential. The results on biomass production and N removal via harvesting further 

confirmed that the cultivation of perennial bioenergy crops along watercourses is an 

effective win-win strategy: biomass production and protection of the environment. 

In conclusion, the revealed potential of perennial bioenergy crops on multiple ES 

provision implies that their cultivation as perennial landscape elements in strategic 

locations within landscape is a promising option to promote the ecological sustainable 

intensification of agroecosystems. 
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General Introduction 
 

1.1 Relevance of land use transition to perennial bioenergy crops 

The 21st century will challenge agriculture to feed and fuel a growing world while 

conserving the environment (Foley et al., 2005; Tilman et al., 2011).  Energy security, 

economic development and environmental protection have become three recurrent and 

closely intertwined policy themes globally (Lal, 2010). Fossil fuel combustion is recognized 

as the most important driver of anthropogenic climate change (IPCC, 2007, 2014). 

Dependence on non-renewable fossil fuels as well as environmental concerns related to 

greenhouse gas (GHG) effects contributing to global warming and climate change have 

stimulated interests of policy makers and industry to promote bioenergy as part of energy 

security and climate change mitigation strategies (Joly et al., 2015). In an attempt to lower 

the EU's reliance on fossil energy sources and to mitigate climate change, several 

renewable energy sources have been introduced into the EU market during the last few 

decades (EU, 2009). In particular a great interest has been developed around the use of 

second-generation bioenergy crops (Lewandowski et al., 2003; Del Grosso et al., 2014), 

which include a variety of perennial grasses and woody crops grown purely for energy 

production (Karp & Richter, 2011; Carneiro & Ferreira, 2012). The possibility of using 

biomass for energetic purposes allows a wide range of candidate crops: perennial C4 crops, 

short rotation coppices (SRC) (Karp & Shield, 2008; Zegada-Lizarazu et al., 2010; Hastings 

et al., 2014; López-bellido et al., 2014). These crops require fewer inputs, have greater 

energy ratios, and increase GHG savings more than annual C4 and C3 bioenergy crops 

(Tilman et al., 2006; Davis et al., 2010; Gelfand et al., 2013; Harris et al., 2015). The 

lignocellulose in these second-generation crops is a more energy-dense material than the 

starch and sugars used from annual bioenergy crops (Cadoux et al., 2014). It represents a 

potentially vast and renewable source of biomass feedstock (Creutzig et al., 2014). Strong 

incentives have been put in place to increase the use of bioenergy from perennial crops 

from  both in the transport as well as in the energy sector, mainly in the form of mandatory 

targets (Bruell, 2007; Umbach, 2010).  

However energy security, economic development and environmental protection are 

causing concerns over indirect land-use change and conflicts between bioenergy and food 

production (Karp & Richter, 2011; Dauber et al., 2012; Valentine et al., 2012; Manning et 

al., 2015). The question is whether and how agriculture can provide sustainably yields to 

meet the needs of bioenergy and food in a growing population and within the context of a 

world’s changing climate (Dauber et al., 2012; Valentine et al., 2012; Manning et al., 2015). 

Cultivation of biomass crops has fuelled several debates on the environmental impacts of 

their diffusion on arable lands previously occupied by food crops and natural ecosystems 

(Fargione et al., 2008).  
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For this reasons, various issues have been associated with bioenergy sustainability. Hill et 

al., (2006) and Tilman et al. (2009) suggest that bioenergy land use need to be  net energy 

provider, environmentally sustainable, economically competitive and not compete with 

food production. Several decades of research have revealed the environmental impacts of 

land use (Vitousek et al., 1997; Tilman et al., 2011). Globally, land use thus presents us with 

a dilemma (Foley et al., 2005): “by considering that agricultural practices are absolutely 

essential for humanity, because they provide critical provisioning ecosystem services (such 

as food, fiber, energy and freshwater), are agricultural  activities degrading the global 

environment in ways that may ultimately undermine ecosystem services, human wellbeing, 

and the long-term sustainability of human societies”?. Over the last decade, numerous 

initiatives are aiming to promote an environmental-friendly bioenergy production and use 

(Souza et al., 2015). The potential consequences of land use transition to bioenergy crops 

on GHG balance through food crop displacement or ‘indirect’ land use change (iLUC) is 

currently the main issue for bioenergy research (Searchinger et al., 2008; Dauber et al., 

2012; Del Grosso et al., 2014). As a consequence, much effort is now focussed on 

determining the climate regulation service provided by bioenergy cropping systems (soil C 

sequestration and GHG savings) (see e.g. Creutzig et al., 2014; Hudiburg et al., 2014; 

Agostini et al., 2015; Harris et al., 2015). On the contrary, less research has been 

undertaken on the impacts of bioenergy land use on a wider range of other ecosystem 

services (ES) essential for human well-being (Holland et al., 2015; Milner et al., 2015). Only 

in the recent years, it is emerging the needs to put ES in the bioenergy narrative. This is 

being done in terms of study the impacts of an increased cultivation of perennial bioenergy 

crops and resulting impacts on ES (Manning et al., 2015). Increasingly, our society is 

demanding that farmlands produce bioenergy in a sustainable way. One of the key 

questions of primary importance to food/energy security is how to optimize sustainable 

intensification to balance competing demands on land for food and energy production, 

while ensuring the provision of ES and maintaining or increasing yields. The main 

background of this paper is represented by the idea that perennial bioenergy crops can 

provide part of the solution to this key question, as they may be allocated on strategic 

locations within landscape so they do not compete with those lands required for food 

production. An hypothetical sustainable bioenergy landscape is the one in which a land use 

is explicitly replaced with the aim to provide biomass for energetic purposes and explicitly 

support a broad set of key ES for human wellbeing (Figure 1.1c). Experiences from 

bioenergy development have shown that sustainable production of biomass is an 

important condition for its public acceptance (van der Horst & Evans, 2010; Lupp et al., 

2011; Carneiro & Ferreira, 2012; Dale et al., 2013; Ssegane et al., 2015). Therefore, 

nowadays the main challenge to the growth of bioenergy is a sustainable production and a 

sufficient supply of biomass (Karp & Shield, 2008), which can be an important contribution 

towards sustainable agriculture (López-bellido et al., 2014).  
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Figure 1.1 Conceptual framework for comparing land use and trade-offs of ecosystem services as 

proposed by Foley et al. (2005). With “flower” diagrams is represented the provisioning of multiple 

ecosystem services under different land-use regimes. The level of provisioning of each ecosystem 

service is indicated along each axis. (source: Foley et al., 2005).  

 

1.2 On multiple ecosystems services provision  

Regarding the growing human pressure on the global ecosystem, as expressed in such 

phenomena as the loss of biological diversity or climate problems, it is becoming ever more 

urgent to control the increasing claims upon limited resources, and to ensure sustainable 

land use (Tilman et al., 2011). On this regard, the ES topic is currently largely determining 

the debate in the area of sustainable land use management (Carpenter et al., 2009). 

Agriculture occupies a substantial proportion of the European land, and consequently 

agroecosystems play an important role in maintaining ES and cultural landscapes (Schröter 

et al., 2005). Unsustainable farming practices and land use have an adverse impact on 

biodiversity and thus on the overall functioning of agroecosystems (Phalan et al., 2011) 

(Figure 1.1b). The increases in yields have relied heavily on intensive use of fertilizer and 

pesticides (Tilman et al., 2002), which have polluted some ground and surface waters. 

Intensification of agricultural practices have depleted C stocks in agricultural soils (Lal, 

2011). This simultaneous intensification and expansion of agriculture has caused losses in 

belowground biodiversity (de Vries et al., 2013; Tsiafouli et al., 2014) and reduced habitat 

for beneficial organisms like insect pollinators and predators (Klein et al., 2007; Tscharntke 

et al., 2007; Phalan et al., 2011). To face these issues, the ecosystems approach to 

sustainable development (“the ecosystems approach”) has been promoted by many 

international organizations including: the Conference of the Parties to the Convention on 

Biological Diversity (CBD), the Food and Agriculture Organization of the United Nations 

(FAO), The Organisation for Economic Co-operation and Development and the United 
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Nations Environment Programme. The CBD defined the “ecosystem approach” as the 

“importance of managing ecosystems in a socio-economic context in order to maintain ES 

for humans and that conservation of resources must be balanced with their use”.  The 

Millennium Ecosystem Assessment (MEA, 2003, 2005a) developed this principle into a 

framework of ES (Figure 1.2) in which was promoted the concept that “ecosystem 

processes insure agroecosystems health and functioning”.  

This framework assessed the consequences of ecosystem change for human well-being, 

defining ES as “the benefits people obtain from ecosystems” (MEA, 2005a, p. 40). According 

to this framework (MEA, 2003), ES are classified in four categories (Figure 1.2): supporting 

services (“services necessary to the production of all other ES”), provisioning services 

(“products obtained from ecosystems”), regulating services (“benefit obtained from 

regulation of ecosystem processes”) and cultural services (“non material benefit obtained 

from ecosystems”). Influenced by agronomic practices, ecosystem processes within 

agroecosystems can provide services that support the biomass provisioning services, 

including pollination, pest control, regulation of soil fertility and soil erosion and water 

quality regulation (Power, 2010). Management practices also influence the potential for 

“disservices” from agriculture, including loss of habitat for beneficial wildlife, water 

pollution, sedimentation of watercourses and pesticide poisoning of biological species 

(Zhang et al., 2007). 

Soil management is fundamental to all agroecosystems, yet there is evidence for 

widespread degradation of agricultural soils in the form of erosion, loss of organic matter, 

contamination, compaction, salinization and other harms (European Commision, 2002). 

Soil is a non-renewable resource, which provides a number of ecosystem, social and 

economic services (Doran & Zeiss, 2000; Karlen et al., 2003). Because food and energy 

production depend on soil for the provision of these services (Costanza et al., 1997; Daily, 

1997; de Groot et al., 2002) it is essential to include soil ES into the MEA framework to 

inform agri-environmental policies (Robinson et al., 2013). 

The reason for this is that soil is a living system and as such is distinguished from parent 

material mainly by its biology. Agricultural soils are the habitat for many different key 

functional organisms (Brussaard et al., 2007) which collectively contribute to a variety of 

soil-based ES (Wall et al., 2004; de Vries et al., 2013) (Figure 1.3). These ES can be easily 

recognized and included within the categories identified by the MEA (Dominati et al., 2010).  
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Figure 1.2 Ecosystem services and their links to human well-being, as described in the conceptual 
framework of the Millennium Ecosystem Assessment (source: MEA, 2005a).  

These soil-specific ES include the ecosystem processes that support the production of food 

and energy (supporting services of Figure 1.2), such as nutrient cycling, and sustain the 

regulation of water flow and quality, the biological control of pests and diseases and the 

regulation of the soil GHG emissions with its implications for the control of the global 

climate (regulating services of Figure 1.2). In reality, these services are all functional 

outputs of soil biological processes (Brussaard et al., 2007; Kibblewhite et al., 2008). 

In the last decade, a lot of research was needed to better characterize the ES provided by 

soils along with a better understanding of the interrelationships of different ES supplied by 

soils and soil management practices (Dominati et al., 2010; Robinson et al., 2013). Many 

authors, mainly working on a broad range of different agroecosystems, have detailed 

services provided by soils (Lavelle et al., 2006; Barrios, 2007; Zhang et al., 2007; Sandhu et 

al., 2008; Porter et al., 2009). Moreover, it has been underlined how management of soil 

biodiversity is a keystone for multiple provision of soil-based ES (Barrios, 2007; Brussaard 

et al., 2007; Kibblewhite et al., 2008; Pulleman et al., 2012; de Vries et al., 2013). Recently, 

a conceptual framework for classifying, quantifying and modelling soil natural capital and 

ES (Figure 1.3) has been proposed (Dominati et al., 2010) and applied to national scale 

(Orwin et al., 2015). This framework is based on the classification of ES as described in MEA 
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 (2003), but provides a more holistic approach to identify ES by linking soil ES to soil natural 

capital and soil processes and especially how ES are affected by soil management. This is 

fundamental because the major impacts on soil functions and consequently the provision 

of ES are derived from land-use change and soil management practices (Powlson et al., 

2011). The knowledge of soil functioning in relation to management practices and climate 

change issue has led, indeed, soil scientists to evaluate a set of soil health indicators 

representative of fundamental soil-based ES (Bastida et al., 2008; Faber & van Wensem, 

2012; Pulleman et al., 2012). Within the debate over the perspectives of creating 

sustainable bioenergy landscapes, the concept of soil health in response to increased 

bioenergy crops cultivation play a pivotal role for making this debate effective. Soil health, 

as formulated by Kibblewhite et al. (2008), is as an integrative property that reflects the 

capacity of soil to respond to agricultural intervention, so that it continues to support both 

the agricultural production and the provision of multiple ES. On this context, the MEA 

framework of ES (Figure 1.2) is applied in this thesis for studying the impacts of land use 

transition to perennial bioenergy crops on multiple ES provision, taking into account also 

the soil-based ES as described by Dominati et al. (2010) (Figure 1.3).  

Another reason for which ES were used as main assessment tool to study environmental 

impacts of bioenergy crops is because of  the attractiveness of the concept of ES, which is 

based on its integrative, interdisciplinary character, as well as its linking of environmental 

and socio-economic aspect (MEA, 2005b). Using the concept of ES when discussing the 

food-energy-environment trilemma (Tilman et al., 2009) can bring the interrelations and 

dynamics between food and bioenergy cropping systems into the picture while at the same 

time maintain a certain degree of simplicity (Dale et al., 2011a; Gasparatos et al., 2011).  

This is because the concept of ES directly links ecosystem impact and human wellbeing, 

which are two key elements of the bioenergy debate evoked by supporters and critics alike 

(Gasparatos et al., 2011; Dale et al., 2014; Milner et al., 2015). Additionally, ES have gained 

popularity in the academic community (Fisher et al., 2009) and have been widely accepted 

by soil science community (Dominati et al., 2010; Robinson et al., 2013) and by policy 

makers. The concept of ES is, indeed, a matter of great political relevance since it has been 

adopted by multilateral environmental agreements such as the Global Bioenergy 

Partnership (GBEP) and the FAO-Global Soil Partnership. European Union has expressed the 

“ES approach” in several policies, e.g. in the EU Soil Thematic Strategy and in Common 

Agricultural Policy 2014-2020. Moreover, both European and member states policies 

explicitly address a number of environmental and societal goals on different levels related 

with bioenergy production, e.g. protection of natural resources, enhancement of ES, 

creating regional added value and employment in rural and marginal areas. Impacts and 

effects of these strategies are to be assessed regarding all levels of sustainability.  
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The concept of multiple ES (Figure 1.2-1.3) addresses all these levels of sustainability, and 

it can be used as a stimulus and as a tool to find appropriate solutions to balance the 

production of renewable energy with other regulating ES provided by multifunctional 

bioenergy landscapes. Even though the MEA framework of ES (MEA, 2003,205a) has been 

used extensively to understand the impact of numerous human activities on diverse social–

ecological systems, there is still little literature explicitly linking bioenergy production, land 

use change and multiple ES (e.g. Donnelly et al., 2011; Gasparotos et al., 2011; Holland et 

al., 2015, Milner et al., 2015). As demonstrated in the following chapters, the land use 

transition to perennial bioenergy crops can affect various ecosystem processes and 

ultimately delivery a broad variety of key ES. In particular, it will be addressed here the 

possibility to maintain and in some cases enhance, through a careful spatial design of 

bioenergy crops into landscape, the provision of a large set of regulating ES (climate, water 

and biodiversity regulation) that may ultimately promote the creation of multifunctional 

bioenergy landscapes. 
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Figure 1.3 Framework for the provision of ecosystem services from soil natural capital as proposed by Dominati et al. (2010). The “process” is defined as the 

transformation of input into outputs. Ecosystem services are not processes but flows (amount per unit time), as opposed to stocks (amount). See the dotted 

box as an example: flocculation is the physical-chemical processes where cations and water molecules bound themselves to negatively charged clay particles. 

As results of this process, the provision of the ecosystem service ‘flood mitigation’ depends on the amount of water a soil can store (stock). 
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1.3 Bioenergy buffers: a case study for multiple ES provision from perennial bioenergy 

crops 

Increasing the cultivation of bioenergy crops introduces the difficulty of reconciling food 

and energy production, and conservation of the environment (Tilman et al., 2009). Hence, 

to ensure a sustainable development of bioenergy crops, the area dedicated to their 

production must be limited to minimize the competition with food production, the energy 

production per unit area must be high enough to replace significant amounts of fossil 

resources, and their impacts on ES must be as low as possible (Karp & Shield, 2008; 

Haughton et al., 2009; Rowe et al., 2013; Werling et al., 2013; Del Grosso et al., 2014). This 

suggests seeking the optimal perennial bioenergy crop for a given environment, its optimal 

allocation into the landscape and its suitable cropping practices that could simultaneously 

fulfill all these requirements. 

The paradigm of the current research on bioenergy production is based on the “food vs. 

fuel” debate (Anderson-Teixeira et al., 2012; Valentine et al., 2012). The key point is that 

the current policies rely on the old-fashioned agricultural paradigm of cultivating bioenergy 

crops on large-scale cultivations that are spatially distinct with intensive agriculture 

dedicated to food production (Manning et al., 2015). As a consequence of the adoption of 

this “land sparing” approach (Anderson-Teixeira et al., 2012), the ES provision is threatened 

if natural or semi natural area are converted to intensive bioenergy production (Fargione 

et al., 2008; Creutzig et al., 2014). Research is focusing, indeed, on developing bioenergy 

systems that avoid land use conflicts (Fargione et al., 2008; Karp & Shield, 2008; Valentine 

et al., 2012). A common response to the potential competition between energy and food 

crops is to suggest that marginal lands rather than cropland be targeted for bioenergy 

production (Dauber et al., 2012) (Figure 1.1a). Marginal lands are those lands poorly suited 

to field crops because of low crop productivity due to inherent edaphic or climatic 

limitations or because they are located in areas that are vulnerable to erosion or other 

environmental risks when cultivated (Gopalakrishnan et al., 2006; Valentine et al., 2012; 

Shortall, 2013). If bioenergy crops are cultivated on marginal lands, there are two major 

drawbacks of this. First, bioenergy production still needs to be economically viable on low-

yielding marginal lands. This because it would not be cost-effective to establish bioenergy 

crops on areas where conditions are too unfavorable, water supplies are limited, or the 

logistic constraints are too high (e.g. distance to the power plant) (Allen et al., 2014). 

Moreover, Bryngelsson & Lindgren (2013) showed that the economic incentives would be 

strong for owners of more productive cropland to grow bioenergy anyway and out-

compete the more costly production on low yielding marginal lands.  Second, marginal land, 

if not being used for agricultural production, is likely to have a high biodiversity and ES 

value.  
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Moving bioenergy production to marginal lands is often associated with the conversion of 

natural or semi-natural ecosystems, resulting in greater biodiversity and C losses than when 

compared to the conversion of arable lands (Fargione et al., 2008; Phalan et al., 2011; 

Immerzeel et al., 2014).  

Current policy advice largely ignores the potential to better manage bioenergy crops to 

reduce their impacts on biodiversity and ES and for strategic deployment of perennial 

bioenergy crops within agricultural landscapes (Manning et al., 2015). Recently published 

papers showed that the linkage between bioenergy production and multiple ES is 

dependent not only on the choice of bioenergy crop but also on its location relative to other 

land uses (Glover et al., 2010; Young-Mathews et al., 2010; Rowe et al., 2013; Werling et 

al., 2013). On this context, science-based policies based on new bioenergy land use 

scenarios are needed to inform sustainable bioenergy landscape design. Werling et al. 

(2013) and Manning et al. (2014) claimed that careful design of bioenergy landscapes has 

the potential to enhance multiple ES in food and bioenergy cropping systems, leading to 

important synergies that have not yet informed the ongoing bioenergy debate. Such 

research would contribute to the current trend to develop “ecological intensification” 

strategies that foster synergies between land uses and attempt to reduce the trade-offs 

between the delivery of multiple ES (Garnett et al., 2013) within limited land resources 

(Allen et al., 2014). On this regard, new bioenergy land use scenarios are being formulated 

in which food and bioenergy plantations are spatially mixed within the same farmland 

(Figure 1.4b) (Asbjornsen et al., 2012; Christen & Dalgaard, 2013; Manning et al., 2015; 

Golkowska et al., 2016). For example, the results of several modelling studies 

(Gopalakrishnan et al., 2012; Meehan et al., 2013; Ssegane et al., 2015) show that the 

cultivation of bioenergy crops e.g. along watercourses may achieve yields that are 

comparable to those obtained for food cropping systems while simultaneously providing 

multiple ES.  Within this framework, an excellent case study area in which to explore the 

possibility to optimize land use for food, energy, and ES is the European agricultural 

landscape. Linear elements such as ditches, grass margins, buffers strips and hedgerows 

are landscape elements widely adopted across EU member states (Marshall & Moonen, 

2002; Van Der Zanden et al., 2013). Buffer strips and grass margins, for example, have been 

widely recognized for their ecological perfomances (Le Cœur et al., 2002; De Cauwer et al., 

2005) in terms of mitigation of disservices of the agricultural activities via climate mitigation 

(Falloon et al., 2004), biodiversity regulation (Smith et al., 2007; Ernoult et al., 2013) and 

erosion regulation (Panagos et al., 2015).  
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Figure 1.4 Schematic representation of the current bioenergy land use with marginal land conversion (a) 

and the alternative bioenergy land use scenario proposed in this thesis with “bioenergy buffers” (b). 

Bioenergy buffers are in our view perennial landscape elements, consisting of narrow bands (as wide as 

national recommendations e.g. 5-10 m wide) placed along arable field margins and watercourses, and 

cultivated with perennial herbaceous (switchgrass or miscanthus) or woody (poplar or willow SRC) 

dedicated to bioenergy production. 

 

A recent paper proved that grass margins are not only beneficial for wildlife but also for the 

productivity over the long term  of the adjacent cropped areas (Pywell et al., 2015). Buffer 

strips  were mainly thought as landscape elements aiming at reducing in lowland areas the 

agricultural non point source pollution such pesticides and nitrate water pollution (Mayer 

et al., 2007; Borin et al., 2010). In the EU environmental policy context, indeed, buffer strips 

were made mandatory among member states in order to fulfill the obligations to maintain 

and improve Good Ecological Status under the EU Water Framework Directive (EC 

2000/60). However, if properly vegetated and managed, buffer strips can also produce 

biomass for energetic purposes (Golkowska et al., 2016). On the other hand, farming 

restrictions in the management of buffer strips led to different decisions among EU 

member states regarding subsidies and management schemes for buffer strips (Brown et 

al., 2012; Stutter et al., 2012). If no harvest bans on the buffer strips exist, the biomass 

could generate additional incomes that might contribute to bioenergy supply while 

maintaining buffers ecological functioning (Golkowska et al., 2016). 

Targeting perennial bioenergy crops along buffer strips (hereinafter “bioenergy buffers” – 

Figure 1.4b) could be used to design new sustainable bioenergy landscapes. The cultivation 

of perennial bioenergy crops has already shown that on large-scale plantations multiple ES 

can be provided in a larger extent compared to annual food crops (Rowe et al., 2013; 

Werling et al., 2013; Holland et al., 2015; Milner et al., 2015). To see if the productive and 

ecological performances of perennial bioenergy crops are significant also in a bioenergy 

buffers scenario, new research is required.  For this reason, in this thesis, bioenergy buffers 

are considered as a stimulating case study for seeking an alternative bioenergy land use 

scenario within the food-energy-environment trilemma.  

marginal 
land

agricultural 
land

food 
crop

bioenergy
crop

bioenergy 
buffers

channels,
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1.4 Objectives of the thesis 

Given the issues of “food-energy-environment” trilemma (Tilman et al., 2009) and the 

implications of land use transition to bioenergy crops on climate regulation (Creutzig et al., 

2014; Agostini et al., 2015; Harris et al., 2015) and biodiversity (Dauber et al., 2010; 

Immerzeel et al., 2014), the MEA framework on ES provides an opportunity to examine the 

impacts of new bioenergy land use scenarios (Gasparatos et al., 2011; Holland et al., 2015).  

In this thesis an alternative bioenergy land use scenario has been tested: the bioenergy 

buffers (Figure 1.4b). Despite natural riparian buffers provide multiple functions in 

agricultural landscapes (Marshall & Moonen, 2002; Borin et al., 2010; Pywell et al., 2015), 

the debate evoked by Christen & Dalgaard (2013) to establish and manage buffers with a 

dual purpose (biomass production and environment protection) has never been repeated. 

Applied research on bioenergy buffers is still lacking both in terms of multiple ES provision, 

biomass yield potential and biomass logistic management. In particular, given the role 

attributed to buffer strips in mitigating groundwater pollution, is still unclear, for bioenergy 

buffers, to what extent, under field conditions, bioenergy crops remove N from 

groundwater as compared to natural riparian buffers. Yet, there are no available 

information for bioenergy buffers on the role of plant-derived C inputs and belowground 

biomass on the biological removal of N from soil. Hence, the main research question of this 

thesis is: “To what extent do the perennial bioenergy crops affect the delivery of multiple 

ecosystem services when cultivated as bioenergy buffers?”   

 

To answer this question, the main objectives of the thesis are:      

1. to synthetize the current state of knowledge on the impact of land use transition 

to bioenergy buffers on multiple ES provision (climate, water and biodiversity 

regulation, soil health and biomass provisioning); 

2. to identify the opportunities and shortcomings related to the implementation of 

bioenergy crops along buffers and to the biomass logistics management in 

bioenergy buffers; 

3. to evaluate bioenergy buffers effectiveness (BSE) in removing N from groundwater;  

4. to identify the biogeochemical processes and key factors governing N removal in 

bioenergy buffers; 

5. to quantify below- and above-ground biomass production and plant N removal in 

bioenergy buffers. 
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1.5 Outline and experimental approach 
 
To address the objectives of the thesis a combination of systematic literature review 

(Chapter 2) and field studies (Chapter 3) was used. The following hypothesis resulted from 

the objectives of the thesis: 

H1 Perennial bioenergy crops could be grown as bioenergy buffers to produce 

bioenergy, sustain multiple ES and diversify agricultural landscapes 

H2 Bioenergy buffers may challenge the sustainability of the biomass supply chain  

H3 Perennial bioenergy crops, if cultivated adjacent to watercourses, may intercept 

and remove efficiently N from groundwater as much as buffers strips with 

spontaneous species 

H4 Deep-rooted crops such as perennial bioenergy crops lead to significant plant-

microbial linkages activating soil microbial biomass and, in turn, biological N 

removal from soil 

H5 Miscanthus and willow buffers produce a significant amount of below- and above-

ground biomass if cultivated in nitrate-enriched shallow groundwater 

 

     Chapter 2 addresses the first two hypotheses. Combining the Millenium Ecosystem 

Assessment framework on ES (MEA, 2003) (Figure 1.2) with the framework on soil ES 

proposed by Dominati et al. (2010) (Figure 1.3), the literature on ES provided by perennial 

bioenergy crops replacing cropland and grassland was systematically reviewed to answer 

hypothesis H1. The literature search is conducted on four candidate bioenergy crops for 

Europe namely miscanthus, swicthgrass, poplar and willow as short-rotation coppice (SRC).  

