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Abstract: Background: Functionalized nanoparticles (NPs) represent a cutting edge in innovative
clinical approaches, allowing for the delivery of selected compounds with higher specificity in a wider
time frame. They also hold promise for novel theranostic applications that integrate both diagnostic
and therapeutic functions. Pathogens are continuously evolving to try to escape the strategies
designed to treat them. Objectives: In this work, we describe the development of a biotechnological
device, Nano-Immuno-Probes (NIPs), for early detection and infections treatment. Human Herpes
Simplex Virus 2 was chosen as model pathogen. Methods: NIPs consist of PLGA-PEG-Sulfone
polymeric NPs conjugated to recombinant Fab antibody fragments targeting the viral glycoprotein
G2. NIPs synthesis involved multiple steps and was validated through several techniques. Results:
DLS analysis indicated an expected size increase with a good polydispersity index. Z-average and
z-potential values were measured for PLGA-PEG-Bis-Sulfone NPs (86.6 ± 10.9 nm; –0.7 ± 0.3 mV)
and NIPs (151 ± 10.4 nm; −5.1 ± 1.9 mV). SPR assays confirmed NIPs’ specificity for the glycoprotein
G2, with an apparent KD of 1.03 ± 0.61 µM. NIPs exhibited no cytotoxic effects on VERO cells at 24
and 48 h. Conclusions: This in vitro study showed that NIPs effectively target HSV-2, suggesting the
potential use of these nanodevices to deliver both contrast agents as well as therapeutic compounds.

Keywords: nanoparticles; nano-immuno-probe; nanotechnology; Fab; PLGA

1. Introduction

In recent years, nanotechnology has gone through remarkable developments, emerg-
ing as significant in several applications, including the food industry, agriculture, and
cosmeceuticals [1–3]. Moreover, it offers new solutions to overcome the limitations of
conventional medicine, with exceptional progress in cancer and diabetes treatment [4–8],
regenerative medicine, ocular therapy [9], tissue imaging [10,11], vaccines [12,13], and in-
fections [14]. In particular, nanoparticles (NPs) have been intensively studied for both diag-
nosis and therapy. As diagnostic tools, NPs equipped with signal molecules are considered
an emerging class of contrast imaging agents, showing multimodal signal and multiplexing
capabilities, which allow them to be detected by several imaging methods and to detect
different molecular targets, respectively [15,16]. For therapeutic applications, NPs represent
ideal drug delivery systems, ensuring targeted delivery and controlled release of drugs
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at specific sites and within defined time windows, providing an alternative to common
therapies. With traditional administration methods, drugs are extensively distributed at the
systemic level, and high and repeated doses are often required to achieve therapeutically
effective concentrations [17,18]. However, loading a drug into an NP increases its stability,
prolongs its circulation lifetime, and minimizes therapy-related toxicity [19]. Among the
several strategies that have been developed to promote NPs accumulation in a site of
interest, active targeting approaches are based on the conjugation of ligands to the NPs
surface and depend on the molecular recognition between the ligand-functionalized NP
and its specific target expressed at the site of interest [20,21]. Different moieties have been
evaluated as ligands for the fabrication of targeted NPs: small molecules like folic acid [22],
carbohydrates [23–25], aptamers [26], peptides [27], and especially antibodies [28]. Thanks
to their high affinity and specificity to a target antigen, antibodies are among the most
successfully employed ligands. However, they are large Y-shaped proteins, constituted
of two identical light and heavy chains held together by disulphide bonds, and it could
be difficult to produce them as recombinant molecules. Thus, smaller antibody fragments
(Fabs) are often preferred for antibody-based NPs, since they maintain the specificity of the
whole protein without triggering the complement activation [29–31]. Furthermore, NPs
are intensively studied for their potential to combine diagnostic and therapeutic functions
within a single entity, thus enabling simultaneous disease diagnosis and treatment, the se-
lection of optimal treatment, and the monitoring of therapeutic efficacy over time [19,32,33].
The novelty and significance of this study lie in the development of a new biotechnological
device, called Nano-Immuno-Probe (NIP). This device consists of PLGA-PEG-Bis-Sulfone
polymeric nanoparticles conjugated with recombinant Fab antibody fragments that specifi-
cally target the glycoprotein G2 (gG2) of Human Herpes Simplex Virus 2 (HSV-2). PLGA
(Poly(lactic-co-glycolic acid)) and PEG (Polyethylene glycol) are widely used polymers in
nanotechnology due to their biocompatibility, biodegradability, and ability to evade the
immune system [34]. The incorporation of bis-sulfone, a benzoic acid derivative, enables
the functionalization of these nanoparticles with His-tagged or thiolated compounds, such
as peptides, protein domains, or antibodies [35]. This results in nanoparticles that are highly
stable, exhibit reduced immunogenicity, and provide efficient drug delivery and precise
targeting capabilities [36]. HSV-2 was chosen as the model because a human monoclonal
anti-HSV-2 antibody had previously been obtained from a phage display combinatorial
library constructed from the iliac crest bone marrow of an infected immunocompromised
patient; furthermore, the Fab had already been characterized for diagnostic purposes and
targets the glycoprotein G2 [37].

