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ABSTRACT The pervasive deployment of Deep Learning models has recently prompted apprehensions
regarding their ecological footprint, owing to the exorbitant levels of energy consumption necessitated
by the training and inference processes. The term ‘‘Red AI’’ is employed to denote artificial intelligence
(AI) models that undergo training using resource-intensive methodologies on very large datasets. This
practice can engender substantial energy usage and emissions of carbon, thereby opposing ‘‘Green AI.’’
The latter concept alludes to AI models designed for similar efficiency and reduced environmental impact.
This objective is realized through the utilization of smaller datasets, less computationally intensive training
techniques, or sustainable energy resources. While Red AI prioritizes accuracy and performance, Green AI
emphasizes efficiency and sustainability. Given that both paradigms exhibit advantages and limitations, the
debates around the topics have burgeoned in the scientific arena, delving into novel algorithms, hardware
innovations, and improved data utilization techniques aimed at mitigating the ecological consequences of
intricate applications such as GPT and BERT. Nevertheless, due to the relative novelty of this debate, not
much effort has been dedicated yet to contextualizing the essence of Red AI and the prospects of Green
AI in a coherent framework. Within this context, the present work contributes by meticulously delineating
both domains through a multifaceted analysis of their causes and ramifications, described from the points
of computer architectures, data structures, and algorithms. Additionally, the study reviews notable instances
of study cases based on complex Red AI models. The primary contribution of this article encompasses a
comprehensive survey of Red and Green AI, stemming from a selection of the literature performed by the
authors, subsequently organized into distinct clusters. These clusters encompass i) articles that qualitatively
or quantitatively address the issue of Red AI, identifying Green AI as a plausible remedy, ii) articles
offering insights into the environmental impact associated with the deployment of extensive Deep Learning
models, and iii) articles introducing the techniques underpinning Green AI, aiming at mitigating the cost
of Red AI. The outcome emerging from the analysis performed by this work consists of a compromise
between sustainability in contrast to the performance of AI tools. Unless the complex training and inference
procedures of software models mitigate their environmental impact, it will be necessary to decrease the level
of accuracy of production systems, inevitably conflicting with the objective of the major AI vendors. The
outcomes of this work would be beneficial to scholars pursuing intricate Deep Learning architectures in
scientific research, as well as AI enterprises struggling with the protracted training demands of commercial
products within the realms of Computer Vision and Natural Language Processing.

INDEX TERMS Green AI, red AI, survey, environmental impact.

I. INTRODUCTION
The field ofMachine Learning (ML) has recently experienced
rapid growth and vast recognition, leading to significant
advancements during the last few years. For example, Deep
learning (DL) has enabled the development of complex
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neural networks, leading to breakthroughs in image and
speech recognition, natural language processing (NLP),
and robotics [1]. Similarly, Reinforcement learning (RL)
deployed systems able to play games at advanced levels,
control robots, and optimize complex systems [2]. On the
other hand, Generative Adversarial Networks (GANs) can
generate realistic images, videos, and audio, supporting
applications in domains such as design, entertainment, and
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healthcare [3], while Transfer Learning (TL) enabled the
development of more accurate models with fewer data [4].
Finally, AutoML reduced the time and effort required to
develop accurate models, also making them more accessible
to non-experts [5].
Despite notable progress in ML models’ accuracy scores,

some Natural Language Processing (NLP) tasks have been
solved through models that necessitate significant com-
putational resources, leading to high demand for energy
and corresponding financial costs. In particular, considering
environmental impact, two distinct approaches to AI research
have emerged: Green AI and Red AI.

Schwartz et al. [6] firstly referred to Green AI as a type
of Artificial Intelligence (AI) producing both innovative
and accurate results without requiring more computational
resources or, preferably, by reducing them. Furthermore,
the authors stressed that the main objectives of Green
AI consist of greater environmental sustainability and the
advancement of the AI field responsibly and inclusively.
Promoting efficiency instead of accuracy as an efficiency
metric is also one of the aims of the authors. In this sense,
a balance between performance and efficiency is preferable
for sustainability, as it accounts for the computational cost
and works towards minimizing the usage of resources.

Although Green AI is a broad concept that encompasses
a wide range of AI research, development, and deployment
strategies, it is not limited to specific industries or applica-
tions. Specifically, the authors discuss that although AI is
employed to develop strategies for resolving environmental
issues, it is at the same time the (underrated) cause of
them. As a result, it is crucial to distinguish between two
distinct branches of AI development: GreenAI andAImodels
applied to environmental issues. Although these aspects share
the common goal of addressing ecological challenges, their
approaches, implementations, and outcomes greatly differ
(despite their significance, the topic related to the application
of AI models to environmental studies is not in the scope of
the present study).

As highlighted in [7], the trend to increase the usage of
resources is both prohibitively expensive and damaging to
the environment. The employment of Red AI is a problem
that cannot be ignored as the increasing energy demand for
computation has led to a substantial increase in the size
of AI’s carbon footprint. Schwartz et al. reports that the
following relations emerged:

• Despite the deployment of more powerful hardware
resources, the results tend to reach a theoretical limit in
terms of accuracy;

• The computational cost increases exponentially;
• In the best scenarios, the relationship between the
performance and complexity of a model is logarithmic;

• The main consequence of the usage of Red AI is based
on the diminishing returns after increased computational
cost over time.

Figure 1 provides a schematic insight into the main
motivations that lead to this study. ML is a type of AI,

FIGURE 1. Schema of the motivation of the work.

and ML algorithms are trained on input data, leading to the
parametrization of models. However, to create such models,
computational resources are required, and they are available
at the price of energy. The quantity of consumed energy
(proportional to the required time and complexity for the
training of the model) leads to a certain environmental impact
and accuracy. Depending on their measures, the outcome
relates to Red or Green AI.

The numerous factors that contribute to the growth of
Red AI can be explained in different ways. Despite being a
fundamental computing architecture for the last half-century
since John Von Neumann first described it [8], it is nowadays
not optimized to properly handle the complex processing
required by AI formalisms. Models such as Artificial Neuron
Networks (ANN) are simulated instead of being executed
directly on the machine hardware (i.e. there is no physical
correspondence between the machine hardware and the
architecture of a neural network). The limitations of the
Von Neumann Architecture are becoming apparent as they
are leading to slow processing speeds (specifically, the data
transfer rate or throughput between the CPU and working
memory tends to be limited. In other words, a bottleneck
arises when the CPU performs minimal processing on large
amounts of data, resulting in high power consumption, and
limitations in the size and complexity of supported AI mod-
els. Connection machines [9] was the first attempt to create
a more performing architecture oriented to AI applications.
Another important factor contributing to Red AI’s emergence
is the intrinsic nature of classic data structures. Non-optimal
data structures lead typically to both poor memory usage and
reduced computational performance in AI systems. As proper
structures provide means to store, organize, and access data,
the choice of the right data structure for the task to be
accomplished is crucial. When non-optimal data structures
are taken into account, AI applications tend to require great
amounts of memory (consequently slowing down processing)
and lead to inefficient execution of algorithms and processing
methods. As a consequence, this inefficiency increases
energy consumption. The combinatorial explosion of the
model parameters and the number of spatial dimensions
originating from the high number of features is known as
the curse of dimensionality. Scientific literature provides
numerous techniques to mitigate this problem. For example,
PCA, t-SNE and UMAP algorithms are widely used in
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clustering issues [10] while the autoencoders can reduce the
data noise by achieving dimensionality reduction ([11]).
The increasing demand for better-performing models led

to the necessity of developing Graphic Processor Units
(GPUs) and Tensor Processing Units (TPUs). These units are
specialized in performing parallel computing as traditional
CPU-based systems have become less efficient in handling
the computational workload of AI. Consequently, performing
massively parallel computations causes a higher energy
consumption and a bigger carbon footprint. The development
of DL algorithms accounts for another cause of Red AI,
as it is mostly based on sophisticated ANNs architectures,
such as CNN [12], RNN [13] and LSTM [14], requiring
a massive amount of energy to support their training and
inferences.

One of the causes of Red AI is related to profit,
as companies often prioritize the development of more
accurate ML models to gain a competitive advantage in the
market. To obtain such results, speed is a key factor. A shorter
computational time leads to faster information gathering and,
consequently, quicker decision-making.

Finally, the repetition of experiments based on inferences
is a further cause explaining the rise of Red AI. This
aspect is often overlooked since research papers only report
final results, regardless of all the previous trials. Table 1
summarizes the main differences between Red and Green AI.

TABLE 1. Red and green AI.

It is worth mentioning that the term Green AI - and more
specifically, AI - is somehow vague as, besides stemming
from a cultural context belonging to the past century,
it gathers several disciplines that are recently conveyed under
the ML area. From an epistemological perspective, it can
be argued that AI represents a paradigm shift in the way
knowledge is understood and approached, whileML is a form
of statistical learning mostly driven by data. For example,
Domingos [15] argues that ML represents a new kind of
scientific inquiry that is data-driven and relies on algorithms
rather than theories. In the revised version of an earlier work,
Minsky and Papert [16], claim that the traditional approach
to AI, which involves building systems that explicitly encode
human knowledge and reasoning, has limited success and that
ML represents a more promising approach.

While AI and ML are related concepts, they have distinct
differences in terms of their scope and application. Pursuing
this direction, ML represents a new paradigm for scientific
inquiry that is data-driven and relies on algorithms rather than
explicit theories.

The impact of the used technologies on sustainability and
computational efficiency can be clarified through some real-
world examples. Williams et al. [17] study the different
impact of the usage of Microsoft’s cloud computing Office
365 and traditional Office 2010. Depending on the used MS
software, the two solutions perform differently in terms of
overall consumed energy. Therefore, preferring one technol-
ogy to another has an impact on carbon footprint, even for
small tasks. As Vishwanath et al. [18] observe that the amount
of energy required for cloud services comes from both the
operations of data transportation between local and cloud,
and by the device that is used by the user. Dropbox service
is also being studied by the company itself (https://aem.
dropbox.com/cms/content/dam/dropbox/warp/en-us/esg/2021
_ESG_Impact_Report.pdf). As it relies on on-demand
disposal of data through the usage of cloud, resource
efficiency is fundamental for effective energy management.
According to the company, the contrast to the increasing
size of carbon footprint through the usage of newer and
more efficient servers, reduced energy consumption by 25%
between 2020 and 2021. Furthermore, the deployment of
100% usage of renewable energy, the introduction of HDD
standby policies (which enabled power saving between
25 and 50%), and the eco-sustainable recycling of obsolete
devices have provided very good results. Another example
of the separation between performance, energy efficiency,
and sustainability is given by data centers employed hardware
([19]).