The impacts on multiple ES of land use transition to herbaceous or woody bioenergy buffers 

was synthetized by applying to 237 effects on ES (extracted from 127 studies) an impact 

scoring methodology to reveal direction and level of confidence of the impacts. Comparing 

the different ES provided by bioenergy buffers, the following roles of soil in the provision 

of ES from bioenergy buffers have been addressed in Chapter 2: climate regulation role; 

water quality and soil erosion regulation role, aboveground biodiversity conservation role, 

role in supporting soil health and biomass/energy provisioning role.  

 

    Chapter 2 address also the establishment of bioenergy buffers and their biomass logistics 

management. By reviewing the existing literature that investigated in large-scale bioenergy 

plantations the crop establishment issues and the biomass harvest, storage and transports 

operations, the available technologies and the potential logistic and management options 

that could also apply to bioenergy buffers have been investigated (hypothesis H2).  

Particular attention is given to search for the environmental implications and the potential 

logistic and biophysical constraints that may emerge from the management of bioenergy 

and food crops within the same farmland.  
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     Chapter 3 is focused on a very important issue for bioenergy sustainability: use of 

perennial bioenergy crops not only for bioenergy production, but explicitly for the 

protection of groundwater from the nitrate leaching from agricultural fields. Chapter 3 is 

based on an experimental field trial aiming at studying the productive and environmental 

performances of bioenergy buffers at farm-scale.  

In a N-enriched shallow groundwater, 5 and 10 m wide miscanthus and willow buffers 

(Figure 1.5c and 1.5d) are established along a ditch of an agricultural field in Po valley (Italy). 

A control treatment consisting of field margins left revegetating with spontaneous species 

is included (Figure 1.5e) to compare differences in removing N between spontaneous and 

bioenergy crop species. The hypothesis H3, H4 and H5 were addressed in Chapter 3 through 

the measurement of the below- and above-ground biomass production and the N removal 

from groundwater and soil. The study allows to answer the question about the dual 

purpose of bioenergy buffers: biomass production (H5) and environment protection: in this 

case, mitigation of groundwater N pollution (H3) and active biological removal of N from 

soil (H4). 

 

 
Figure 1.5 Examples of bioenergy buffers established in Po valley (northern Italy): (a) panoramic of a field 

trial with arable field margins cultivated with miscanthus (Miscanthus x giganteus  L.), switchgrass 

(Panicum virgatum L.) and black locust (Robinia pseudoacacia L.) (July 2013); (b) miscanthus and 

switchgrass during the winter periods (December 2014) offering soil cover and habitat for wildlife along 

buffers; (c-d) bioenergy buffers experimental trial (June 2015) with miscanthus (c) and willow (Salix 

matsudana Koidz) (d) set up along a ditch where 5m wide buffer strips are mandatory under the EU Water 

Framework Directive (2000/60/EC); (e) spontaneous species as control treatment to compare in Chapter 

3 the N removal efficiency between naturally vegetated buffers (e) and bioenergy buffers (c-d). 
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Multiple ecosystem services provision and biomass logistics management in 

bioenergy buffers: a state-of-the-art review 

 

Abstract 

Bioenergy buffers are linear landscape elements cultivated with perennial herbaceous or woody 

crops dedicated to bioenergy production placed along arable field margins and watercourses. In this 

study, we sought to provide an evidence base for potential impacts of bioenergy buffers on multiple 

ecosystem services (ES) while identifying the opportunities and shortcomings related to the biomass 

logistics in bioenergy buffers compared to that derived from large-scale bioenergy plantations. We 

synthetize the current state of knowledge on the impacts of land use transition to bioenergy crops 

on regulating (climate, water and biodiversity regulation), supporting (soil health) and provisioning 

services (biomass provision and energy yield). Using an Impact Assessment (IA) methodology we 

evaluated the short- and long-term impacts of woody and herbaceous bioenergy buffers on previous 

croplands and grasslands on the provision of those ES. The results of the IA revealed that the 

implementation of bioenergy buffers on previous croplands rather than on grasslands sustains long- 

term provision of ES such as climate, water quality, and biodiversity regulation. Moreover, 

herbaceous rather than woody buffers were found to be more effective in the provision of multiple 

ES. Nevertheless, some research gaps were identified relative to the impacts of bioenergy buffers 

during the establishment phase on climate and water quality regulation services. Regarding biomass 

logistics, the limited working space for the farm machinery operations may be considered as the 

main shortcoming for bioenergy buffers compared to large-scale bioenergy plantations. The intra- 

and inter-farm spatial fragmentation of biomass supply areas may increase environmental costs 

related to biomass collection and transport operations. In order to address this logistic constraint 

and to stimulate the scientific debate on the ES benefits rendered by bioenergy buffers to 

agroecosystems, their implementation as Ecological Focus Area within 2014-2020 CAP and as 

mandatory buffer strips under the EU Water Framework Directive is encouraged. 

 

Keywords: land use conflicts, bioenergy buffers, miscanthus, switchgrass, willow, poplar, ecosystem 

services, climate regulation, water quality regulation, biodiversity regulation, biomass supply chain 

 

2.1 Introduction 

Food security, climate change, and energy use are widely recognized to be the main 

challenges faced by humankind in the 21st century (Lal, 2010; Karp & Richter, 2011). The 

increasing demand for energy and food (Umbach, 2010; Tilman et al., 2011) and the 

negative implications of climate change on agricultural production are fuelling the debate 

over the land use conflicts between bioenergy and food production (Fargione et al., 2008; 

Dauber et al., 2012; Valentine et al., 2012). This situation is a direct consequence of the 

old-fashioned paradigm of an intensive cultivation on arable lands of bioenergy crops as 

large-scale plantations (Shortall, 2013; Manning et al., 2015).  
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The paradigm should shift from “food vs. fuel” debate to one more challenging target: 

Where and how bioenergy crops could be established within intensively managed 

agricultural landscapes? Given that land management should focus on developing 

bioenergy systems that avoid land use conflicts (Fargione et al., 2008; Karp & Shield, 2008; 

Valentine et al., 2012), to grow bioenergy crops on marginal lands could be a good option 

(Dauber et al., 2012) (Figure 2.1a). The sustainable use of land for bioenergy production is 

inextricably linked to energy savings and yield potentials of bioenergy crops, biomass 

supply chain management, and multiple ecosystem services (ES) provision, with potentially 

positive or negative consequences depending on how these linkages are managed (Dale et 

al., 2011b; Del Grosso et al., 2014; López-bellido et al., 2014). Besides energy savings of 

bioenergy crops (Rettenmaier et al., 2010) and their yield potential (Laurent et al., 2015), a 

particular interest revolves around the potential impacts of land use transition to bioenergy 

crops on multiple ES provision (Milner et al., 2015). This is because herbaceous and short 

rotation coppices (SRC) woody crops are being considered promising carbon-neutral 

options due to their potential for greenhouse gas (GHG) emission savings (Rettenmaier et 

al., 2010; Felten et al., 2013; Gelfand et al., 2013; Creutzig et al., 2014) and long-term soil 

carbon (C) sequestration (Agostini et al., 2015; Harris et al., 2015; Chimento et al., 2016). 

Furthermore, from different review papers emerged that other ES could be delivered 

cultivating bioenergy crops such as biodiversity and water quality regulation (Blanco-

Canqui, 2010; Immerzeel et al., 2014; Holland et al., 2015). Identifying the direction of the 

impacts on multiple ES provision can fuel the discussion over the synergies which could be 

achieved between bioenergy production and other land uses. 

Along with ES provision, the optimization of the biomass supply chain is becoming a crucial 

issue within the sustainability framework of land use transition to bioenergy production 

(Smeets et al., 2009; Dale et al., 2011b; Gold & Seuring, 2011; van der Hilst et al., 2012). An 

optimal allocation of bioenergy plantations within the landscape is needed in order to 

harmonize biomass logistic management (Gold & Seuring, 2011; Mafakheri & Nasiri, 2014; 

Dale et al., 2016). In particular, the following aspects should be considered: i) field location 

and relative land-use conflicts (Smeets et al., 2009); ii) available technologies associated 

with biomass logistics from harvest to transport (Gold & Seuring, 2011; Cattaneo et al., 

2014a); iii) spatial and temporal combination of biomass supply areas and energy demand 

within the landscape (Howard et al., 2012); iv) farmer’s acceptance of new bioenergy crops 

(van der Horst & Evans, 2010; Rizzo et al., 2014); and v) existing environmental protected 

areas (Gopalakrishnan et al., 2006).  

In order to reduce the logistic issues and find the best trade-offs with multiple ES provision, 

new land use scenarios for bioenergy production are needed. Unlike the land sparing 

approach focused on marginal land conversion (Figure 1a), new scenarios are being 

formulated in which food and bioenergy plantations are spatially mixed within the 

landscape (Asbjornsen et al., 2012; Christen & Dalgaard, 2013; Manning et al., 2015) and 
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spatially simulated (Gopalakrishnan et al., 2012; Meehan et al., 2013; Ssegane et al., 2015). 

In this study we propose to spatially mix food crops with bioenergy plantations within the 

same farmland (Figure 1b). In particular, we propose to grow biomass on “bioenergy 

buffers”. Those are considered perennial landscape elements, consisting of narrow bands 

(5 - 10 m width) placed along arable field margins and watercourses, and cultivated with 

perennial herbaceous or woody SRC crops dedicated to bioenergy production (Figure 1c-

e). Although the impact assessment of large-scale bioenergy cultivations on ES provision 

has received considerable attention, the same is not true for the implementation of 

bioenergy buffers. Furthermore, to our knowledge, apart from a review paper on ecological 

functioning of buffers dedicated to general biomass production purposes (Christen & 

Dalgaard, 2013), no synthesis studies have been performed to assess the net effects of 

bioenergy buffer establishment on multiple ES provision considering also their logistic 

features along the biomass supply chain. 

The main scope of this paper is to review the consequences of land use transition to 

bioenergy buffers on multiple ES provision and identify the opportunities and shortcomings 

related to the logistics of biomass from bioenergy buffers. The specific objectives are: 1) to 

assess the potential impacts of herbaceous and woody bioenergy buffers on the provision 

of ES such as climate, water, and biodiversity regulation, and biomass provision, at the 

establishment phase as well as during perennial crop lifespan (for this purpose bioenergy 

buffers replacing croplands or grasslands were considered as main land use transitions); 2) 

to identify biophysical and management factors affecting the implementation of bioenergy 

buffers along field margins; and 3) to identify the logistic features along the biomass supply 

chain of bioenergy buffers and compare them to those derived from large-scale bioenergy 

plantations.  
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Figure 2.1 Conventional and “bioenergy buffers” land use scenarios for bioenergy crops at farm and 

landscape scale. (a) The conventional “land-sparing” scenario in which intensive agriculture and 

bioenergy plantations are spatially separated in different land use units. (b) The alternative land use 

scenario with “bioenergy buffers” located along watercourses and arable field margins. (c-e) Bioenergy 

buffer experimental field trials with miscanthus, switchgrass and willow established in the Po valley (Italy). 

(c): grass and woody buffers strips alongside watercourses (d-e): narrow arable field margins converted 

to herbaceous or woody strips in flatlands. 

 
 

2.2 Methods of systematic literature review 

The objective of this synthesis study is to assess the implications for ecosystem service 

provision and biomass supply chain management of land-use change associated with 

conversion to bioenergy buffers. The systematic literature review process was performed 

from December 2014 to May 2015, and followed three steps to collect, classify and 

evaluate the existing literature body on bioenergy buffers (Figure 2.2). English-written 

peer-reviewed scientific papers and reviews were selected as main unit of analysis. The 

major databases and library services were used: Google scholar, Scopus, Elsevier, Springer 

and Wiley. As a first step, the literature body was collected by searching papers that 

focused on land-use change to bioenergy crops (Figure 2.2 – Step 1). The references were 

filtered based on the presence of the combination of “land use change” and “bioenergy 

crops” in their title, abstract and keywords.  

“BIOENERGY 

BUFFERS” 

SCENARIO 

CONVENTIONAL 

BIOENERGY LAND 

USE SCENARIO 

Land sparing + 

marginal land 

conversion

Spatial

integration

FARM LEVEL

LANDSCAPE 

LEVEL

 

(a)

(b)

(c)

(d)

(e)

Agricultural land

Bioenergy land 

Seminatural land

Marginal  land

Bioenergy buffers

LAND USE LEGEND



        Chapter 2   Bioenergy buffers: a state-of-the-art review 

 23 

Due to the inconsistent use of the term “marginal” land within the literature (Shortall, 

2013; Holland et al., 2015), the keyword search was restricted to studies in which bioenergy 

crops replaced croplands or grasslands. This search returned  665 references. In the second 

step, two classification contexts were created to pool and classify the literature body 

previously collected. The context “Bioenergy large-scale plantations” included the 

references addressing land use change to bioenergy crops at open-field scale and focused 

on the land sparing approach (nref = 420). The context “Bioenergy buffers” referred to those 

references that addressed specifically the use of bioenergy crops as riparian buffer strips, 

filter strips, grassed waterways and shelterbelts (nref = 56).  

In the third step, all the material collected was further filtered to synthesize the state of 

the art knowledge on bioenergy buffers according to the objectives 1 and 3. Regarding 

objective 1, we used the framework of the Millennium Ecosystem Assessment (MEA, 2003, 

2005a) that divides ecosystem services into provisioning, regulating, supporting and 

cultural services in combination with the framework on soil ES proposed by Dominati et al. 

(2010). Here we reviewed the most relevant ES of bioenergy production (Gasparatos et al., 

2011; Holland et al., 2015; Milner et al., 2015), agroecosystem (Zhang et al., 2007; Power, 

2010) and soil natural capital (Dominati et al., 2010; Powlson et al., 2011; Robinson et al., 

2013): provisioning services (biomass provision  and energy yield), regulating services 

(climate, water quality, and aboveground biodiversity regulation) and supporting services 

(soil health). Studies measuring changes over time in the ES provision during conversion of 

cropland or grassland sites to bioenergy crops (using either a reference state or a space-

for-time substitution approach) were included in the analysis following the approach of 

Holland et al. (2015) (Table S2.2). On these studies, the following combinations of main 

descriptors (and their relative keywords) were used to search for the potential impacts of 

the land use transition to bioenergy buffers on ES provision: “impact” or “effect” as well as 

“ecosystem services” such as “climate regulation”, “water quality regulation”, “soil health”, 

“belowground biodiversity”, “aboveground biodiversity”, and “pollination and pest 

control”. In the case that only few studies within the “Bioenergy buffers” context met our 

selection criteria for a certain ES, the studies grouped into the “Bioenergy large-scale 

cultivations” context were considered. This was based on the assumption that bioenergy 

crops grown in bioenergy buffers would have the same impact on a specific ES than those 

grown at open-field scale.  
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Figure 2.2 Flow chart of steps taken in conducting the systematic literature review process. Dashed grey boxes 

indicate the main descriptors (capital bold) and keywords (italic) used along the systematic revision. White 

circles indicate the filters used to refine the literature search. Dark grey boxes indicate the classification 

contexts where material collected were stored to be further analysed. White boxes indicate the steps involved 

in the impact assessment on ES provision of land use transition to bioenergy buffers. 

 

Afterwards, the potential impacts on ES provision were derived through the application of 

an Impact Assessment (IA) methodology (Figure 2.2). The main goal of the IA is to identify 

where the impact on multiple ES provision would most probably be placed depending on 

different combinations of land use transitions to bioenergy buffers (i.e., short- and long-

term impacts of cropland or grassland conversion to woody or herbaceous bioenergy 

buffers). The details of the IA methodology are described in the Supporting Information 

(Appendix S2.1). Briefly, IA followed three steps (Figure 2.2): 1) extraction from each study 

of the ES examined, the land-use replaced, bioenergy buffer type, the impact period and 

the direction of the impact (Table S2.2). If a study reported several ES, land-use transitions, 

buffer types, impact periods, or combinations of these, the information was disaggregated 

to capture individual reported effects; 2) application of an impact scoring system (Eq. S2.1) 
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to determine the direction of the impacts on ES provision of a particular land use transition 

and its level of confidence (Table S2.1); and 3) creation of an impact matrix as main data 

mining tool which provides an overall evidence base of the potential impacts of the 

implementations of bioenergy buffers on multiple ES provision (Figure 2.5).  

Concerning biomass logistics in bioenergy buffers (objective 3), the material collected in 

step 2 was analysed by conducting a literature search based on the combinations of the 

descriptors “biomass supply chain” and/or “biomass logistics” (Figure 2.2 - Step 3). 

Afterwards, the main text of the selected studies was further examined through an iterative 

search according to the following keywords: “harvesting operations”, “biomass collection”, 

“biomass storage”, and “handling and transport operations”. The material collected was 

then analysed to compare the logistic features between the two following scenarios: 

“bioenergy buffers” and “large-scale bioenergy plantations” (Figure 2.3). The comparison 

was performed analysing the potential differences of harvest and collection, storage, and 

transport operations between the two scenarios, as reported in the dark grey boxes in 

Figure 2.3.  

 
 

 

2.3 Overview of research on multiple ecosystem services provision from bioenergy 

buffers 

In total 127 references addressing the effects of different land use transitions to bioenergy 

crops on ES provision were found to meet our selection criteria (Figure 2.2 - step 3). 77 of 

these were derived from studies on large-scale cultivations of bioenergy crops and 50 (39% 

of the total) from studies that specifically addressed the land use transition to bioenergy 

buffers. In these studies, a total of 237 effects were found for the seven key ES reported in 

Figure 2.4. The whole list of effects on ES provision and their references are reported in the 

Supporting Information (Table S2.2). A higher number of effects on ES were reported for 

cropland (n=178, with 26% on bioenergy buffers) compared to grassland conversion (n=59, 

with 12% on bioenergy buffers) (Figure 2.4a). A higher number of effects on ES were found 

for herbaceous crops (n=156, with 20% on bioenergy buffers) compared to SRC woody 

crops (n=81, 26% on bioenergy buffers) (Figure 2.4b).  
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In terms of temporal impact, effects over long-term periods are widely studied (n=184, 25% 

on bioenergy buffers) in comparison with the ones over short-term periods (n=53, 17% on 

bioenergy buffers) (Figure 2.4c). Among the different ES, “soil C sequestration” was the ES 

with the highest number of effects reported for all the three categories considered (Figure 

2.4 a-c), followed by “Aboveground biodiversity and pest regulation”, “GHG emissions”, 

and “nutrient runoff and soil erosion regulation”. Regarding specific studies on bioenergy 

buffers, a high number of effects were found in studies that addressed bioenergy buffers 

ability to provide “water quality regulation” services. On average, for all these ES, 42% of 

the total number of effects recorded derive from studies on bioenergy buffers.  

Overall, the impact matrix (Figure 2.5) indicates that implementing bioenergy buffers 

(either herbaceous or woody crops) on field margins of cropland has a positive impact on 

the provision of the seven ecosystem services with a high level of confidence (Table S2.1). 

Similar outcomes, either in terms of the direction of their impact and level of confidence, 

were recently reported in two review studies (Holland et al., 2015; Milner et al., 2015) 

assessing the effects of cropland conversion to large-scale bioenergy plantations on water, 

climate, and biodiversity, although different IA methodologies and selection criteria for the 

references were used. 

Examining the different impacts on ES between woody and herbaceous buffers, the results 

of our IA for cropland conversion confirmed that bioenergy buffers with herbaceous crops 

such as miscanthus and switchgrass have overall beneficial effects on many ecosystem 

services from the crop establishment phase (0-3 years): i) aboveground biodiversity and 

pest regulation (Meehan et al., 2012; Werling et al., 2013), ii) soil health (Glover et al., 

2010), iii) runoff and soil erosion (Lee et al., 1998), and iv) groundwater quality 

(Gopalakrishnan et al., 2012). Nevertheless, there are still knowledge gaps regarding the 

provision of climate regulation services in the short term (Figure 2.5 and Table S2.1). In a 

recent meta-analysis (Harris et al., 2015) addressed similar knowledge gaps on the effects 

of land use change to bioenergy crops on greenhouse gas balance. 

Concerning the land use transition from grassland to bioenergy buffers, it seems that the 

intensive soil disturbance occurring during the crop establishment phase negatively affects 

the provision of several ES (Figure 2.5). Our results show that all the ES considered were 

strongly and negatively affected by the establishment of bioenergy buffers on former 

grassland soils. Similar general conclusions were drawn by (Donnelly et al., 2011) for 

grasslands converted to miscanthus. However, in the long term, herbaceous bioenergy 

buffers replacing grassland can impact positively the provision of ES like water and climate 

regulation (Figure 2.5 and Table S2.1). This is slightly in contrast with the low level of 

confidence for grassland conversion reported by Milner et al. (2015) and Harris et al. (2015) 

for ES of “water quality” and “climate regulation”, respectively. A likely explanation for 

these discrepancies is that no distinction between short- and long- term impact was 

performed in those studies. 
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2.4 Multiple ecosystem services provision  

In the following sections (from 2.4.1 to 2.4.5), the differences of the impacts on ES provision 

(direction and science behind) between cropland and grassland conversion to bioenergy 

buffers are discussed separately for each ES. In the case that the number of effects on ES 

extracted from the literature provided a high level of confidence (Table S2.1), a summary 

figure showing the different performance of herbaceous compared to woody bioenergy 

buffers is presented. Likewise, critical knowledge gaps relative to ES provision of bioenergy 

buffers are highlighted to stimulate further research.  

  2.4.1 Climate regulation 

    2.4.1.1  Soil C sequestration and CO2 emission mitigation 

The impact matrix suggests that the conversion of croplands to bioenergy buffers has long-

term positive impacts on soil C sequestration (Figure 2.5), which is in agreement with 

findings in other systematic revisions (Holland et al., 2015; Milner et al., 2015).  

Likewise, a positive impact on soil C sequestration (although with low level of confidence – 

Table S2.1) was found in the long-term when herbaceous (Hansen et al., 2004; Zimmerman 

et al., 2012; Poeplau & Don, 2013; Harris et al., 2015; Richter et al., 2015) or woody (Ens et 

al., 2013; Harris et al., 2015; Walter et al., 2015) bioenergy crops were established on 

former grasslands. Agostini et al. (2015) recently showed that  the mean annual soil C 

sequestration rate under herbaceous crops (1.51 Mg C ha-1 year-1), for the high leaf and 

root litter C-inputs, would largely exceed the minimum mitigation requirement (0.25 Mg C 

ha-1 year-1), compared to 0.68 Mg C ha-1 year-1 calculated for woody SRC crops.  

During cropland conversion to bioenergy crops, a more active soil microbial community is 

triggered by the increase of leaf and root litter C-inputs into the soil and thus favouring net 

soil C sequestration (Rubino et al., 2010; Anderson-Teixeira et al., 2013; Cotrufo et al., 

2015). The plant-derived C inputs are mainly found in the root- and leaf-litter derived 

particulate organic matter (POM), as revealed by 13C natural abundance studies (Garten & 

Wullschleger, 2000; Hansen et al., 2004; Felten & Emmerling, 2012; Cattaneo et al., 2014a). 

The POM fraction proved to be a sensitive indicator of land-use change to bioenergy crops 

(Chimento et al., 2016) and its physical protection within soil aggregates plays a key role in 

the stabilization of soil C (Dondini et al., 2009; Wienhold et al., 2013; Tiemann & Grandy, 

2014). 
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Figure 2.4 Number of effects recorded for the seven ecosystem services (ES) used in the systematic 

revision. The effects are grouped by land use replaced (a), bioenergy buffer type (b) and impact period 

(c). All the effects were extracted from the papers that met our selection criteria (Figure 2.2; Table S2.2). 

Shaded bars and darker colours in the pie charts represent the number of effects recorded within papers 

pooled into “Bioenergy buffers” classification context. 
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Figure 2.5 Impact matrix reporting the impacts of cropland and grassland conversion to bioenergy buffers 

on the provision of ecosystem services (ES). Impacts were scored according to their direction, and 

classified according to their level of confidence (Table S2.1). See Supporting Information (section 2.8) for 

the impact assessment methodology. In each cell, the total number of effects on ES recorded in literature 

(top left) and those specifics for bioenergy buffers (bottom left) are further reported. The list of the effects 

used for compiling the impact matrix is reported in the Supporting Information (Table S2.2).   

 

In the limited number of studies that have been carried out to assess the potential soil C 

storage capacity under herbaceous and woody bioenergy buffers (Table S2.2), these proved 

to have positive effects on soil C sequestration (Tufekcioglu et al., 2003; Falloon et al., 2004; 

Fortier et al., 2010a, 2015). However, on the short-term, negative impacts on the provision 

of the “Climate regulation” services were found for bioenergy buffers (Figure 2.5). During 

the establishment phase of bioenergy crops (0-3 years), two factors can negatively affect 

the short-term soil C balance: the so called “rhizosphere priming effect” (Kuzyakov, 2002) 

and the interactions between land use legacies and the new bioenergy crop management 

(Kallenbach & Grandy, 2015). For example, (Harris et al., 2015) found an average increase 

of soil CO2 emissions of 6.6 Mg CO2 ha-1 y-1 after the establishment of SRC crops on former 

grassland soils.  

The high fine root turnover and rhizodeposition rates, as reported for willow and poplar 

(Rytter, 2001; Berhongaray et al., 2013), can stimulate microbial biomass and increase the 

turnover rate of native SOC (Neergaard et al., 2002; Gielen et al., 2005; Abou Jaoudé et al., 

2010; Berhongaray & Ceulemans, 2015). As a result of this initial C losses, soil C 

sequestration rates of SRC crops established in former grasslands and croplands is generally 

negative in the short-term (Walter et al., 2015).  
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The occurrence of the priming effect in the rhizosphere has also been reported in 

herbaceous bioenergy crops (Zatta et al., 2014; Richter et al., 2015). In those studies, it was 

demonstrated that the decomposition of SOC stabilized in former grasslands was triggered 

by easily available new C sources derived from miscanthus, explaining that  soil C 

sequestration resulted not significant in the short-term.  