In this work, NIPs were fabricated by a multi-step process that involved synthesizing
PLGA-PEG-NH2, conjugating Bis-Sulfone to it, and then eliminating Toluene-sulphonic
acid to obtain PLGA-PEG-Mono-Sulfone NPs. The final polymer of the reaction, PLGA-
PEG-Bis-Sulfone, was used to synthesize nanoparticles via the nanoprecipitation technique.
The resulting colloids were then functionalized with the antibody, creating the NIPs. These
devices can deliver both contrast agents and therapeutic compounds, a relatively novel
approach in personalized medicine. This dual capability enables a combined diagnostic and
therapeutic strategy, potentially enhancing the efficiency and effectiveness of treatments
while minimizing adverse effects.

To determine the correct synthesis and formation of NIPs, they were characterized us-
ing dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and transmission
electron microscopy (TEM). Additionally, an anti-Fab antibody labelled with gold particles
was used to confirm the expression of the targeting ligand on the surface of the NIPs; SPR
enabled the assessment of the interaction between the NIPs and glycoprotein G2. Finally,
the cytotoxicity profile of the NIPs was evaluated on VERO cells.
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2. Materials and Methods
2.1. Escherichia coli Cell Strain Used for Cloning and Expressing Recombinant Anti-HSV-2 Fab

The Escherichia coli strain XL-1 Blue (RBC Bioscience, New Taipei City, Taiwan) was
used as a host cell in the subcloning and expression experiments. The recombinant plasmid
was transformed into E. coli cells using standard methods. Following transformation, cells
were grown on Luria Bertani LB agar plates (Condalab, Madrid, Spain) and inoculated in
Super Broth SB (3.5% tryptone, 2% yeast extract, 0.5% NaCl, 1N NaOH), both containing
the antibiotics ampicillin (Amp, 100 µg/mL) and tetracycline (Tet, 20 µg/mL). Single
antibiotic-resistant recombinant colonies were selected for protein expression.

2.2. Construction of pComb3/TIG Vector Encoding Recombinant Histidine Tagged
Anti-HSV-2 Fab

The human monoclonal anti-HSV-2 antibody was previously obtained from a phage
display combinatorial library constructed from iliac crest bone marrow of infected im-
munocompromised patients and characterized for diagnostic purposes by Bugli et al. [37].
Multiple subcloning procedures were performed to add a Histidine tag to the C-terminal
end of the anti-HSV-2 Fab Heavy Chain (HC), necessary for the chemical conjugation
to NPs.

2.3. Light and Heavy Chains Subcloning

The light and heavy chains were subcloned into pComb3/TIG to obtain the pComb3/TIG-
LC-HCHIS, which encodes the Histidine tagged anti-HSV-2 Fab. For the details of the
cloning procedure, see Supplementary Materials.