The authors evaluate the performance of green data centers
based on ARM and INTEL architectures. INTEL devices
are powerful but consume a great amount of energy and
produce a high quantity of heat. They are opposed to
ARM devices, which are instead less powerful but also less
energy-consuming. Hybrid approaches can be implemented,
evaluating the trade-off between energy and efficiency.

In the age of climate change and sustainability, it is of
paramount importance to harness the power of technology
for the improvement of our planet. Green AI represents
the intersection of cutting-edge AI techniques and a more
mature consciousness. It seeks to create solutions that not
only address complex issues but do so with minimal carbon
footprints. In a world strongly dependent on energy, the
union of AI and sustainability opens up unprecedented
opportunities. The motivation of this article serves as a
state of the art, guiding scholars and researchers through
the dynamic landscape of Green AI. From innovative ML
algorithms to sustainable computer hardware, the fusion of
artificial intelligence and ecological responsibility is not a
mere trend but a defining paradigm of the 21st century. This
research aims to inspire, educate, and empower scientists,
engineers, policymakers, and citizens alike to take steps
toward a more sustainable and environmentally friendly
future.

Concerning the limitation of this work, it is important
to note that the cost of the contraposition between red AI
and green AI could not be studied in depth, as a complete
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FIGURE 2. Pre-survey: Temporal distribution of foundational articles
published before the year 2000.

FIGURE 3. Pre-survey: Temporal distribution of foundational articles
published after the year 2000.

assessment of a transition from the former to the latter would
need a study the terms of a balance between sustainability and
performance, which is a rather complex task.

The contribution of this article consists of the discussion of
the state of the art of Green AI, and is articulated as follows:

• A review of the factors affecting Red AI, such as
computer architectures, data structures, and algorithms
performance;

• Notable cases of applications within Red AI, described
from the perspective of the time taken by the training,
the hardware specifications, and the dataset used;

• A methodology based on a clustering technique to
classify the most relevant scientific literature regarding
Green AI.

The references used in this work are articulated in the
following manner.

As per Figure 2 and 3, references from 1 to 78 (out of 126)
concern the sections ranging from I to IV. The references
were divided into two figures (articles published before and
after the year 2000) for the sake of clarity Furthermore,
14 articles serving as foundation-cited articles have been
published before the year 2000.

However, 33 (out of 78), have been published between
2017 and 2022. These articles consist of a pre-survey: they
are considered foundational as they provide the preliminary
theoretical background for the following discussion.

The remaining 48 references regard the survey, spread over
7 years (from 2016 to 2023, as per Figure 4); 73% of the
articles were published between 2020 and 2022.

The remainder of this work is organized as follows.
Section II critically compares similar surveys to this work.

FIGURE 4. Temporal distribution of the articles in the survey.

Section III reviews the main factors contributing to Red AI.
Specifically, the discussion delves into different computer
architectures, data structures, and algorithms. Section IV
introduces the foundations of the most relevant Natural
Language Processing and BigGAN models. Section V
presents a survey on the Green AI topic according to
the problem statement, the energy requested and hardware
deployed on training and inference of complex language
models, and the approaches aiming to optimize Red AI
algorithms. Section VI discusses the trends emerging from
the survey and presents some of the lines of future work.

Table 2 provides a short explanation regarding the terms
used in sections III and III-C.

Figure 5 provides a flowchart with the proposed method-
ology that led to the development of the study.

II. RELATED WORK
The subject of green AI is relatively new: as a result, surveys
within this discipline are not numerous.

The work presented by Xu et al. [20] is an extended and
in-depth review of green DL, articulated in a definition of the
topic and the relevant metrics (running time, carbon emission,
model size, Floating-Point Operations, fair measure, and
intuitive understanding). Interestingly, the term Green AI
is equated to Green DL, claiming implicitly an epistemo-
logical status of DL. Following this preamble, the authors
focus on the architectural aspect, separating the component
design from the assembling. The strategies followed by the
training algorithms are reviewed in terms of energy-efficient
factors (such as initialization, normalization, and progressive
training). Similarly, DL is analyzed from the view of
the energy requested to perform inferences, that is model
pruning, quantization, and distillation. Finally, the authors
review the way by which training data can be exploited
to make the training phase more parsimonious in terms of
resources.

Verdecchia et al. [21] use the Goal-Question-Metric
method to clearly state the research question, which sums up
in the state-of-the-art of Green AI. The authors thoroughly
describe the steps of the research process, then discuss the
results of the research, articulated in i) the publications
distribution over the period 2015-2020, ii) the venues
(conferences are equated to journals and are the majority,
opposite to workshops), iii) definitions of Green AI, iv)
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TABLE 2. Summary of terms.

study types, v) Green AI topics, subdivided into sub-topics
(such as hyper-parameter tuning, model benchmarking,

deployment, model comparison, etc.), vi) Green AI Topics
presented by Study Type, vii) domains (such as edge
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FIGURE 5. Study organization.

computing, computer vision, cloud, and mobile computing),
viii) AI pipeline phases (training, inference, or the whole

pipeline), ix) artifacts (such as model, data, pipeline),
x) algorithms types, xi) data types considered (image, text,
numbers, video or audio data), xii) the size of the datasets,
xiii) research strategies (distinguishing between experiments
performed in a laboratory, on the field, or by simulation),
xiv) energy-saving evidence, xv) industry involvement (most
of the studies originated from universities rather than the
industry), and finally xvi) intended readers (mostly from the
academy).

While Verdecchia et al.’s article is an accurate bibliometric
study meant to provide a state-of-the-art, the current work
is closer to XU et al., as it is meant to provide the
foundations of the problem, the deployed DL architectures,
data and algorithms used, also providing a clusterization of
the scientific literature about Green AI.

As AI is rapidly increasing its impact on both tech-
nology and society, IEEE has been working on creating
comprehensive standards encompassing a spectrum of AI
applications. Although there is a growing emphasis on Green
AI against Red AI, the up-to-date standards mainly focus
on the major complex ethical, environmental, and technical
challenges that AI presents. Salehi and Schmeink [22]
discuss the importance of data in relationship with AI and
sustainability, concluding the need for data benchmarks
rather than model benchmarks when working on data-
centric AI. The authors provide 36 benchmarks, considering
different tasks, goals, domain of application and state of
their retrieved data. Siegmund et al. [23] focus on techniques
for reducing energy consumption using AI in software
systems. As a significant amount of energy wasted for
computation can be saved by optimizing the choice of the
parameters, the authors suggest AI and ML methods for
finding more efficient configurations. Unfortunately, the fact
that black-box models do not provide meaningful insights
represents an important drawback. Again, Gutierrez et al.
[24] underline the need for developing ML models that
simultaneously meet the expected operational requirements
and guarantee a balance between obtained results and energy
consumption. In conclusion, IEEE authors strongly suggest
increasing the effort in software development, as architectural
choices strongly affect energy consumption.

III. MAIN FACTORS CONTRIBUTING TO ENERGY
CONSUMPTION
Assessing the amount of energy requested by the execution
of a computational process is not an easy task. The evaluation
of the cost deriving from the training of DL models requires
broader considerations, including the computer architecture
and the hardware, the training algorithm, and the type
of employed data structures. Following this direction, this
section reviews i) the most notable classic architecture in
chronological order, ii) data structures and models typically
deployed in DL. Finally, the section reviews the quantitative
approaches in literature providing a numerical estimate to
train complex DL models.
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A. COMPUTER ARCHITECTURES
1) 1940 - 1950
The Von Neumann architecture is characterized by a unified
memory structure for instructions and data, which is shared
through a single data bus and address bus between the
processor and memory. Access to instructions and data is
subject to sequential order, giving rise to the so-called von
Neumann Bottleneck [25]. This restricts the memory access
bandwidth and results in idle processor cycles duringmemory
access operations. Despite the advent of various solutions
such as cache memory and branch predictor algorithms in
modern computer architectures, these novel techniques have
not completely eradicated the limitations imposed by Von
Neumann Bottleneck.

The Harvard architecture [26] uses separate memory
spaces for instructions and data. The instruction and data
buses are physically separate, allowing instructions and
data to be fetched and processed simultaneously. This can
improve performance in certain applications, but may also
require more complex programming techniques. The mod-
ified Harvard architecture [27] combines elements of both
von Neumann and Harvard architectures. In this proposal,
instructions and data are stored in separate memory spaces,
but the processor can also access instructions stored in the
same memory space as data.

2) 1950 - 1980
High-Performance Computing (HPC, [28]) Systems are
typically used in supercomputers and data centers and are
designed to handle massive workloads and perform complex
calculations. Due to their high processing power, they
typically consume substantial amounts of energy. However,
advancements in energy-efficient designs, such as power
management techniques and specialized processors, have
mitigated this to some extent. GPUs are highly parallel
processors primarily used for graphics rendering and accel-
erating computationally intensive tasks. While they excel
at parallel processing, their power consumption can be
relatively high due to a large number of cores and memory
bandwidth requirements. Modern GPUs are becoming more
power-efficient, but high-end gamingGPUs can still consume
considerable energy. CustomApplication-Specific Integrated
Circuits are specialized chips designed for specific tasks,
such as cryptocurrency mining or deep learning inference.
While ASICs can offer significant performance gains, they
often prioritize performance over energy efficiency. ASICs
consume substantial amounts of energy due to their intensive
computational requirements. Traditional INTEL-based CPUs
have undergone significant energy efficiency improvements
over the years. However, high-performance desktop CPUs
can still consume substantial power, especially during
demanding tasks like gaming or video rendering. Server-
grade CPUs designed for data centers (or even heterogeneous
computing architectures based on both INTEL and ARM
architectures) can also consume significant energy due to
their processing power and scalability [29].

Quantum computers (QCs) represent a different paradigm
in computing and must operate at extremely low tem-
peratures, often near absolute zero. Scientific literature
concerning this type of architecture is too wide to be analyzed
in this work, although a recent analysis of the current trends
can be found in [30]. Achieving and maintaining these
temperatures requires specialized cooling systems, such as
cryogenic refrigerators. They consume significant energy
to create and sustain the required infrastructure [31]. QCs
rely on precise control of individual quantum bits (qubits).
This necessitates complex control systems that manage
the interactions and manipulations of qubits. These control
systems can consume energy, especially when addressing
large numbers of qubits at the same time. As QCs are
susceptible to errors caused by environmental disturbances
and imperfect qubit operations, implementing quantum error
correction techniques requires additional qubits and compu-
tational overhead. As a result, this leads to increased energy
consumption. Furthermore, QCs involve applying operations
known as quantum gates to qubits. The energy consumption
associated with performing quantum gate operations can
depend on the implementation and the specific architecture of
the quantum computer. Finally, extracting information from
qubits through measurement processes and measurement
operations often involve amplification and signal processing,
which require additional energy.