    2.4.1.2  Soil N2O emission mitigation 

In general, perennial bioenergy crops result in lower soil N2O emissions than annual 

cropping systems in the long-term (Davis et al., 2010, 2014; Drewer et al., 2012; Gauder et 

al., 2012; Smith et al., 2013; Zona et al., 2013a). Although no significant comparisons among 

the different land use transitions to bioenergy crops can be done, Harris et al. (2015) 

reported a general reduction in soil N2O emissions for cropland and grassland transitions 

to herbaceous and SRC crops  (-0.2 Mg CO2-eq ha-1 y-1), except for grassland conversion to 

SRC (+2.5 Mg CO2-eq ha-1 y-1). These findings together with the absence of N fertilization in 

bioenergy buffers might further increase their N2O emission reduction potential, as it has 

been already demonstrated for miscanthus growing in large-scale plantations (Behnke et 

al., 2012; Davis et al., 2014).  

Plant–microbes interactions play an important role in lowering soil N2O emissions from 

bioenergy crops. This is due to the enhancement of a diversified and stable archea-

dominated denitrifier community (Mao et al., 2011), which promotes a soil rhizosphere 

where microbial N immobilization occurs (Hargreaves & Hofmockel, 2013). However, a 

ranking for annual and perennial bioenergy crops based on soil N2O emission mitigation 

potential is not available so far (Don et al., 2012; Del Grosso et al., 2014). 

To date and to our knowledge, only three modelling studies have dealt with soil N2O 

emissions from bioenergy buffers (Gopalakrishnan et al., 2012; Meehan et al., 2013; 

Ssegane et al., 2015). Results from those studies revealed that soil N2O emissions might be 

reduced by50%-90% compared with those in the adjacent field with continuous corn-

soybean rotation by establishing 50-m width herbaceous bioenergy buffers 

(Gopalakrishnan et al., 2012; Meehan et al., 2013). However,  (Ssegane et al., 2015) 

calculated that the annual soil N2O emissions could be reduced only for up to 11% by  

establishing 30-m width switchgrass and willow buffers. Despite general evidence of a 

positive long-term impact on soil N2O emissions, significant knowledge gaps still exist for 

bioenergy buffers concerning the relevance of site- and crop-specific factors for soil N2O 

emissions (Vidon et al., 2010; Christen & Dalgaard, 2013). The main uncertainties arise from 

a low understanding of the denitrification processes and of the role played by: (1) leaf-litter 

quality and its relationship with rainfall events and groundwater table dynamics; and (2) 

the relationship between plant-derived C inputs and denitrification pathways in subsoil 

layers.  
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2.4.2 Water quality regulation 

    2.4.2.1 Groundwater Nitrogen regulation 

The impact matrix clearly shows that both woody and herbaceous buffers without 

fertilization can impact positively on the provision of “groundwater N regulation” service 

(Figure 2.5) in the long-term, regardless of whether bioenergy buffers are cultivated 

adjacent to cropland or grassland sites.  

The effectiveness of narrow unfertilized buffer strips to remove the groundwater NO3-N 

input coming from adjacent agricultural fields via denitrification (van Beek et al., 2007; 

Balestrini et al., 2008, 2011; Gumiero et al., 2011) and plant uptake (Sabater et al., 2003; 

Hefting et al., 2005) has been thoroughly investigated and the factors affecting N removal 

extensively reviewed (Mayer et al., 2007). For bioenergy buffers a high effectiveness 

(>60%) in removing NO3-N has been reported (Zhou et al., 2010; Gopalakrishnan et al., 

2012; Christen & Dalgaard, 2013; Ssegane et al., 2015). In studies in which a comparison 

between woody and herbaceous buffers was performed (e.g. Haycock & Pinay, 1993; Young 

& Briggs, 2005), the woody buffers proved more efficient in removing the incoming NO3-N 

compared to the herbaceous ones (on average, 90% and 70%, respectively).  

Three main reasons can explain the high N removal effectiveness of bioenergy buffers: 1) 

the high nitrogen use efficiency of bioenergy crops (Owens et al., 2013; Wilson et al., 2013) 

and their ability to immobilize N in vegetative components in the long-term (Tufekcioglu et 

al., 2003; Fortier et al., 2015); 2) their well-known deep rooting system (Fortier et al., 

2013a; Chimento & Amaducci, 2015) that contributes to increase the depth of the active 

denitrification zone along the soil profile (Hill & Cardaci, 2000; Balestrini et al., 2008) since 

denitrification at deeper soil layers is highly dependent on root exudation (Senbayram et 

al., 2012); and 3)the lower nitrate leaching rates reported for bioenergy crops in 

comparison with those under continuous maize or maize-soybean rotations (McIsaac et al., 

2010; Smith et al., 2013; Sarkar & Miller, 2014). However, miscanthus was reported to have 

a high risk of nitrate leaching during the establishment phase (0-2 years) when planted on 

sandy soils with shallow groundwater, or with poor crop establishment (Lesur et al., 2014). 

The same risk during the establishment phase can also occur with SRC crops (Goodlass et 

al., 2007; Nikièma et al., 2012).  

Despite the positive impact on “groundwater N regulation” service (Figure 2.5), some 

research questions need still to be answered concerning the direction of impact during the 

establishment phase (0-3 years) of bioenergy buffers. From our systematic revision on the 

studies addressing N removal efficiency by bioenergy crops, it emerged that the magnitude 

of N leaching processes should be assessed under different pedological conditions, and that 

the contribution of root rhizodeposition to nitrate removal via denitrification deserves 

further research in order to minimize mineral N loadings to water bodies.  
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    2.4.2.2 Nutrient runoff and soil erosion regulation 

Bioenergy crops can increase water infiltration, prevent soil erosion and reduce nutrients 

surface runoff (Kort et al., 1998; Blanco-Canqui et al., 2006; Dabney et al., 2009; Blanco-

Canqui, 2010). If planted as herbaceous buffers, bioenergy crops were effective in reducing 

water run-off and trapping eroded sediment coming from adjacent cropland or grassland 

(Figure 2.5 and Table S2.1). High trapping efficiencies of the incoming sediments were 

reported for switchgrass buffers adjacent to conventional cropping systems (66%, 77% and 

95% of trapping efficiency in 3-, 6- and 7-m width buffers, respectively) (Lee et al., 1998, 

2003). Dabney et al. (2012) and Dabney et al. (2009) estimated  a reduction by 25% and 

50% in sediment yield coming from adjacent fields due to the presence of 1 m width buffers 

of switchgrass and miscanthus . Compared to reduction values of other conservation 

practices addressed in the Common Agricultural Policy at European level (Panagos et al., 

2015), herbaceous bioenergy buffers confirm to be optimal land conserving practices.  

In addition to the ability of bioenergy buffers to prevent soil erosion, a consistent and 

positive impact in reducing nutrient runoff to surface waters was found in bioenergy 

buffers (Figure 2.5). Lee et al., (1998) showed that a 7 m width switchgrass buffer efficiently 

remove sediment-bound runoff nutrients by 80% for total-N and by 78% for total-P. A 

mixed switchgrass-poplar buffer showed greater efficiency in removing runoff nutrients 

than a simple switchgrass buffer (Lee et al., 2003). At watershed scale, Meehan et al. (2013) 

calculated that a reduction of 29% in annual P loading to surface waters could be achieved 

replacing annual crops with herbaceous bioenergy buffers along waterways.  

The effectiveness in trapping phosphorous (P) over-time could however turn buffer strips 

into diffused sources of bioavailable P (Stutter et al., 2009; Stutter & Richards, 2012; Noij 

et al., 2013). This is a consequence of the biologically active soil-litter interface which is 

able to remobilize the trapped P into dissolved P forms that can be easily leached out 

(Roberts et al., 2012). On this regard, herbaceous crops such as switchgrass, being 

harvested annually, offer a greater potential of P removal via harvesting (14-28 kg P ha-1 y-

1) (Kelly et al., 2007; Lemus et al., 2009; Silveira et al., 2012) than woody crops with 3-4 

years harvest cycles (4-26 kg P ha-1 y-1) such as willow and poplar hybrids (Heilman & Norby, 

1998; Adegbidi et al., 2001; Kauter et al., 2003; Amichev et al., 2014; Fortier et al., 2015). 

Miscanthus indeed showed lower performances, ranging from 2 to 5 kg P ha-1 y-1 (Kering et 

al., 2012). An increase in the number of P sink moments given by annual harvesting of 

herbaceous bioenergy crops can favour the reduction for bioenergy buffers of the 

abovementioned risks of P losses from dissolved P sources to surface waters (Stutter et al., 

2009). 
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  2.4.3 Soil health and belowground biodiversity 

Most of the benefits of the provision of ES discussed so far derive from the tight and 

positive relationships between soil biota abundance and diversity  and biogeochemical 

processes (Wardle et al., 2004; Brussaard et al., 2007; Kibblewhite et al., 2008). For this 

reason soil community composition is a key factor in regulating soil health and ecosystem 

functioning (Wagg et al., 2014). The positive influence of bioenergy crops on belowground 

biodiversity (Figure 2.5) ultimately affects biogeochemical processes such as litter 

decomposition and nutrient cycling (Young-Mathews et al., 2010; Liang et al., 2012; 

Cattaneo et al., 2014b; Kallenbach & Grandy, 2015), C sequestration (Tiemann & Grandy, 

2014; Bach & Hofmockel, 2015), N cycling (Glover et al., 2010; Mao et al., 2011; Hargreaves 

& Hofmockel, 2013) and natural belowground pest-suppression (Rowe et al., 2010; 

Meehan et al., 2012; Chauvat et al., 2014). Belowground food web under bioenergy crops 

was also showed to be more complex and resilient than that under annual crop fields 

(Glover et al., 2010). Literature on bioenergy crops shows that cropland conversion to 

perennial herbaceous crops led to an increase of the following biotic components of soil 

health: enzymes activities associated with C, N and P-cycling (Udawatta et al., 2008; Paudel 

et al., 2011; Cattaneo et al., 2014b); richness of N transforming microbes (Mao et al., 2011); 

diversity of soil rRNA (Jesus et al., 2010), arbuscular mycorrhizal fungi (Liang et al., 2012), 

and richness of microarthropods, nematodes and earthworms communities (Smith et al., 

2008; Felten & Emmerling, 2011; Robertson et al., 2012; Zangerl et al., 2013). On the 

contrary, much less is known about the impacts on soil health of grassland and cropland 

conversion to SRC woody crops (Figure 2.5).  

  2.4.4 Aboveground biodiversity and pest regulation  

Our systematic revision indicates that the conversion of cropland to bioenergy crops has a 

positive and consistent impact on the provision of “aboveground biodiversity and pest 

regulation” service (Figure 2.5 and Table S2.1). There is a well-developed literature at the 

farm level showing that perennial bioenergy crops can promote the abundance of 

numerous taxonomic groups (arthropods, ground beetles, small mammal and birds) in 

comparison with adjacent annual cropping systems (Dauber et al., 2010; Immerzeel et al., 

2014). Clear examples of this increase are reported for willow (Rowe et al., 2013) and for 

switchgrass (Robertson et al., 2012; Werling et al., 2013). Bioenergy buffers can provide 

nesting and food resources to key ecosystem service providers (ESPs) such as pollinators 

and predators of pests (Haughton et al., 2009; Rowe et al., 2010; Campbell et al., 2012; 

Nackley et al., 2013; Immerzeel et al., 2014). (Manning et al., 2015) stated that if perennial 

bioenergy crops are strategically planted like bioenergy buffers, the potential spillover of 

beetles, hoverflies, and various wasps, could support the pollination service in the 

surrounding croplands.  
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Concerning the grassland conversion to bioenergy crops some evidences were found for a 

negative impact on aboveground biodiversity (Figure 2.5) (Donnelly et al., 2011; Bourke et 

al., 2014; Immerzeel et al., 2014). 

To date, and at the farm level, it seems clear that bioenergy buffers can provide field margin 

habitats for key ESPs. For this reason, bioenergy buffers falls entirely within the definition 

of field margin habitat given by (Marshall & Moonen, 2002) likewise of other semi-natural 

linear landscape elements such as hedgerows, lines of trees and grass margins. These 

elements are widely present across many EU member states (Van Der Zanden et al., 2013). 

Since bioenergy buffers act as ecological infrastructure in the same way as do linear 

landscape elements (Ernoult et al., 2013) and late-winter harvest has no effects on 

biodiversity (Smith et al., 2009), thus their impacts on biodiversity at larger spatial scales 

might be even lower than expected compared to those predicted for large-scale bioenergy 

plantations by Dauber et al. (2012) and Immerzeel et al. (2014). A recent analyses at 

regional- and national-scale (Haughton et al., 2015) showed that a strategic planting of 

dedicated bioenergy crops can increase landscape heterogeneity and biodiversity and thus 

creating a multifunctional agricultural landscape. For this reason, future research should 

focus on the potential interactions of the network of bioenergy buffers with the ecosystem 

service/disservice provision from and to the surrounding landscape units (Bourke et al., 

2014; Dauber & Bolte, 2014).   

  2.4.5 Biomass provision and energy yield  

Little research on biomass production has been done on woody and herbaceous bioenergy 

buffers (Table S1 and S2) compared to the extensive dataset available for perennial 

bioenergy crops cultivated on large-scale plantations or marginal lands (Laurent et al., 

2015; Amaducci et al., 2016). Nevertheless, according to Fortier et al. (2010b), hybrid 

poplar buffers represent a sustainable landscape element to produce high amounts of 

biomass in the short-term. It was predicted by Christen & Dalgaard (2013) that the 

maximum biomass yield of bioenergy buffers, cultivated in soil without nutrient or water 

limitation as expected in buffer strips, can range from 11 to 16 Mg ha-1 y-1 for willow and 

poplar hybrids under 3-5 years SRC regime, respectively. Willow buffers e.g. in sandy loam 

soil with shallow groundwater showed values of biomass yield up to 17 Mg ha-1 y-1 (Ferrarini 

et al., 2016). Regarding herbaceous bioenergy buffers with miscanthus or switchgrass, only 

limited information is available (Tufekcioglu et al., 2003; Falloon et al., 2004; Kelly et al., 

2007; Gopalakrishnan et al., 2012) with a biomass yields on average of 4 and 12 Mg ha-1 y-1 

respectively at 2nd and 3rd year after establishment.  

Likewise biomass provision, data on energy yield in bioenergy buffers can be inferred from 

the literature on large-scale bioenergy plantations (e.g. Rettenmaier et al., 2010; Felten et 

al., 2013; Amaducci et al., 2016).  The heat and power generation can be the most 

promising option for energy and GHG savings (Rettenmaier et al., 2010).  



        Chapter 2   Bioenergy buffers: a state-of-the-art review 

 35 

Herbaceous rather than SRC woody crops showed the greater potential in terms of GHG 

and energy savings (Rettenmaier et al., 2010; Don et al., 2012; Monti et al., 2012), with 

miscanthus having a higher energy yield (GJ ha-1) than switchgrass (Boehmel et al., 2008). 

Among woody crops, poplar showed higher GHG savings but lower energy yields compared 

to willow (Heller et al., 2004; Aylott et al., 2008; Djomo et al., 2011). However, it is difficult 

to point out the most energy-efficient crop on bioenergy buffers, mainly because, to date, 

no direct comparison between herbaceous and woody bioenergy buffers has been carried 

out. Furthermore, it has to be taken into consideration that an energy balance for 

bioenergy buffers will differ from that for large-scale bioenergy plantations. This is because 

of the absence of fertilization and pesticide use as well as the potential different harvesting 

and chipping machinery which can be used in a linear restricted working space like that of 

bioenergy buffers (see sections 2.5 and 2.6). 

 

2.5 Considerations for implementation, establishment and management of bioenergy 

buffers 

Bioenergy buffers are linear landscape elements whose spatial arrangement on farmlands 

should be carefully designed (position, length and width) taking into consideration the 

following features of field margins: 1) soil characteristics (e.g. compaction and poor soil 

drainage); 2) micro topographic conditions (e.g. zones susceptible to waterlogging, shallow 

groundwaters, lowlands with high nutrient runoff loads); 3) presence of sub irrigation and 

drainage systems; 4) the boundary of field margins (Marshall & Moonen, 2002) that may 

encompass hedge bank, fences, farm track, waterways  (e.g. stream, channel, headlands) 

or natural ecological corridors such as windbreaks, hedge tree, grass or wildflower strips. 

All these features should be considered to avoid low germinability and soil crusting during 

the crop establishment phase (Lewandowski et al., 2003; Zimmerman et al., 2013a) and 

yield losses due to shading by existing natural riparian vegetation. On the other hand, 

surface and subsurface nutrient loads coming from adjacent fields (feature 2-4) might 

explain the high biomass yields observed in poplar and willow buffers respectively by 

Fortier et al. (2013b) and Ferrarini et al. (2016). However, the relevance of the hypothesis 

that soil N and P trapping mechanisms observed in bioenergy buffers (sections 2.4.2.1 and 

2.4.2.2) can be considered a valuable natural fertilization has to be fully tested yet. Another 

potential benefit on yields, especially for willow buffers, might be the presence of a shallow 

groundwater (Jackson & Attwood, 1996).   

Since no fertilisation or irrigation is foreseen, the main management practice on 

established bioenergy buffers is biomass harvesting. Harvesting time, especially for 

herbaceous crops, can drastically affect biomass quality and the net energy yield as a 

consequence (Lewandowski & Heinz 2003).  
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Delaying harvest after killing frost has been strongly recommended to minimize mineral 

concentrations of harvested biomass for combustion (Adler et al., 2006; Monti et al., 2008). 

In addition, harvesting bioenergy buffers in late winter is optimal as it favours plant nutrient 

recycling (Wilson et al., 2013), reduces soil GHG emissions (Hudiburg et al., 2015), increases 

abscised leaf C input into the soil (Amougou et al., 2012; Woo et al., 2014) and N-P runoff 

retention (Lee et al., 1998) and it enhances the positive role of bioenergy buffers on 

biodiversity (Dauber et al., 2010).  

In addition to the site-specific features of field margins discussed above, Christen & 

Dalgaard (2013) reported other factors that can affect the implementation of bioenergy 

buffers: yield target, harvesting technology, local markets, farmer personal preferences 

and priorities on ES provision. Related to the latter factor, an interesting option for the 

implementation of bioenergy buffers comes from buffer strips that were made mandatory 

for many EU member states under the EU Water Framework Directive (EC 2000/60). On 

this regard, the so called buffer scenario “High energy yield buffers on very low slopes” as 

proposed by Christen & Dalgaard (2013) might help to promote bioenergy buffers within 

intensively managed agricultural landscapes. On flat farmlands, bioenergy buffers can be 

designed along waterways as wide as national recommendations (5-10 m) (Figure 2.1C-E). 

This would allow the mechanisation of harvest operations, while simultaneously providing 

biomasses for energy purposes (section 2.4.5) and sustaining a multiple ES provision (Figure 

2.5). 

 

2.6 Biomass supply chain of bioenergy buffers 

When designing and managing bioenergy buffers special attention should be devoted to 

the logistic constraints, from biomass harvest to transport (Figure 2.6), that could represent 

a major barrier for a sustainable exploitation of the bioenergy buffers. The main constraint 

to biomass logistics on a bioenergy buffer is the presence of an adjacent arable field 

(Figures 2.1 b-e). Several studies have reviewed and modelled the different logistics 

constrains for large-scale bioenergy plantations (Allen et al., 1998; Smeets et al., 2009; Gold 

& Seuring, 2011; Bravo et al., 2012; Rizzo et al., 2014). However, to our knowledge, no 

studies have been carried out on the logistics issues related to bioenergy buffers. 

Hereinafter the potential different logistic features between large-scale bioenergy 

plantations and bioenergy buffers are discussed. Particular attention is given to search for 

the opportunities (e.g. coexistence of logistic operations for food and bioenergy crops 

within the same farmland) and the potential shortcomings (e.g. implications on fossil fuels 

consumption from harvest and transport operations) coming from biomass logistic 

management in bioenergy buffers. 
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  2.6.1 Harvest and biomass collection  

Given the linear spatial arrangement of bioenergy buffers, the following two bottlenecks 

regarding harvesting and collecting phases are identified: 

    i) Bioenergy buffer's width. A buffer width of 5-10 meters (mandatory for buffer strips in 

many EU countries) strongly affects the working capacity of harvest machineries. Biomass 

collection and harvest operations are hampered by the restricted working space along 

narrow bioenergy buffers. Specific machineries should be selected or designed to 

overcome this problem.  

For example, if the harvest and collection of switchgrass and miscanthus buffers is 

performed by using the single-pass system proposed in Martelli & Bentini (2015), the 

biomass might be simultaneously shredded and baled. With this system the number of 

passages is reduced and with it the operating costs and working time. Concerning woody 

SRC crops, the use of a self-propelled chopper during harvesting operations proved to be a 

valuable option (Verani et al., 2010; Costa et al., 2014). Nevertheless, this method has still 

to be tested on a bioenergy buffer scenario. 

    ii) Presence of obstacles within inter-field road network. Elements of discontinuity within 

farmlands such as streams, channels, headlands, farm tracks, fences and hedge banks can 

interrupt the continuity of the bioenergy buffers network. An increase in buffers 

fragmentation will inevitably increase harvest operation times, fossil fuel consumption and 

therefore the operating costs. For this reason, a suitable inter-field road network is 

essential to minimize agricultural machineries downtime and consequently optimize 

logistics field operations. The presence of elements of discontinuity can be considered as 

one of the main logistics constraints that might affect the implementation of bioenergy 

buffers even at field scale. An optimal spatial configuration of arable field margins 

converted to bioenergy crops has to be matched with the existing inter-field road network 

in order to minimize the logistics constraints that can derive from the presence of elements 

of discontinuity. 

  2.6.2 Biomass storage  

The choice of the correct storage method and location for the storage facilities is 

fundamental to minimize biomass quality degradation, dry matter losses and costs (Allen 

et al., 1998). For example, biomass bales can be stored in stacks in open-fields using 

headland uncovered or covered with plastic (Huisman et al., 1997; Gold & Seuring, 2011), 

or temporarily stored inside specific farm structures (e.g. sheds) or in one or more satellite 

storage facilities (SSF). Under bioenergy buffers scenario, storage methodology strongly 

depends on the following factors: linear spatial arrangement and accessibility of bioenergy 

buffers, the presence of inter-field roads of sufficient dimensions to allow a correct biomass 

loading, and availability of intermediate storage sites or farm sheds close to the power 
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plant.  The possibility of using SSF or farm sheds (Figure 2.6-C1) as biomass storage facilities 

would be a reasonable solution in narrow bioenergy buffers to avoid the storage in the 

open-field given the restricted working space. These storage solutions have the 

disadvantage that biomass has to be transported twice by road transport, resulting in 

additional travel costs (Allen et al., 1998) and higher fossil fuel consumptions with respect 

to a system in which there is only one road transport (e.g.,  from the biomass supply source 

to the power plant station). 

  2.6.3 Biomass transport 

The choice of a certain storage solution can affect 

transportation options. Transport operations start from in-

field biomass loading but how the biomass is loaded are 

dependent on the choice of storage solution (Mafakheri & 

Nasiri, 2014). The choice of transport vehicles is also related 

to travelling distance, biomass density, storage sites 

accessibility, carrying capacity and travelling speed (Perpiñá 

et al., 2009; Gold & Seuring, 2011). Both agricultural 

machineries (e.g. tractor-trailer combination) and 

conventional trucks can be used in large-scale bioenergy 

plantations for biomass on-field loading. In bioenergy buffers, 

however, the working space for trucks manoeuvring is 

reduced and therefore the use of agricultural machineries is 

preferable (Figure 2.6-B), also to prevent physical damages to 

the adjacent fields. Two transport options can be considered 

in bioenergy buffers (Figure 2.6-C). If bioenergy buffers are 

located far away from the biomass power plant, biomass can 

be transported to SSF or farm sheds using agricultural 

machineries, and subsequently to the biomass power plant 

using conventional trucks (Figure 2.6-C1).  On the contrary, if 

bioenergy buffers are close to the power plant, transport 

operations should be preferably performed using agricultural 

machineries (Figure 2.6-C2). By using this options biomass is 

directly stored in sheds at the biomass power plant. 
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2.7 Concluding remarks and future research perspectives 

Our impact assessment indicated that the implementation of bioenergy buffers within 

farmlands can sustain the provision of multiple ecosystem services such as climate, water 

quality and biodiversity regulation, while producing biomass for bioenergy purposes (Figure 

2.5). This highlights that the integration of perennial bioenergy buffers into agricultural 

landscapes would bring important long-term benefits for the functioning of agroecosytems 

(Glover et al., 2010; Young-Mathews et al., 2010; Rowe et al., 2013; Werling et al., 2013). 

The impacts of bioenergy buffers on ES provision were found to be strongly dependent on 

previous land use. The conversion of intensively managed croplands to bioenergy buffers 

is preferable for the provision of multiple ES compared to grassland conversion. Our 

analyses also suggest that herbaceous bioenergy buffers of switchgrass or miscanthus had 

more positive impacts on several ES in the long-term than woody SRC buffers when 

established on previous croplands. However, during the first crop establishment phases (0-

3 years), the impacts on climate and water quality regulation services remain poorly 

understood. This is probably due to initial soil disturbance and for the time required until a 

new equilibrium is reached in the plant-soil system. Three main research gaps were 

identified in bioenergy buffers related to the following biogeochemical processes: 1) 

denitrification process in soil and litter and derived-soil N2O emissions; 2) P 

biogeochemistry responsible for dissolved P delivery to surface waters; and 3) the 

magnitude of soil carbon losses caused by the priming effect after bioenergy crop 

establishment on previous land uses and its contribution to the carbon balance. How long 

it takes after establishment and which are the soil/management conditions for making 

bioenergy buffers an efficient C-stocking, N-removing and P-trapping land use practice are 

interesting research questions to be tested in future. 