2.4. Sequencing

The anti-HSV-2 Fab heavy and light chains were sequenced using the pComb3/TIG-
LC-HCHIS without CP3 plasmid as a template. In every Sanger fluorescence-based sequenc-
ing reaction, the BigDye terminator v3.1 and its 5× Buffer (Applied Biosystems by Thermo
Fisher Scientific, Waltham, MA, USA) were used. The nucleotide sequence of primers is
shown in Table S2 of Supplementary Materials. The sequencing reactions were purified
with the DyeEx 2.0 Spin Kit (Qiagen, Hilden, Germany) to avoid the interference of salts,
unincorporated dye terminators, and dNTPs; each reaction was suspended in formamide
and the automatic sequencer 3130 Genetic Analyzer (Applied Biosystems by Thermo Fisher
Scientific, Waltham, MA, USA) was used. The data were analyzed with the Chromas Pro
6.0 software.

2.5. Expression and Purification of the Recombinant Anti-HSV-2 Fab

E. coli XL-1 Blue transformants harboring pComb3/TIG-LC-HCHIS without CP3 were
inoculated in 10 mL of sterilized SB medium with 100 µg/mL Amp and 20 µg/mL Tet,
and cultivated overnight at 37 ◦C. This starter culture was used to sub-inoculate (1:50) 1 L
of SB medium and cultivated at 37 ◦C with vigorous shaking (220 rpm), until reaching
the OD600 of 0.8. IPTG (isopropyl β-D1-thiogalactopyranoside) was added to a final
concentration of 1 mM, 50 µg/mL Amp was added again to reconstitute, and the culture
continued at 30 ◦C overnight. Cells were harvested by centrifugation at 3000 rpm at 4 ◦C for
20 min, the culture medium was discarded, and cells washed in PBS. Cells were pelleted by
centrifugation at 5000 rpm at 4 ◦C for 30 min and resuspended in 100 mL of PBS. Chicken
Egg White Lysozyme Solution (Merck Millipore Ltd., Burlington, MA, USA) was added
to a final concentration of 100 µg/mL, and cells were incubated on ice for 30 min. The
samples were sonicated eight times for 60 s, and Pierce Protease Inhibitors (Thermo Fisher
Scientific, Waltham, MA, USA) were added after the first sonication; the bacterial lysates
were centrifuged at 18,000 rpm at 4 ◦C for 45 min, and the supernatant recovered and
filtered at 0.22 µm. The Fab was purified on a chromatographic column using a homemade
Protein G-Human Fab resin and later analyzed as described in Supplementary Materials
(S1.2 and S1.3).
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2.6. Surface Plasmon Resonance

The interactions between the commercial recombinant gG2 glycoprotein (ligand) and
the His-tagged anti-HSV-2 Fab or the functionalized NIPs (analytes), were measured using
the Surface Plasmon Resonance (SPR) technique using a Biacore X100 instrument (Biacore,
Uppsala, Sweden). The gG2 ligand was immobilized on a Sensor Chip CM7 (Biacore AB,
Uppsala, Sweden) at 50 µg/mL. The immobilization was obtained via amine coupling
(with EDC/NHS solutions) in accordance with the instructions of the manufacturer. In this
process, the carboxyl groups on the CM7 chip are first activated with EDC (1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide) and NHS (N-hydroxysuccinimide). The protein is
then introduced to the activated chip, allowing the amine groups to form a covalent bond
with the chip. After immobilization, any remaining reactive NHS esters on the chip surface
are deactivated using a solution of ethanolamine. This prevents nonspecific binding during
the SPR analysis. Following the immobilization process, affinity analysis is performed.
PBS 1X (containing 10 mM phosphate buffer pH 7.4, 0.137 M NaCl and 2.5 mM KCl) was
filtrated and used as a running buffer and the binding experiments were performed with
a flow rate of 30 µL/min at 25 ◦C; the association phase was monitored for 180 s, while
dissociation was monitored for 300 s. The concentrations analyzed in the SPR assay for both
the analytes refer to the concentration of the Fab species and were obtained by successive
dilutions, halving the concentration in each step starting from 4 µM (i.e., 200 µg/mL) for
the Fab alone and 1 µM of Fab equivalent for the NIPs. Each experiment was carried out
using a minimum of five different analyte concentrations, and to verify the reproducibility
of data, at least one concentration was repeated in duplicate. The regeneration of the
chip surface was achieved by the addition of 2 M NaCl for 30 s before the start of each
new cycle. Subsequently, regeneration was performed using a Glycine-HCl buffer (0.1 M,
pH 2.5) at the end of the analysis. When the experimental data met the quality criteria,
data were analyzed using the Biacore X100 Evaluation Software 2.0.1 plus package. An
affinity steady state model was applied to fit the data, as kinetic parameters were out of
the range measured by the instrument, but an equilibrium signal of interaction was clearly
detected. Therefore, a specific KD was determined with a confidence interval associated
with a standard error value to avoid any bias.