Although outdated, the Spiking Neural Networks (SNNs)
architecture [32], proposed in 1997, extends the concept
of ANNs. By identifying the first ANN generation with
Rosenblatt’s perceptron, Hopfield nets, and Boltzmann
machines, the second generation can be denoted by models
taking into account sophisticated activation functions (such
as the sigmoid functions). In this sense, it can be noted
that a third ANN generation consists of computation units
working as spiking neurons. The advantage of this proposal
emerged in providing models of boolean functions deploying
an inferior number of gates with respect to the previous ANN
generations.

3) 1980 - 2000
CNNs [33] are partially based on ANNs as their basic
component is a cell connected to its neighbors. However,
a cell that has no connections can be indirectly influenced
because of the continuous-time dynamics of the network.
CNNs semantics and evolution can be mathematically
described in terms of ordinary differential equations and be
physically realized in the shape of operational amplifier-
based circuits. Typical applications of CNNs revolve around
image processing and signal processing in real-time.

Self-Organizing Maps (SOMs [34]) is based on the idea
that a 1- or 2-dimensional array represents the correct
maps of structured distributions of signals, despite not
having this exact structure initially. The processing units by
which the mappings are realized, share some similarities
with Rosenblatt’s perceptron [35] and are loosely based
on maps of sensory experiences located in the brain. The
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core of the self-organizing process of SOMs rests on i) an
array of processing units composing simple discriminant
functions, ii) a tool comparing the discriminant functions
and choosing the greatest value returned by the function,
iii) a phase where the selected unit and its nearest neighbors
are activated at the same time and finally iv) a process that
adaptively increases the discriminant function values of the
parameters of the activated units. The work of Hopfield [36]
aims at describing emerging computing properties in a
neural network where every single neuron has very limited
capabilities. Nevertheless, it is possible to observe a gestalt
behavior able to manifest generalization properties and the
capability to order memories concerning time.

The interest around RBFNs [37] stems from the ability to
approximate arbitrary functionals of a finite number of real
variables. In this sense, RBF networks consider one hidden
layer to perform universal approximation.

Recurrent Neural Networks (RNNs, [38]) can perform
durable data transformation, have a strong learning capability,
and are Turing complete, meaning they can compute
every Turing-computable function. Alone, RNNs show a
deficiency: their limited memory causes both computed and
input data storage difficulties. Therefore, the availability
of a higher quantity of memory for RNNs is crucial as
it enables a stronger understanding of the relationships
between input elements, as stressed by Suresh et al. [39].
Furthermore, merging TM and RNNs allows for a new
architecture that is memory augmented as RNNs own the
equivalent infinite memory tape as TM. By construction,
RNNs process sequential data using feedback connections,
to persist information that is processed over time at a
cost of a significant increase in computational complexity
compared to simpler models, such as feedforward neural
networks. RNN are usually deployed to elaborate long input
sequences triggering a large number of recurrent operations,
leading to increased energy consumption. The longer the
sequence, the more computations are needed, resulting in
higher energy requirements. Training RNNs involves back-
propagation through time (BPTT), which requires computing
gradients for each time step in the sequence. This process
can be computationally demanding and resource-intensive,
leading to increased energy consumption during training.
Larger RNN models with more parameters require more
computational resources and, consequently, more energy to
train and run. Finally, the NTM architecture consists of a
controller and an external memory. Different from TM, NTM
includes a more efficient learning mechanism.

4) 2000 - 2020
LSMs [40] are built upon the principles of high-dimensional
dynamical systems paired with statistical learning theory.
This architecture can be exploited to implement a uni-
versal analog fading memory thanks to the inherent tran-
sient dynamics of the high-dimensional dynamical system
originated by a heterogeneous neural circuit sufficiently
large.

Graves et al. [41] introduced a fundamental evolution of
Turing Machines, Neural Turing Machines (NTMs), which
combine TM and NN. The improvements of NTMs followed
different directions, articulated in Reinforcement Learn-
ing Neural Turing Machine [42], Evolving Neural Turing
Machine [43], Lie Access Neural Turing Machine [44],
Dynamic Neural Turing Machine [45], and Neural Random
Access TuringMachine [46]. NTM is a novel architecture that
combines the characteristics of TM and RNNs.

The TrueNorth Architecture [47] is a novel non-Von
Neumann Architecture proposed by IBM researchers. Draw-
ing inspiration from the human brain, this architec-
ture employs a memory controller akin to a neuron,
while eschewing a central processing unit. Notably, it is
designed to operate on synaptic-like datasets stored in
memory, without any data rearrangement, by leveraging
the crystallization dynamics of phase-change memories.
Furthermore, a plethora of alternative architectures have
emerged in contemporary times. For example, the Neuro-
morphic Computing Architecture [48] aims at developing
a computing framework, based on IBM’s Blue Gene
supercomputer (https://www.ibm.com/ibm/history/ibm100/
us/en/icons/bluegene/) able to simulate cortical circuits by
using Artificial Neural Networks.

Table 3 summarizes the different computer architecture
evaluations, while fig. 6 shows a timeline.

FIGURE 6. Computer architectures timeline.

B. DATA STRUCTURES
Some data structures are more memory-efficient than others.
By selecting data structures that use memory efficiently, it is
expected to reduce the energy required for memory opera-
tions such as reading, writing, and moving data. For example,
using a linked list instead of an array can save memory
when working with dynamically changing data. Different
data structures offer varying performance characteristics for
different operations. Choosing data structures with efficient
algorithms can lead to faster execution times, which can
result in reduced energy consumption. For example, using a
hash table for efficient lookup or a balanced binary search
tree for efficient searching can reduce the computational
workload and energy usage. Furthermore, the choice of
data structure can affect factors such as cache utilization
and data locality. Data structures that exhibit good spatial
and temporal locality can reduce the number of memory
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TABLE 3. Most notable computer architectures.

accesses and improve cache hit rates, thus saving energy
by minimizing data transfer between levels of the memory
hierarchy. In a similar way, dynamic arrays or resizable hash
tables may require resizing or reallocation as the data size
changes. These operations can be computationally expensive
and consume energy. Choosing data structures that minimise
the frequency of resizing or optimize the resizing process.
Finally, using specialized data structures suitable to the task
at hand can result in energy savings. For example, spatial
data structures like quadtrees or octrees can efficiently handle
spatial queries. With regard to ML, the most well-known data
structures are vectors. Vectors were used initially in physics
to represent various quantities such as velocity, acceleration,
force, and momentum, although they were formally defined
in linear algebra by Sir William Rowan Hamilton, with
regard to vector fields. Furthermore, vectors are used in
biology to represent the direction and magnitude of various
biological processes such as cell movement and protein
folding. Nowadays, vectors are central in ML as they can be
used for the following tasks:

• Data representation, where each vector represents a
sample or observation;

• Feature extraction in text classification, wherewords can
be represented as vectors using techniques such as word
embeddings.

• Model training, as vectors represent the input data to the
model, as well as the model’s parameters and output.

• Similarity and distance measures in recommendation
systems, as vectors representing user preferences are
compared to vectors representing item features to
identify those items that are similar to the user’s
preferences.

• Optimisation to represent the variables being optimized,
such as the weights of a neural network.

In ML, storing information in a vector is beneficial for
multiple reasons. Firstly, storing numerical data in a vector
allows easier processing and comparison between entities,
resulting in a convenient way to store and manipulate data.
In fact, while memorising datasets’ content in their original
form can be memory-intensive, representing them as vectors
reduces the size of data and allows for both easier and better

storage and manipulation. In ML modeling, Support Vector
Machines (SVM) obtain better classification via the usage of
computation of data stored in vectors, as it finds the optimal
hyperplane through the analysis of vectors as n-dimensional
space. Furthermore, from a computational point of view,
vectors paired with high-performance scientific scripting
languages - such as MATLAB or Python Numpy - enable
the more efficient application of mathematical operations
onto large amounts of data. Moreover, the usage of vectors
also comprises efficient computation through the usage of
adequate hardware: GPUs are designed to perform vectorized
operations, and hence they can perform complex computa-
tions on large datasets much faster than a CPU. A further
strength consists of the fact that mathematical computations
can be performed on entire vectors simultaneously through
vectorized operations. Vectors present some weaknesses as
well, the main of which is that the use of high-dimensional
vectors can lead to sparser data, thus leading to uniform
distance between data points. Consequently, ML algorithms
that measure similarity or distance between the given data
points tend to perform poorly. The described issue is known
as the curse of dimensionality (see, for example, [49]).

The usage of matrices spans from computing linear
transformations and solving linear equations to representing
similarity or distance between samples or features.

The notion of a matrix was first formulated in the
middle 1800s, but it is nowadays enormously exploited
for various types of mathematical applications. In ML,
the size of the input matrix impacts significantly the
performance of the considered models. Sparse matrices
occur frequently in large-scale ML applications, resulting in
reduced memory usage compared to dense matrices. This
is especially beneficial when dealing with high-dimensional
datasets or large feature spaces. By avoiding the storage
of numerous zero values, sparse matrices conserve memory
and allow models to fit into memory more easily, enabling
larger datasets to be processed. Also, sparse matrices can
accelerate computations in ML models by skipping the
multiplication or addition operations involving zero values.
This can lead to faster execution times and improved overall
model efficiency. Several ML algorithms are specifically
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designed to take advantage of sparse matrices. For instance,
sparse implementations of algorithms like logistic regression,
support vector machines (SVMs), or collaborative filtering
can be significantly faster and more memory-efficient than
their dense counterparts. These algorithms leverage the
inherent sparsity of the data to optimize computations and
reduce memory requirements.

Additionally, matrices provide a compact, flexible, and
efficient representation of high-dimensional data. As a result,
performing linear algebra operations on the entire dataset at
once is computationally efficient and avoids redundant com-
putations. Matrices are easily extendable to accommodate
new data or features, making them a valuable tool for many
ML applications. Another essential advantage is that, as they
offer a wide spectrum of available algebraic operations,
matrices are a powerful mathematical tool that allows
efficient processing, manipulation, and analysis of high-
dimensional data. Finally, matrix operations can be easily
executed in parallel, leading to efficient implementation on
parallel architectures such as GPUs. It has to be noted
that large and high-dimensional non-sparse matrices can
entail potential issues for memory storage, computation, and
optimization. Consequently, matrix operations on large-scale
datasets can be computationally expensive, limiting both
the scalability and performance of ML algorithms. Matrix
operations can be numerically unstable, particularly when
dealing with ill-conditioned matrices, such as those with
nearly zero eigenvalues.

The notions of vector and matrix are generalized by the
tensor’s concept. Although they originated in the first years
of the 1900s, tensors have lately become a fundamental data
structure for ML.