In most of the cases, reviewing ecological, productive and logistic issues of bioenergy 

buffers, as noted also by Stutter et al. (2012) and Christen and Dalgaard (2013) means to 

transfer knowledge and findings from different experimental conditions (e.g. from natural 

riparian zones or large-scale bioenergy cultivations) to managed buffers for biomass 

production (e.g. see the low percentages of effects on some ES found for bioenergy buffers 

in Figure 2.2 a-c). Thus transferring this knowledge at broader scales, like watershed or 

administrative regions, would mean ending up within the existing policy debate in 

supporting the achievement of multiple economic and environmental benefits (Dale et al., 

2016). On this regard, two interesting options for the implementation of bioenergy buffers 

could be: 1) their inclusion as part of the Ecological Focus Area (EFA) regulated in the 2014-

2020 EU Common Agricultural Policy and 2) their implementation as mandatory buffer 

strips under the EU Water Framework Directive (EC 2000/60).  
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From the implementation of bioenergy buffers, there would be also perspectives for 

increasing landscape connectivity as demanded by “EU biodiversity strategy to 2020” 

(Bourke et al., 2014), “good ecological status” demanded by EU water framework directive 

(Balana et al., 2012) and address EU GHG savings policies (Falloon et al., 2004).  

In the diverse European farming landscapes, trade-offs and synergies between a successful 

implementation and multiple ES provision may vary depending on farmer’s acceptance, 

legislative restrictions, local energy demand, biomass yield potential and biomass logistic 

issues. Despite promising findings were found regarding potential yields of bioenergy 

buffers (Gopalakrishnan et al., 2012; Christen & Dalgaard, 2013), several logistic factors 

could limit the success of biomass harvest and collection operations along field margins 

(sections 2.6.1 and 2.6.2).  Regarding biomass management and logistics, the limited 

working space for the farm machinery operations may be considered as the main 

shortcoming for bioenergy buffers compared to large-scale bioenergy crop cultivation. 

Intra- and inter-farm spatial fragmentation of biomass supply areas may increase 

environmental and economic costs related to biomass collection and transport to the 

power plant. To address these logistic constrains, the combination of Life Cycle Assessment 

and multi-criteria GIS-based approaches can be useful to explore the environmental 

advantages and logistic shortcomings derived from managing bioenergy buffers in 

fragmented mosaic of biomass supply areas within agricultural landscapes.   

Addressing the logistic issues together with an optimal allocation of bioenergy buffers into 

agricultural landscapes, could help to develop a scientific debate over new sustainable 

bioenergy land use scenarios. Future work will be fundamental to prove whether bioenergy 

buffers are able to contribute to bioenergy demand and to optimize the trade-offs between 

multiple ES provision, land-use conflicts and farmer incomes within limited land resources. 
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2.8 Supporting information 

2.8.1 Impact assessment (IA) methodology 

The objective of the IA is to provide the state of the art knowledge of the impacts on 

ecosystem services (ES) provision associated with different land use transitions to 

bioenergy buffers (cropland or grassland conversion to woody or herbaceous buffers). 

These impacts were evaluated in the short-term (0-3 years; from soil preparation to crop 

establishment) and in the long-term (15-20 years; considering the whole bioenergy crop 

lifespan). The IA followed three steps:  

1)     Extraction from the literature of the effects on ES: following an inductive 

approach, the IA was carried out by first performing an iterative process based on 

category building and extraction of the number of effects on ES (Figure 2.2 – impact 

assessment) and by finally attributing effects to their own category. The effects 

were extracted from the collected papers at the step 3 and attributed to the 

following five categories (Table S2.2): 

 Ecosystem service (from MEA, 2003;Dominati et al., 2010): “Soil C 

sequestration”, “GHG emissions”, “Groundwater quality N regulation”, 

“Nutrient runoff and soil erosion regulation”, “Soil health and belowground 

biodiversity”, “Aboveground biodiversity and pest regulation”, “Biomass 

provision and energy yield”; 

 Land use replaced: “cropland” or “grassland”; 

 Bioenergy buffer type: “herbaceous buffer” or “woody buffers”; 

 Impact period: “short-term impact” or “long-term impact”;  

 Direction of the impact: “positive” or “negative”. Here the “neutral” effects 

were considered as “negative”. Only the effects that included statistically 

significant or non-significant result, as tested in the experimental part of the 

paper were used as well as relevant findings coming from systematic 

reviews.  

 

2)    Impact scoring: an impact scoring system was applied for each land use transition 

x bioenergy buffer type x impact period combination to determine the direction of 

the impact on the provision of each ES considered in this study as well as its level 

of confidence. The impact matrix resulted in a total of 56 combinations (7 

ecosystem services x 2 land use replaced x 2 bioenergy buffer types x 2 impact 

periods). For each of these combinations, an impact score (IS) was calculated by 

dividing the relative frequencies of the positive and negative effects recorded 

(Table S2.1).  
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The IS was calculated as:   

                                    IS𝑖,𝐿 =  𝑁+ 𝑁𝑡𝑜𝑡⁄
𝑁− 𝑁𝑡𝑜𝑡⁄           

IS > 1.5 positive effect
0.5 ≤ IS ≥ 1 uncertain effect

IS < 0.5 negative effect
                (Eq. S2.1) 

 

where i is a particular ES, L the specific land use transition, N+ and N- are the 

numbers of positive or negative effects extracted from the literature for that 

specific i and L, respectively, and Ntot is the sum of effects recorded (Ntot=N+ + N-).  

To indicate the direction of the impact two different thresholds for ISi,L were 

selected (1.5 and 0.5). If IS is higher than 1.5 indicates that the transition to 

bioenergy buffer increased the ES provision compared to the reference land use. 

This means that for a specific land use transition the number of positive effects 

found in the literature was consistently higher than the number of negative effects. 

For example, when assessing the long-term impacts of herbaceous bioenergy 

buffers on “aboveground biodiversity and pest regulation” service, 9 out of 11 total 

effects were reported as positive (N+=0.82, N- =0.18). Hence, the relative IS value of 

4.55 can be considered as a clear indication of a positive effect. When only positive 

effects were recorded (N+=100), a value of 0.01 for N-  was used to avoid getting an 

infinite value for ISi,L; thus an ISi,L  of 100 was obtained and it represents a positive 

effect with a high level of confidence. On the contrary, if IS is lower than 0.5 

indicates that the land use transition affected negatively the ES provision. This is 

the case of the short-term impact of herbaceous buffers on soil C sequestration 

(Table S2.1). For IS values ranging between 0.5 and 1, the effect was considered as 

negative but uncertain, reflecting a low level of confidence on the ES provision 

because contrasting findings reported in literature. Positive effects with a low level 

of confidence were instead attributed to IS ranging from 1.5 to 1.  

3)     Creation of the Impact Matrix: to synthesize the IS obtained for each land use 

transition and bioenergy buffer type combination, an impact matrix was created as 

main data mining tool (Figure 2.5). The main goal of the impact matrix is to easily 

identify where the impact on multiple ES provision would most probably be placed 

with regard to different land use transition to bioenergy buffers. The IS used to 

create the impact matrix are reported in Table S2.1.   
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Table S2.1 Impact scores (bold numbers) calculated applying the Eq. S2.1 to the list of effects recorded 

from the literature review (Table S2.2). The structure of the matrix is the same to that used for the impact 

matrix (Figure 2.5). On the top of each cell, the relative frequencies of the positive (+) and negative (-) 

effects are reported.  
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Table S2.2 List of studies used in the impact assessment of bioenergy buffers on ecosystem services provision. 
 

Reference Ecosystem service (ES) 
Land use 
replaced 

Bioenergy buffer type 
(width) 

Specific crop type Impact period Country 
Direction of   
the impact 

(Agostini et al., 2015) Soil C sequestration cropland herbaceous 
switchgrass/ 
miscanthus 

long-term 
Europe/ 

USA 


(Asbjornsen et al., 2012) Soil C sequestration cropland herbaceous herbaceous crops long-term USA 

(Bach & Hofmockel, 2015) Soil C sequestration cropland herbaceous switchgrass long-term USA 

(Garten & Wullschleger, 2000) Soil C sequestration cropland herbaceous switchgrass long-term USA 

(Garten, 2012) Soil C sequestration cropland herbaceous switchgrass long-term USA 

(Harris et al., 2015) Soil C sequestration cropland herbaceous 
switchgrass/ 
miscanthus 

long-term Global 

(Holland et al., 2015) Soil C sequestration cropland herbaceous herbaceous crops long-term global 

(Milner et al., 2015) Soil C sequestration cropland herbaceous miscanthus long-term global 

(Monti et al., 2012) Soil C sequestration cropland herbaceous switchgrass long-term global 

(Poeplau & Don, 2013) Soil C sequestration cropland herbaceous miscanthus long-term Europe 

(Schmer et al., 2011) Soil C sequestration cropland herbaceous switchgrass long-term USA 

(Tiemann & Grandy, 2014) Soil C sequestration cropland herbaceous 
switchgrass/ 
miscanthus 

long-term USA 

(van der Hilst et al., 2012) Soil C sequestration cropland herbaceous miscanthus long-term 
Netherla

nd 


(Wienhold et al., 2013) Soil C sequestration cropland herbaceous switchgrass long-term USA 

(Lemus & Lal, 2005) Soil C sequestration cropland herbaceous herbaceous crops long-term  global 

(Amougou et al., 2012) Soil C sequestration cropland herbaceous miscanthus 
long-term   

(4-5y) 
France 

(Chimento et al., 2016) Soil C sequestration cropland herbaceous 
switchgrass/ 
miscanthus 

long-term (6y) Italy 

(Cattaneo et al., 2014a) Soil C sequestration cropland herbaceous miscanthus long-term  (9y) Italy 

(Felten & Emmerling, 2012) Soil C sequestration cropland herbaceous miscanthus 
long-term 

(15y) 
Germany 

(Hansen et al., 2004) Soil C sequestration cropland herbaceous miscanthus 
long-term 

(16y) 
Denmark 

(Bonin & Lal, 2012a) Soil C sequestration cropland herbaceous switchgrass long-term (7y) USA 
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(Poeplau & Don, 2013) Soil C sequestration cropland herbaceous miscanthus short-term Europe 

(Anderson-Teixeira et al., 2013) Soil C sequestration cropland herbaceous 
switchgrass/ 
miscanthus 

short-term  
(1.5-3y) 

USA 

(Zimmerman et al., 2012) Soil C sequestration cropland herbaceous miscanthus 
short-term  

(2-3y) 
Ireland 

(Zimmerman et al., 2013b) Soil C sequestration cropland herbaceous miscanthus 
short-term 

(3y) 
Ireland 

(Felten & Emmerling, 2012) Soil C sequestration cropland herbaceous miscanthus 
short-term 

(2.5y) 
Germany 

(Meehan et al., 2013) Soil C sequestration cropland 
herbaceous buffer 

(100m) 
herbaceous crops long-term USA 

(Falloon et al., 2004) Soil C sequestration cropland 
herbaceous buffer (2-6-

20m) 
herbaceous crops long-term UK 

(Tufekcioglu et al., 1999) Soil C sequestration cropland herbaceous buffer (7m) switchgrass long-term USA 

(Tufekcioglu et al., 2003) Soil C sequestration cropland herbaceous buffer (7m) switchgrass long-term USA 

(Agostini et al., 2015) Soil C sequestration cropland woody poplar, willow long-term 
Europe/ 

USA 


(Harris et al., 2015) Soil C sequestration cropland woody poplar, willow long-term Global 

(Holland et al., 2015) Soil C sequestration cropland woody SRC crops long-term global 

(Milner et al., 2015) Soil C sequestration cropland woody SRC crops long-term global 

(Walter et al., 2015) Soil C sequestration cropland woody poplar, willow long-term Europe 

(Lemus & Lal, 2005) Soil C sequestration cropland woody SRC crops long-term  global 

(Kahle et al., 2010) Soil C sequestration cropland woody poplar, willow 
long-term 

(15y) 
Germany 

(Arevalo et al., 2011) Soil C sequestration cropland woody poplar 
long-term  

(3-11y) 
Canada 

(Chimento et al., 2016) Soil C sequestration cropland woody poplar, willow long-term (6 y) Italy 

(Bonin & Lal, 2012b) Soil C sequestration cropland woody willow long-term (7y) USA 

(Abou Jaoudé et al., 2010) Soil C sequestration cropland woody poplar long-term (9y) Italy 

(Arevalo et al., 2011) Soil C sequestration cropland woody poplar 
short-term  

(0-3y) 
Canada 

(Berhongaray & Ceulemans, 
2015) 

Soil C sequestration cropland woody poplar, willow 
short-term (2 

y) 
Belgium 

(Falloon et al., 2004) Soil C sequestration cropland woody buffer (2,6,20m) tree rows long-term UK 
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(Tufekcioglu et al., 1999) Soil C sequestration cropland woody buffer (9m) poplar long-term USA 

(Tufekcioglu et al., 2003) Soil C sequestration cropland woody buffer (9m) poplar long-term USA 

(Harris et al., 2015) Soil C sequestration grassland herbaceous 
switchgrass/ 
miscanthus 

long-term global 

(Holland et al., 2015) Soil C sequestration grassland herbaceous herbaceous crops long-term global 

(Milner et al., 2015) Soil C sequestration grassland herbaceous miscanthus long-term global 

(Poeplau & Don, 2013) Soil C sequestration grassland herbaceous miscanthus long-term Europe 

(Richter et al., 2015) Soil C sequestration cropland herbaceous miscanthus 
long-term 

(14y) 
UK 

(Donnelly et al., 2011) Soil C sequestration grassland herbaceous miscanthus 
long-term  

(4-15y) 
Ireland 

(Zatta et al., 2014) Soil C sequestration grassland herbaceous miscanthus long-term (6y) UK 

(Poeplau & Don, 2013) Soil C sequestration grassland herbaceous miscanthus short-term Europe 

(Ma et al., 2000a) Soil C sequestration grassland herbaceous switchgrass 
short-term  

(0-1y) 
USA 

(Donnelly et al., 2011) Soil C sequestration grassland herbaceous miscanthus 
short-term  

(0-3y) 
Ireland 

(Ma et al., 2000b) Soil C sequestration grassland herbaceous switchgrass 
short-term  

(0-3y) 
USA 

(Ma et al., 2000b) Soil C sequestration grassland herbaceous switchgrass 
short-term  

(2-3y) 
USA 

(Zimmerman et al., 2012) Soil C sequestration grassland herbaceous miscanthus 
short-term  

(2-3y) 
Ireland 

(Zimmerman et al., 2013b) Soil C sequestration grassland herbaceous miscanthus 
short-term 

(3y) 
Ireland 

(Harris et al., 2015) Soil C sequestration grassland woody poplar, willow long-term global 

(Holland et al., 2015) Soil C sequestration grassland woody SRC crops long-term global 

(Milner et al., 2015) Soil C sequestration grassland woody SRC crops long-term global 

(Walter et al., 2015) Soil C sequestration grassland woody poplar, willow long-term Europe 

(Ens et al., 2013) Soil C sequestration grassland woody willow 
short-term   

(0-3y) 
Canada 

(Young-Mathews et al., 2010) Soil C sequestration grassland woody buffer SRC crops long-term USA 

(Fortier et al., 2010a) Soil C sequestration grassland woody buffer  (4.5 m) poplar long-term (6y) Canada 
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(Fortier et al., 2013c) Soil C sequestration grassland woody buffer  (4.5 m) poplar long-term (9y) Canada 

(Davis et al., 2010) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

 long-term USA 

(Harris et al., 2015) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

long-term Global 

(Anderson-Teixeira et al., 2012) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

long-term Global 

(Creutzig et al., 2014) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

long-term Global 

(Don et al., 2012) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

long-term Europe 

(Monti et al., 2012) GHG emissions cropland herbaceous switchgrass long-term global 

(Smeets et al., 2009) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

long-term Europe 

(van der Hilst et al., 2012) GHG emissions cropland herbaceous miscanthus long-term 
Netherla

nds 


(Felten et al., 2013) GHG emissions cropland herbaceous miscanthus long-term  Germany 

(Drewer et al., 2012) GHG emissions cropland herbaceous miscanthus 
long-term   

(4-6y) 
USA 

(Hudiburg et al., 2015) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

long-term  
 (5-15y) 

USA 

(Gauder et al., 2012) GHG emissions cropland herbaceous willow long-term (7y) Germany 

(Zeri et al., 2011) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

short-term   
(0-3y) 

USA 

(Davis et al., 2010) GHG emissions cropland herbaceous miscanthus 
short-term  

(0-3 y) 
USA 

(Smith et al., 2013) GHG emissions cropland herbaceous 
switchgrass/ 
miscanthus 

short-term  
(0-3y) 

USA 

(Anderson-Teixeira et al., 2013) GHG emissions cropland herbaceous 
miscanthus, 
switchgrass 

short-term  
(1.5-3y) 

USA 

(Bradley et al., 2011) GHG emissions cropland herbaceous buffer 
switchgrass/ 
miscanthus 

short-term  Canada 

(Meehan et al., 2013) GHG emissions cropland 
herbaceous buffer 

(100m) 
herbaceous crops long-term USA 

(Gopalakrishnan et al., 2012) GHG emissions cropland 
herbaceous buffer 

(50m) 
miscanthus  long-term USA 

(Don et al., 2012) GHG emissions cropland woody poplar, willow long-term Europe 
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(Harris et al., 2015) GHG emissions cropland woody poplar, willow long-term Global 

(Gelfand et al., 2013) GHG emissions cropland woody poplar long-term USA 

(Drewer et al., 2012) GHG emissions cropland woody willow 
long-term  

 (4-6y) 
USA 

(Gauder et al., 2012) GHG emissions cropland woody willow long-term (7y) Germany 

(Zona et al., 2013b) GHG emissions cropland woody poplar 
short-term  

(0-1y)  
Belgium  

(Sabbatini et al., 2015) GHG emissions cropland woody poplar 
short-term  

(0-2y) 
Italy 

(Zona et al., 2013a) GHG emissions cropland woody poplar 
short-term  

(0-2y) 
Belgium 

(Abou Jaoudé et al., 2010) GHG emissions cropland woody poplar short-term  Italy 

(Harris et al., 2015) GHG emissions grassland herbaceous 
switchgrass/ 
miscanthus 

long-term Global 

(Roth et al., 2013) GHG emissions grassland herbaceous miscanthus 
long-term 

(14y) 
Ireland 

(Donnelly et al., 2011) GHG emissions grassland herbaceous miscanthus 
long-term  

(4-15y) 
Ireland 

(Roth et al., 2013) GHG emissions grassland herbaceous miscanthus 
short-term 

(1y) 
Ireland 

(Harris et al., 2015) GHG emissions grassland woody poplar, willow long-term Global 

(Palmer et al., 2014) GHG emissions grassland woody poplar, willow long-term USA 

(Palmer et al., 2014) GHG emissions grassland woody poplar, willow short-term USA 

(Nikièma et al., 2012) GHG emissions grassland woody poplar, willow 
short-term 

(1y) 
USA 

(Holland et al., 2015) Groundwater N regulation cropland herbaceous herbaceous crops long-term global 

(Milner et al., 2015) Groundwater N regulation cropland herbaceous miscanthus long-term global 

(Powers et al., 2011) Groundwater N regulation cropland herbaceous switchgrass long-term USA 

(van der Hilst et al., 2012) Groundwater N regulation cropland herbaceous miscanthus long-term 
Netherla

nd 


(McIsaac et al., 2010) Groundwater N regulation cropland herbaceous 
switchgrass/ 
miscanthus 

long-term  
(3-6y) 

USA 

(Lesur et al., 2014) Groundwater N regulation cropland herbaceous miscanthus 
short-term  

(0-3y) 
France 

(Mayer et al., 2007) Groundwater N regulation cropland herbaceous buffer herbaceous crops long-term global 
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(Zhou et al., 2010) Groundwater N regulation cropland herbaceous buffer  herbaceous crops 
short-term   

(0-3y) 
USA 

(van Beek et al., 2007) Groundwater N regulation cropland 
herbaceous buffer 

(3.5m) 
herbaceous crops 

long-term  
(4-5 y) 

Netherla
nd 



(Gopalakrishnan et al., 2012) Groundwater N regulation cropland 
herbaceous buffer 

(50m) 
switchgrass/ 
miscanthus 

long-term USA 

(Noij et al., 2012) Groundwater N regulation cropland herbaceous buffer (5m) herbaceous crops long-term 
Netherla

nd 


(Balestrini et al., 2011) Groundwater N regulation cropland 
herbaceous/woody 

buffer 
mixed buffer long-term Italy 

(Christen & Dalgaard, 2013) Groundwater N regulation cropland woody poplar, willow long-term Europe 

(Holland et al., 2015) Groundwater N regulation cropland woody SRC crops long-term global 

(Milner et al., 2015) Groundwater N regulation cropland woody SRC crops long-term global 

(Aronsson et al., 2000) Groundwater N regulation cropland woody willow long-term (9 y) Sweden 

(Gielen et al., 2005) Groundwater N regulation cropland woody willow 
short-term 

(3y) 
UK 

(Mayer et al., 2007) Groundwater N regulation cropland woody buffer SRC crops long-term global 

(Gumiero et al., 2011) Groundwater N regulation cropland woody buffer (10m) willow long-term Italy 

(Haycock & Pinay, 1993) Groundwater N regulation cropland woody buffer (20m) poplar long-term UK 

(Young & Briggs, 2005) Groundwater N regulation cropland woody buffer (3.5m) willow short-term  USA 

(Holland et al., 2015) Groundwater N regulation grassland herbaceous herbaceous crops long-term global 

(Milner et al., 2015) Groundwater N regulation grassland herbaceous miscanthus long-term global 

(Donnelly et al., 2011) Groundwater N regulation grassland herbaceous miscanthus 
long-term  

(4-15y) 
Ireland 

(Donnelly et al., 2011) Groundwater N regulation grassland herbaceous miscanthus 
short-term  

(0-3y) 
Ireland 

(Milner et al., 2015) Groundwater N regulation grassland herbaceous miscanthus 
short-term  

(0-3y) 
UK 

(Noij et al., 2012) Groundwater N regulation grassland herbaceous buffer (5m) herbaceous crops long-term 
Netherla

nd 


(Holland et al., 2015) Groundwater N regulation grassland woody SRC crops long-term global 

(Milner et al., 2015) Groundwater N regulation grassland woody SRC crops long-term global 

(Nikièma et al., 2012) Groundwater N regulation grassland woody poplar, willow 
short-term 

(1y) 
USA 



 

 50 

(Asbjornsen et al., 2012) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous herbaceous crops long-term USA 

(Kort et al., 1998) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous herbaceous crops long-term Global 

(Milner et al., 2015) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous miscanthus long-term global 

(Parish et al., 2012) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous switchgrass long-term USA 

(Powers et al., 2011) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous switchgrass long-term USA 

(Sarkar & Miller, 2014) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous switchgrass long-term USA 

(van der Hilst et al., 2012) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous miscanthus long-term 

Netherla
nds 



(Sarkar & Miller, 2014) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous switchgrass short-term USA 

(Mayer et al., 2007) 
Nutrient runoff and soil 

erosion regulation 
cropland herbaceous buffer herbaceous crops long-term global 

(Sheppard et al., 2006) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous buffer herbaceous crops long-term Canada 

(Stutter et al., 2009) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous buffer herbaceous crops short-term UK 

(Eghball et al., 2000) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer 
(0.75m) 

switchgrass long-term (6y) USA 

(Blanco-Canqui et al., 2006) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer 
(0.7m) 

switchgrass long-term Mexico 

(Meehan et al., 2013) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer 
(100m) 

herbaceous crops long-term USA 

(Sanderson et al., 2001) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer 
(16m) 

Switchgrass short-term USA 

(Rachman et al., 2008) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous buffer (1m) switchgrass long-term USA 

(Dabney et al., 2009) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous buffer (1m) miscanthus 

long-term  
(0-13 y) 

USA 

(Dabney et al., 2012) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous buffer (1m) switchgrass 

long-term  
(1-8 y) 

USA 

(Lee et al., 1998) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer 
(3,6m) 

switchgrass long-term  USA 

(Ssegane et al., 2015) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer 
(30m) 

switchgrass long-term USA 
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(Borin et al., 2005) 
Nutrient runoff and soil 

erosion regulation  
cropland 

herbaceous buffer (4-5 
m) 

herbaceous crops long-term Italy 

(Lee et al., 2003) 
Nutrient runoff and soil 

erosion regulation  
cropland herbaceous buffer (7m) switchgrass 

short-term 
(3y) 

USA 

(Christen & Dalgaard, 2013) 
Nutrient runoff and soil 

erosion regulation  
cropland woody poplar, willow long-term Europe 

(Kort et al., 1998) 
Nutrient runoff and soil 

erosion regulation  
cropland woody SRC crops long-term global 

(Milner et al., 2015) 
Nutrient runoff and soil 

erosion regulation  
cropland woody SRC crops long-term global 

(Mayer et al., 2007) 
Nutrient runoff and soil 

erosion regulation  
cropland woody buffer SRC crops long-term global 

(Schultz et al., 2004) 
Nutrient runoff and soil 

erosion regulation  
cropland woody buffer SRC crops long-term USA 

(Zaimes et al., 2004) 
Nutrient runoff and soil 

erosion regulation  
cropland woody buffer SRC crops long-term USA 

(Ssegane et al., 2015) 
Nutrient runoff and soil 

erosion regulation  
cropland woody buffer (30m) willow long-term USA 

(Milner et al., 2015) 
Nutrient runoff and soil 

erosion regulation  
grassland herbaceous miscanthus long-term global 

(Donnelly et al., 2011) 
Nutrient runoff and soil 

erosion regulation  
grassland herbaceous miscanthus 

long-term  
(4-15y) 

Ireland 

(Milner et al., 2015) 
Nutrient runoff and soil 

erosion regulation  
grassland woody SRC crops long-term global 

(Zaimes et al., 2004) 
Nutrient runoff and soil 

erosion regulation  
grassland woody buffer SRC crops long-term USA 

(Zaimes et al., 2004) 
Soil health and belowground 

biodiversity 
cropland herbaceous herbaceous crops long-term USA 

(Felten & Emmerling, 2011) 
Soil health and belowground 

biodiversity 
cropland herbaceous miscanthus long-term Germany 

(Liang et al., 2012) 
Soil health and belowground 

biodiversity 
cropland herbaceous switchgrass long-term USA 

(Liang et al., 2013) 
Soil health and belowground 

biodiversity 
cropland herbaceous switchgrass long-term USA 

(Mao et al., 2011) 
Soil health and belowground 

biodiversity 
cropland herbaceous 

switchgrass/ 
miscanthus 

short-term  
(0-2y) 

USA 

(Chauvat et al., 2014) 
Soil health and belowground 

biodiversity 
cropland herbaceous 

switchgrass/ 
miscanthus 

short-term  
(1-3y)  

