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Abstract: Diabetes-induced oxidative stress induces the development of vascular complications,
which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic
retinopathy (DR) is often caused by functional changes in the blood–retinal barrier (BRB) due to
harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a
potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways
in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant
response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads
to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression
of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating
the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the
integration of metabolic imaging and molecular biology to provide a comprehensive functional
and molecular characterization of the mechanisms activated in the disease, as well the therapeutic
role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid
metabolism, from fatty acid uptake and turnover to lipid biosynthesis and β-oxidation. DHA exerts
its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production
under HG conditions. This investigation may provide novel insight for formulating novel treatments
for DR by targeting lipid metabolism pathways.

Keywords: diabetic retinopathy; lipid metabolism; β-oxidation; oxidative stress; docosahexaenoic
acid (DHA); blood-retinal barrier; retinal diseases; human retinal pigment epithelium cells (ARPE-19);
metabolic imaging

1. Introduction

Diabetes mellitus (DM), a multifactorial systemic disease that affects millions of indi-
viduals worldwide, has become more common over recent years [1]. The main symptom
and clinical indicator of DM are persistent high blood glucose levels (hyperglycemia) due to
insulin deficiency and impaired peripheral glucose utilization in insulin-sensitive tissues [2].
DM is also associated with various metabolic abnormalities, including dyslipidemia [3], ele-
vated levels of circulating blood free fatty acids, impaired lipid turnover [4], increased oxida-
tive stress [5,6], and abnormal production of advanced glycation end products (AGEs) [7,8].
Together, these changes lead to the development of diabetes-related vascular complications,
which disrupt the vasculature’s normal shape and physiology, causing gradual tissue and
organ damage, dysfunction, and ultimately failure [9]. Nervous system damage (neuropa-
thy), renal system damage (nephropathy), and eye damage (retinopathy) are caused by
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microvascular malfunction, [10]. Conversely, diabetes-associated macro vascular disease
is manifested in peripheral vascular disease and cardiovascular disease. Studying the
variables that trigger diabetes-induced vascular dysfunction may lead to the discovery
of new strategies to reduce morbidity and mortality in subjects with diabetes-induced
vascular dysfunction [9].

Several studies have shown that, among a wide range of chronic hyperglycemia-
induced complications, such as inflammation [11,12], as well as the accumulation of intra-
cellular reactive oxygen species (ROS), are leading causes of cellular damage. ROSs are
very reactive radicals, ions, or molecules that are produced intracellularly by impaired
mitochondrial functions or by interactions with exogenous sources. It is widely known that
oxidative stress plays a significant role in the development of diabetic retinopathy (DR),
which results in severe vision loss and blindness [13,14]. Indeed, being a part of the central
nervous system (CNS), the retina is particularly vulnerable to changes in its microenvi-
ronment, whose maintenance is crucial to support the health and proper functionality of
retinal cells [15]. Thus, impairments in the functionality of the blood–retinal barrier (BRB)
has been directly related to the onset and progression of retinal diseases [16].

Retinal pigment epithelium (RPE) cells, situated between the neurosensory retina
and the vascular choroids, have a crucial function in preserving the normal structural and
functional integrity of the retina. These cells, which are characterized by a prevalently
non-glycolytic metabolism [17], play an essential role in the retinal outer segment renewal
by phagocytosis and digestion of shed outer segment tips. This phagocytic activity provides
the RPE with lipids that may be either metabolized via β-oxidation to generate acetyl CoA
or stored in the form of triglycerides (TAG) [18]. Being one of the most vulnerable cell
populations of retina, and in view of the tight metabolic coupling with photoreceptors, RPE
cell damage has been related to the development of DR, making them a useful and reliable
model for researching the BRB’s functional changes brought on by diabetes [19].

Amongst several metabolic pathways that have been implicated in diabetes-induced
vascular damage, the metabolic alteration of the lipid turnover has been proposed to play
a key role in BRB disruption, but the mechanisms are not yet fully investigated [20]. A
positive correlation between increased plasma lipid levels and the initiation and progression
of DR has been observed in various clinical trials [21–23]. Of interest are the studies that
show that the administration of ω3 polyunsaturated fatty acids (PUFAs) may reduce
the risk of DR onset and further progression [24]. For instance, the anti-inflammatory
and antioxidant properties of docosahexaenoic acid (DHA) on retinal cells have received
considerable attention, making it a potential protective agent.