A tensor is a multi-dimensional collection of data, can
contain different data types, and can be exploited by ML
algorithms. Kolda and Bader [50] state that an Nth-order
tensor can be defined as an object that belongs to the
tensor product of N vector spaces, where each vector
space has its own coordinate system. Tensor decomposition
(Rabanser et al. [51] and Ji et al. [52]) is a fundamental
tensor operation for ML applications that aims to reduce
the complexity in terms of the amount of time and
computational resources required to perform a specific task.
In general, the operation consists of decomposing a tensor
into the minimum sum of tensors of rank 1 (the so-called
decomposable tensors). The result is the decomposition of
a high-dimensional tensor into smaller tensors which are
easier to manage and work with. The principal advantages
consisting of reduced execution time, more parsimonious
memory utilization, and better scalability. Based on the
fact that a tensor decomposition is independent of the
coordinate system, Bernardi et al. [53] provides the means
to the extraction of the given data’s geometric or invariant
properties. Effective and efficient Artificial Neural Networks
ANNs are built of tensors. In fact, the usage of tensor
as ML data structure brings multiple advantages. Firstly,
it provides a structured way to represent data in a consistent

and organized manner, therefore it is a convenient data
format. In fact, it is possible to use a tensor as an efficient
way to organize multi-dimensional arrays. Secondly, it allows
for very efficient operations, consequently speeding model
training and inference. A tensor is compatible with various
mathematical operations and transformations. Moreover,
it reduces complexity in an effective way, as organising
information in a tensor allows for easier processing and
manipulation and enables efficient implementation of mathe-
matical applications and transformations. Furthermore, it is a
way to represent data, independently of basis and coordinates,
isolating intrinsic geometrical and physical properties from
coordinates’ dependant properties. Representing data in a
coordinate-free manner allows us to concentrate on the
intrinsic properties of data rather than specific character-
istics of data. Last, it allows for solving high-dimensional
problems, as it simplifies the representation, manipulation,
transformation, and processing of high-dimensional data,
therefore make it possible to suit the specific needs of an
application. The first drawback is that tensor decomposition
requires a high number of parameters and samples to improve
accuracy. Consequently, if a non-fully-optimized algorithm
is used, the increasing number of required parameters makes
convergence very slow or even impossible to reach. The lack
of convergence can occur also due to the wrong initialization
of tensor operations. Furthermore, due to a combinatorial
explosion, the choice of promising features tends to be
rather complex. As an example, figure 7 shows a vector of
dimension 4, a 4 × 4 matrix and a 4 × 4 × 4 tensor.

FIGURE 7. A vector, a matrix and a tensor.

The use of tensor processing units (TPUs) can poten-
tially contribute to energy efficiency in certain scenarios.
TPUs (see, for example, [54]) are specialized hardware
accelerators designed by Google for performing tensor
operations efficiently. They excel at handling large-scale
tensor computations, which are prevalent in DL tasks.
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The energy efficiency of TPUs stems from their ability
to parallelize and optimize tensor operations, resulting in
faster and more efficient computations. By leveraging TPUs,
computational tasks involving tensor operations can be
executed with higher throughput and lower latency compared
to traditional CPUs or GPUs. This increased efficiency
translates into potentially lower energy consumption for the
same computational workload.

C. ALGORITHMS
Although the models considered in DL have been proven
to be scalable [55], they still require sophisticated hardware
architectures to run, resulting in a drawback when they are
deployed to mobile devices. As a result, scientific literature
has provided different techniques aiming at producing
smaller although equivalent models to the initial one. In this
direction, this section provides an overview of the most
notable approaches to reduce the computational complexity
of a model training phase.

Distillation [56] consists of a technique in which a larger
and more accurate neural network is used to teach a smaller
and less accurate neural network. The latter learns to mimic
the behavior of the larger network, resulting in a smaller
model that performs nearly as well as the original, larger
model. According to the authors, a distillation system can be
regarded as a knowledge transfer problem. It consists of the
following components: a type of knowledge, which can be
one of response-based knowledge, feature-based knowledge,
and relation-based knowledge; a distillation algorithm; and
a teacher–student architecture. The distillation process is
subdivided into three schemas, namely, offline, online, and
self-distillation. In the offline schema, the teacher model
is initially trained, and then the knowledge is extracted in
the shape of logits, which serve the objective of training
the student model. However, due to some shortcomings,
an online scheme is preferable. In this case, both the teacher
and the student model are updated at the same time. Finally,
in the self-distillation scheme, the student and the teacher use
the same networks.

Residual connections [57], also known as skip connections,
is a technique used in DL architectures to help overcome
the vanishing gradient problem. This problem arises when
training deep neural networks, as the gradients of the loss
function can become very small as they are backpropagated
through the many layers of the network, leading to slow
or even stagnant training. Residual connections work by
allowing the input of a layer to be added directly to the
output of a later layer, effectively ‘‘skipping over’’ some
of the layers in between. This can help to preserve the
original signal and ensure that gradients can flow more easily
through the network, which can lead to better performance.
Residual connections can help reduce a DL model by
allowing for deeper and more complex architectures without
sacrificing performance or increasing the risk of overfitting.
In traditional deep neural networks, each layer is required
to learn a unique representation of the input data. This can

lead to redundancy and inefficiency in the model, as multiple
layers may be learning similar features. Additionally, as the
number of layers in the network increases, the problem
of vanishing gradients can become more severe, making it
difficult to train the model effectively. By using residual
connections, a DL model can be made more efficient by
allowing information to bypass certain layers and propagate
directly to the later layers in the network. This can help to
reduce redundancy in the model and make it easier to train,
as gradients can flow more easily through the network.

Depthwise separable convolution is a type of convolutional
operation used in deep learning models to reduce the
number of parameters and computational complexity of a
neural network. In a traditional convolution operation, each
filter (or kernel) is convolved across all input channels
to produce one output channel. This can result in a large
number of parameters and slow computation when dealing
with high-dimensional inputs, such as images. On the other
hand, depthwise separable convolution splits the traditional
convolution operation into two separate layers:

• Depthwise convolution: In this step, a single filter is
convolved separately with each input channel. This
produces a set of output feature maps with the same
number of channels as the input.

• Point-wise convolution: In this step, a 1× 1 convolution
is applied to the output of the previous layer. This
combines the features from the depthwise convolution
layer and produces the final output.

In [58], Howard et al. present the MobileNet architec-
ture, which uses depthwise separable convolution to create
efficient and lightweight convolutional neural networks for
mobile and embedded devices.

Weight sharing [59] refers to the practice of using the same
set of parameters (that is, weights) for multiple parts of a
neural network. This is often done to reduce the number of
parameters required to train the network and to encourage
the network to learn shared representations of the input. For
example, in convolutional neural networks (CNNs), weight
sharing is used to apply the same filter (i.e., set of weights) to
different parts of the input image. This allows the network to
learn features that are relevant across different regions of the
image and also reduces the number of parameters required
to learn these features. Another example of weight sharing is
in recurrent neural networks (RNNs), where the same set of
weights is used for each time step of the sequence. This allows
the network to learn a representation of the input sequence
that can be used to make predictions at each time step.

Cheng et al. proposed an article that discusses acceleration
techniques for deep learning models. These techniques
can be categorized into three main types: hardware-based
acceleration, software-based acceleration, and algorithmic
acceleration. Hardware-based acceleration involves the use
of specialized hardware such as Graphics Processing
Units (GPUs), Field-Programmable Gate Arrays (FPGAs),
or Application-Specific Integrated Circuits (ASICs) to accel-
erate the computation of deep learning models. GPUs
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are commonly used for training deep neural networks,
whereas FPGAs and ASICs are more specialized for
specific applications such as computer vision or speech
recognition. In contrast to the former, software-based
acceleration involves optimizing the software implemen-
tation of the DL models to improve their performance.
Examples of software-based acceleration techniques include
parallelization, which involves splitting the computation
across multiple processing units, and vectorization, which
involves performing computations on multiple data elements
simultaneously. Finally, Algorithmic acceleration involves
modifying the architecture or algorithm of the DL model to
reduce its computational complexity or increase its efficiency.
Examples of algorithmic acceleration techniques include
pruning, quantization, and low-rank approximation, which
were discussed in the context of model compression.

These methods focus on removing inessential parameters
from deep neural networks without any significant effect
on performance. This category is further divided into model
quantization [60] and model binarisation [61]. The authors
propose a technique called BinaryConnect, which uses a
binary approximation of the weights during both forward
and backward propagation. This binary approximation allows
for significant reductions in memory usage and compu-
tational complexity, while still maintaining high levels of
accuracy. The authors demonstrate the effectiveness of their
method on a variety of tasks, including image classification
and speech recognition, and show that it can achieve
performance comparable to full-precision networks. and
parameter sharing. Finally, structural matrices are discussed
by Sindhwani et al. [62] by introducing a novel method to
reduce the memory and computational requirements of DL
models by using structured weight matrices. The authors
introduce a family of structured transforms, called Structured
Matrices (SMs), which can be used to impose various types
of structure on the weight matrices of deep neural networks.
The authors demonstrate the effectiveness of their approach
on a variety of tasks, including speech recognition and
image classification, and show that it can achieve significant
reductions in memory usage and computational complexity
without sacrificing accuracy. Parameter pruning involves
identifying and removing the least important parameters (i.e.
weights) from a neural network based on some criterion such
as magnitude, connectivity, and sensitivity. The goal is to
reduce the number of parameters in the network without
significantly affecting its performance. This can be done
by setting the values of the pruned weights to zero or by
completely removing the corresponding connections from the
network. This technique is commonly used in DL to improve
the speed andmemory efficiency of the network and to reduce
overfitting.

Krizhevsky [63] focus on iterations of mini-batch stochas-
tic gradient descent (SGD), the mostly used algorithm
employed in the training of neural networks. The key idea is
to involve successive modifications to themodel’s parameters
through an approximation of the gradient pertaining to the

training objective. This gradient estimation is performed
at each iterative step utilizing distinct subsets, commonly
referred to as mini-batches, extracted from the larger training
dataset. The authors refer to Data parallelism as a widely used
approach to accelerate neural network training. It involves
distributing training examples among multiple processors to
compute gradient updates or higher-order derivatives, and
then aggregating these updates locally. This method is effec-
tive for any neural network architecture as long as the training
objective can be expressed as a sum of training examples.
On the other hand, the extent of model parallelism, which
involves distributing parameters and computations across
processors for the same training examples, varies based on the
model’s size and structure. While data parallelism is easier
to implement, larger-scale systems should take advantage
of various types of parallelism for optimal performance.
The most interesting contribution of this work consists of
an evaluation of the costs and benefits of adopting this
technique in the synchronous training setting, achieving the
following conclusions. Firstly, the correlation between batch
size and the required number of training steps to achieve
a desired out-of-sample error follows a consistent pattern
across six distinct neural network categories, employing three
training algorithms and encompassing seven distinct datasets.
Secondly, the optimal batch size, which is most effective,
varies notably across different workloads and is influenced
by attributes of the model, training algorithm, and dataset.
Thirdly, the ideal settings for trainingmeta-parameters do not
consistently adhere to straightforward associations with the
batch size. Specifically, widely used learning rate guidelines,
like proportionally adjusting the learning rate based on batch
size, do not universally apply to all challenges or batch size
configurations. Finally, it is possible to mitigate some of the
contradictions present in the literature regarding the impact of
larger batch sizes on model performance. Table 4 summarizes
the algorithms discussed in this subsection.