France 

(Kallenbach & Grandy, 2015) 
Soil health and belowground 

biodiversity 
cropland herbaceous switchgrass 

short-term 
 (1.5-3y) 

USA 
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(Jesus et al., 2010) 
Soil health and belowground 

biodiversity 
cropland herbaceous switchgrass 

short-term (2 
y) 

USA 

(Hargreaves & Hofmockel, 2013) 
Soil health and belowground 

biodiversity 
cropland herbaceous switchgrass 

short-term 
(3y) 

USA 

(Stutter & Richards, 2012) 
Soil health and belowground 

biodiversity 
cropland herbaceous buffer switchgrass long-term UK 

(Udawatta et al., 2008) 
Soil health and belowground 

biodiversity 
cropland 

herbaceous buffer 
(4.5m) 

herbaceous crops long-term USA 

(Paudel et al., 2011) 
Soil health and belowground 

biodiversity 
cropland woody buffer poplar long-term USA 

(Udawatta et al., 2008) 
Soil health and belowground 

biodiversity 
cropland woody buffer (4.5m)  SRC crops long-term USA 

(Donnelly et al., 2011) 
Soil health and belowground 

biodiversity 
grassland herbaceous miscanthus 

short-term 
 (0-3y) 

Ireland 

(Kallenbach & Grandy, 2015) 
Soil health and belowground 

biodiversity 
grassland herbaceous switchgrass 

short-term 
 (1.5-3y) 

USA 

(Paudel et al., 2011) 
Soil health and belowground 

biodiversity 
grassland woody buffer poplar long-term USA 

(Asbjornsen et al., 2012) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous herbaceous crops long-term USA 

(Dauber et al., 2010) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous 

miscanthus, 
switchgrass  

long-term Global 

(Haughton et al., 2009) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous miscanthus long-term UK 

(Holland et al., 2015) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous herbaceous crops long-term global 

(Immerzeel et al., 2014) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous herbaceous crops long-term global 

(Milner et al., 2015) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous miscanthus long-term global 

(Robertson et al., 2012) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous switchgrass long-term USA 

(Semere & Slater, 2007) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous miscanthus long-term UK 

(van der Hilst et al., 2012) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous miscanthus long-term 

Netherla
nd 



(Werling et al., 2013) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous switchgrass long-term USA 

(Meehan et al., 2012) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous herbaceous crops short-term USA 
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(Zangerl et al., 2013) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous 

switchgrass/ 
miscanthus 

short-term  USA 

(Bourke et al., 2014) 
Aboveground biodiversity 

and pest regulation 
cropland herbaceous miscanthus 

short-term 
 (2-3y) 

Ireland 

(Meehan et al., 2013) 
Aboveground biodiversity 

and pest regulation 
cropland 

herbaceous buffer 
(100m) 

herbaceous crops long-term USA 

(Christen & Dalgaard, 2013) 
Aboveground biodiversity 

and pest regulation 
cropland woody poplar, willow long-term Europe 

(Dauber et al., 2010) 
Aboveground biodiversity 

and pest regulation 
cropland woody poplar, willow long-term Global 

(Haughton et al., 2009) 
Aboveground biodiversity 

and pest regulation 
cropland woody willow long-term UK 

(Holland et al., 2015) 
Aboveground biodiversity 

and pest regulation 
cropland woody SRC crops long-term global 

(Immerzeel et al., 2014) 
Aboveground biodiversity 

and pest regulation 
cropland woody SRC crops long-term global 

(Milner et al., 2015) 
Aboveground biodiversity 

and pest regulation 
cropland woody SRC crops long-term global 

(Rowe et al., 2010) 
Aboveground biodiversity 

and pest regulation 
cropland woody willow long-term UK 

(Rowe et al., 2013) 
Aboveground biodiversity 

and pest regulation 
cropland woody willow long-term UK 

(Campbell et al., 2012) 
Aboveground biodiversity 

and pest regulation 
cropland woody willow 

short-term 
 (1-3y)  

USA 

(Dauber et al., 2010) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous 

switchgrass/ 
miscanthus 

long-term Global 

(Holland et al., 2015) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous herbaceous crops long-term global 

(Immerzeel et al., 2014) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous herbaceous crops long-term global 

(Milner et al., 2015) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous miscanthus long-term global 

(Donnelly et al., 2011) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous miscanthus 

long-term  
(4-15y) 

Ireland 

(Donnelly et al., 2011) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous miscanthus 

short-term 
 (0-3y) 

Ireland 

(Bourke et al., 2014) 
Aboveground biodiversity 

and pest regulation 
grassland herbaceous miscanthus 

short-term  
(2-3y) 

Ireland 

(Dauber et al., 2010) 
Aboveground biodiversity 

and pest regulation 
grassland woody poplar, willow long-term Global 
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(Holland et al., 2015) 
Aboveground biodiversity 

and pest regulation 
grassland woody SRC crops long-term global 

(Immerzeel et al., 2014) 
Aboveground biodiversity 

and pest regulation 
grassland woody SRC crops long-term global 

(Milner et al., 2015) 
Aboveground biodiversity 

and pest regulation 
grassland woody SRC crops long-term global 

(Young-Mathews et al., 2010) 
Aboveground biodiversity 

and pest regulation 
grassland woody buffer SRC crops long-term USA 

(Lewandowski et al., 2003) 
Biomass and energy 

provisioning 
cropland herbaceous 

switchgrass/ 
miscanthus 

long-term 
USA/ 

Europe 


(Lewandowski & Heinz, 2003) 
Biomass and energy 

provisioning 
cropland herbaceous miscanthus long-term Europe 

(Monti et al., 2012) 
Biomass and energy 

provisioning 
cropland herbaceous switchgrass long-term global 

(Parish et al., 2012) 
Biomass and energy 

provisioning 
cropland herbaceous switchgrass long-term USA 

(Wilson et al., 2013) 
Biomass and energy 

provisioning 
cropland herbaceous switchgrass long-term USA 

(Asbjornsen et al., 2012) 
Biomass and energy 

provisioning  
cropland herbaceous herbaceous crops long-term USA 

(Guretzky et al., 2010) 
Biomass and energy 

provisioning  
cropland herbaceous switchgrass long-term USA 

(Heaton et al., 2004) 
Biomass and energy 

provisioning  
cropland herbaceous 

switchgrass/ 
miscanthus 

long-term global 

(Lasorella et al., 2011) 
Biomass and energy 

provisioning  
cropland herbaceous 

switchgrass/ 
miscanthus 

long-term Europe 

(Zeri et al., 2011) 
Biomass and energy 

provisioning 
cropland herbaceous 

switchgrass/ 
miscanthus 

short-term  
(0-3y) 

USA 

(Meehan et al., 2013) 
Biomass and energy 

provisioning 
cropland 

herbaceous buffer 
(100m) 

herbaceous crops long-term USA 

(Silveira et al., 2012) 
Biomass and energy 

provisioning 
cropland herbaceous buffer (3m) switchgrass short-term  USA 

(Kelly et al., 2007) 
Biomass and energy 

provisioning  
cropland herbaceous buffer (5m) 

switchgrass/ 
miscanthus 

short-term  
(1-3y) 

USA 

(Sabbatini et al., 2015) Biomass and energy provisioning cropland woody poplar 
short-term 

 (0-2y) 
Italy 

(Christen & Dalgaard, 2013) Biomass and energy provisioning  cropland woody buffer poplar, willow long-term Europe 

(Fortier et al., 2010b) Biomass and energy provisioning grassland woody buffer poplar long-term (6y) Canada 

(Fortier et al., 2013b) Biomass and energy provisioning grassland woody buffer poplar long-term (9y) Canada 
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Impacts of willow and miscanthus bioenergy buffers on biogeochemical N 
removal processes along the soil-groundwater continuum 
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Impacts of willow and miscanthus bioenergy buffers on biogeochemical N 

removal processes along the soil-groundwater continuum 

 

Abstract 

In this paper the below- and above-ground biomass production in bioenergy buffers and 

biogeochemical N removal processes along the soil-groundwater continuum were assessed. In a 

sandy loam soil with shallow groundwater, bioenergy buffers of miscanthus and willow (5 and 10 m 

wide) were planted along a ditch of an agricultural field (AF) located in the Po valley (Italy). Mineral 

N forms and dissolved organic C (DOC) were monitored monthly over an 18 month period in 

groundwater before and after the bioenergy buffers. Soil samples were measured for inorganic N, 

DOC, microbial biomass C (MBC) and N (MBN), and potential nitrate reductase activity (NAR). The 

results indicated that bioenergy buffers are able to efficiently remove from groundwater the 

incoming NO3-N (62%-5 m and 80%-10 m). NO3-N removal rate was higher when nitrate input from 

AF increased due to N fertilization. Willow performed better than miscanthus in terms of biomass 

production (17 Mg DM ha-1 y-1), fine root biomass (5.3 Mg ha-1) and N removal via harvesting (73 kg 

N ha-1). The negative nonlinear relationship found between NO3-N and DOC along the soil-

groundwater continuum from AF to bioenergy buffers indicates that DOC:NO3-N ratio is an 

important controlling factor for promoting denitrification in bioenergy buffers. Bioenergy buffers 

promoted soil microbial functioning as they stimulated plant–microbial linkages by increasing the 

easily available C sources for microorganisms (as DOC). First, willow and miscanthus promoted high 

rates of biological removal of nitrate (NAR) along the soil profile. Second, rhizosphere processes 

activated the soil microbial community leading to significant increases in MBC and microbial N 

immobilization. Herbaceous and woody bioenergy crops have been confirmed as providing good 

environmental performances when cultivated as bioenergy buffers by mitigating the disservices of 

agricultural activities such as groundwater N pollution. 

 

Keywords: bioenergy buffers, miscanthus, willow, biomass production, groundwater quality, nitrate 

removal, dissolved organic C, fine root biomass, soil microbial biomass, ecological stoichiometry                                           

 

3.1 Introduction 

In the last decade it has become increasingly important to identify which proportion of the 

landscape should be occupied by bioenergy cropping systems (Gelfand et al., 2013; 

Manning et al., 2015). The key question is which land use strategy can be implemented to 

avoid land use conflicts while maximizing yields and ecosystem services provision (Fritsche 

et al., 2010; Payne, 2010; Dale et al., 2011a; Popp et al., 2011; Anderson-Teixeira et al., 

2012). To solve the so called “food, energy and environment trilemma” (Tilman et al., 

2009), several scenarios in which food and bioenergy cropping systems are spatially mixed 

within farmlands have been recently proposed (Asbjornsen et al., 2012; Gopalakrishnan et 

al., 2012; Christen & Dalgaard, 2013; Manning et al., 2015).   
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Positive impacts on the regulation of climate, water and biodiversity ecosystem services 

have been reviewed during the transition of cropland to the production of bioenergy 

feedstock with perennial herbaceous and woody crops (Holland et al., 2015; Milner et al., 

2015). The application of spatial multicriteria analysis revealed that a careful allocation of 

perennial cropping systems into the landscape would foster multiple ecosystem services 

and mitigate ecosystem disservices from current annual food cropping systems (Powers et 

al., 2011; Parish et al., 2012; Meehan et al., 2013). Nevertheless, it emerged that the links 

of bioenergy crops with the provision of ecosystem services are strictly dependent on the 

spatial allocation of the crops relative to the adjacent land uses as revealed for pest 

regulation and pollination (Meehan et al., 2012; Werling et al., 2013; Bourke et al., 2014) 

and for water quality regulation  (Meehan et al., 2013). 

Within this framework, an excellent case study area in which to explore the possibility to 

optimize land use for food, energy, and ecosystem services is the agricultural landscape of 

Po valley (northern Italy). In the last decades, this area experienced an intensification of 

the conventional farming systems with the result that several areas suffer from problems 

of nitrate contamination of surface and groundwater (Capri et al., 2009). At the EU level, 

buffer strips have become a widely adopted measure to mitigate such problems of non-

point source agricultural pollution. The efficiency in removing NO3-N from groundwater is 

widely reported in literature for riparian areas (Sabater et al., 2003; Hickey & Doran, 2004; 

Mayer et al., 2007) and for filter strips (van Beek et al., 2007; Zhou et al., 2010). For this 

reason, buffer strips were made mandatory among member states in order to fulfill the 

obligations to maintain and improve Good Ecological Status under the EU Water 

Framework Directive (EC 2000/60). In Italy, 5m wide buffer strips are mandatory along 

watercourses where water quality status is scarce or bad (Italian Ministerial Decree DM 

27417 of 22nd December 2011). Within the 2014-2020 Rural Development Programmes 

(RDP) of the Emilia-Romagna and Lombardy regions in Italy two voluntary measures that 

provide money to farmer to install and maintain herbaceous buffers or woodland buffer 

strips have been introduced. Nevertheless, some operating spaces are left by these RDP 

measures for including bioenergy crops in buffer strips. For this reason, the water quality 

issue seems to offer an opportunity to redesign bioenergy landscapes with buffers for 

biomass production.  

In this manuscript, bioenergy buffers have been proposed as an alternative land use 

scenario for bioenergy production within the intensively managed agricultural landscape 

of the Po valley. Bioenergy buffers, in our view, are perennial landscape elements 

consisting of linear narrow bands placed along watercourses, and cultivated with perennial 

herbaceous or woody bioenergy crops. Although extensive knowledge on the ecological 

functioning of buffer strips with natural vegetation is available for the case study area 

(Balestrini et al., 2008, 2011), several research questions on bioenergy buffers relative to 

their productive performances still have to be explored, as do their role in providing 
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ecosystem services and sustaining soil functioning (such as mitigation of groundwater N 

pollution and soil microbial C- and N cycling). To date, the only literature available on the 

effectiveness of bioenergy buffers in removing N are modelling studies (Gopalakrishnan et 

al., 2012; Meehan et al., 2013; Ssegane et al., 2015). Furthermore, there have been no 

specific studies for bioenergy crops on the role of dissolved organic C (DOC) and 

belowground biomass as indicators for the activation of the soil microbial community and 

its implications on N removal processes from soil (e.g. denitrification and microbial N 

immobilization). To be adopted under different climatic and pedological conditions, there 

needs to more evidence on the biogeochemical processes involved in N removal in the 

plant-soil-groundwater system under bioenergy buffers. Within the case study area, an 

experimental field trial of bioenergy buffers with miscanthus and willow was set up in a 

sandy loam soil with shallow groundwater. The main objectives of the experiment were: 1) 

to evaluate bioenergy buffers effectiveness (BSE) in removing N from shallow groundwater; 

2) to identify the main biogeochemical processes and key factors governing N removal 

along the soil-groundwater continuum; and 3) to quantify root fine biomass, biomass 

production and plant N removal in bioenergy buffers. 

 

3.2 Materials and Methods 

  3.2.1 Site description and experimental design of bioenergy buffers 

The experiment was located in a typical farm in the north-west of Italy (Figure 2.1a) (45° 

3'37.87"N, 9°47'30.19"E altitude 43 m a.s.l.), where the climate is continental with an 

average annual rainfall of 980 mm and rainfall peaks in autumn and spring. The average 

temperatures during the experiment were 5.5°C, 15.5°C, 15°C, 24.4 °C, respectively for 

winter, autumn, spring and summer.  The field was flat, rectangular and bordered at one 

side by a ditch (Figure 3.1b).  It was 200 m wide with a 180 m long 2% slope downward to 

a 3 m wide ditch. The water level in the ditch fluctuated from 0.2 to 0.9 m below soil surface 

(-bss). The field was characterized by a deep sandy aquifer interrupted by a silty clay 

aquitard (Figure 3.1c). The local groundwater system showed a prevalent SW-NE direction, 

and it was perpendicular to the ditch. The agricultural field was cultivated following a 

common crop rotation for the area: maize (2013), soybean (2014) and tomato (2015).  

Maize was fertilized with KNO3 (170 kg N ha-1). Soybean was irrigated twice in June 2014 

(total 60 mm of water) but not fertilized. In May 2015 there was a pre-planting fertilization 

(70, 110 and 170 kg ha-1, respectively for N, P and K) and after planting the tomatoes there 

was a biweekly fertirrigation from June to August (18 events; total 210 mm water and 50, 

40 and 100 kg ha-1 respectively of N, P and K). According to the USDA Soil Taxonomy (Soil 

Survey Staff, 2014) the soil is Udifluventic Haplustept, the texture is sandy loam and the 

content of  soil organic C and total N is low. The main soil physical and chemical 

characteristics of the soil profile are reported in Table S3.1. 
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The bioenergy buffers were installed in April 2013, with two buffer widths: the mandatory 

5m width (as requested by Italian Ministerial Decree DM 27417 of 22th December, 2011) 

and 10m width. No pest management, irrigation and fertilization was applied. Soil was 

ploughed at 30 cm depth before the experiment started. The experiment was organized 

following a randomized block design (RBD) with three replicates (Figure 3.1b). Bioenergy 

buffers consisted of miscanthus (Miscanthus x giganteus L.) and willow (Salix matsudana 

Koidz (hybrid)). The plots hosting the control treatment (hereinafter referred to as 

“spontaneous species”) were not planted in order to enable natural revegetation. The 

control treatment has been considered as an unsown field margin strip (De Cauwer et al., 

2007) Spontaneous species recorded were (%): Echinochloa crus-galli (L.) Beauv. (30%), 

Sorghum halepense (L.) Pers. (30%), Amaranthus retroflexus L. (10%), Convolvulus arvensis 

L. (10%), Cynodon dactylon (L.) Pers. (10%) and other species (10%). Willow bioenergy 

buffers were planted by stem transplantation (up to 40 cm depth). Plant density was 13.000 

plants ha−1 (0.6 × 1.5 m spacing). The failure of the transplants was nearly zero after 

establishment. Miscanthus buffers were planted with rhizomes (0.1 m depth) with a 

density of 4 rhizomes m2 (0.36 × 0.7 m spacing). Emergence rates for rhizomes in May 2013 

ranged from 15% to 20% due to a severe waterlogging event. New rhizomes were planted 

in June 2013 in order to reduce patchiness (in February 2015 patchiness reached values 

<5%). 

 
Figure 3.1 Localization of the field trial in NW Italy (a) and distribution of the Nitrate Vulnerable Zones 

(source: ISPRA - Institute for Environmental Protection and Research), field experimental design for 

bioenergy buffers (b) and vertical-cross section of the field trial representing the shallow groundwater 

system (c). 
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  3.2.2 Groundwater, soil, root and aboveground biomass measurements 

Before bioenergy buffer establishment a whole soil profile was opened to describe the soil 

horizons (Table S3.1) and a geological survey was carried out in order to characterize the 

local aquifer system. Some preliminary piezometers were installed at 2 and 5 m depth at 

random intervals to get information on groundwater hydraulic head and the groundwater 

table dynamics. This was done in order to spatially design the RBD experimental design. 

After having fully characterized the aquifer, the experimental site was equipped in May 

2014 with piezometers installed along a series of perpendicular transects from the 

agricultural field to the ditch (Figure 3.1b).  Each of the transects consisted of three 

sampling piezometers. Two piezometers were installed within the agricultural field 

upgradient of each group of experimental blocks and one was installed immediately 

downgradient of each buffer plot in order to study the effects of bioenergy buffers on 

groundwater N coming from the agricultural field (AF). The PVC piezometers were installed 

at a depth of 1.5–2 m. Piezometers were 2.5 m long, 5 cm diameter PVC pipe, and were 

screened at 1 to 2 m -bss.  Piezometers were installed by driving into the soil twice a steel 

corer with an inner removable PVC pipe (5 cm diameter, 1 m long) using a hydraulic 

jackhammer and extracted using a tripod ratchet. The final piezometer was then manually 

inserted into the soil. This procedure was also used to obtain soil samples. 

Groundwater samples were collected from May 2014 until August 2015 approximately with 

a monthly sampling frequency during the 2014 and 2015 growing seasons. Hereinafter the 

monitoring season are divided as follow: 2014 growing season (T1: May 30, 2014, T2: 28 

June, 2014, T3: August 1, 2014, T4: September 10, 2014), 2014 leaching season (T5: 

December 18, 2014, T6: February 4, 2015) and 2015 growing season (T7: April 24, 2015, T8: 

May 6, 2015, T9: June 2, 2015, T10: July 15, 2015, T11: August 1, 2015). Groundwater table 

depth was measured using a sounding probe during each sampling event. Differences in 

groundwater table depth in total heads along the piezometer transects were used to 

determine dominant flow paths of groundwater. Before sampling the wells were pumped 

empty and allowed to settle again. Dissolved O2 (ppm), groundwater total dissolved solids 

(ppm), conductivity (μs cm-1), pH and water temperature (°C) were measured within each 

piezometer by inserting a specific multiparameter probe (HI 98196, Hanna Instruments). 

Groundwater was sampled with a slow pumping technique, 0.5-1 L was collected from each 

piezometer and samples were kept refrigerated during the transport to the laboratory. 

Samples were then immediately filtered (0.45μm cellulose acetate) and kept at 4°C until 

analysis. Samples were analysed for NO3-N, NH4-N, NO2-N, TDN (Total Dissolved N), DOC 

(Dissolved Organic C), TDP (Total dissolved P), PO4-P and chlorides (Cl-). The sum of NO3-N, 

NH4-N and NO2-N forms the dissolved inorganic N (DIN) and the difference between TDN 

and DIN is the dissolved organic N (DON).  
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NO3-N was analysed with dual wavelength UV spectroscopy (275nm, 220nm) on acidified 

(HCL 1M) samples and pipetted into 96-well quartz microplates.  NH4-N, NO2-N and PO4-P 

were measured through colorimetric reactions based on a 96-well microplate format and 

read with a microplate reader (Biotek Synergy 2, Winooski, VT, USA). NH4-N was measured 

with Berthelot reaction (Rhine et al., 1998), NO2-N with Griess reaction (Griess Reagent Kit 

G-7921, Molecular Probes) and PO4-P with the green malachite method (D’Angelo et al., 

2001). TDN and DOC were measured using a TOC–TN analyser (TOC-VCSN Shimadzu). TDP 

was measured by an inductively coupled plasma atomic emission-spectrometry. Chlorides 

were analysed by ion chromatography using a Dionex DX-120 equipped with an AS22A 

column and Na2CO3+NaHCO3 as eluent.  Chlorides were used as a conservative tracer in 

groundwater to separate between dilution and N removal (Altman & Parizek, 1995). TDP 

and PO4-P in most of the groundwater samples were lower than the detection limit and the 

data were therefore not included in this manuscript. Buffer strip effectiveness (BSE) in 

removing N forms in shallow groundwater was calculated using the formula: 

𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑡𝑟𝑖𝑝 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (𝐵𝑆𝐸)𝑖 =  (1 −
𝐶𝑖 𝑔𝑤,𝐵𝑈𝐹𝐹𝐸𝑅

𝐶𝑖 𝑔𝑤,𝑎𝑣𝑔,𝐴𝐹
) ×  100                       Eq.3.1 

where i is the Ni form for which BSE was calculated (NO3-N, NH4-N, NO2-N, DIN, TDN and 

their respective i /Cl- ratios), Ci gw,BUFFER is the concentration of the Ni form in groundwater 

after buffer plots and Ci gw,avg,AF is the average concentration of the Ni form in piezometers 

installed in the agricultural field (AF). 

Soil was sampled four times in 10m wide buffers with the same procedure used for 

piezometer installation. There were two soil samplings in the first growing season after 

buffer establishment (July 1, 2013 and February 10, 2014), one at the end of second 

(February 4, 2015) and one in the third season (August 1, 2015). At each sampling time, 

three soil cores were taken from each plot to a depth of 60cm. For miscanthus and willow 

four soil cores were taken in two different sampling positions:  two cores in the middle of 

the plant row and two in the inter-row centre.  

Four random cores were taken from the spontaneous species plots and from the 

agricultural field. Each soil core was then divided into four sections (0-10 cm, 10-20 cm, 20-

30 cm and 30-60 cm depth). The divided soil cores from each plot were immediately bulked 

in one composite sample in plastic bags according to the respectively depth, stored at -18°C 

and analysed within a month. Soil samples were analysed for extractable NO3-N, NO2-N, 

NH4-N, DOC, TDN, microbial biomass C (MBC) and for the two microbial N removal 

processes in soils: microbial N immobilization (MBN) and potential nitrate reductase 

activity (NAR), the latter as marker for denitrification. Microbial biomass was determined 

by the fumigation-extraction technique in fresh soil (Vance et al., 1987). The unfumigated 

soil extracts were used to measured DOC, TDN, extractable NO3-N, NH4-N and NO2-N. As 

for groundwater samples, DIN and DON were calculated.  
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 Extractable mineral N pools were measured with the same microplate-based colorimetric 

methods adopted for groundwater analysis. For the entire set of soil C and N pools analysed 

the values are reported on a stock basis (kg ha-1). Soil nitrate reductase activity (NRA) was 

measured by soil anaerobic incubation following the modifications of the protocol of 

Abdelmagid & Tabatabai (1987) introduced by Chèneby et al. (2010). NRA were calculated 

as μg of NO2-N produced per g of dry soil per day (μg NO2-N gsoil
-1 day-1). See Supporting 

Information (Appendix 3.1) for a detailed description of the procedure adopted for NRA. 

Soil cores for fine root biomass were collected during the last soil sampling (August 1, 

2015). During this soil sampling, three additionally soil cores were collected for fine root 

biomass quantification. For miscanthus and willow, soil cores were taken in three different 

sampling positions following the scheme proposed by Zatta et al. (2014); one next to the 

plants, one in the middle of the plant row and one in the inter-row centre. From the 

spontaneous species plots three cores were taken randomly. All cores were divided into 

the same four sections as for soil cores (0–10, 10–20, 20–30 and 30-60cm depth). Before 

root extraction, soil samples were stored at -18 °C. To extract fine roots (<2mm), soil 

samples were immersed in oxalic acid (2 %) for 2 h, and then washed in a hydraulic sieving-

centrifuge device (Chimento & Amaducci, 2015). Once cleaned, roots were recovered by 

hand picking from the water using a 2 mm mesh sieve, oven dried at 65 °C for 48h, and 

weighed. 

Some samples of miscanthus included rhizomes, which were not included in the root 

biomass sample. The dry root weight was divided by the whole volume of soil samples and 

reported as Mg of fine roots per hectare (Mg ha-1). After weighing, the three replicates 

were combined by depth for each plot and ground to 1 mm. The samples were then 

analyzed for N using a CN analyzer (Vario Max CN Analyzer, Elementar Americas, Inc., NJ). 