In a previous work [25], we investigated the potential protective role of DHA at
physiological concentrations [26] to prevent hyperglycemia-induced oxidative damage
and apoptotic pathways in ARPE-19 cells. This study reveals that the effective antioxidant
response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade,
as well as the formation of the reductive agent NADH in the cytoplasm. Interestingly, Nrf2,
which is known to be a master regulator of the intracellular antioxidant system as well as of
cellular homeostasis, also reduces the expression of genes that encode enzymes involved in
lipid metabolism, including β-oxidation and lipases [27]. From this perspective, to evaluate
the effect on lipid turnover, we focused on different genes that are involved in several steps
of lipid metabolic pathways, from fatty acids uptake (FATP1 and CD36) to lipid storage
(DGAT1) and lipolysis (ATGL), including biosynthesis (SREBP) and β-oxidation (CPT1).

This study aimed at investigating alterations in lipid metabolism induced by high-
glucose on ARPE-19 cells, as well as the potential ameliorating effects of DHA by combining
metabolic imaging and gene expression of target proteins to provide a comprehensive
functional and molecular characterization of mechanisms activated in the disease.
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2. Materials and Methods
2.1. Establishment of the In-Vitro Model: Cells Culture and Treatments

Human retinal pigment epithelium (RPE) cells (ARPE-19) were purchased from the
American Type Cell Culture (ATCC–CRL–2302, Manassas, VA, USA) and cultured in
Advanced DMEM/F12 basal medium (Thermo Fisher Scientific, Inc., Waltham, MA, USA),
supplemented with 20% fetal calf serum (FCS, Merck Life Science S.r.l., Milano, Italy)
and 100 U/mL penicillin–streptomycin (Gibco™, Thermo Fisher Scientific, Inc., Waltham,
MA, USA), with physiological glucose levels (5 mM). During growth, cells were maintained
in a humidified environment (5% CO2). Further sub-cultures of cells (passage number 12)
were performed at the proper density in accordance with each experimental method. To
investigate the effect of the high glucose concentrations on ARPE-19 metabolism, cultured
cells were treated as previously reported [25]. A 50 mM concentration of D-Glucose was
added to cells for 20 h, followed by the administration of docosahexaenoic acid (DHA)
for a further 16 h (Cayman Chemical, Ann Arbor, Michigan, MI, USA—50 mg in 200 µL
ethanol), and this was then complexed to fatty acid-free bovine serum albumin (FAF-BSA,
Merck Life Science S.r.l., Milano, Italy), prior to use as described [28], to reach the final
concentration of 60 µM of DHA.

2.2. Confocal Microscopy Imaging for the Quantification of Intracellular Non-Polar Aggregate

A Nikon A1-MP confocal microscope outfitted with a 2-photon Ti:Sapphire laser (Mai
Tai, Spectra Physics, Newport Beach, CA, USA), emitting 80-fs pulses at a repetition rate of
80 MHz, was used to characterize the functional properties of ARPE-19 cells. An on-stage
incubator (OKOLAB) kept a constant temperature of 37 ◦C and a 5% level of CO2. For
the quantification of intracellular non-polar aggregates, the lipophilic probe Laurdan was
used. Cells were treated with 1 µM of Laurdan. Laurdan intensity images (excitation:
740 nm) were recorded in the two emission ranges 450/50 nm and 525/50 nm with a
1024 × 1024-pixel resolution, and a 60× oil-immersion objective was used to visualize
lipid aggregates.