IV. CASE STUDIES
A. INTRODUCTION
DL models have a measurable effect on the environment,
mainly because training and inferences are performed by the
model. The entity that is usually measured is the carbon
footprint. According to Wiedmann and Minx [64], this
term has been characterized in different forms, although
their work conveys the following definition: ‘‘The carbon
footprint is a measure of the exclusive total amount of carbon
dioxide emissions that is directly and indirectly caused by an
activity or is accumulated over the life stages of a product’’.
The authors identify the methodologies apt to calculate the
carbon footprint in a bottom-up Process Analysis (PA) and
a top-down Environmental Input-Output (EIO) approach.
In general, there is a lack of consensus concerning the
metrics that need to be adopted in measuring the footprint.
Furthermore, measuring the footprint derived from AI appli-
cations may require different methods from those deployed
on generic computationally based applications. The authors
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TABLE 4. Most notable training algorithms.

stress the importance of evaluating the cost of the operational
energy. This consists of the production, transport, and end-of-
life stages, added to produced greenhouse gas. The problem
of carbon footprint originating by computationally expensive
applications is discussed in the following section by taking
into account a few case studies related to Natural Language
Processing (NLP).

B. NLP MODELS
According to Jones [65], the birth of Natural Language
Processing (NLP) goes back in time, at least to 1950, although
this study area was known as Mechanical Translation (MT).
Initially, MT revealed very promisingly, to the point of
indulging scholars in predicting extraordinary results within
the next decade. However, the analysis and understanding
of natural language is a task that was revealed to be
more complex concerning what was initially imagined,
asmore interdisciplinary competencies and concepts - such as
Chomsky’s syntactic structures - had to be considered. More
sophisticated AI-based approaches were introduced starting
from 1970 (such as Schank’s Conceptual Dependency Nets
leading to an MT revival in the shape of NLP, which
pursued new challenges, such as retrieving information from
vast amounts of data. More recently [66], ML determined
a paradigmatic leap in favor of neural models, and more
specifically, sophisticated DL architectures. According to the
authors, DL still presents a few challenges in NLP domain
that need more investigation, such as the lack of labeled data,
a problem mitigated by adopting semi-supervised learning
approaches.

Complex language models such as BERT, XLNet [67]
and T5 (Text-to-Text Transfer Transformer) [68] are
densely overparameterised. As a result, their training
is computationally intensive and requires a long time.
Furthermore, the training of language models requires
sophisticated hardware, such as premium GPU-enabled
NVIDIA DGX workstations (maximum power draw:
1,500W, https://docs.nvidia.com/dgx/pdf/DGX-Station-Site-
Preparation-Guide.pdf) or specialized accelerators such
as Google’s TPU Pods (Tensor Processing Units), i.e.
Google’s custom-developed application-specific integrated
circuits (ASICs) deployed to accelerate ML work-
loads (https://cloud.google.com/tpu/docs/tpus). Bidirectional
Encoder Representations from Transformers (BERT) is
a language representation model introduced by Google

(a discussion of the principles ruling BERT training can
be found in [69]). Its architecture consists of a pile of
Transformer encoders [70] layers. In turn, each one is
composed of different self-attention ‘‘heads’’, whose tasks
can be summarised as per the following. Firstly, an input
token is detected. Secondly, a head is triggered to compute
a pair (key, value,) and a set of query vectors implementing
a weighted representation. Each head produces an output,
which is conveyed with others into the same layer and finally
runs through another layer. Pre-training and fine-tuning are
fundamental operations in BERT serving different purposes
(to predict the next token and the next sentence respectively).
Specifically, MLM (Masked Language Modeling) is a
pre-training task exploited to train BERT on vast amounts
of unlabelled text data. The goal is to mask (i.e., randomly
replace) some of the tokens in the input sentence and then
train the model to predict the original token according to
the context provided by the other tokens in the sentence.
During training, BERT replaces 15% of the input tokens
with a special token, and then it is trained to predict the
original token from the remaining part of the context.
By predicting the masked words, BERT learns contextualised
word representations capturing the meaning and relationships
of words within a sentence. The second task is represented
by Next Sentence Prediction (NSP) predicting whether two
sentences are consecutive or not. This step supports BERT in
understanding the relationships between different sentences.

Chen et al. [71] discusses the concept of the Lottery Ticket
Hypothesis (LTH), introduced by Frankle and Carbin [72].
It is a concept in the field of neural network training and
optimization and suggests that within a densely initialized
neural network, there exist ‘‘winning tickets’’ or subnetworks
with a sparse subset of connections that, when trained in
isolation, can match the performance of the fully connected
network. In other words, LTH’s architecture implies that
even though neural networks are often overparameterised
with many more connections than necessary, it is possible
to identify a much smaller subnetwork that can achieve
comparable performance if properly trained. These ‘‘winning
tickets’’ are essentially initializations of the network’s param-
eters that, when combined with the right training procedure,
lead to the rapid convergence of the network to a highly
accurate solution. The LTH has significant implications
for the optimization of neural networks. It suggests that
during training, not all parameters or connections are equally
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important, and a systematic pruning approach can be used
to identify and retain only those connections that contribute
significantly to the network’s performance. This can lead
to more efficient and faster training, as well as reduced
memory and computation requirements. This approach is
generally used in Computer vision and NLP. The authors
propose EarlyBERT, a novel method that is capable of
identifying structured winning tickets during the initial
phases of BERT training. These identified winning tickets
are then effectively utilized for streamlined language mod-
eling pre-training and fine-tuning. Through comprehensive
experiments conducted on BERT, EarlyBERT is shown to
reduce training time by approximately 35% to 45%, while
maintaining performance at a minimal level of degradation.
These results are demonstrated through evaluations on the
GLUE and SQuAD benchmarks. GPT-3 is the third iteration
of the Generative Pre-trained Transformer (GPT) model
series, developed by OpenAI ( [73]. The first model, GPT-
1, was introduced in 2018 to address the shortage of labeled
data by leveraging unlabeled instances. GPT-1, based on
an auto-regressive decoder-only transformer with a self-
attention mechanism, outperformed state-of-the-art models
in various Natural Language Processing (NLP) tasks. GPT-
2 was released in 2019 with ten times more parameters
and a pre-training corpus ten times larger than GPT-1.
Trained on the WebText dataset, GPT-2 set new records in
language modeling tasks with zero-shot learning. While it
didn’t excel in certain NLP subsets, it established compelling
baselines that spurred further research on fine-tuning the
model. Very large models require complex and sophisticated
machines or supercomputers, as announced by Microsoft in
2019,1 when declaring that the well-known cloud computing
platform Azure would have been used together with gpt-
3 language model, whose training requires $4.6M using
a Tesla V100 cloud instance.2 Specifically, GPT-3 175B
is trained against 499 Billion tokens.3 The figures related
to GPT-3 175B model have an even higher magnitude,
as the model required 3.14E23 flops of computing for
training. A single training runs 355 GPU-years with a
resulting training cost of $4.6M. Based on GPT-3.5 model
and presented in November 2022, Open AI ChatGPT (Chat
Generative Pre-trained Transformer) [74] exhibits as well as
creative and emulation skills, such as the composition of
poetry [75] or the emulation of a Linux system [76]. ChatGPT
has been trained by using a specific RL algorithm named
PPO (Proximal Policy Optimization).4 Similarly to GPT-3,
the training of ChatGPT involves the use of a transformer
architecture. The training process involves several stages,
including preprocessing of the input data, training the model

1https://news.microsoft.com/2019/07/22/openai-forms-exclusive-
computing-partnership-with-microsoft-to-build-new-azure-ai-
supercomputing-technologies

2https://lambdalabs.com/blog/demystifying-gpt-3
3The average token size is 4 characters.
4https://openai.com/blog/openai-baselines-ppo/#ppo

on the pre-processed data, and fine-tuning the model on
specific tasks or domains.

Specifically, the self-supervised learning phase is called
unsupervised pre-training. The model is trained on a large
corpus of text data to learn the underlying patterns and
structure of natural language by presenting a sequence of
words or tokens. The goal consists of predicting the next word
or token in the sequence. This process is known as language
modeling.

On Feb 06 2023, Sundar Pichai, CEO of Google and
Alphabet, announced the birth of Google Bard (https://
blog.google/intl/en-africa/products/explore-get-answers/an-
important-next-step-on-our-ai-journey/),a large language
model chatbot. It is based on the LaMDA family of large
language models, and later on PaLM. Bard is trained using
a variety of techniques Masked language modeling (MLM),
Perplexity minimization, and Generative pre-training (GPT).

Within MLM, the model is given a sentence with some
of the words masked out. The model then tries to predict
the masked words based on the context of the sentence.
Perplexity is a measure of how well a language model
can predict the next word in a sequence. In perplexity
minimization, the model is trained to minimize its perplexity
on a held-out dataset. Finally, in GPT, the model is trained to
generate text from scratch. The model is given a prompt and
then tries to generate text that continues the prompt.

Bard is based on a Transformer Neural Network Archi-
tecture like ChatGPT. For a comparative analysis of the two
models, see [77].

C. BigGAN MODELS
Big Generative Adversarial Networks is a DL-based genera-
tive model that has been proposed to generate high-resolution
and diverse images. BigGAN is a variant of the Generative
Adversarial Network (GAN, [78]) framework that was first
introduced in 2014. Unlike traditional GANs, which generate
low-resolution images, BigGAN can generate images with
resolutions up to 512 × 512 pixels.

The architecture of BigGAN is based on the concept of
conditional GANs, where the generator is conditioned on a
given class label. The model is trained on a large dataset of
images with their corresponding class labels, and it learns to
generate new images that are similar to the training set. The
training process of BigGAN involvesminimizing the distance
between the generated images and the real images, while also
maximizing the diversity of the generated images.

One of the key features of BigGAN is its ability to
generate highly realistic and diverse images. This is achieved
by introducing several design choices such as using a
hierarchical latent space, using self-attention mechanisms,
and incorporating truncation tricks during the generation
process. These techniques allow themodel to generate images
that are not only highly realistic but also contain a wide range
of variations within the same class.