Harvestable biomass from bioenergy buffers was collected in late winter periods every year 

for miscanthus (February 10, 2014 and February 15, 2015) and at the end of 2nd growing 

season for willow (February 15, 2015). Aboveground biomass samples were collected 

cutting each row of plants along a transect in each plot. Each plant row was weighed in the 

field and a sub-sample was taken for fresh weight to dry matter (DM) conversion and CN 

analysis. Calculations for harvestable biomass (Mg DM ha-1) and N exportations by 

harvesting (kg N ha-1) were performed for each plot as a whole (by averaging the DM values 

of all plant rows along the buffer transect) and on a plant row basis (DM and kg N ha-1 plant 

row-1). 
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  3.2.3 Statistical analysis 

All the data were analysed using the “nlme” package (Pinheiro et al., 2015) of RStudio 

0.99.484. For groundwater data (concentration and BSE), a mixed model of repeated 

measures ANOVA was used with crop type (CROP), buffer width (WIDTH), and monitoring 

season (SEASON) as fixed effects, whereas piezometers (PIEZ) and sampling times (TIME) 

were crossed within the random effects structure of the model. Significance of the fixed 

effects was assessed with F and P values. Model residuals were checked for normality by 

the Kolmogorov–Smirnov test and for homogeneity of variances by the Levene’s test for 

each of the fixed factors. The temporal autoregressive structure (based on moving average 

residual) was used as covariance matrix within the mixed model. This structure obtained 

the lowest Akaike’s Information Criteria (AIC) values than those obtained for other 

structure tested (autoregressive temporal structure and block-diagonal). Significant 

differences among levels of the fixed factors were identified at the 0.05 probability level of 

significance constructing specific contrast matrices based on Tukey contrasts carried out 

using the multcomp package of R software (Hothorn et al., 2015).  

Similar mixed models of repeated ANOVA and post-hoc analysis were applied to soil 

variables. Crop type (CROP), soil depths (DEPTH), and sampling seasons (SEASON) were 

used as fixed effects, whereas experimental blocks (BLOCK) and SEASON were defined as 

random effects. For belowground measurements, only CROP and DEPTH as fixed effects 

were studied, being root biomass sampled only once during the 2015 growing season. To 

assess differences in harvestable biomass and N exportation, one-way ANOVA comparisons 

for RBD designs were run, with CROP and BLOCK as fixed factors. For these parameters, to 

assess their differences among plant rows along buffer transect, one-way ANOVA 

comparisons were made separately for miscanthus and willow buffers, with PLANT ROW 

(nrows= 13 for miscanthus, nrows = 7 for willow) and BLOCK as main factors. For all these one-

way ANOVAs, means were compared by the Tukey test (α=0.05), after confirmation that 

data were normally distributed and variance was homogeneous. 

Additional regression analyses were then performed on soil, root and groundwater data by 

using nlme package of R software. The relationship between the concentration (mg L-1) of 

DOC and NO3-N in groundwater samples and soil extracts were calculated applying a 

nonlinear regression model (y = a+be-k(x)) (Taylor and Townsend 2010). The relationship 

between groundwater nitrate input entering the buffers and buffer strips effectiveness 

(BSE) in removing N was calculated by a power function: y=axb (Mayer et al., 2007). BSE (%) 

in removing NO3-N was also plotted against buffer width. A non-linear regression model 

(y=axb) was used here to obtain information on the optimal buffer width necessary to 

obtain a given value of BSE (50%, 75%, 90% and 100%). 
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3.3 Results 

  3.3.1 N concentration patterns in groundwater 

The concentrations of NO3-N, NH4-N, DIN and TDN in groundwater were significantly lower 

after the bioenergy buffers by comparison to the concentration in the agricultural field (AF) 

(Table 3.1). In particular, groundwater nitrate had the highest reduction compared to AF 

(F: 77.1 P: <0.0001). For TDN the values were F: 40.1 P: <0.0001. The only mineral N that 

resulted slightly increased was NO2-N that after bioenergy buffers increased up to 0.2 mg 

NO2-N L-1. No significant differences (F: 1.9 P: 0.55) were found in Cl- concentration after 

bioenergy buffers suggesting that no input of Cl- occurred in the local aquifer system and 

thus no dilution effects were observed in groundwater before and after bioenergy buffers 

(Table S3.2). Cl-/NO3-N and Cl-/TDN ratios increased in groundwater after bioenergy buffers 

(data not shown), indicating that for the entire period of monitoring all N forms were 

effectively removed from the shallow groundwater. On average 70% and 85% of 

groundwater TDN was mineral N (DIN), respectively in bioenergy buffer and AF. On average 

groundwater DIN in AF was formed by NO3-N (60%), NH4-N (29%) and NO2-N (10%). After 

the bioenergy buffers, NO3-N (47%) was still the main component of groundwater DIN, but 

the proportion of NO2-N (14%) and NH4-N (38%) increased significantly.The NO3-N 

concentration in groundwater after the bioenergy buffers ranged from 0.32 mg NO3-N L-1 

(or 1.4 mg NO3
- L-1) to 1.27 mg NO3-N L-1 (5.6 mg NO3

- L-1). TDN ranged from 1.54 mg L-1 to 

2.77 mg L-1. The mean input of NO3-N and TDN from the AF was different when soybean 

(2014) and tomato (2015) were cultivated. N fertilization during the fertirrigation of tomato 

affected the concentration of NO3-N in groundwater; it was on average 4.73 mg NO3-N L-1 

(20.9 mg NO3
- L-1) during the tomato growing season. The maximum NO3 level of 11.3 mg 

N L–1 (50 mg NO3
- L–1) indicated in the EU Nitrate Directive (91/676/EEC) was not exceeded. 
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Table 3.1 Average concentrations of the N forms measured in shallow groundwater after bioenergy buffers (BS- crop) of two different widths and in the 

agricultural field (AF-crop).  Values with different letters in superscript show statistically different means among crop types across growing seasons (Tukey’s HSD 

test, P < 0.05) and within N forms. 

 

SEASON 
 

CROP 
   NO3-N  NO2-N  NH4-N    DIN  DON   TDN 

    5 m 10m  5 m 10m  5 m 10m  5 m 10m  5 m 10m  5 m 10m 

 
2014 
growing season 

 

 

BS 

spontaneous spp.  0.66 A 0.59 A  0.15 A 0.20 A  0.69 A 0.66 A  1.44 A 1.51 A  1.00 A 0.33 B  2.44 A 1.84 BC 

 miscanthus  0.58 A 0.49 B  0.15 A 0.21 A  0.80 C 0.67 AB  1.44 A 1.47 A  0.57 B 0.38 B  2.01 B 1.85 C 

 willow  0.45 A 0.56 A  0.14 A 0.20 A  0.80 C 0.74 BC  1.57 A 1.33 A  0.54 B 0.34 B  2.11 B 1.67 C 

  AF soybean    1.49 C *   0.11 B  1.37 D  3.01 B  0.99 A  4.11 D 

 
2014  
leaching season  

 
 

 

BS 

spontaneous spp.  0.43 B 0.42 B  0.15 A 0.20 A  0.23 E 0.23 E  0.85 C 0.84 C  1.29 C 0.80 A  2.10 B 1.65 C 

 miscanthus  0.44 B 0.32 B  0.15 A 0.21 A  0.12 F 0.30 E  0.84 C 0.71 C  0.84 A 0.82 A  1.77 C 1.48  E 

 willow  0.41 B 0.32 B  0.16 A 0.20 A  0.41 G 0.30 E  1.03 C 0.77 C  0.55 A 0.77 A  1.58 AC 1.54 AC 

 AF bare soil    1.90 C   0.12 A  0.53 D  2.62 B  0.83 A  3.45 D 

 
2015 
growing season 

 

 

BS 

spontaneous spp.  1.27 D 1.19 d  0.15 A 0.20 A  0.54 A 0.49 AG  1.96 D 1.86 D  0.82 A 0.66 A  2.77 A 2.52 A 

 miscanthus  1.14 D 0.95 E  0.15 A 0.18 A  0.57 A 0.51 A  1.86 D 1.65 AD  0.88 A 0.53 AB  2.74 A 2.18 B 

 willow  1.38 D 0.90 E  0.20 A 0.13 A  0.55 A 0.54 A  2.14 B 1.58 A  0.36 B 0.50 B  2.48 AB 2.08 B 

 AF tomato    4.73 F   0.14 A  0.89 C  5.84 E  0.43 B  6.27 F    

 
All seasons 

 

BS 

spontaneous spp.  0.87 A** 0.85 A  0.15 AB 0.19 A  0.54 A 0.50 A  1.56 A 1.55 A  0.97 A 0.56 B  2.53 A 2.11 B 

 miscanthus  0.78 A 0.70 A  0.15 AB 0.20 A  0.57 A 0.53 A  1.50 A 1.44 A  0.80 A 0.50 B  2.30 AB 1.93 BC 

 willow  0.91 A 0.63 B  0.16 A 0.21 A  0.62 A 0.57 A  1.73 B 1.34 A  0.46 B 0.49 B  2.18 B 1.83 C 

 AF food crops    3.04 C   0.12 B  1.01 B  4.27 C  0.71 AB  4.87 D 
     *     average concentration of all the piezometers installed in AF along the perpendicular transects toward bioenergy buffers (see Figure 3.1 c-d) 
    values with different letters in superscript show statistically different means among crop types (Tukey’s LSD test, P < 0.05) within averaged values for all seasons 
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  3.3.2 Buffer Strips Effectiveness (BSE) in removing N from shallow groundwater  

Similar F and P values for BSE in removing N forms and their respective Cl-/N ratios were 

observed among the ANOVA factors tested (Table 3.2). This similarity indicates that Cl- 

concentration patterns in groundwater did not affected N removal dynamics.  

Figure 3.2 shows the temporal dynamics of the BSE in removing NO3-N (Figure 3.2a-b) and 

TDN (Figure 3.2c-d). No effect of crop types on BSE in removing any of the N forms analysed 

in shallow groundwater were found (Table 3.2). However, buffer width had a significant 

effect on NO3-N and TDN removal rates. 10 m wide buffers (Figure 3.2a,c) removed 

significantly more nitrate (F: 31.7 P: <0.0001) and TDN (F: 5.2 P: 0.012) compared to 5 m 

wide buffers (Figure 3.2b,d). The results of non-linear regression model (Table S3.3) 

confirmed that a significant percentage of variance of BSE in removing NO3-N was explained 

by buffer width. For the entire period of monitoring, NO3-N removal rate indicates that 50, 

75, 90 and 100% of BSE could potentially be reached by creating bioenergy buffers 

respectively 3, 9, 15 and 20 m wide (R2: 0.18 P: 0.031) (Table S3.3). The highest percentages 

of variance of BSE explained by buffer width were found in the 2014 leaching season (R2: 

0.83 P: <0.001) and 2014 growing season (R2: 0.29 P: 0.008). 

 

Table 3.2 Results of the mixed model of repeated measures ANOVA used to investigate the effect of crop 

(C), buffer width (W) and season (S) on buffer strip effectiveness (BSE) in removing from shallow 

groundwater the different N forms. The table presents the F and P values of the main fixed effect terms 

and their interactions. All mixed models showed values of adjusted R2 (including both fixed and random 

effects) higher than 0.87 (expect for NH4 and NO2 that were respectively 0.56 and 0.45). 

 

N form 
    Crop   Width   Season     CxW     CxS    WxS CxWxS 

   F P     F P     F P    F P    F P    F P    F P 

NO3 1.8 ns 31 *** 14 *** 1.6 ns 1.4 ns 10 *** 1.2 ns 

Cl/NO3 1.5 ns 17 *** 13 *** 1.1 ns 1.4 ns 7.8 *** 1.1 ns 

NO2 0.8 ns 1.4 ns 0.2 ns 0.2 ns 0.1 ns 0.1 ns 0.1 ns 

Cl/NO2 0.2 ns 1.2 ns 0.6 ns 0.1 ns 0.1 ns 0.2 ns 0.1 ns 

NH4 0.6 ns 0.1 ns 7.4 *** 0.4 ns 1.9 * 0.6 ns 0.7 ns 

Cl/NH4 0.7 ns 0.1 ns 7.3 *** 0.5 ns 1.2 * 0.2 ns 0.8 ns 

DIN 1.4 ns 1.4 ns 11 *** 0.6 ns 0.6 ns 1.7 ns 0.4 ns 

Cl/DIN 1.1 ns 1.2 ns 9.8 *** 0.7 ns 0.2 ns 1.6 ns 0.2 ns 

TDN 1.9 ns 5.4 * 7.0 *** 0.1 ns 0.6 ns 3.1 ** 1.8 * 

Cl/TDN 1.7 ns 5.2 * 6.8 *** 0.1 ns 0.5 ns 2.4 * 1.5 * 

                                         * P denotes significance at 0.05 **0.01 ***0.001 
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Figure 3.2 Temporal dynamics of bioenergy buffers effectiveness (BSE - %) in removing NO3-N (a-b) and 

TDN (c-d) for buffers 5m wide (a-c) and 10m wide (b-d). Error bars show standard error of the mean (n = 

3). 

 

A relevant seasonal pattern of the BSE in removing nitrate was observed (Table 3.2, Table 

S3.3 and Figure 3.2). During the 2015 growing season, nitrate removal rates of bioenergy 

buffers were significantly higher than in 2014 (Table S3.3). A significant positive 

relationship between groundwater NO3 input (mg NO3
- L-1) and buffer strip effectiveness in 

removing NO3
- (BSE %) was found (Figure 3.3). Bioenergy buffers exponentially increase 

their NO3 removal rates when they started to receive more NO3 in May 2015 after the 

beginning of NPK fertirrigation of tomato in the adjacent AF. 5 m wide buffers (Figure 3.3a) 

were found to be more correlated with NO3
-
 input than wider buffers that, on the other 

hand, showed to have reached their maximum buffering capacity (Figure 3.3b). As result of 

the influence of NO3
- input on N removal rate, a significant interaction between buffer 

width and season was found for NO3-N (F: 10.3 P: <0.0001) and TDN (F: 3.1 P: 0.023). The 

most significant effects of buffer width on nitrate removal were observed during the 2014 

growing season (F: 12.45 P: 0.001) and in the 2014 leaching season (F: 16.2 P: <0.0001).  
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Figure 3.3 Relationship between lateral NO3
- inputs and buffer strip effectiveness (BSE) in removing NO3

- 

for bioenergy buffers 5 m wide (a) and 10 m wide (b). Data points represent mean values (n=3) of the 

eleven groundwater sampling events. 

 

Based on the model y=axb, 50% and 75% of the BSE in removing NO3 were estimated to 

occur during the 2015 growing season in 1 m and 4 m wide bioenergy buffers, respectively 

(Table S3.3). Among the other mineral N forms, NH4-N and NO2-N removal rates were not 

affected as much as NO3-N and TDN by buffer width, season and by their interaction. NH4-

N and NO2-N had large variances explained by the random factor in mixed model of ANOVA 

(data not shown). On average, NH4-N removal rates were 44% for bioenergy buffers. Nitrite 

instead showed in 92% of the cases negative values of BSE indicating that release of nitrite 

in groundwater by bioenergy buffers prevailed over removal (Table 3.2). As consequence 

of the contrasting patterns revealed by NO2-N (release) and NH4-N (high variability among 

replicates), DIN resulted not significantly affected by crop type, buffer width and by the 

interactions of these factors (Table 3.2). DIN removal by bioenergy buffers ranged from 

56% in 2014 growing season to 69% in 2015 growing season.  

  3.3.3 Groundwater geochemistry and hydrology 

Water table fluctuated along the measuring period following the precipitations pattern 

(Figure S3.1). On average water table depth ranged between 0.95 m –bss in winter and 

autumn and 0.62 m – bss during spring and summer. Water table depth did not differ 

significantly in AF and bioenergy buffers (F: 0.626 P: 0.6082). Dissolved oxygen in AF 

resulted significantly higher (F: 5.2 P: 0.034) than under bioenergy buffers. Dissolved 

oxygen in AF was on average 2.74 mg L-1 and 2.25 mg L-1 in bioenergy buffers (Table S3.2). 

No statistical differences were found instead for dissolved O2 among bioenergy buffers 

types. DOC concentration showed an increase along the transect of piezometers toward 

the ditch (Table S3.2). Agricultural field showed significant lower DOC levels (on average 

1.71 mg DOC L-1) compared to groundwater after bioenergy buffers (F: 11.2 P: 0.004). 

Willow showed the highest groundwater DOC values (on average 7.76 mg DOC L-1), while 

no significant differences were found for the same parameter between spontaneous 

species and miscanthus.  
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Moreover, a significant negative nonlinear relationship was found between groundwater 

DOC and NO3-N (P: 0.025 R2: 0.58). Overall, groundwater after bioenergy buffers resulted 

more C rich and more N depleted in NO3-N compared to groundwater coming from AF 

(Figure 3.4). A potential decrease in elemental DOC:NO3-N ratio in groundwater under 

bioenergy buffer was found (Table S3.2). Under bioenergy buffers, starting from the 2014 

leaching season until the 2015 growing season, elemental DOC:NO3-N was below 3 in 95% 

of the cases. A significant inverse linear relationship between BSE (%) in removing nitrate 

and elemental DOC:NO3-N was found (Figure 3.4). Elemental DOC:NO3-N ratio was also 

seen to be a significant factor in determining BSE of 5 m wide buffers more than in 10 m 

wide buffers (Figure S3.2a). Only during the 2015 growing season was DOC:NO3-N ratio 

significantly correlated with BSE (Figure S3.2b) because of the increase of N input from AF.  

  3.3.4 Impacts of bioenergy buffers on soil C- and N-cycling  

Bioenergy buffers had a significant impact on the stock of several soil N and C pools 

compared to AF (Table S3.4 and Figure 3.5a-d).  Considering the dissolved mineral N forms 

that were analysed, AF showed lower dissolved inorganic N (DIN) and NH4-N in the soil 

compared to the bioenergy buffers. No effects of crop type and season were found for TDN 

(Table S3.4). Only in the third growing season (2015) was a significantly higher TDN stock 

found in the AF (F: 6.65 P: <0.0001). Under the tomato cultivation, potential leachable NO3-

N was highest (F: 6.05 P: <0.0001) at all soil depths (Figure 3.5a) and consequently TDN was 

increased along the soil profile. Three months after willow buffer establishment a 

significant increase of potential leachable NO3-N along the soil profile was found compared 

to the other bioenergy buffer types (Figure 3.5a). No other significant potential leaching 

phenomena were found for willow in the following years compared to other bioenergy 

buffers. On average the proportion of NO3-N, NH4-N and NO2-N in soil DIN of AF was 92%, 

6%, 2% respectively. In comparison to AF, the proportions of NO2-N (9%), and of NH4-N 

(14%) in soil DIN of bioenergy buffers were significantly increased and NO3-N was 

significantly reduced (77%). Soil TDN pool in bioenergy buffers consisted of a great 

percentage of N in a dissolved organic form (DON). DON was significantly higher in 

bioenergy buffers that in AF in the top soil layers (0-10, 10-20 and 20-30 cm). Three years 

after bioenergy buffer establishment, DOC resulted the soil C pool mostly affected (in terms 

of positive stocking) by the crop types (Figure 3.5c). Significant effects for crop type (F: 7.40 

P: 0.006), soil depth (F: 5.40 P: 0.002), growing season (F: 5.97 P: 0.003) and their 

interactions were found for DOC (Table S3.4). Bioenergy buffers soils showed a significant 

increase of DOC stock compared to AF at all soil depths and for each of the first three 

growing seasons (Figure 3.5c). No differences in these parameters were found among 

bioenergy buffers indicating a similar trend of increase in DOC stock along the soil profile. 

The most significant increases in DOC under bioenergy buffers were observed in the 20-30 

and the 30-60cm soil layers.  
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Figure 3.4 Relationship between the concentration of DOC and NO3-N in groundwater (blue) and soil 

(brown). The data are grouped for bioenergy buffers (points) and agricultural field (diamonds). The soil 

dataset (unfumigated samples of soil microbial biomass extraction) was created using the data of the last 

two sampling seasons (n=64) that represent the temporal window where groundwater was monitored 

(samples of 10 m wide buffers, n=44, where soil samples were collected). The results of the regressions 

model (y = a+be-k(x)) were significant for both dataset: groundwater (R2: 0.58, P: 0.025) and soil (R2: 0.74, 

P: 0.012). 

 

Similarly to what observed in groundwater, a significant negative nonlinear relationship (P: 

0.012 R2: 0.74) was found in soil between the concentrations of DOC and NO3-N (Figure 

3.4). The increase of DOC in bioenergy buffers also contributed to an increased C availability 

for microorganisms. Figure 3.5d clearly shows how microbial biomass C (MBC) significantly 

increased along the soil profile in bioenergy buffers compared to AF (F: 5.92 P: 0.004). After 

the first period of buffers establishment, significant interactions between crop and soil 

depths (F: 3.91 P: 0.029) and between crop and growing seasons (F: 3.38 P: 0.013) were 

observed for MBC. Under bioenergy buffers the 30-60 cm soil layer showed the greatest 

increase in MBC stock (P 0.013) compared to AF. A significant increase in microbial biomass 

N (MBN) stock was also observed in bioenergy buffers compared to AF (F: 3.99 P: 0.023) 

(Figure 3.5b). Among bioenergy buffers, spontaneous species was seen the treatment with 

the highest ability to immobilize N in soil microbial biomass at different depths compared 

to miscanthus (P: 0.028) and willow (P: 0.003). Elemental C:N ratio of microbial biomass 

was found significantly higher (F: 2.11 P: 0.047) in bioenergy buffers (6.01) compared to 

the AF (4.45). 

The rate of biological reduction of nitrate to nitrite (nitrate reductase activity - NRA) was 

found to be strongly affected by the crop types, soil depths and across different growing 

seasons (Figure 3.6 and Table S3.4). Bioenergy buffers, in particular willow, supported a soil 
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microbial community able to remove nitrate at higher rates compared to AF since the first 

periods after crop establishment (Figure S3.3). On average, NRA values along the soil profile 

were 38.1 and 43.4 μg N-NO2 gsoil
-1 day-1 respectively for miscanthus and willow. These 

values were significantly higher (F: 56.50 P: <0.0001) than those observed for the 

spontaneous species (30.3 μg N-NO2 gsoil
-1 day-1) and for the AF (21.5 μg N-NO2 gsoil

-1 day-1). 

 
Figure 3.5 Average values of potentially leachable NO3-N (a), microbial biomass nitrogen – MBN (b), 

dissolved organic C – DOC (c) and microbial biomass C – MBC (d) in bioenergy buffers and in agricultural 

field (AF) at different soil depths across different growing seasons. Different letters within staked columns 

show statistically different means among crop types (Tukey’s test, P: 0.05) within the same soil depth. 

Horizontal lines above column(s) indicate that the letter is the same for all the soil depths. 

 

  3.3.5 Belowground and aboveground biomass production and N stocks 

After three years from the establishment of bioenergy buffers, fine root biomass (<2 mm) 

was significantly affected by crop type, soil depths and by the interaction of both factors 

(Figure 3.7a). In the whole soil profile (0-60cm), willow showed the significantly highest fine 

root biomass (5.30 Mg ha-1) compared to miscanthus (3.99 Mg ha-1), while the lowest value 

was found for the spontaneous species (2.03 Mg ha-1).  
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On average 59% of fine roots in willow and 

miscanthus were found in the top soil layer (0-

30cm) and 41% in bottom soil layer (30-60 cm). In 

the spontaneous species the greatest proportion of 

fine root biomass (70%) was found in the top layer. 

Significant linear relationships were found between 

fine root biomass and soil NRA for miscanthus and 

willow (Figure 3.7c). The crop ranking for fine root 

biomass (willow>miscanthus> spontaneous 

species) was the same for soil NRA.  

N root content (g kg-1) did not vary significantly 

among crops (F: 1.67 P: 0.211) and along the soil 

profile (F: 0.15 P: 0.926). On average, at 0-10 cm, 

10-20 cm, 20-30 cm and 30-60 cm depth root N 

content was respectively 5.8, 6.1, 6.1 and 5.9 kg N 

groot
-1. N stock in fine roots was significantly affected 

by crop types, soil depths and by the interaction of 

both factors (Figure 3.7b). Willow showed a higher 

root N stock (32.40 kg N ha-1) along the whole soil 

profile (0-60 cm) compared to miscanthus (20.79 kg 

N ha-1). Spontaneous species instead showed the 

lowest root N stock (12.67 kg N ha-1). Harvestable biomass in bioenergy buffers for 

miscanthus, after winter killing frost (February), was 3.2 ± 0.6 Mg DM ha-1 in the 

establishment year (2013) and 10.76 ± 0.51 Mg DM ha-1 at the second year (2014). Willow, 

after the first two years rotation cycle, produced significantly more than miscanthus (F: 

99.55 P: <0.0001) with a harvestable biomass of 34.15 ± 1.71 Mg DM ha-1.  N exportations 

via harvesting were respectively 5.9 kg N ha-1 in 2013 and 16.1 kg N ha-1 in 2014 for 

miscanthus and 73.7 kg N ha-1 for willow in 2014.  

By analyzing the biomass data of each single row, it was found an exponential decrease of 

the biomass yield along the buffer transect (Figure S3.4). The plant rows closer to the AF 

showed the highest values in harvestable biomass and N removal in comparison to the 

plant rows near to the ditch. Harvestable biomass for the 10 m wide willow buffers (Figure 

S3.4a) ranged from 47.4 Mg DM ha-1 in the plant rows adjacent to the AF to 26.6 Mg DM 

ha-1 in the plant rows near to the ditch. Similarly, N removal was highest in plant rows 

adjacent to the AF (120.6 kg N ha-1) and lowest near the ditch (51.78 kg N ha-1).  The same 

effect was less evident in miscanthus and it was limited to the first two rows adjacent to 

the AF (Figure S3.4b). 
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Figure 3.7 Fine root biomass (a) and root N stocks (b) in bioenergy buffers at different soil depths. 

Different letters show statistically different means (Tukey’s test, P: 0.05) among crop types within the 

same soil depth interval. (c) Linear relationship between fine root biomass and soil nitrate reductase 

activity (NRA) in bioenergy buffers in third growing season (2015). 