2.7. Nano-Immuno-Probes Synthesis

Nanoparticles were synthesized according to the method described in the following
article [35]. A summary diagram of the various steps required to synthesize NIPs is shown
in Figure 1a. Briefly, 0.97 g of commercial PLGA-COOH (MW 10 kDa, 0.1 mmol) (Nanosoft
polymers, Winston-Salem, NC, USA) was activated and converted to PLGA-NHS with
an excess of N,N′-Dicyclo-hexylcarbodiimide (DCC) and N-Hydroxysuccinimide (NHS)
(both from Fluorochem Ltd., Glossop, UK). Quickly, PLGA-COOH was dissolved in 10 mL
of dichloromethane (DCM) (Merck, Darmstadt, Germany) followed by the addition of
2.5 equivalents of DCC and NHS. The reaction was left under magnetic stirring for 20 h
at room temperature. Once activated, insoluble dicyclohexyl urea was filtered and the
final product was dried under vacuum to be conjugated to PEG. PLGA-NHS (900 g) were
dissolved in 10 mL of DCM before the addiction of 540 mg of NH2-PEG-NH2 (MW 3 kDa,
0.18 mmol) (Sigma-Aldrich, Saint Louis, MO, USA). The reaction was left under mag-
netic stirring overnight at room temperature and the resultant polymer was triturated
with methanol (Fluka Chemicals, Buchs, Switzerland), to be later dried under vacuum.
Bis-Sulfone activation was achieved by dissolving 100 mg of Bis-Sulfone (0.16 mmol) (Flu-
orochem Ltd., Glossop, UK) in 10 mL of DCM. Both DCC and NHS were added in a
stoichiometric excess of two times compared to Bis-Sulfone. The reaction was left under
gentle stirring for 3 h at room temperature and the resulting product was filtered, triturated
with diethyl ether (Merck, Darmstadt, Germany), and lastly dried under vacuum. After
the Bis-Sulfone activation, 500 mg of PLGA-PEG-NH2 (0.038 mmol) were dissolved in
10 mL of DCM. Once solubilized, 1.1 equivalents of activated Bis-Sulfone were added to
the solution. The reaction was allowed to proceed under magnetic stirring overnight. The
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resulting PLGA-PEG-Bis-Sulfone polymer was dried under vacuum and used to prepare
the nanoparticles. To obtain PLGA-PEG-Bis-Sulfone NPs, the nanoprecipitation method
(see Figure 1b) was performed: 100 mg of PLGA-PEG-Bis-Sulfone were dissolved in 1 mL
di tetrahydrofuran (Applied Biosystems by Thermo Fisher Scientific, Waltham, MA, USA);
then, 200 µL of the resultant product were added dropwise to 5 mL of stirring water. The
reaction was left to proceed overnight, and the next day PLGA-PEG-Bis-Sulfone NPs were
analyzed through DLS.
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Figure 1. Panel (a) illustrates the sequence of steps involved in synthesizing and characterizing
NIPs. The process begins with the synthesis of the polymer (Step 1), followed by the synthesis of
nanoparticles via nanoprecipitation (Step 2). Once formed, the nanoparticles are functionalized with
the antibody (Step 3), and finally, the particles undergo characterization (Step 4). Panel (b) depicts a
schematic of the nanoprecipitation technique. In this technique, PLGA-PEG-Bis-sulfone polymer is
dissolved in THF (tetrahydrofuran). This solution is then added dropwise to continuously stirred
water. The mixture is left stirring until nanoparticles are formed.