2.3. Isolation of RNA and RT-PCR for the Molecular Characterization of ARPE-19
Lipid Metabolism

Total RNA was extracted using the RNeasy MicroKit (Qiagen, Hilden, Germany), and
its concentration was determined by spectrophotometric measurements at 280 and 260 nm.
Using the Quan-tiTect Reverse Transcription Kit, the extracted total RNA was utilized to
create the first strand of cDNA (Qiagen). The manufacturer’s instructions were followed
while using PowerUpTM SYBR® Green Master Mix (2X) reagents from Applied Biosystem
in Waltham, MA, USA. The 7900HT FAST REAL-TIME PCR SYSTEM was used to quantify
gene expression (Applied Biosystems, Waltham, MA, USA). Primers were purchased from
Thermo Fisher Scientific, Inc. (Waltham, MA, USA). Each gene target quantification reaction
was performed separately with the respective primer sets, as reported in Table 1.

Table 1. List of primers used for quantitative RT-PCR.

Gene Target Accession Code Primer Sequence Forward (5′ to 3′) Primer Sequence Reverse (5′ to 3′)

B-Actin NM_001101.5 AAACTGGAACGGTGAAGGTG GTGGCTTTTAGGATGGCAAG
CD36 NM_001001548.3 CTTTGGCTTAATGAGACTGGGAC GCAACAAACATCACCACACCA
FATP1 NM_198580.3 CTGCCCTTAAATGAGGCAGTCT AACAGCTTCAGAGGGCGAAG
DGAT1 NM_012079.6 CGGGTCCGAGGGTGTCAATA TCCACACAGCTCTGGCACTC
ATGL JF279441.1 GCTTCCTCGGCGTCTACTAC CAATGAACTTGGCACCAGCC
SREBP NM_001005291.3 CTGGTCTACCATAAGCTGCAC GACTGGTCTTCACTCTCAATG
CPT1 BT009791.1 ATCAATCGGACTCTGGAAACGG TCAGGGAGTAGCGCATGGT

According to the methodology reported in [25], a constant annealing temperature was
employed for both the amplification and melt curve reaction settings.
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Technical triplicates, no template controls (NTC), and samples for each run were used
in triplicate separate runs for primer pair optimization and validation. The Applied Biosys-
tem software (SDS 2.4.1, available online at https://www.thermofisher.com/it/en/home/
technical-resources/software-downloads/applied-biosystems-7900ht-fast-real-timespcr-sy
stem.html, accessed on 29 January 2023) was used to evaluate the gene expression findings.
Assuming the β-actin gene to be an endogenous and reference control, the average of the
three threshold cycle values (Ct) were automatically filled in as follows:

∆Ct = Ctarget
t − Cre f erence

t (1)

where Ctarget
t is the target gene’s average of the three threshold cycle values, and Cre f erence

t
is the reference gene’s average threshold cycle value. Using the 2−∆∆Ct technique, relative
quantification was performed.

2.4. Statistical Analysis

Using Orange 3.32 (https://orangedatamining.com/, accessed on 29 January 2023)
and Python 3.10 (https://www.python.org/, accessed on 29 January 2023) with the libraries
pandas (https://pypi.org/project/pandas/, accessed on 29 January 2023), numpy (https:
//pypi.org/project/numpy/, accessed on 29 January 2023), matplotlib (https://pypi.org/
project/matplotlib/, accessed on 29 January 2023), seaborn (https://pypi.org/project/
seaborn/, accessed on 29 January 2023), and scikit_posthocs (https://pypi.org/project/
scikit-posthocs/, accessed on 29 January 2023), Student’s t-tests were carried out on sets of
biological and biophysical data. One-way ANOVA for parametric variables has been used
to compare baseline features between samples. Then, for post-hoc comparisons among
samples, Tukey’s test was employed.

3. Results

This study combined functional and molecular characterization of genes involved in
lipid metabolism to unravel the impact induced by high-glucose levels on lipid metabolism
and the ameliorating effect of DHA. To this aim, we selected different groups of genes
involved in lipid metabolic pathways, whose expression can provide a clear insight into
the mechanisms activated by the supplied treatments. A recent study reports the impact of
high glucose concentrations on the growth rate of cultured ARPE-19 [25].

3.1. Effect of DHA as a Modulator of the High Glucose-Induced Enhancement of Fatty Acid Uptake

The first step of our analysis consists in the evaluation of two genes that regulate FA
uptake, CD36 and FATP1. Mean values ± standard deviations are reported in Figure 1.