BigGAN has been shown to outperform other state-of-
the-art generative models on several benchmark datasets.
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It has also been used in various applications such as image
synthesis, style transfer, and image editing. However, despite
its impressive performance, BigGAN still has limitations
such as high computational requirements and the need for
large amounts of training data. GANs work by training two
neural networks against each other. One network, called the
generator, is trained to create new data. The other network,
called the discriminator, is trained to distinguish between real
data and fake data generated by the generator.

The generator and discriminator are trained in a zero-sum
game, which means that one network’s gain is the other
network’s loss. The generator tries to generate data that is
so realistic that it can fool the discriminator into thinking
it is real data. The discriminator tries to become better at
distinguishing between real data and fake data.

Over time, the generator and discriminator become better
at their respective tasks. The generator becomes better at
generating realistic data, and the discriminator becomes
better at distinguishing between real and fake data. This
process continues until the generator can generate data that
is indistinguishable from real data. The BigGAN model is
trained using a variety of loss functions, including GAN,
Reconstruction, and Perceptual loss. GAN loss is used
to train the generator and discriminator. The GAN loss
encourages the generator to produce realistic data that
fools the discriminator. The reconstruction loss is used
to train the encoder and decoder. The reconstruction loss
encourages the encoder to learn a useful latent space
representation of the data. Finally, the perceptual loss is used
to train the generator. The perceptual loss encourages the
generator to produce realistic data that is consistent with the
perceptual features of real data.

V. SURVEY
This survey has considered 48 articles, which were manually
downloaded. Eligible articles were chosen concerning one of
the following criteria:

1) Introduction to the problem of Green AI. This includes
general articles on the topic, discussions regarding
trends, and quantitative analyses about the carbon
footprint of Red AI systems;

2) Quantitative measures regarding the energy requested
during the training and inferences phases of the most
notable Red AI applications (BERT, GPT, GAN-based
models, and PaLM). The mentioned figures are derived
from the original articles of different authors. When
possible, the section quotes the hardware used by the
application;

3) Novel approaches to optimize themodel training phase,
providing de facto a transition from Red AI to Green
AI.

The text of each remaining article was TF_IDF vectorized,
in order to apply the k − means algorithm (note that a
more specific discussion and comparison between clustering
models is outside of this work). This first step correctly
identified 3 clusters renamed as ‘‘Cluster 1: Carbon footprint,

sustainability, and Green AI’’; ‘‘Cluster 2: Bert, GPT
and Gan-based models’’ and finally ‘‘Cluster 3: Training
optimization’’. The clusterization algorithm was applied one
more time within only Cluster 1. The same step was then
applied to Cluster 2 as well to reveal more details.

A. CLUSTER 1: CARBON FOOTPRINT, SUSTAINABILITY,
AND GREEN AI
Cluster 1 is composed of 21 articles about the topic ‘‘Car-
bon footprint, sustainability, and green AI’’. The selected
papers collectively tackle both challenges and opportunities
associated with creating a greener and more sustainable AI
and software development. However, the heterogeneity of the
components of the cluster ensures a holistic understanding
of the relationship between environmental impact, AI, and
sustainability. For the sake of clarity, the papers belonging to
cluster 1 have been clustered again separately from the others.
The result consists of 4 distinct subclusters as per Table 6.

Cluster 1 denotes an evident strive at the global
level to emanate principles and guidelines for responsible
AI deployment. Furthermore, the need for technological
advancement allowing for environmental preservation and
social well-being emerges clearly. At the national level,
governments are requested to develop policies that appraise
the country’s contexts and priorities while addressing the
environmental AI implications. At the regional and local
levels, national policies need to be refined. Additionally,
industries promote sustainable AI guidelines and practices
within the private sector. The overall result is the emergence
of the importance of incorporating sustainability consider-
ations into AI development, deployment, and governance.
By identifying environmental impacts, establishing standard
units of measurement, and promoting sustainable design
practices, policymakers can ensure that AI contributes
positively to both societal and environmental well-being, both
at a local and global level.

The first sub-cluster is composed of 7 papers and revolves
around the concepts of carbon footprint and environmental
impact, as the articles explain the challenges and potential
solutions for measuring and addressing the ecological
consequences of AI usage. Wu et al. [79] underline that,
as both AI training and capability lately grew exponentially,
the carbon footprint tends to be significantly increasing.
From the AI perspective, the authors explain that the carbon
footprint is enlarged by the creation, training, and usage
of AI models. Additionally, Zhao et al. [80] show that the
magnitude of carbon footprint derives also from the energy
production operation. AI models computing-intense training
leads to impressive results although at the cost of high
energy demand, resulting in a significant carbon footprint.
As a result, the environmental cost of electricity production
varies, depending on both the region and the energy sources.
Energy consumption and carbon footprint are two distinct
phenomena that both highlight the need for optimization for
reducing the environmental impact [81]. The authors also
study both the carbon breakdown of the hardware life cycle
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TABLE 5. Case studies in red AI.

TABLE 6. Carbon footprint, sustainability, and green AI (Sub-clusters).

and the environmental impact of IT. Anthony et al. [82] and
Henderson et al. [83] introduce two tools to measuring carbon
footprint and quantifying the impact on the environment,
by tracking and showing both energy consumption and
carbon emissions. Patterson et al. [84] discuss the veracity
of obtained measurements, as finding a truthful estimation
is a hard task since underlying costs are often not included
in the final calculation. Moreover, estimating energy con-
sumption after the process is completed can give misleading
conclusions, thus the difficulty of estimating environmental
impact measures retroactively. Patterson et al. [7] present
four methodologies that significantly mitigate the energy
consumption and carbon emissions of ML workloads com-
pared to conventional alternatives. The authors demonstrate
that these methodologies have effectively limited ML’s
share of Google’s overall energy consumption to less than
15% over the past three years. Furthermore, they provide
a comprehensive explanation for the substantial disparity
between published estimates and the actual carbon footprints,
revealing a discrepancy ranging from 100 to 100,000 times
higher in the former. Based on previous research on energy
demand requested by mobile phones adopting ML acceler-
ators, the authors present formulas to calculate the energy
consumption being trained to perform a task as proportional
to the number of processors employed and the duration of the
training run, including the energy requested by a data center,
whose energy demand decreased with the implementation of
more efficient cloud architectures. Equivalently, the authors
can derive the carbon footprint by multiplying the energy
value by the carbon intensity of the energy supply. Efforts

are made also to estimate the energy requested by a model
to infer decisions. In the conclusions, the authors emphasize
the importance of data center providers disclosing specific
metrics such as Power Usage Effectiveness (PUE), Carbon-
Free Energy (CFE) percentage, and carbon dioxide equivalent
(CO2e) per megawatt hour for each location. Furthermore,
ML practitioners should train their models using the most
efficient processors available in environmentally friendly
cloud data centers. ML researchers are encouraged to develop
more efficient ML models, such as by leveraging sparsity
and integrating retrieval mechanisms into smaller models,
efficiency improvement, carbon footprint reduction, and
transparent reporting to foster environmentally conscious
practices in the field of machine learning.

The second sub-cluster is composed of 5 papers and
revolves around AI sustainability and policy implications.
The articles address both direct and indirect environmental
impacts of developing and using AI and suggest essential
initiatives for policymakers to incorporate AI as a solution
to sustainability challenges while minimizing its adverse
environmental consequences. Van Wynsberghe et al. [85]
propose a definition of sustainable AI, remarking on its dual
interpretations: AI for sustainability and sustainability of AI.
Specifically, this paper is meant to inspire policymakers,
philosophers of AI, and AI developers to connect with the
ambient, bearing in mind that AI is inevitably connected to
environmental costs. To direct funding towards sustainable
methods of AI the author proposes a definition of sustainable
AI, which encompasses the entire lifecycle of AI products,
from idea generation to implementation and governance.
Sustainable AI is not limited to AI applications as it
encompasses the broader socio-technical system of AI. The
paper characterizes the compatibility of AI development with
the sustainable use of environmental resources, economic
models, and societal values. In particular, it distinguishes
between AI for sustainability and the sustainability of AI
per se, particularly focusing on reducing carbon emissions
and computing power. By placing sustainable development
at its core, Sustainable AI addresses the tensions between
AI innovation and equitable resource distribution, inter
and intra-generational justice, and the balance between the
environment, society, and the economy. Rohde et al. [86]
and OECD [87] emphasize the positive opportunities offered
by AI for addressing sustainability challenges and propose
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the goal of decreasing the negative effects of AI while
accelerating its development as a positive influence for the
benefit of the planet. Perucica and Andjelkovic [88] provide
an overview of existing sustainable AI policy initiatives on
multiple levels. Piorkowski et al. [89] discuss the impor-
tance of encompassing design, development, deployment,
and monitoring of AI systems. The authors propose the
assessment of the risks of existing AI models as a means
to improve AI regulations and enhance risk management
practices.

Sub-cluster 3 is structured into 4 papers collecting Green
AI and energy efficiency topics. In this sense, the articles
address the environmental impact of developing and using
AI from an energy consumption perspective and propose
possible improvements to help reduce it. The emergence of
Green AI as a focus area highlights the growing recognition
of the environmental impact of AI and the need for
sustainable practices. Multiple formulas to determine the
cost of Red AI have been proposed, considering efficiency
and energy consumption as key factors for the calculations.
Lacoste et al. [90] use factors such as hardware energy
consumption, computation location, emissions associated
with the region, and any offsets purchased by the provider
to mitigate environmental impact. Lannelongue et al. [91]
claim that the environmental impact of an algorithm depends
on the energy needed to run it and the pollutants emitted
when producing such energy resulting in an evident impor-
tance of the used hardware and its energy efficiency. The
accuracy improvements in the inference stage require greater
computational resources, consequently resulting in greater
energy consumption. Therefore, financial and environmental
costs tend to grow rapidly. Research and development of
newmodels impact exponentially on the environment as each
experiment requires retraining with different model archi-
tectures and hyperparameters. Besides exploiting several
multiple metrics for efficiency, Strubell et al. [92] measures
the energy efficiency of some of the available models in
the literature, and suggests reporting the computed training
time and sensitivity to hyperparameters as a means to choose
both computationally efficient hardware and algorithmswhen
developing. Shaikh et al. [93] consider, among other factors,
the geographical position of deployment, thus the preference
for more energy-efficient countries.

Sub-cluster 4 is composed of 5 papers and focuses on
Green Software Engineering. In detail, the articles address
the possible code development opportunities to improve both
models’ performances and environmental impacts, revolving
around the Green software engineering perspective. Green
software engineering aims at a development that minimizes
the energy consumption, carbon emissions, and overall
environmental impact associated with software development
and usage. It can be applied by requesting software
developers what are the most important requirements for a
tool when deployed [94]. In this sense, the energy usage
is regarded from multiple perspectives, such as meeting
the given requirements, designing, coding, and debugging.