The conversion of PEG-Bis-Sulfone to PEG-Mono-Sulfone was induced through the
addition of an appropriate buffer to the NPs solution. Briefly, 150 µL of a solution con-
stituted of 100 mM NaCl, 20 mM EDTA (Sigma-Aldrich, Saint Louis, MO, USA), and
500 mM phosphate buffer pH 8 (Carlo Erba, Val de Reuil, France) was added to 1.35 mL
of PLGA-PEG-Bis-Sulfone NPs. The reaction was incubated at 37 ◦C for ~6 h. 500 µL
of the His tagged anti-HSV-2 dialyzed Fab (4 µM, in PBS 1×) was added to 1.5 mL of
PLGA-PEG-Mono-Sulfone NPs for the NPs functionalization reaction and incubated with
gentle agitation at room temperature overnight. To avoid unspecific signals, the unbound
Fab that did not react with the NPs Mono-Sulfone was removed from the solution using
the VivaSpin 6 mL Concentrator, 100,000 MWCO (VivaScience by Sartorius, Göttingen,
Germany). The sample was loaded into the VivaSpin Concentrator, centrifuged at 1500 rpm
for 2.5 min, and 1 mL of the flow through (referred to as unbound Fab) was collected for fur-
ther analysis. After five washes in PBS, the NIPs without the unbound Fab were recovered
in 1 mL of PBS.

2.8. Dynamic Light Scattering

DLS experiments were performed using the Zetasizer Nano S (Malvern Instruments,
Malvern, UK) equipped with a 4 mW He-Ne laser (633 nm). Measurements were carried
out at 25 ◦C at an angle of 173◦ from the incident beam. The Z-Average diameters of
the scattering particles were calculated by peak-intensity and number analysis. The Zeta-
Potential values were collected using DTS1070 (Disposable Folded Capillary cell). Samples
were diluted 1:100 with distilled water before the analysis.
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2.9. Transmission Electron Microscopy

Droplets of NPs and NIPs suspensions (10 µL) were placed on formvar-carbon coated
grids and allowed to adsorb for few min. The adsorbed samples were processed for
negative staining by washing the specimen grid on a drop of negative stain solution (2%
uranyl acetate dissolved in distilled water) and then repeating this step once more leaving
the specimen grid on a new drop of negative stain solution for 120 s. Contrast agents were
used only for low-contrast materials (e.g., PLGA). Samples were observed with a JEOL
1200 EX II electron microscope (JEOL Ltd., Tokyo, Japan). Micrographs were acquired with
an Olympus SIS VELETA CCD camera (Shinjuku City, Tokyo, Japan) equipped with the
iTEM software 2009.

2.10. Immunoelectron Microscopy

For immunogold staining (IGS), NPs and NIPs suspensions were adsorbed on formvar-
carbon coated grids, as described in the previous paragraph. Non-specific antigens were
blocked with 0.5% Bovine Serum Albumin (BSA) in PBS (pH 7.4) for 15 min. Subsequently,
samples were incubated for 60 min in a moist chamber with a polyclonal antibody anti-
human Fab conjugated to 25 nm gold particles (St John’s Laboratory Ltd., London, UK),
and diluted 1:500 in 0.1% Tween20 and 1% BSA in PBS (pH 8.2). After rinsing in 0.5%
BSA in PBS and then in PBS (5 min each), the grids were washed three times with distilled
water (5 min each). PBS was substituted with the anti-human Fab antibody in the negative
controls. Samples were subsequently stained with uranyl acetate and observed with a
JEOL JEM EX II transmission electron microscope (JEOL Ltd., Tokyo, Japan) at 100 kV.
Micrographs were acquired with an Olympus SIS VELETA CCD camera equipped with the
iTEM software 2009.