The fatty acid translocase, also known as cluster of differentiation 36 (CD36), as well
as fatty acid transport 1 (FATP1), play a key role in lipid homeostasis since they regulate
the coding of proteins that mediate cellular FFA uptake. In addition, CD36 is directly
involved in the process of photoreceptors phagocytosis of the rod outer segments. Figure 1
depicts HG-induced over-expression of both gene products in comparison with CTRL cells
(CD36 ~6-folds higher, Figure 1A, and FATP1, ~2-folds higher, Figure 1B). Interestingly,
the addition of DHA to CTRL cells under normal glucose levels promoted the expression
of CD36 to a similar extent as the effect of HG (6.17 ± 1.74 for HG and 5.12 ± 0.77 for
DHA, respectively). Conversely, DHA inhibited FATP1 expression (0.07 ± 0.01). When
added together with high-glucose, DHA somewhat reduced the expression of CD36 from
6.17 ± 1.74 (HG) to 3.86± 0.35 (HG + DHA, mean± sd, p < 0.05, (n = 3)). Conversely, DHA
under HG conditions significantly inhibited FATP1 expression from 1.86 ± 0.72 (HG) to
0.60 ± 0.13 (HG + DHA).

https://www.thermofisher.com/it/en/home/technical-resources/software-downloads/applied-biosystems-7900ht-fast-real-timespcr-sy
https://www.thermofisher.com/it/en/home/technical-resources/software-downloads/applied-biosystems-7900ht-fast-real-timespcr-sy
stem.html
https://orangedatamining.com/
https://www.python.org/
https://pypi.org/project/pandas/
https://pypi.org/project/numpy/
https://pypi.org/project/numpy/
https://pypi.org/project/matplotlib/
https://pypi.org/project/matplotlib/
https://pypi.org/project/seaborn/
https://pypi.org/project/seaborn/
https://pypi.org/project/scikit-posthocs/
https://pypi.org/project/scikit-posthocs/
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sion of CD36 (A) and FATP1 (B), normalized to expression levels of cells cultured in physiological
conditions (CTRL = 1, light green), high glucose (50 mM, HG, for 36 h, dark green), DHA (60 µM, for
16 h, light blue), and HG + DHA (HG for 20 h and DHA for further 16 h, dark blue), respectively.
Statistical results obtained from Tukey post-hoc comparisons among groups are shown along with the
bar plot (* p-adj < 0.05 in comparison with CTRL; mean ± sd (n = 3); *** p-adj < 0.001 in comparison
with CTRL; ◦ p-adj < 0.05 in comparison with HG alone; ◦◦ p-adj < 0.01 in comparison with HG alone).

3.2. Effect of DHA as a Modulator of the High Glucose-Induced Enhancement of Fatty
Acid Turnover

The metabolism of intracellular fatty acids (FA) consists of a complex network of
reactions that regulate lipid storage and usage. FAs in cells are stored in the form of TAG
in specific and dynamic organelles, named lipid droplets (LD). The TAG can be further
hydrolyzed and release FFA to supply energetic demand. To investigate the effect of high-
glucose on the intracellular lipid turnover, we focused on the expression of diacylglycerol
O-acyltransferase 1 (DGAT1) and adipose triglyceride lipase (ATGL), which are responsible
for the regulation of balance between lipid storage and mobilization. DGAT1 encodes
a protein, which catalyzes the conversion of diacylglycerol and fatty acyl CoA to TAG,
while ATGL catalyzes the first reaction of lipolysis, where TAGs are hydrolyzed back to
diacylglycerols. The results obtained are reported in Figure 2.
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Figure 2. Normalized expression of genes regulating FA turnover. Values of mRNA expression
of DGAT1 (A) and ATGL (B), normalized to expression levels of cells cultured in physiological
conditions (CTRL = 1, light green), high glucose (50 mM, HG, for 36 h, dark green), DHA (60 µM, for
16 h, light blue), and HG + DHA (HG for 20 h and DHA for further 16 h, dark blue), respectively.
Statistical results obtained from Tukey post-hoc comparisons among groups are shown along with the
bar plot (* p-adj < 0.05 in comparison with CTRL; mean ± sd (n = 3); *** p-adj < 0.001 in comparison
with CTRL; ◦◦◦ p-adj < 0.001 in comparison with HG alone).
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Figure 2A shows that the presence of high-glucose concentrations induces a marked
over-expression of DGAT1 (17.19 ± 9.03) with respect to CTRL (p < 0.05), whereas the
addition of DHA under the HG conditions restored it to the levels of expression of the
CTRL state (11.10 ± 5.52 for HG + DHA). HG also augmented the expression of ATGL
(Figure 2B) with respect to untreated cells (12.19 ± 2.20, p < 0.001). However, ATGL is
reduced back to CTRL levels by the further treatment with DHA (0.80 ± 0.93, p < 0.001
with respect to HG alone).