 
 

3.4 Discussion 

  3.4.1 Bioenergy buffers effectiveness (BSE) in removing N and key factors governing BSE  

Our results clearly indicate bioenergy buffers effectiveness in removing NO3-N and TDN 

from shallow groundwater (Figure 3.2 and Table S3.3). BSE in removing NO3-N was 70% for 

miscanthus and 71% for willow, respectively (Table S3.3). These values are in accordance 

with the 60-70% range reported at landscape level by Ssegane et al. (2015) and 

Gopalakrishnan et al. (2012) for buffer strips cultivated with switchgrass, miscanthus and 

willow. Similar findings were reported also in riparian buffers of Salix spp. (Young & Briggs, 

2005). No differences between herbaceous and woody crops and between bioenergy crops 

and spontaneous species on N removal rate were observed (Table 3.2). This indicates that 

vegetation types in narrow buffer strips do not remove N from subsurface water flow with 

significant differences (Sabater et al., 2003; Mayer et al., 2007). Mayer et al. (2007) 

conducted a meta-analysis over 45 published studies on nitrate removal by riparian buffers 

and found that the mean mass of NO3-N removed per unit length was not statistically 

different between forested and herbaceous buffers. Similarly, our results confirmed that 

DIN was dominantly present as NO3 and it was removed 9.38% m-1 by spontaneous species, 

10.12 % m-1 by miscanthus and 9.43% m-1 by willow, respectively. These values are in 

accordance with the mean values found in 14 riparian buffers across Europe (Sabater et al., 

2003). Yet, it is confirmed that from the first periods after establishment bioenergy crops 

can remove N from groundwater as much as buffers strips with spontaneous species. 

Buffer width had a significant effect on NO3-N and TDN removal rates from shallow 

groundwater, with 10 m wide buffers being more effective. Nonetheless, bioenergy buffers 

that are as wide as national recommendations (5 m) suffice to remove more than 50% of 

R²: 0.38  P: 0.02

R²: 0.51  P: 0.01

0

10

20

30

40

50

60

0,0 0,5 1,0 1,5 2,0 2,5

N
R

A
 (
μ
g

 N
O

2
-N

 g
-1

d
a

y
-1

)

Fine root biomass (Mg ha -1)

nativ e species

miscan thus

willow

(c)
a

a

a

a

a

b

b

a

b

b

b

c

ab

c

b

c

0,0 0,5 1,0 1,5 2,0 2,5

Fine root biomass (Mg ha-1)

native species

miscanthus

willow

(a)

a

a

a

a

a

a

b

a

a

a

b

ab

b

b

b

0 2 4 6 8 10 12 14 16

Root N stock (kg ha-1)

native species

miscanthus

willow

a

(b)

Crop (C) 

Depth (D) 

C x S

F

47.2

89.8

11.6

P

<0.001

<0.001

<0.001

Crop (C) 

Depth (D) 

C x S

F

33.0

55.1

9.3

P

<0.001

<0.001

<0.001

ns



        Chapter 3   N removal by bioenergy buffers 

 75 

the incoming nitrate in most cases (Table S3.3). The effect of buffer width in this study was 

unexpected as in literature reports have shown significant differences where buffer widths 

differed by more than 10-20 m (Hickey & Doran, 2004; Mayer et al., 2007; Sweeney & 

Newbold, 2014). In addition, nitrate removal rate was seen to be even higher when nitrate 

input from AF increased (Figure 3.3). The results of non linear regression (Table S3.3) 

suggested that, in linear and straightforward hydrological conditions similar to our case 

study, a 3 m wide buffer, made of miscanthus or willow, can remove up to 75% of nitrate 

during a high N input season. This indicates that no N saturation effects occurred in our 3 

year old bioenergy buffers, though clear symptoms of N saturation have been reported in 

situations with long-term N loadings (Aber, 1992; Hanson et al., 1994; Sabater et al., 2003; 

Hefting et al., 2006).   

  3.4.2 Biomass production and plant N removal in bioenergy buffers 

The reasons for which no evidence of N saturation was observed in this study can be found 

in the aboveground and belowground biomass dynamics. Biomass production and plant N 

uptake have been shown to be important N removal processes in forested (Hefting et al., 

2005) and herbaceous buffers (van Beek et al., 2007; Balestrini et al., 2011). In this study 

willow buffers performed very well in terms of biomass production in the first 2-year cycle 

(34.2 Mg DM ha-1). This value of biomass yield is higher than the mean values reported for 

Salix spp. in Canada and the United States (Amichev et al., 2014), Europe (Zegada-Lizarazu 

et al., 2010) and in northern Italy (Rosso et al., 2013). The tolerance of willow to saturated 

soils and oxygen shortage at deeper soil layers is widely reported (Krasny et al., 1988; 

Jackson & Attwood, 1996; Aronsson & Perttu, 2001). Furthermore, lateral N loadings by 

enriched groundwater significantly affected biomass production along the buffer transect 

(Figure S3.4a) with the first two rows (adjacent to the AF) being the most productive (up to 

48 Mg DM ha-1 plant row-1) and the ones that contributed most to N removal via uptake 

and harvesting (Figure S3.4).  

Miscanthus biomass production in the first two years was 3.2 and 10.8 Mg DM ha-1. These 

values are lower than those found in field trials with similar stand age in temperate regions; 

from 15 to 20 Mg DM ha-1 (Lewandowski & Heinz, 2003; Angelini et al., 2009). For 

miscanthus, the low yields might have been affected by the presence of shallow 

groundwater (Lewandowski et al., 2003) and by the high soil hydraulic conductivity and 

sandy loam texture (Table S3.1). The latter two factors may increase the soil moisture 

deficit in upper soil layers for relatively long periods during the summer season; previous 

studies (Heaton et al., 2004; Monti & Zatta, 2009; Mann et al., 2012) have shown 

miscanthus to be highly productive where water is not limiting, but very sensitive to water 

shortage. 
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By comparison to spontaneous species, both willow and miscanthus had deeper fine root 

systems (Figure 3.7a) and higher root N stocks (Figure 3.7b). The ability of perennial 

bioenergy crops to penetrate deep rooting zones (to access nutrients more efficiently) is 

widely recognized (Rytter, 2001; Glover et al., 2010; Ens et al., 2013; Owens et al., 2013; 

Amichev et al., 2014).  

The total belowground biomass found in willow can be placed at the highest ranking 

positions among the willow hybrids studied in Stadnyk (2010) and reviewed in Amichev et 

al. (2014). After two years from planting miscanthus had a mean belowground biomass of 

4 Mg ha-1 between 0 and 60 cm in depth. At this depth interval this value is in line with 

those reported in previous studies carried out on mature stands (>3-4y) in Italy (Monti & 

Zatta, 2009; Chimento & Amaducci, 2015), Europe and USA (Heaton et al., 2004; Amougou 

et al., 2010; Dohleman et al., 2012; Anderson-Teixeira et al., 2013; Zatta et al., 2014).  

With regard to root biomass distribution along soil profile, it was observed that willow with 

2.2 Mg ha-1 and miscanthus with 1.6 Mg ha-1 are characterized by an high contribution of 

fine roots (41%) to whole root biomass at deeper layers (30-60 cm). In a 6-years-old 

multispecies experiment (Chimento & Amaducci, 2015) found that only 0.9 Mg ha-1 (17%) 

and 2 Mg ha-1 (23%) of the whole root mass, was allocated respectively by willow and 

miscanthus at 30-60 cm depth. These results on rooting patterns clearly indicate how 

cultivating bioenergy crops along the field margins offers the opportunity to intercept N 

loads from surrounding agricultural fields at deeper soil layers compared to buffers with 

spontaneous species. This would ultimately increase the environmental performance of 

bioenergy buffers in term of plant N removal from soil. Furthermore, as root biomass was 

shown to be a good indicator of soil organic C sequestration (Chimento & Amaducci, 2015; 

Chimento et al., 2016), our results suggest how bioenergy buffers have a higher potential 

compared to patches of adventitious plants to contribute to C storage and GHG savings in 

the deep soil layers. 

  3.4.3 Biogeochemical processes governing N removal in plant-soil-groundwater system  

In addition to the role of vegetation, a series of biogeochemical processes in soil and 

groundwater are recognized as being important in determining N removal in bioenergy 

3buffers. The patterns of dissolved O2, pH, NO2-N, NO3-N and DOC in groundwater (Table 

3.2, Table S3.2 and Figure 3.4) suggest that denitrification plays a predominant role in the 

nitrate depletion observed in bioenergy buffers. Suboxic conditions were found in 

groundwater after the bioenergy buffers (Table S3.2); such conditions are optimal for 

denitrification (Vidon & Hill, 2005). There was also a significant increase in the contribution 

of NO2-N to DIN at the expense of NO3-N  which indicates that a rapid nitrate reduction 

occurred (Giles et al., 2012; Butterbach-Bahl et al., 2013).  
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The alkaline pH of groundwater (Table S3.2) and of soil (Table S3.1) and the average depth 

of the groundwater table (Figure S3.1) denote the presence of ideal conditions for soil 

denitrifying communities (Groffman et al., 1991; Weier et al., 1993; Rich & Myrold, 2004). 

Moreover, an increase in the stock of DOC along the soil profiles of bioenergy buffers 

(Figure 3.5c) might have promoted the observed enrichment of DOC in groundwater after 

the bioenergy buffers (Table S3.2). DOC levels in groundwater after the bioenergy buffers 

(>5 mg DOC L-1) indicated that incoming groundwater found suitable conditions for 

denitrification under the bioenergy buffers (Cosandey et al., 2003; Gumiero et al., 2011; 

Senbayram et al., 2012). In comparison to spontaneous species, willow and miscanthus, 

indeed, promoted an active zone of biological removal of nitrate along the whole soil 

profile because of their deep and dense root systems as revealed by the positive relation 

between NRA and fine root biomass (Figure 3.7c).  

High soil moisture in sandy loam soils has been shown to stimulate root exudation of easily 

available C sources (DOC) for microorganisms, thus triggering microbial activity (Dijkstra & 

Cheng, 2007). On this regard, the use of DOC and the incoming nitrate respectively as donor 

and electron acceptor by denitrifying microbial communities plays a key role in the nitrate 

depletion observed in groundwater. A significant exponential negative relationship 

between DOC and NO3-N was found along the groundwater-soil continuum from the AF to 

the bioenergy buffers (Figure 3.4). This indicate that the shift in elemental stoichiometry 

(DOC:NO3-N ratio) promoted the microbial N removal by denitrification in bioenergy 

buffers by constraining N accrual in groundwater. The presence of a confining layer at a 

shallow depth (Figure 3.1c) forces most of the incoming oxic and enriched nitrate 

groundwater to flow through the subsurface, DOC rich, soil layer of the bioenergy buffers 

(Gold et al., 2002). As consequence the DOC:NO3-N ratio dropped below the range of 3-6 

(Table S3.2) and triggered NO3-N removal by denitrification (Taylor & Townsend, 2010), 

which is in agreement with results available in literature (Groffman et al., 1992; Hedin et 

al., 1998; Hill & Cardaci, 2000; Gold et al., 2002; Cosandey et al., 2003; Senbayram et al., 

2012).  

The results discussed above indicate that the N removal processes are strictly linked to the 

increase of DOC in bioenergy buffers. Dissolved organic C compounds are important drivers 

of denitrification in riparian soils (Hill et al., 2000). Easily available C for microorganisms 

measured as DOC has been also thought to be the main source of subsoil organic matter 

(Rumpel & Kögel-Knabner, 2011) and under bioenergy crops could be of relevance due to 

the their deep root systems (Agostini et al., 2015). In fact, the observed increase of soil DOC 

in willow and miscanthus buffers was found to be significantly correlated to fine root 

biomass (R2: 0.35 P: 0.04). Through the release of exudates of low molecular weight (the 

main source of DOC) the root environment (the so called rhizosphere) increases microbial 

activity through MB utilization of new easily available C sources (Kuzyakov, 2002; Zhu et al., 

2014).  
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The dual increase in DOC and MBC observed along the soil profile in our bioenergy buffers 

as compared to the AF (Figure 3.5c-d) revealed that establishment of bioenergy crops with 

such dense and deep-rooting systems triggered the soil microbial community. The activities 

of soil C, N and P-acquiring enzymes such as -glucosidase, leucine aminopeptidase and 

alkaline phosphatase have been observed to significantly increase under bioenergy buffers 

at 0-30 cm depth (unpublished data). The rhizosphere priming effect promotes N mining 

from SOM and the mineralized N is retained by the microbial community through rapid 

immobilization (Kuzyakov, 2002; Dijkstra et al., 2013; Kuzyakov & Xu, 2013; Blagodatskaya 

et al., 2014; Chen et al., 2014; Zhu et al., 2014). Microbial biomass N, indeed, significantly 

increased in the top soil layers under the bioenergy buffers by comparison to the AF (Figure 

3.5b). Microbial N retention was also observed in other perennial agroecosystems 

(Hargreaves & Hofmockel, 2013). However, elemental CN ratio of microbial biomass (MB) 

along the soil profile did not decrease because of MBN increase. A MB CN ratio around 6 is 

close to that of the SOM that would be decomposed (SOM CN of 8 at 0-60 cm) and this 

highlights how soil microbial biomass should not undergo adjustments of microbial 

element use efficiency (Mooshammer et al., 2014). As the stoichiometry of the soil 

resource was balanced with that of the microbial biomass, soil microbes could not excrete 

N in excess and thus soil N is retained and N losses should have been prevented (e.g. during 

winter period with potential N leaching) (de Vries & Bardgett, 2012; Manzoni et al., 2012).  

Indeed, potentially leachable nitrate did not increase significantly along the soil profile 

under the bioenergy buffers compared to the AF after the beginning of the second growing 

season (2014) (Figure 3.5a). Overall, the increase in easily available C for microorganism 

(DOC), MBC and MBN confirmed the results of Bengtson et al. (2012) and Paterson (2003) 

of a strong coupling of root C release, SOM cycling, and microbial N cycling.  

In conclusion, herbaceous and woody bioenergy crops have been confirmed as being 

effective in mitigating shallow groundwater N pollution when cultivated as bioenergy 

buffers. Up to 50, 70 and 90% buffer strip effectiveness in removing NO3-N could be 

reached by creating bioenergy buffers 3 m, 9 m and 15 m wide, respectively. The use of 

ecological stoichiometry (DOC:NO3-N) revealed that denitrification plays a key role in the 

nitrate removal observed along the soil-groundwater continuum. Deep rooting systems of 

bioenergy crops promoted the activation of soil microbial processes involved in N removal 

from soil. Our findings also suggest that biomass production and N removal through 

multiple harvests further contributes to N retention in bioenergy buffers compared to 

unmanaged buffer strips with spontaneous species. Bioenergy crops placed along 

watercourses in sandy loam soils with shallow groundwater enhance ecosystem services 

and sustain soil functioning such as water quality regulation and soil microbial C and N 

cycling. 
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3.5 Supporting Information 

 
             Table S3.1 Main soil physical and chemical characteristics of the soil horizons  

 

 Parameter* unit 
Ap Bw 2C 2C 

0-40 cm 40-70 cm 70-150 cm 150-200 cm 

SOC % 0.8 0.4 0.3 0.1 
N tot % 0.07 0.05 0.02 0.01 

C/N ratio  11.4 8 15 4 

Polsen ppm 6.3 4.1 1.3 0.7 

CaCO3 % 10 11.5 9.3 3.3 
pH  7.9 8 8.2 8.1 

Texture texture class 
sandy 
loam 

sandy 
loam 

loamy sand silty clay 

Bulk density g cm3
-1 1.48 1.49 1.69 1.05 

CEC cmol(+) 100g-1 8.7 7.2 4.1 2.9 
Ks 

*** cm day-1 46 55 165 8 
* all the parameters were measured according to the Italian soil analyses manual  
** Cation Exchange Capacity  
*** Saturated hydraulic conductivity measured with Cornell Sprinkle Infiltrometer  

 
 
 

Table S3.2 Average concentrations of groundwater chemical species after bioenergy buffers  
(BS- crop) and in agricultural field (AF-crop). BS: buffers strips; AF: agricultural field. 

 

 
§ Values with different letters in superscript show statistically different means (Tukey’s LSD test, P < 0.05) 
within chemical species. 
* Conducibility 
** TDS: Total Dissolved Solids 
*** elemental DOC:NO3 ratio expected to occur under bioenergy buffers. It was calculated dividing the values 
of DOC in groundwater after bioenergy buffers by the concentration of NO3-N of the incoming groundwater 
from AF. 

 

SEASON  CROP T 
°C 

O2 

mg L
-1

 
pH Cond* 

µs cm
-1

  
TDS** 
mg L

-1
  

DOC 
mg L

-1
 

DOC/ 

NO3
* * *

 
Cl 

mg L
-1

 

2014 
season 

 

  
BS 

native species 21.0 a§ 2.3 a 7.9 a 1162 a 626 a 7.18 a 3.3 ab 42.9 a 

 miscanthus 20.6 a 2.1 a 7.9 a 1141 a 587 a 5.87 b 3.7 a 39.8 a 

 willow 19.6 b 2.0 a 7.9 a 1224 a 639 a 7.49 a 3.9 a 42.0 a 

  AF soybean 22.2 a 2.5 b  7.8 a 1387 b 668 a 1.19 c / 42.2 a 

2014 
leaching  
season 

  
BS 

native species 17.5 b 1.9 ac 8.0 a 1105 a 634 a 4.77 b 2.5 b 30.2 a 

 miscanthus 17.9 b 1.6 c 8.1 a 1129 a 623 a 4.64 b 2.4 b 29.9 a 

 willow 17.8 b 1.5 c 8.0 a 1103 a 615 a 6.88 a 3.0 b 34.2 a 

 AF bare soil 17.2 b 2.0 a  7.9 a 1134 a 651 a 1.81 ce / 31.8 a 

2015 

season 
 

  

BS 

native species 21.7 a 2.6 b 8.1 a 925 b 471 b 7.02 a 1.4 c 36.8 a 

 miscanthus 19.5 ab 3.2 d 7.9 a 653 c 321 c 7.11 a 1.5 c 38.7 a 

 willow 20.1 a 3.2 d 8.2 a 943 b 465 b 8.91 d 1.9 c 39.6 a 

 AF tomato 21.2 a 3.6 e  8.5 a 1209 a 614 a 2.14 e / 37.7 a 
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Table S3.3 Mean values of NO3 removal rate as BSE (%), BSE per unit length (% m-1) and mean mass of N removed per unit length (mg NO3-N L-1 m-1) for bioenergy 
buffers across the growing seasons. Results of non linear regression model of BSE plotted against buffer widths (BSENO3= a xwidth). Buffer width (m) necessary to 
obtain a given value of BSE (%) as predicted by the regression model. 

SEASON 
(N input a) 

CROP mean 
BSE 

mean BSE per 
unit length b 

mean mass of 
N removed per 

unit length c 

 
model 
y=axb 

 
R2 

 
P 

Buffer width (m) necessary to obtain a 
given value of BSE d 

% % m-1 mg NO3-N L-1 
m-1 

50% 75% 90% 100% 

All seasons All crops 67 9.5 0.327 33.2 x 0.37 0.18 0.031 3 9 15 20 

 Crop type           
 Native species 63  8.8  0.320  24.2 x 0.50 0.23 0.015 5 10 14 18 
 Miscanthus 70  10.0  0.339   29.6 x 0.44 0.27 0.008 3 8 13 16 
 Willow 71  10.3  0.330  49.4 x 0.19 0.30 0.004 1 9 23 40 
 Bioenergy crops 71 10.2 0.334  38.4 x 0.31 0.17 0.034 2 9 15 21 

2014 season All crops  61 8.7 0.138 26.4 x 0.42 0.29 0.008 4 12 19 24 

(low NO3 input) Crop type           
 Native species 56 7.8 0.126 16.3 x 0.61 0.59 <0.001 6 12 16 19 
 Miscanthus 61 8.6 0.139 21.1 x 0.54 0.50 0.001 5 11 15 18 
 Willow 65 9.6 0.148 48.9 x 0.15 0.14 0.016 1 18 <50 <50 
 Bioenergy crops 63 9.1 0.144 32.7 x 0.33 0.30 0.004 4 12 21 28 

2014 winter  All crops 63 8.1 0.223 4.8 x 1.30 0.83 <0.001 5 9 10 11 

(low NO3 input) Crop type           
 Native species 57 6.9 0.220 1.1 x 1.91 0.91 <0.001 6 9 10 11 
 Miscanthus 64 8.4 0.224 5.9 x 1.2 0.79 <0.001 5 9 10 11 
 Willow 68 9.1 0.227 9.5 x 0.97 0.90 <0.001 5 8 10 11 
 Bioenergy crops 66 8.8 0.223 7.8 x 1.0 0.89 <0.001 5 9 10 11 

2015 season  All crops 78 11.6 0.530 69.1 x 0.06 0.11 0.001 <1 4 >50 >50 

(high NO3 input) Crop type           
 Native species 75  11.2 0.521 66 x 0.06 0.11 0.023 <1 7 >50 >50 
 Miscanthus 80 11.8 0.546 59 x 0.05 0.17 0.020 <1 5 15 29 
 Willow 79 11.9 0.525 76.7 x 0.02 0.12 0.048 <1 2 >50 >50 
 Bioenergy crops 80 11.9 0.535 68.8 x 0.03 0.14 0.032 <1 3 >50 >50 

a  for the data on NO3-N input from AF see values in Table S3.2. 
b mean BSE per unit length (% m-1) was calculated dividing BSE (%) by buffer width (m) (Sabter et al., 2003)  
c mean mass of N removed per unit length (mg NO3-N L-1 m-1) is calculated as the difference in the NO3-N groundwater concentration between AF and bioenergy buffers 

and divided by buffer width  

d  buffer width necessary to obtain a given value of BSE (50%,75%,90%,100%) are calculated by the predicted values from regression model (y=axb) 
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Table S3.4 Results of the mixed model of repeated measures ANOVA used to investigate the effect of crop (C), depth (D) and growing seasons (S) on the stock 
(kg ha-1) of soil inorganic N forms, C and N pools of dissolved organic matters (DOM) and microbial biomass (MB) and the effects on potential soil nitrate reductase 
activity (NRA - μg NO2-N gsoil

-1 day-1). The table presents the F and P values (bold P<0.05) of the main fixed effect terms and their interactions.  
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Figure S3.1 Hydrological features of the field trial 

 
 
 
 

 
Figure S3.2 Relationship between elemental DOC:NO3-N ratio under bioenergy buffers and buffer strip 

effectiveness (BSE %) in removing NO3-N from groundwater. Data grouped by buffer width (a) and by 

monitoring seasons (b).  
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Figure S3.3 Soil NO3 reductase activity (NRA) under bioenergy buffers and agricultural field at different 

soil depths across the four sampling seasons: (a) after buffers establishment (July, 2013); (b) end of 1st 

growing season (February, 2013); (c) end of 2nd growing season (February, 2014); (b) middle of 3rd growing 

season (August, 2015). Different letters show statistically different means among crop types (Tukey’s test, 

P: 0.05) within the same soil depth and growing season.  
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Figure S3.4 Harvestable biomass (lines) and N removal via harvesting (bars) of willow (a) and miscanthus 

(b) for different plant rows along the 10 m wide buffer transects. Values are reported for the harvesting 

carried out in late winter 2014 (end of 2nd growing season). Different letters show statistically different 

means among plant rows (Tukey’s test, P: 0.05) within parameters and species. The lateral N loadings 

have to be considered coming from the left side (see also Figure 3.1d). Willow (Salix matsudana (hybrid)) 

has a stem density of 13.000 stems ha−1 (0.6 × 1.5 m spacing). Miscanthus (Miscanthus x giganteous) was 

planted instead with a density of 4 rhizomes m2 (0.36 × 0.7 m spacing). 

 

  Appendix 3.1  

Lab protocol adopted for potential soil Nitrate Reductase Activity (NRA) 

Soil NO3 reductase activity (NRA) was measured by soil anaerobic incubation following the 

modifications of the protocol of Abdelmagid & Tabatabai (1987) introduced by Chèneby et 

al. (2010). Optimal NO3-N substrate and 2,4-dinitriphenol (DNP) inhibitor concentrations 

were measured to determine the maximum amount of NO2-N produced for that specific 

sandy loam soil. In 2 ml eppendorf tubes, three replicates of 0.25 g for each soil sample 

were pre-incubated 5h with 0.5 ml deionized water to remove O2 and incubated under 

waterlogged conditions for 24h at 25°C adding 0.5 ml of KNO3 1mM as substrate (35μg DNP 

gsoil
-1) and 54 μl of DNP 1mM (50μg DNP gsoil

-1) to inhibit nitrite reduction. Soil mixture was 

extracted using a 1:2 (w/v) ratio of soil to 4M KCl  extract and then centrifuged for 1min at 

10.000 x g. Supernatant was pipetted into 96-well microplates and nitrite concentration 

was determined before and after incubation of soil samples following Griess colorimetric 

reaction. NRA were calculated as μg of NO2-N produced per g of dry soil per day (μg NO2-N 

gsoil
-1 day-1). 
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General discussion 

The rationale for studying the implications of bioenergy cultivation on ecosystem services 

has changed from academic interest to necessity to design sustainable bioenergy 

landscapes. Tilman et al. (2009) and Manning et al. (2014) argue that if society is to realise 

the potential benefits of bioenergy a key requirement is that science-based principles must 

be introduced to ensure that the best bioenergy land use is adopted. Assessing the 

provision of multiple ES into the decision making process could significantly alter our 

conclusions about desirability of bioenergy landscapes (Howard et al., 2012; Dale et al., 

2014; Rizzo et al., 2014). The importance of incorporating ES into analysis of the 

implications of land use transition to perennial bioenergy crops derives from the realisation 

of the value of ES to society (Porter et al., 2009; Gasparatos et al., 2011), and the concurrent 

understanding that many ES are in decline (MEA, 2005a).  

Increasingly, our society is seeking sustainable land use scenarios that are valid alternatives 

to the "food vs. fuel" approach (Fisher et al., 2009; Gasparatos et al., 2011; Bateman et al., 

2013). Strategic cultivation of bioenergy crops within landscape has already demonstrated 

to contribute to key ES.  An integrated research on the relationships between ES provision 

and the establishment of bioenergy crops in strategic locations within landscape would be 

fundamental given the prevailing societal needs to produce large quantities of food and 

energy in agroecosystems that are supported and regulated by multiple ES (Figure 1.1 and 

Figure 1.2).  This also holds true for this thesis, which was written as part of the HEDGE-

BIOMASS project (“Biomass production from bioenergy crops on buffer strips”), funded by 

the Italian Ministry of Agricultural, Food and Forestry Policies. This thesis aimed to provide 

an overview of the potentials of perennial bioenergy crops to combine a sustainable supply 

of biomass within agricultural landscape whit multiple provision of ES. Perennial bioenergy 

crops cultivated as bioenergy buffers (Figure 1.4), are assessed in Chapter 2 and Chapter 3 

for their productive and environmental performances when they replace the edges of the 

field of intensive food cropping systems. As described in Chapter 1, the main research 

question of this thesis is therefore: “To what extent do the perennial bioenergy crops affect 

the delivery of multiple ecosystem services when cultivated as bioenergy buffers?”   