Georgiou et al. [95] tackle the issue related to the balance
of energy and run-time efficiency, discussing the need
for a trade-off between run-time performance and energy
consumption. The authors claim that it is not possible
to identify a framework performing optimally for each
task. As a result, users should appraise both energy and
performance requirements when designing an AI model.
Verdecchia et al. [96] recommend a data-centric approach
where data is effectively manipulated before further opera-
tions, as it strongly enhances AI efficiency at a low cost.
Although AI implies inevitably environmental costs, it can
be helpful in mitigating issues occurring in other areas. For
example, Pachot and Patissier [97] underline the existence
of a contradiction in a technology that requires a great
deal of energy being tasked with addressing ecological
concerns. The authors provide a comprehensive view of
sectors that employ AI-powered solutions for environmental
preservation. This includes smart city management, the
energy sector, agriculture, disaster prediction and adaptation
to climate change, ecosystem protection, transportation, and
economics. Additionally, Vinuesa et al. [98] view AI as a
challenge. Depending on how it is used, it might either
help or contrast the reaching of sustainability goals set by
the 2030 Agenda for Sustainable Development.

TABLE 7. A = Environmental impact and sustainability, B = Carbon
footprint, C = Energy efficiency, D = Green software engineering, E =

Green AI, F = Policy considerations.

Table 7 provides insights into the distribution of the main
themes that characterize the cluster. The chosen tags include
environmental impact and sustainability (A), carbon footprint
(B), energy efficiency (C), green software engineering (D),
green AI (E), and policy considerations (F). Carbon Footprint
(B) and Energy Efficiency (C) are the most prevalent themes
across the papers, suggesting that a significant portion of
the research focuses on the carbon emissions and energy
consumption aspects from multiple points of view. Vice
versa, Green Software Engineering (D) and Green AI (E)
appear in a few papers, indicating a growing interest in
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the highlighted themes and underlying the recentness of the
emergence of the need for more green development and more
regulations aimed at sustainable practices.

B. CLUSTER 2: BERT, GPT, PaLM AND BIGGAN MODELS
As per Table 8, cluster 2 is composed of 15 articles that
have been further decomposed in 3 subclusters referring to
the discussion of the architectures models such as BERT
(including derived models), GPT, PaLM and BigGAN.

TABLE 8. BERT, GPT, PaLM and bigGAN models (Sub-clusters).

After pre-training on BookCorpus,5 BERT can be
fine-tuned on specific downstream tasks, such as sentiment
analysis or named entity recognition, by training on
task-specific labelled data. According to Devlin et al. [99],
the BERT SQuAD model (Stanford Question Answering
Dataset, a reading comprehension dataset) can be trained in
around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%. The authors report that the two training
phases add up to a total of 40 epochs and take over 80 hours
to complete on a 64 TPUv3 chip.

Several studies have estimated the energy consumption of
training large language models such as BERT. Although the
considered NLPmodels exploited for the study are not recent,
the authors firstly estimate total power pt required at a given
instance during training and secondly, they convert power
to estimated CO2 emissions. By using these variables, the
paper reviews the cost of training different NLP models. The
authors stress the fact that future scientific research should
report training time and sensitivity tomodel hyperparameters.
In particular, Strubell et al., recommend also ethical conduct
of research, i.e. prioritizing hardware and algorithms that
are computationally efficient. Schwartz et al. estimated that
training BERT on a single GPU could emit as much carbon
dioxide as a transatlantic flight. Efforts are being made to
reduce the energy consumption of training large language
models. For example, researchers are exploring techniques
such as model distillation, which involves training a smaller
model to mimic the behavior of a larger pre-trained model.

Training is a task that can be accomplished in different
ways. For example, in [101], the authors discuss a scenario
where a BERT is trained within 2 weeks on an academic-size
cluster of GPUs by using efficient optimizations (see
also [68], which reviews the fine-tuning process of BERT
and its performance on several NLP tasks and [102],
providing a detailed guide on how to fine-tune BERT for text
classification tasks).

5https://paperswithcode.com/dataset/bookcorpus

SpanBERT [103] is a language representation model that
was pre-trained on large amounts of text data. Differently
from BERT and GPT, which were trained to predict the
next word in a sequence, SpanBERT predicts spans of text
within a sentence. In the masked language modeling (MLM)
step, a random portion of each input sequence is replaced
with a MASK token, then the model is trained to predict
the original words in the masked positions. In the span
boundary objective (SBO) step, themodel is trained to predict
the boundaries of spans of text within the input sequence.
This step was achieved by employing a specific objective
function that awards the model when considering all possible
spans. According to the authors, the pre-training phase used
a large amount of text data from the English Wikipedia
and BookCorpus, and was done on 32 Volta V100 GPUs,
taking 15 days to complete. Information about the estimate
of the power consumption and the carbon footprint was not
available.

BioBERT [104] is a pre-trained language model for
biomedical text mining tasks. BioBERT is based on the
BERT architecture, which is a transformer-based language
model originally pre-trained on a large corpus of general
text data. However, BioBERT was further pre-trained on
a large corpus of biomedical text data to better capture
domain-specific information and improve performance on
biomedical text mining tasks. To pre-train BioBERT, the
authors used a large corpus of biomedical text data from
various sources, including PubMed abstracts and full-text
articles, as well as clinical notes from the MIMIC-III dataset.
The pre-training process involved both masked language
modeling (MLM) and next sentence prediction (NSP) tasks,
similar to the original BERT model. The cost of training
BioBert is estimated in [105], where the authors propose a
more parsimonious architecture for Domain adaptation of
Pretrained Language Models (PTLMs) is typically achieved
by unsupervised pretraining on target-domain text. BERT is
trained by using 8 NVIDIA v100 GPUs (32GB), requiring a
power of 1505W, an execution time equal to 552 hours, and
an overall carbon footprint of 1252 libs of CO2.

According to the authors, the ALBERT model [106]
was trained on multiple accelerators, including a cluster
of 64 TPUv3 chips and multiple GPU clusters consisting of
hundreds of GPUs. Regarding the training time, the authors
mentioned that they trained the ALBERT-xxlarge model on
a cluster of 64 TPUv3 chips for about 3 days. They also
reported that they trained the smaller ALBERT models on a
GPU cluster for several days. As for the energy consumption
during training, the paper did not provide an exact figure
for this metric. However, the authors did mention that they
used mixed-precision training and gradient accumulation to
reduce the memory footprint and energy consumption during
training. They also used several other optimization techniques
to speed up training, including dynamic down-sampling, and
alternating optimization.

ROBERTa [107] uses the same pre-training procedure
as per BERT, which was trained on multiple accelerators,
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including TPU v3 and v3-8, as well as GPU clusters.
RoBERTawas trained for several epochs on the BooksCorpus
and English Wikipedia, using a batch size of 8,192 tokens
per GPU. The training time and energy consumption of
RoBERTa would depend on various factors, such as the
specific hardware used, the number of epochs, and the batch
size. Without specific information about these factors, it is
difficult to estimate the training time and energy consumption
accurately.

In [108], the authorsmention that they used the pre-training
procedure of BERT, which was trained on multiple accel-
erators, including TPU v3 and v3-8, as well as GPU
clusters. Specifically, block-structured pruning was deployed
to reduce the computational and memory cost of the
transformer model. The authors applied pruning to both
the weights and activations of the model and achieved a
significant reduction in the number of parameters without a
significant loss in accuracy.

The training of the original GPT model, which had
117 million parameters, was performed on 8 NVIDIA V100
GPUs for several days [109]. The training data consisted of a
web crawl dataset containing 40 GB of text. The larger GPT-2
model, which had up to 1.5 billion parameters, was trained on
a cluster of 512 TPU v3 chips for several days. The training
data consisted of a much larger web crawl dataset and several
other text sources [110]. As for the energy consumption
of GPT training, there have been some concerns about the
environmental impact of training large language models like
GPT-2.

The training process of BigGAN [111] involves two com-
ponents: the generator and the discriminator. The generator
is a deep neural network that takes as input a random
vector sampled from a high-dimensional latent space and
produces an image. The discriminator is another deep neural
network that takes as input an image and outputs a scalar
value that indicates how realistic the image is. During
training, the generator tries to produce images that can
fool the discriminator into thinking they are real, while the
discriminator tries to distinguish between the real images and
the fake images produced by the generator. BigGAN has been
trained on large-scale datasets such as ImageNet and CIFAR-
10, which contain millions of images with corresponding
class labels. The generator of BigGAN is conditioned on
the class label of the image, which means that it learns to
generate images that are specific to a particular class. One of
the key features of BigGAN is its use of a progressive training
strategy, which involves training the model on low-resolution
images first and gradually increasing the resolution over
time. This allows the model to learn low-level features such
as edges and textures before moving on to higher-level
features such as shapes and objects. In addition, BigGAN
incorporates a number of design choices such as using a
hierarchical latent space, using self-attention mechanisms,
and incorporating truncation tricks during the generation
process. These techniques allow the model to generate
images that are not only highly realistic but also contain

a wide range of variations within the same class. One
(512px) BigGAN experiment is equivalent to a trans-Atlantic
roundtrip (1 to 2t of CO2). Training a deep learning model
like BigGAN requires a significant amount of energy, as it
involves processing large amounts of data and performing
many complex computations. The exact amount of energy
required to train BigGAN can vary depending on the specific
configuration of the model, the size of the training dataset,
and the computing hardware used. Strubell et al. estimated
that training a large-scale GAN model similar to BigGAN
for 1 hour could consume as much as 284 kWh of electricity,
which is equivalent to the energy consumption of an average
American household in a week. This estimate was based
on the assumption that the model was trained on a single
GPU and that the electricity was generated using a mix
of coal, natural gas, and nuclear power. It is worth noting
that there have been efforts to develop more energy-efficient
deep learning algorithms and hardware architectures that
can reduce the energy consumption of training models like
BigGAN. For example, recent research has explored the
use of sparsity-inducing techniques, which can reduce the
number of computations required during training, and the use
of specialized hardware such as tensor processing units
(TPUs), which can perform deep learning computations more
efficiently than traditional CPUs or GPUs.

PaLM (Pre-training with a Large-scale Memory [112]),
is one of the largest and most powerful LLMs in the world,
with 540 billion parameters. PaLM was trained on a massive
dataset of text and code, and it can perform a wide range
of tasks. PaLM-540B was trained on 6144 TPU v4 chips
for 1200 hours and 3072 TPU v4 chips for 336 hours (this
included external factors, such as downtime and repeated
steps).

Table 9 summarises the training cost for the most relevant
applications.

C. TRAINING OPTIMISATION
This cluster consists of 12 articles, which are not decomposed
further because of the homogeneity of the result. The
discussed topic concerns the optimization of large models
through different techniques to curb the training and inference
time. See Table 10 for a summary of the different approaches.