3.3. Quantification of Intracellular Non-Polar Aggregates

We further exploited the lipophilic and solvatochromic properties of the fluorescent
probe Laurdan [29] in combination with machine learning-based tools for pixel classifi-
cation by confocal microscopic images [30] to quantify the intracellular distribution of
non-polar (NP) aggregates [31–33]. Laurdan, due to its lipophilic properties, also localizes
to intracellular lipid compartments, including LD [34–36]. Because Laurdan emission
wavelength strictly depends on the polarity of its microenvironment, fluorescence from
non-polar compartments peaks at 450 nm, and it is thus detected in the blue channel.

Representative Laurdan fluorescence emission images for CTRL, HG, DHA, and
HG + DHA, respectively, are depicted in Figure 3A–D, along with the bar plot quantifying
the fraction of NP aggregates €.
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Figure 3. Quantification of intracellular non-polar aggregates. Laurdan fluorescence emission
images for cells cultured in physiological conditions (CTRL, (A)), cells treated with glucose 50 mM
(HG, for 36 h, (B)), cells treated with 60 µM (DHA, for 16 h, (C)), and cells with 50 mM glucose and
further addition of 60 µM DHA (HG + DHA, (D)), respectively. Fluorescence emission was collected
in three separate channels (em: 450/50 nm, 525/50 nm, and 595/50 nm). Non-polar aggregates are
characterized by lower wavelength emission, resulting in blue spots in the images. Scale bar is 20 µm.
The bar plot €(E) represents the fraction of intracellular non-polar aggregates for CTRL (light green),
HG (36 h, dark green), DHA (16 h, light blue), and HG + DHA (HG for 20 h and DHA for further
16 h, dark blue), respectively. On the y-axis, the NP fraction is shown as mean ± sd. Along with the
bar plot, the statistical Tukey post-hoc comparison across groups is displayed (*** p-adj < 0.001 with
respect to CTRL, ◦◦◦ p-adj < 0.001 in comparison with HG alone).



Antioxidants 2023, 12, 339 7 of 13

These images indicate that abundance of the non-polar aggregates (blue spots) in-
creased in HG cells (Figure 3B) in comparison with the CTRL (Figure 3A). A higher en-
hancement is retrieved in presence of DHA alone (Figure 3C). In cells treated with DHA in
HG conditions, non-polar aggregates are also enhanced at a similar extent (Figure 3D). To
quantify the fraction of these aggregates, we evaluated the area occupied by blue spots with
respect to the total cells surface and the results, represented as the mean values ± standard
deviation, which are reported in the graph in Figure 3E. The bar plot in Figure 3E shows
that high levels of glucose induced a significant growth in the fraction of non-polar com-
partments with respect to control ARPE cells, with values increasing from 0.04 ± 0.01 to
0.07 ± 0.01 for CTRL and HG, respectively (p-adj < 0.001). Interestingly, the addition of
DHA in both physiologic and high-glucose conditions causes a four-fold increment of the
non-polar fraction with respect to CTRL, with values of 0.14 ± 0.04 for DHA (p-adj < 0.001)
and 0.13 ± 0.03 for HG + DHA, respectively.