To synthetize the main findings of this thesis the main hypothesis (see section 1.5) are 

recalled in the following section, to indicate whether the establishment of bioenergy 

buffers: enhance the provision of multiple ES (H1), affect the sustainability of biomass 

supply chain (H2), remove efficiently N from nitrate-enriched groundwater (H3), promote 

biological N removal from soil (H4) and produce considerable below- and above-ground 

biomass (H5).  
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4.1 Testing hypothesis 

  H1 Perennial bioenergy crops could be grown as bioenergy buffers to produce 
bioenergy, sustain multiple ES and diversify agricultural landscapes 

The systematic revision of the literature in Chapter 2 denoted an increasing interest on the 

bioenergy buffers scenario, especially cropland conversion to herbaceous bioenergy 

buffers. Among the ES reviewed, it emerged that “climate regulation” and “biodiversity 

regulation” are still the ES to which is dedicated the largest interest, but is interestingly to 

note how the positive role of bioenergy buffers on "water quality regulation" service is 

becoming a current research topic. The results presented in Chapter 2 (section 2.3 and 2.4) 

confirmed the hypothesis. In particular, the implementation of bioenergy buffers along 

field margins of former croplands has a net positive impact on multiple ES provision (Figure 

2.5). Grasslands conversion to bioenergy buffers showed, instead, mostly net negative 

impacts on multiple ES provision. Considering both short-term (0-3y) and long-term 

impacts (3-15y), bioenergy buffers cultivated with miscanthus and switchgrass, compared 

to woody buffers with willow and poplar, have a higher net effect on the provision of 

multiple ES. The key findings of Chapter 2 on the environmental impacts of herbaceous 

bioenergy buffers are reported in Table 4.1. 

  H2 Bioenergy buffers may challenge the sustainability of the biomass supply chain  

Bioenergy buffers are linear landscape elements whose spatial arrangement on farmlands 

should be carefully designed. In Chapter 2 (section 2.5) it is confirmed that some site-

specific factors along field margins (e.g. shadowing of natural riparian areas or areas 

susceptible to compaction or waterlogging) may affect the success of crop establishment 

and buffers long-term productivity. However, on lowlands with high nutrient runoff loads, 

it was highlighted how the N and P trapping mechanisms observed in bioenergy buffers 

might, indeed, positively feedback over short-term on biomass provision. Since no 

fertilisation or irrigation is foreseen, the main management practice on established 

bioenergy buffers is biomass harvesting and collection. The systematic revision of literature 

on biomass supply chain of bioenergy crops conducted in Chapter 2 (section 2.6) confirmed 

the hypothesis. A limited working space for the farm machinery operations has been 

recognized as the main disadvantages of bioenergy buffers compared to large-scale 

bioenergy plantations. This is due to the linear spatial arrangement of bioenergy buffers.  

Bioenergy buffer's width (as wide as mandatory buffer strips in many EU countries, namely 

5-10 m) and the presence of obstacles and element of discontinuity within inter-field road 

network may strongly affect, not only buffers design within farmlands, but especially the 

working capacity of farm machineries (e.g. by increasing the number of passages and 

manoeuvring operations). These two factors may inevitably increase harvest and collection 

operation times, fossil fuel consumption and therefore the operating costs. Nevertheless, 
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it is difficult to depict the overall effect of this spatial constraint on the GHG balance of 

bioenergy buffers. No studies addressing the contribution of perennial bioenergy crops 

(Table 4.1) in offsetting the GHG emissions induced by biomass harvesting and collection 

have been carried out to date. 

 

 

   Table 4.1 Key findings on the role played by herbaceous bioenergy buffers on multiple ES provision 

Ecosystem 
services (ES) * 

Value of ES to society Role of herbaceous bioenergy buffers 

Climate 
regulation   

Sink for GHG through soil C 
sequestration and GHG emissions 

reduction 

- Litter and root C inputs to soil promote the 
increase of the soil organic matter (SOM) 
content. 

- The absence of fertilization in buffers, plant-
microbial linkages and plant N use efficiency are 
the key factors for reducing N2O emissions 

Groundwater N 
quality 

regulation  

Filter for nutrients, pollutants to 
surface- and ground-waters 

The deep rooting patterns of perennial grasses 
promote the filtering and buffering function of 
the N pollution from surrounding agricultural 
lands 

Nutrient runoff 
and soil erosion 

regulation  

Barrier for surface runoff in which 
sediments and nutrients are 
trapped by plant-soil system 

Perennial grasses help to stabilize soils and 
decrease erosion and nutrient runoff through 
their standing vegetation and the leaf litter 
accumulating on soil surface 

Soil health and 
belowground 
biodiversity   

Soil biota supports biomass 
provision and the regulation of 
climate, water and biodiversity 

services 

- Perennial grasses support a diverse and 
functional soil microbial and microfauna 
community. 
- In return, the activity and diversity of soil biota 
affect positively soil structure, nutrient cycling, 
buffering of nutrients, and the transfer of plant-
derived C inputs into stable SOM pools. 

Aboveground 
biodiversity 

and pest 
regulation  

Farmlands are composed of 
multiple types of habitat that 

support many different biological 
species involved in pest regulation 

and pollination service 

- Planting perennial herbaceous crops as 
bioenergy buffers could increase the area of 
perennial habitats on agricultural landscapes. 
- Herbaceous bioenergy buffers offer habitats 
and food resources for diverse communities of 
beneficial organisms that help control pests and 
pathogens, and provide pollination services in 
adjacent crop field. 

Biomass 
provision 

and energy yield  

Production of dedicated biomass 
for bioenergy production 

Managed buffers give the possibility to farmers 
to produce biomass which could generate 
additional revenue and might contribute to 
securing buffer strips existence and consequently 
maintaining their ecological function 

* in table are listed the regulating, supporting and provisioning services as reviewed in Chapter 2 (Figure 2.5) using the MEA 

framework on ES   (MEA, 2003), except for “soil C sequestration” and “GHG emission regulation” which are merged into “climate 

regulation” service 
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  H3 Perennial bioenergy crops, if cultivated adjacent to watercourses, may intercept and 
remove efficiently N from groundwater as much as buffers strips with spontaneous 
species 

Buffers strips with natural vegetation are widely recognized to be effective at intercepting 

and reducing nitrogen loads entering water bodies. However, the question remained 

whether perennial bioenergy crops cultivated along watercourses would retain and remove 

N from groundwater with the same effectiveness of natural riparian buffers. In Chapter 3 a 

bioenergy buffers field trial was set up at the toe of gentle slope of an intensive food 

cropping systems, in a sandy loam soil with nitrate-enriched shallow groundwater. The 

effectiveness in removing NO3 from groundwater of miscanthus and willow buffers is 

compared with that one of buffers strips with spontaneous species. The results presented 

in Chapter 3 (sections 3.1 and 3.2) confirmed the hypothesis. Bioenergy buffers showed to 

be able to efficiently intercept and remove from groundwater the incoming NO3-N as much 

as buffer strips with spontaneous species (Figure 3.2). NO3-N was removed across two 

growing seasons by 62% and 80% respectively in 5 and 10 m wide bioenergy buffers. The 

results confirmed also that NO3-N removal rate is even higher when nitrate input increased 

due to N fertilization in the agricultural field (Figure 3.3), showing no symptoms of N 

saturation in bioenergy buffers three years after crop establishment. Moreover, the results 

are among the first in literature reporting the biological denitrification route under 

bioenergy cropping. The application of ecological stoichiometry (as DOC:NO3 elemental 

ratio) revealed, indeed, that bioenergy crops promote a C-rich and NO3-depleted 

environment along the soil-groundwater continuum (Figure 3.4) indicating in biological 

denitrification a key factor governing N removal in bioenergy buffers. 

  H4 Deep-rooted crops such as perennial bioenergy crops lead to significant plant 
microbial linkages and thus increase biological N removal from soil 

The deep rooting pattern of herbaceous crops are well known. However, few data are 

available on the role of fine root biomass and dissolved organic C (DOC) as indicators for 

the activation of the soil microbial community. This is relevant because to be adopted 

under different climatic and pedological conditions, there needs to more evidences on the 

potential of bioenergy buffers to promote biological removal of N from soil. In Chapter 3 

(section 3.3.4 and 3.3.5) the results on the fine root biomass and its distribution along the 

soil profile of miscanthus and willow buffers confirmed the hypothesis. Compared to 

spontaneous species, fine root biomass in miscanthus and willow buffers showed 

significant relationships with dissolved organic C (DOC), microbial biomass C (MBC), and 

potential soil nitrate reductase activity (NRA). Bioenergy buffers lead to significant plant–

microbial linkages by increasing the easily available C sources for microorganisms (as DOC). 

First, willow and miscanthus promoted higher rates of biological removal of nitrate (NAR) 

along the soil profile than spontaneous species, especially at deeper soil layers.  
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Second, root-derived C inputs activated the soil microbial community leading to significant 

increases in MBC and microbial N immobilization. As tested for groundwater in Hypothesis 

3, Chapter 3 recognized in soil DOC an important driver for biological denitrification under 

bioenergy buffers. These results are a very important step forward for our understanding 

of plant-microbial linkages, as they demonstrate for bioenergy crops a strong coupling of 

root C inputs, SOM cycling, and microbial N removal. Overall, deep rooted crops such as 

willow and miscanthus may increase the depth of the active zone of biological N removal. 

This ultimately indicates the opportunity with bioenergy buffers to intercept and remove 

subsurface N loads from surrounding agricultural fields at deeper soil layers than buffers 

with spontaneous species. 

  H5 Miscanthus and willow buffers produce a significant amount of below- and above-
ground biomass if cultivated in nitrate-enriched shallow groundwater 

On flat farmlands that present diffuse phenomena of water pollution, bioenergy buffers 

can be designed along waterways to improve Good Ecological Status of watercourses as 

requested under EU Water Framework Directive (EC 2000/60) (hypothesis H3). 

Furthermore, if the mechanisation of harvest operations is allowed, a considerable amount 

of biomass can be produced from perennial bioenergy crops. Biomass production and plant 

N uptake have been shown in literature to be important N removal processes in natural 

riparian buffers. This also holds true for bioenergy buffers. The results presented in Chapter 

3 (section 3.3.5) confirmed the hypothesis. Two years after crop establishment, in a sandy 

loam soil with a nitrate-enriched shallow groundwater, willow, more than miscanthus, 

showed promising values for biomass yield (17 Mg DM ha-1 y-1), fine root biomass (5.3 Mg 

ha-1 0-60 cm) and N removal via harvesting (73 kg N ha-1). It was also found a higher 

contribution of fine roots (41%) to whole root biomass at deeper layers (30-60 cm) in willow 

(2.2 Mg ha-1) and miscanthus (1.6 Mg ha-1) than in spontaneous species (30% with 0.6 Mg 

ha-1). This clearly indicates how bioenergy buffers have a high potential to contribute not 

only to N removal and biomass production but also to C storage and GHG savings in the 

deep soil layers. 

 

 

 

 

 

 

 

 



        Chapter 4   General discussion 

 92 

4.2 Emerging principles for design of bioenergy landscape 

Farmers can enhance biodiversity and ecosystem services by managing bioenergy crops to 

promote landscape perenniality and diversity (Werling et al., 2013; Bourke et al., 2014; 

Dauber & Bolte, 2014). If well-coordinated, these efforts could feedback to increase 

biodiversity and ES within farmlands and across agricultural landscapes (Power, 2010). The 

main findings coming from the systematic revision of literature (Chapter 2) and the field 

experimental evidences reported in Chapter 3 could be used by policymakers to create 

incentives that promote landscapes that support multiple ES. Two emerging principles for 

design of bioenergy landscapes can be derived from this thesis. 

   First, to provide multiple ES at farm-scale habitat stability and perenniality matter. Annual 

food and bioenergy cropping systems impacts agroecosystem resilience and soil health. It 

has been shown that intensive annual cropping systems disrupt communities of soil 

microbes and beneficial insects through yearly tillage and use of fertilizer and pesticides, 

reducing the ability of these organisms to cycle nutrients, regulate GHG emissions and 

suppress pests (Schröter et al., 2005; Zhang et al., 2007; de Vries et al., 2013; Tsiafouli et 

al., 2014). Stability and perenniality could be included in agricultural landscapes by 

designing bioenergy buffers in strategic position within landscape (Manning et al., 2014). 

Bioenergy buffers are more stable than annual food crops because they are planted with 

vegetation that persists for multiple years, and even they are harvested yearly, they can 

favour more ES providers than annual crops (Chapter 2 - section 2.4.5). In addition, Chapter 

3 clearly show how perennial bioenergy crops cultivated along waterways can intercept 

and remove subsurface N loads from surrounding intensive annual food cropping systems. 

The perenniality of bioenergy buffers offers also a source of dedicated biomass for 

energetic purposes over the long term (Golkowska et al., 2016). 

   Second, to provide multiple ES at broader scales than farmland, landscape perenniality 

and diversity matter. Agricultural landscapes that contain a mix of annual crop and 

perennial habitats will support more species and greater rates of provision of multiple ES 

compared to landscapes dominated by few annual crops (Werling et al., 2013; Rowe et al., 

2013, Meehan et al., 2013, Parish et al., 2012). Establishing perennial bioenergy crops could 

increase the area of perennial habitats on landscapes and thus promoting a higher 

landscape diversity (Manning et al., 2014). Such diverse landscapes may support more 

types of organisms, an thus ensuring a higher functional redundancy of agroecosystems 

(Tscharntke et al., 2007). A recent study (Haughton et al., 2015) suggest that miscanthus 

and SRC willows, and the management associated with perennial cropping, would support 

significant amounts of biodiversity when compared with annual arable crops. Similarly, 

connecting existing natural areas with buffer strips of perennial habitat may increase the 

movement of pollinators, predators and wildlife across the landscape by acting as 

ecological corridors (Marshall & Moonen, 2002).  
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From this thesis, it emerged that the strategic placement of bioenergy crops has the 

potential to increase landscape sustainability when the pairing of location and crop type 

result in minimal disruption of current food production systems and provides multiple ES. 

This is confirmed e.g. by the field experiment described in Chapter 3, where nitrate  have 

been successfully intercepted and removed mainly because bioenergy buffers were placed 

perpendicular to the subsurface water flow. Chapter 2 shows also that bioenergy buffers 

could be planted along watercourses for reducing runoff into streams and hence increasing 

water quality. Herbaceous and woody SRC bioenergy crops could also be grow in marginal 

areas of the farm (not bioenergy buffers in strict sense) to provide habitat for predators of 

crop pests of other farmland units and to increase soil organic C of these lands. In the long 

term, creating these diverse landscapes could increase the productivity of food crops by 

supporting crop pollination and natural pest control in addition to supporting the other 

services that have value beyond production (Asbjornsen et al., 2012; Meehan et al., 2012; 

Pywell et al., 2015). Several spatial modelling studies addressing the conversion of food 

crops (mainly maize and soybean) to bioenergy buffers, indicated indeed, at watershed 

level, that a careful of bioenergy buffers leads to increase annual energy provisioning 

(Meehan et al., 2013) and pollination service (Meehan et al., 2013) and simultaneously to 

decrease annual P and N load to surface water (Powers et al., 2011; Meehan et al., 2013; 

Ssegane et al., 2015) and annual N2O emissions (Gopalakrishnan et al., 2012; Ssegane et 

al., 2015).  

   This thesis offers only a first evidence base of the advantages of perennial bioenergy crops 

grown as bioenergy buffers to produce bioenergy and sustain multiple ES provision. 

However, it highlights a number of key trends relevant to land use transition to bioenergy 

buffers that optimize ES within farmlands. The results of the impact matrix of Chapter 2 

(Figure 2.5) clearly show that the net multiple ES provision of bioenergy buffers are 

dependent on the land use being replaced (cropland replacing cropland have a net positive 

effect greater than grassland conversion). Nevertheless, a general lack of understanding 

was identified for almost all the ES relative to the impacts of bioenergy buffers during the 

establishment phase (0-3 years). How long it takes after crop establishment for making 

bioenergy buffers an efficient C-stocking, N-removing and P-trapping land use practice are 

interesting research questions to be tested in future. 
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4.3 Challenges to overcome 

Implementing a diverse landscape is challenging. Multiple farmers will need to work 

together to shape the landscape (Dale et al., 2016). At the same time, these farmers will 

need to balance crop productivity, economics, market access, availability and cost of 

equipment  when deciding where and which bioenergy crops to plant (Zegada-Lizarazu et 

al., 2010; Christen & Dalgaard, 2013). Tradeoffs between ES and loss of income after the 

conversion to bioenergy buffers will challenge the ability of farmers to grow mixed food-

bioenergy cropping systems that are productive and support ecosystem services.  The 

benefits of a given bioenergy cropping system for ES will be context dependent.  Holland 

et al. (2015) identified the key issues for bioenergy cropping systems that need to be 

addressed relating to scale of deployment, societal value and trade-offs between ES (Figure 

4.1). Chapter 2 suggest that these issues can also apply to the the case of bioenergy buffers, 

except for agrochemical inputs (no use of fertilizer and pesticides use is foreseen along 

buffers). By expressing the tradeoffs between income provisioning and other ES as benefit-

cost ratios, Meehan et al. (2013) found that the benefit-cost ratios for the different ES of 

bioenergy buffers are correlated within landscape. This suggest that there are areas where 

increases in multiple ES might come at lower-than-average opportunity costs (Meehan et 

al., 2013). Similarly, Parish et al. (2012) showed that a sustainable design of bioenergy 

landscapes could be obtained only if spatial scenarios aiming at achieving different 

sustainability goals are included into decision-making process – e.g. scenarios that balance 

the increase of one or more ES with maximizing profit. These considerations suggest that 

future research will have to monetize ES using estimates e.g. for the social costs of water 

pollution mitigated (Bateman et al., 2013; Meehan et al., 2013; Orwin et al., 2015). This is 

relevant in order to avoid that the value associated to land use transition to bioenergy 

buffers does not become far lower than the opportunity cost.  

In addition to the issues relating to ES priorities and tradeoffs, there are other local factor 

that can affect the implementation of bioenergy buffers (Christen & Dalgaard, 2013): yield 

target, harvesting technology, local bioenergy markets, farmer personal preferences. 

Perennial crops may require farmers to invest in new harvesting equipment and produce 

delayed returns. For example, woody crops like hybrid poplars require different harvesting 

equipment than herbaceous crops and are harvested every 2 to 3 years, which can cause 

high establishment costs and receive incomes at longer intervals. In Chapter 2 (section 

2.6.1), the use of a single-pass system and a self-propelled chopper, respectively for 

herbaceous and woody crops, were identified as suitable options for managing biomass 

along bioenergy buffers. Moreover, a general lack of experience may cause some farmers 

to choose familiar crops for buffers (clover, ryegrass, mix of grass and wildflower species 

or simply let buffers grow with spontaneous species as in Chapter 3 and Figure 1.6e) rather 

than perennials bioenergy crops that promote ES (Figure 1.5a-e).  
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Figure 4.1 Research needs that have still to be addressed to fully understand the implications of perennial 

bioenergy crops on ecosystem services provision (source: Holland et al., 2015) 

 

As shown in Chapter 2 (section 2.6), another issue for bioenergy buffers may come from 

the limited working space for the farm machinery operations. This can be considered as 

one of the main logistic constraints for bioenergy buffers compared to large-scale 

bioenergy plantations. Moreover, the spatial fragmentation of biomass supply areas due 

to the presence of elements of discontinuity among and within farmlands may increase 

environmental costs related to biomass collection and transport operations. This ultimately 

can threaten the overall sustainability of biomass supply chain.  

Finally, there is a need to have a more detailed analysis and possibly specification and 

enhancement of regulatory measures and subsidy practices for the cultivation of bioenergy 

buffers. This because the existing policies have still too vague references about which 

specific crops can be cultivated for biomass production along buffers (e.g. agri-

environmental measures of Rural Development Programs). An improvement of the existing 

policies would be helpful in view of the barriers to implementation of bioenergy landscape 

design identified by Dale et al. (2016) such as the need to consider diverse land-

management objectives from a wide array of stakeholders, up-front planning 

requirements, and the complexity and level of effort needed for successful stakeholder 

involvement. 

Technical recommendations on biomass logistics management and the most suitable 

spatial planning instruments are research needs that have to be addressed in the future to 

direct bioenergy crop cultivation along buffer strips and incorporating bioenergy into 

sustainable landscape designs. 
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4.4 General conclusions  

The last decade has seen the parallel emergence of policy designed to promote bioenergy 

as a route towards sustainable energy production, and an increasing understanding of the 

importance of ES for human wellbeing. A key part of the answer to the common question 

“How can agriculture produce bioenergy and do so in a sustainable way?” may be an 

increased focus on the full set of ES that a well-designed bioenergy landscape delivers. By 

testing hypothesis 1 through 5, this thesis provides new insights in the role of perennial 

bioenergy crops in the provision of multiple ES. Results of Chapter 2 suggest that perennial 

bioenergy crops cultivated as bioenergy buffers on former croplands increase the provision 

of the full set of regulating and supporting ES described by the Millenium Ecosystems 

Assessment (MEA, 2003). The incorporation of such perennial landscape elements in 

strategic locations into agricultural landscapes dominated by annual crops can reduce GHG 

emissions, sequester C in soil, support soil health and offer habitats and food resources for 

beneficial organisms and act as filter and barrier for sediments and nutrients. Regarding 

the latter service, “water quality regulation”, experimental evidences are provided in 

Chapter 3 on the role of miscanthus and willow buffers in mitigating groundwater N 

pollution (hypothesis 3). The deep rooting system of these bioenergy buffers differentiates 

it from that one of spontaneous species in terms of biological N removal from soil 

(hypothesis 4). Bioenergy buffers can represent also a valuable source of dedicated 

biomass for energetic purposes as shown in Chapter 3 (hypothesis 5), since no limitations 

in water and nutrients are found along bioenergy buffers. Suitable conditions for mobilizing 

biomass from buffers may come from flat agricultural landscapes. On these lands 

mechanization is possible especially along watercourses where buffers are mandatory 

under EU Water Framework Directive (EC 2000/60). Another option identified in Chapter 2 

is the use of bioenergy buffers as Ecological Focus Area (EFA). As regulated within the 

“greening measures” of the CAP 2014-2020, maintaining an EFA of at least 5% of the arable 

area of the farm e.g. with perennial landscape elements like bioenergy buffers may 

encourage farmers to create multifunctional bioenergy landscapes. However, the concerns 

emerged about the logistic constraints and the farmer ability to mobilize biomass from 

buffers (hypothesis 2) prevents from fully understanding of the environmental implications 

of an increased cultivation of bioenergy buffers. These concerns may hinder ability to 

inform the debate on the best subsidy practice and employ the optimum landscape design 

to enhance ES in response to policy that will drive the expansion of bioenergy production. 

In conclusion, bioenergy buffers provide a chance to shape agricultural landscapes to solve 

the conflict between the aim of using agricultural land to produce food and energy and the 

need to promote ecological sustainable intensification by maximizing multiple ES provision. 
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PhD scientific activities 
 

  Review of literature 

Multiple ecosystem services provision and biomass supply chain of perennial bioenergy 

crops (December 2013 – March 2014) 

 

  Field/lab activities 

- Installation of three bioenergy buffers field trials in northern Italy (March 2013- June 

2013) 

- Soil, litter and groundwater sampling on the different field trials during the first three 

growing seasons (April 2013 – December 2015)  

- Development and refinement of the lab protocols for microbial and enzymatic 

analyses at Department of Sustainable Crop Production of Università Cattolica del 

Sacro Cuore, Piacenza, Italy (March 2013 – May 2014) 

- Analysis of the C:N:P stoichiometry of litter and soil samples for the following pools: 

total, dissolved, enzymes and microbial biomass   (October 2013 – July 2015)  

- Soil GHG monitoring using SASSFLUX system (January 2014 – August 2015) 

 

  Writing activities (papers not included in the thesis, submitted and to be submitted) 

- Linking enzymes stoichiometry to resource and microbial biomass stoichiometry along 

the litter-soil continuum: new insights from leaf litter decomposition of bioenergy 

crops (research paper to be submitted to Scientific Reports) 

- Soil microbial functional diversity and soil aggregate dynamics after the establishment 

of bioenergy buffers: implications for soil C sequestration (research paper to be 

submitted to GCB Bioenergy) 

- Contribution of leaf litter decay to GHG emissions (CO2, N2O) under four different 

bioenergy crops (research paper - under preparation) 

- Rhizodeposition and priming effect of a candidate bioenergy crops: switchgrass 

(Panicum virgatum L.) (research paper – under preparation) 

- Soil and ecosystem services: concept and case studies (book chapter – submitted) 

 

  Writing of project proposal 

LIFE13 ENV/IT/001192 project: “Implementation of Bioenergy Buffer Strip networks and 

Innovative Sustainable Cropping Systems in Agroecosystem Planning” (May 2013 - July 

2013) 
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  Laboratory training and working visits (PhD period abroad) 

University of Goettingen, Department of Agricultural Soil Science (supervisor: Yakov 

Kuzyakov), Goettingen, Germany (October 2014 – April 2015) 

    Topic: Rhizodeposition and priming effect of a candidate bioenergy crops: switchgrass 

(Panicum virgatum L.) 

    Objective: Two incubation experiments were carried out to study the contribution of 

switchgrass rhizodeposition to soil C, N cycling and its effects on priming effect. A 

combination of three labelling approach has been used: 14C labelling, 13C shifts after C3-C4 

vegetation change, 15N labelling 

 

  Courses/training 

- SOMDY model training (2 credits) Dipartimento di Scienze del Suolo, della Pianta, 

dell’Ambiente e delle Produzioni Animali, Universita` di Napoli “Federico II”, Naples, 

Italy (February 2013) 

- Use of Isotope Methods in Soil Research (3 credits), Centre for Stable Isotope Research 

and Analysis, Goettingen, Germany (February 2015) 

  PhD exams of the doctoral school (November 2012- February 2013) 
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