Distributed training [121] involves training a machine
learning model using multiple computational resources, such
as multiple GPUs or multiple machines. It aims to accelerate
the training process by dividing the workload among different
resources and exchanging information during the training
process. The interesting point is that this type of training
allows for parallel processing across multiple GPUs or
machines, significantly reducing the training time. It also
enables efficient utilization of computational resources,
increasing scalability and enabling the training of larger
models. A Possible drawback is that it requires additional
setup and coordination among different resources. Synchro-
nization and communication overhead between the resources
can introduce latency and increase complexity.
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TABLE 9. Training cost of the most relevant models.

Transfer learning [115] involves leveraging the knowledge
gained from training one model on a specific task and
applying it to a different but related task. Instead of training
a model from scratch, transfer learning utilizes pre-trained
models as a starting point and fine-tunes them on the
new task. It can help in situations where labeled training
data is limited or expensive. Typically, transfer learning
leverages pre-trained models and knowledge from one task to
another, reducing the need for extensive training on new data.
It can improve model performance, especially when labeled
training data is limited or expensive. However, this may not
be effective if the pre-trained model is not well-suited to the
new task or if the data distributions between the pre-training
and target tasks differ significantly.

Progressive learning [114] refers to a learning paradigm
where a model is incrementally trained on new data while
retaining previously learned knowledge. It allows the model
to adapt to new information without completely forgetting
the knowledge gained in earlier stages. Progressive learning
is particularly useful in scenarios where the distribution
of data changes over time or when continuous learning is
required. It enables incremental learning on new data while
retaining previously learned knowledge, allowing the model
to adapt to changing data distributions. Progressive learning
can improve model performance in scenarios where data
changes over time or continuous learning is required, but
it requires careful management of knowledge retention and
integration, as catastrophic forgetting of previously learned
knowledge can occur. It may also lead to slower overall
training due to the incremental nature of learning.

Mixed precision training [122] involves using different
numerical precision (e.g., using a combination of lower and
higher precision formats) during the training process. This
technique exploits the fact that some parts of the model can
tolerate lower precision without significant loss of accuracy,
enabling faster training and reduced memory consumption.
In this case, the process utilizes lower precision data types

for certain model components, speeding up and reducing
memory consumption without significant accuracy loss. This
approach enables faster training on specialized hardware and
can be beneficial for large-scale models. As a drawback,
it must be remarked that this type of training requires careful
balancing and management of precision levels to maintain
model accuracy. In the worst of cases, it may introduce
numerical instability issues if not implemented properly.

In the context of machine learning models, sparsity refers
to a property where a significant portion of the model’s
weights or activations are zero. Sparse models can have com-
putational and memory advantages by reducing the number
of computations and the memory footprint. Techniques such
as weight pruning or regularisation methods can be used
to induce sparsity in a model [118]. Sparse models have
computational and memory advantages, reducing the number
of computations and memory footprints. They can improve
inference speed and enable efficient deployment on resource-
constrained devices. On the other hand, inducing sparsity
in models may require additional techniques such as weight
pruning or regularisation, which can add complexity to the
training process. Sparse models may also require specialized
hardware or software support for efficient implementation.

Model compression encompasses a set of techniques used
to reduce the size of a trained model without significantly
sacrificing its performance. It involves methods like weight
quantization, pruning, knowledge distillation, and compact
architecture design [117]. Model compression is crucial
for deploying models on resource-constrained devices or
reducing storage and bandwidth requirements. Typically,
model compression techniques reduce the size of trained
models, enabling efficient storage and deployment on
resource-constrained devices. They can also reduce memory
and bandwidth requirements, improving inference speed.
However, these techniques may introduce a trade-off between
model size reduction and performance. In some cases,
compressing the model too much can lead to a significant

24008 VOLUME 12, 2024



E. Barbierato, A. Gatti: Toward Green AI: A Methodological Survey of the Scientific Literature

TABLE 10. Optimisation models evaluation.

drop in accuracy. Additionally, complex compression tech-
niques may add computational overhead during training and
inference.

Knowledge distillation [56] involves training a smaller,
more lightweight model to mimic the behavior of a larger,
more complex model like BERT. This approach can signif-
icantly reduce the training time and memory requirements
of the model. It can reduce memory requirements, improve
inference speed, enable deployment on resource-limited
devices, and can generalize well to new tasks or domains,
as the distilled model learns from the rich knowledge of the
pre-trained model. However, knowledge distillation may not
fully capture all the nuances and complexities of the original

model, resulting in a slight degradation in performance
compared to the larger model. Furthermore, this technique
requires additional computational resources and training time
to train both the teacher (pre-trained model) and student
(distilled model), making it more computationally expensive.

Pre-training BERT on smaller data can significantly
reduce the training time while still achieving good perfor-
mance [123]. It has to be noticed that this approach can
reduce training time while still achieving good performance.
It allows for faster experimentation and model development
on limited resources. On the other hand, pre-training BERT
on smaller data may limit the model’s ability to capture a
wide range of language patterns and nuances. It may not
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generalize well to diverse downstream tasks, especially if the
pre-training data does not adequately represent the target task
domain.

The use of specialized hardware such as TPUs and GPUs
can significantly reduce the training time of deep learning
models. For example, [113] shows that training a large
language model can be accelerated by using TPUs.

Increasing the amount of training data can improve the
performance of the model [119] and reduce the amount
of training time required. This can be achieved through
data augmentation techniques such as back-translation and
paraphrasing. Specifically, Data augmentation techniques
increase the amount of training data, which can enhance
model performance and reduce overfitting. This approach can
be particularly useful when labeled training data is scarce,
although artificial patterns or noise may occur. The drawback
consists, in this case, of potentially affecting the model’s
ability to generalize to real-world data. Some augmentation
techniques may also increase the computational cost during
training.

Early stopping is a technique that involves stopping the
training process before the model has converged to the
optimal solution. This can help reduce the training time
and prevent overfitting. In [116] the authors discussed that
early stopping can be an effective technique for reducing
the training time of deep learning models. The method is
rather interesting as it reduces training time by terminating
the training process before convergence to the optimal
solution. In particular, it helps in finding a good trade-off
between model complexity and generalization. However,
since it relies on heuristics to determine the stopping point,
it may not always lead to the best-performing model.
Moreover, it requires careful monitoring of training progress
and validation performance to avoid premature stopping or
suboptimal results. Finally, parallel training [120] involves
training multiple instances of the model in parallel, which
can significantly reduce the training time. Furthermore,
it enables efficient utilization of computational resources,
allowing for the training of larger and more complex models,
and provides scalability, as parallel training can be easily
extended to utilize additional GPUs or machines. As a
drawback, it introduces synchronization and communication
overhead between instances, which can increase latency
and complexity. As a more serious drawback, it must be
taken into account that some models or tasks may not
be inherently parallelizable, limiting the potential speedup
achievable through parallel training.

VI. CONCLUSION AND FUTURE WORK
AI supports a green society in different ways. AI technologies
such as remote sensing, drones, and satellite imagery
provide farmers with detailed insights about their fields. This
information helps optimize irrigation, fertilization, and pest
control, resulting in higher crop yields and reduced resource
wastage; AI-powered traffic management systems analyze
real-time data from sensors, cameras, and GPS devices

to optimize traffic flow. AI-driven building management
systems analyze occupancy patterns, weather forecasts, and
other data to predict energy demand for heating, cooling,
lighting, and other building functions. However, there are
scenarios where AI can negatively affect the solutions it
provides because of its excessive energy demand, due to
insufficient hardware architectures, poor choice of data
structures to represent very large datasets or inefficient
and expensive training algorithms. As a paradox, Red AI
can cause a more serious problem than the ones it solves.
Following this direction, this article has critically reviewed
the different causes of Red AI in terms of architectures, data
structures, and algorithms aiming to reduce the computational
complexity occurring during the training of a model. The
principles of the most energy-demanding DL applications
are reviewed as a foundational pillar of a survey that takes
into account a set of articles introducing the topic of Green
AI. A second cluster of articles discussed the hardware
used and the energy demand of the most computationally
intensive DL models. Finally, a third group of contributions
related to the latest advancements with respect of the training
optimization of large models has been debated. Green AI
often involves finding a balance between energy efficiency
and performance. However, it is here to stay, and it will soon
become a pillar of our society.

Firstly, there is a critical need from an architectural
point of view. Exploring hardware innovations for reduced
energy consumption and the consequent carbon emissions
is of paramount importance. The reduction of consumed
energy can be achieved by creating more optimized data
structures, algorithms, and models, which can reduce the
computational complexity and save a significant amount
of electrical power, thereby reducing the carbon footprint.
Integration of renewable energy sources into AI infrastructure
should be a central theme, with an emphasis on minimizing
energy consumption in smart buildings. While it is often
advised to power everything using alternative resources to
gas, carbon, and the like, the impact of such actions is
not always properly calculated. For instance, preferring an
electric vehicle to a petrol vehicle is environmentally friendly
from a direct pollution creation perspective. However, the
environmental impact depends on how the electricity that
powers these devices is produced. If a strongly polluting
method of energy production is preferred, even electric
cars can be indirectly polluting. Therefore, it is essential to
thoroughly assess the sustainability of seemingly sustainable
choices.

From an energetic point of view, there is a need for in-
depth examination. Certainly, producing energy can be less
harmful to the environment, but not all the resources used
in in the process are sustainable. Therefore, using an electric
and optimized device that consumes energy produced in an
environmentally harmful way can still result in a large carbon
footprint. Such production methods should be analyzed and
regulated in further research. Furthermore, the application of
AI in environmental monitoring and resource management
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must be thoroughly explored. The limitations of this work
can be regarded as the lack of a debate concerning the
governmental policies (in the form of norms, practices and
directives) to reduce the presence of Red AI in favor of
Green AI. In this sense, future work will review the issues
related to the negotiation between sustainable AI and the
escalating energy demands of AI models, as seeking optimal
performance involves finding a balance between performance
requirements and environmental considerations. Specifically,
the points targeted by future work will include i) how
to prioritize the optimization of algorithms and models to
enhance their efficiency, ii) review energy-efficient hardware
solutions, iii) delve into techniques such as quantization and
model compression to reduce the size of models, leading
to lower computational requirements and, consequently,
reduced energy consumption, iv) assess techniques based on
scaling up or down the computational resources based on the
current demand, v) review the environmental impact at each
stage the entire life-cycle of AI models and seek ways to
minimize the carbon footprint, vi) study methods to power
AI infrastructure with renewable energy sources to mitigate
the environmental impact, vii) discuss the possibility of com-
plying with regulations related to energy consumption and
environmental impact, viii) review incentives or recognition
programs for AI developers and organizations that adopt
sustainable practices and finally, ix) describe continuous
monitoring policies of energy consumption and performance
metrics
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