3.4. Effect of DHA as a Modulator of the High Glucose-Induced Enhancement of Fatty
Acid Turnover

To further evaluate the effect of high-glucose and the modulation exerted by DHA
on fatty acid biosynthesis, we quantified the expression of the sterol regulatory element-
binding protein (SREBP). This gene is involved in the induction of lipid biosynthesis [37].
Mean values ± standard deviations are reported in the following graph (Figure 4).
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Figure 4 shows a significant increase in the normalized expression of SREBP in pres-
ence of high-glucose concentrations (1.52 ± 0.14) with respect to CTRL, highlighting an
enhancement in the cellular metabolism. Conversely, the addition of DHA, either in
physiological or in HG conditions, downregulated the expression of SREBP with values
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of 0.72 ± 0.11, for DHA. Of interest is the observation that DHA abolished HG-induced
augmented expression of SREBP and reduced it below the CTRL level, with a value of
0.70 ± 0.13 (HG + DHA).

3.5. Effect of DHA as a Modulator of the High Glucose-Induced Enhancement of β-Oxidation

Carnitine palmitoyltransferase I (CPT1) is a protein associated with the outer mitochon-
drial membrane where it mediates the entry of long-chain fatty acids into the mitochondria,
thus constituting an obligatory step in the process of β-oxidation. Normalized expression
values of this gene are represented in the graph in Figure 5.
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Figure 5 shows that the highest expression, approximately 40-fold higher than CTRL,
is observed when DHA is added to the cells under physiological conditions. Interestingly,
a similar effect on CPT1 expression is induced by HG, with a value of 26.14 ± 3.63. Yet,
surprisingly, the treatment with DHA under HG conditions was significantly less effective
in augmenting CPT1 expression, (p < 0.001).

4. Discussion

This study aimed to investigate the effect of high-glucose concentrations on lipid
metabolism of RPE cells highlighting the interplay between metabolic changes induced
by hyperglycemia-like conditions and DHA-induced modulation of redox homeostasis, as
represented in the following Figure 6.
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Figure 6. Representative scheme of pathways activated in response to HG. The scheme represents
the observed metabolic and antioxidant pathways activated in response to HG highlighting the
effects of DHA. Fatty acids (FA), whose uptake is modulated by CD36 and FATP1 through a series of
chemical reactions, are stored in the form of TAG in lipid droplets. When required, TAG accumulated
in LD can be broken down to be used in energy production. Several genes and enzymes regulate the
lipid turnover, modifying the destination of intracellular lipids depending on cellular requirements.
In our experimental model, DHA shows a modulatory effect on changes in lipid metabolism, as well
as in redox homeostasis induced by high-glucose concentrations in ARPE-19 cells. SREBP and Nrf2
(in green) are transcription factors indirectly acting on the highlighted functions or pathways.

We found that high glucose levels caused a considerable stimulation of the whole
lipid metabolism in RPE cells, ranging from FA absorption to lipolysis, as evidenced by
the marked over-expression of various genes and receptors implicated in lipid metabolic
pathways. The increased lipid metabolism triggered by HG conditions may be explained
in terms of the role of glucose as a signaling biomolecule directly involved in oxidative
and inflammatory pathways, which can potentially activate a cascade of molecular mecha-
nisms [38,39]. We have previously shown that, under the same experimental conditions,
ROS formation and apoptotic pathways are triggered by HG in ARPE cells [25]. Since
one of the main functions of RPEs is to establish a bidirectional flux between choroid and
photoreceptors, modulating water, nutrients, ion, and waste product exchange between the
outer and inner part of the retina, any structural modification of RPE membrane can result
in either accumulation of toxic substances or energy deprivation for photoreceptors due
to the strong metabolic coupling. These impairments can lead to photoreceptors damage
and can be directly involved in the onset and development of retinal degeneration, which
ultimately results in vision loss following BRB breakdown, whose functional alterations
have been observed to precede the onset of the pathology [15,40,41].

FA uptake processes are enhanced in HG cells, as shown by the increase in RNA levels
of CD36 and FATP1 (Figure 1), which code for proteins that promote cellular FA absorption.
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DHA supplementation in HG conditions significantly reduces mRNA expression levels
of both FATP1 and CD36 [42], thus modulating the uptake of FAs and toxic lipoproteins
in the retina and contributing to the maintenance of BRB integrity and functionality. FA
turnover is enhanced in HG conditions, as shown by the significant increase induced by
HG in the expression of DGAT1 and ATGL (Figure 2), respectively, the main drivers of
lipid storage and lipolysis pathway. Further addition of DHA in HG conditions decreased
only ATGL expression. Metabolic imaging experiments confirmed these alterations, as
we found that lipid storage processes increased in HG cells, but the treatment with DHA
further enhanced this pathway, as shown by the area fraction of non-polar aggregates. The
significant increase in non-polar aggregates observed in DHA-treated cells is not surprising.
Indeed, when the cells are exposed to such levels of DHA, their only alternative to survive
the cytotoxic and detergent effect of the free FA is to store it as TAG in lipid droplets [31].
Another process affected by HG is lipid biosynthesis, indirectly tested through the SREBP
expression. SREBP increased in presence of high-glucose concentrations with respect to
CTRL, indicating an enhancement of the lipid biosynthetic pathways. Again, the addition
of DHA down-regulated the expression of SREBP contrasting the HG induced effect.
Additionally, β-oxidation is affected by HG and modulated by DHA. β-oxidation, and the
ROS generated as byproducts, are modulated by DHA, which regulated this process by
reducing CPT1 expression.

In summary, HG increased RPE metabolic processes by enhancing fatty acid uptake
and turnover, lipid biosynthesis, and also β-oxidation. We have previously shown that
DHA also induced a potent antioxidant response in RPE cells under the same conditions,
which activates the Nrf2/Nqo1 signaling cascade and causes the synthesis of the reductive
coenzyme NADH in the cytoplasm. Therefore, DHA protects cells by both reducing
oxidative species production, as shown in this work, and activating an antioxidant response,
as shown in [25]. It is interesting to observe that, in view of their close correlation with
the RPE, which is a crucial regulator of retinal function, the potential beneficial effects of
other long-chain ω3-PUFA have also been investigated. In particular, in addition to DHA,
eicosapentaenoic acid (EPA) has shown antioxidant properties and the capacity to protect
RPE cells against the oxidative conditions associated with diabetic retinopathy, although by
different mechanisms [43]. Interestingly, despite both having positive effects on ARPE-19
cells by lowering ROS generation and minimizing oxidative damage brought on by H2O2,
this study highlighted that the effectiveness of PUFAs depends not only on whether they
are administered alone or in combination with each other, but also on the formulation,
with better results in triglyceride or phospholipid-based formulations compared with
ethyl esters. In additions, it has already been shown that other compounds, such as
punicalagin [44] or idebenone [45], can induce a protective and/or therapeutic response in
RPE cells under oxidative stress conditions by activating the Nrf2 antioxidant pathway.

An important limitation of this study, however, is the absence of lactate, a major
substrate used by RPE cells to fuel fatty acid oxidation. Indeed, since these cells relies on
the oxidative metabolism of the outer retina through the oxidation of fatty acids rather than
glycolysis to support its metabolic needs, we speculate that in absence of lactate the level
of oxidation would be lower than that retrieved in vivo. From this perspective, further
research is needed to investigate the contribution of lactate in this in vitro model, as well
as to highlight if Nrf2 could be a master regulator of the overall antioxidant response.
Indeed, in several cell types, it was observed that, besides influencing the intracellular
antioxidant system, Nrf2 is also responsible of inducing expression of genes, which encode
enzymes involved in lipid metabolism, including β-oxidation and lipases [27]. Moreover,
the principal actors of these pathways have to be analyzed also in terms of Western blots
and cellular assays.

5. Conclusions

In conclusion, our study of the processes behind the BRB’s redox homeostasis im-
pairment induced by high glucose levels and the recovery by the supplementation of
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DHA might offer a possible therapeutic target for an early intervention in its therapy. In
this respect, metabolic therapies acting on lipid metabolism may enforce the action of
antioxidants agents by amplifying the effects of existing or novel therapies.
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