2.11. Cytotoxicity Test

VERO eukaryotic cells were cultured at 37 ◦C in a humidified environment (CO2 5%)
in MEM containing L-glutamine, supplemented with 10% Fetal Bovine Serum (FBS) and
1% Penicillin-Streptomycin Antibiotic (all Gibco by Thermo Fisher Scientific, Waltham, MA,
USA). A total of 50,000 cells/well in basal medium were seeded into a 96-well plate (Corn-
ing Incorporated, Kennebunk, MA, USA) until a sub-confluent monolayer was achieved.
Cells were treated with different concentrations of NIPs to achieve the following NIPs final
percentages: 50%, 25%, 12.5%, and 6.25% v/v. Untreated cells were used as the control.
After 24 and 48 h of incubation, cellular viability was evaluated by the MTS assay, using
the MTS Cell Proliferation Assay Kit (Abcam Plc, Cambridge, UK) according to the manu-
facturer instructions. The optical density (OD) of the solution in each well was determined
with a plate reader at a wavelength of 490 nm. Cell vitality was calculated according to the
following equation: Viability (%): (OD sample/OD control) × 100.

2.12. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 9.1.2 for Windows,
GraphPad Software (San Diego, CA, USA).

3. Results
3.1. Cloning Strategy

From the anti-HSV-2 original plasmid, in which the genes encoding the monoclonal
antibody light and heavy chains had been previously cloned, the LC gene was subcloned
into the pComb3/TIG vector. Subsequently, the PCR amplifications of the HC gene with the
addition of a four Histidine tag at the C-terminal end was accomplished. The amplifications
performed with the specific primer for the His tag addition showed no difference compared
to those with the unmodified primer (Figure 2). The HC was cloned into the LC containing
vector, resulting in the anti-HSV-2 pComb3/TIG-LC-HCHIS vector verified by restriction
analysis; positive clones were identified.
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Figure 2. Comparative evaluation on the agarose gel of the HC gene amplification. Amplicons were
generated by PCR using the CG1z4HIS primer for the Histidine tag addition (lanes 1–2), or the CG1z
unmodified primer (lanes 3–4) in combination with a mix of A (1–3) or F (2–4) variable primers. The
anti-HSV-2 original plasmid was used as a template.

3.2. Determination of the Amino Acid Sequence of the Fab

The amino acid sequence of the HCHIS and LC variable regions of the anti-HSV-2 Fab
was inferred from their DNA sequence. Seven domains were sequenced for both the HCHIS
and LC of 122 and 105 amino acids (Table S3), respectively. The sequencing of the CH1
constant region of the heavy chain showed four Histidines at the C-terminal end.

3.3. Expression and Purification of Recombinant Anti-HSV-2 Fab

Small-scale optimization experiments were conducted to characterize the best ex-
pression conditions. The Fab fragment was purified by immunoaffinity chromatography
on a human anti-Fab sepharose column starting from 1 L of induced cell culture. The
eluted fractions were analyzed on polyacrylamide gel under reducing conditions; a band
of about 25 kDa was detected as expected. Elution fractions 2 and 3 with the highest Fab
concentration were pooled and dialyzed against PBS. The pooled elution fractions were
analyzed by SDS-PAGE before and after the dialysis. As can be seen in Figure 3, dialysis
did not alter the Fab concentration. The final yield obtained was measured at 200 µg/mL
(4 µM).
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3.4. NIPs Synthesis and Characterization

NIPs were fabricated according to the procedures described in Methods (paragraph 2.7).
Briefly, the PLGA-PEG-NH2 co-polymer was synthesized from PLGA-NHS and NH2-PEG-
NH2, the Bis-Sulfone was conjugated to it, and the PLGA-PEG-Bis-Sulfone NPs were
achieved by nanoprecipitation. Through the elimination of the Toluene-sulphonic acid
at basic pH, the PLGA-PEG-Mono-Sulfone NPs were obtained, and the reaction with
the C-terminus His tagged anti-HSV-2 Fab resulted in the NIPs. To verify the synthesis
process, several analyses were performed on the intermediate and final products. Table 1
shows the z-average diameters and polydispersity indexes of PLGA-PEG-NH2 NPs and
PLGA-PEG-Bis-Sulfone NPs and NIPs, measured by DLS. Nanoparticle tracking analysis
on PLGA-PEG-Bis-Sulfone NPs provided a high-resolution particle size distribution profile
from 90 to 200 nm and a concentration measurement of 1010 particles/mL (see Figure S1 in
the Supplementary Materials).

Table 1. Z-average diameter and polydispersity index measured through DLS analysis.

Sample z-Average (nm) Polydispersity Index

PLGA-PEG-NH2 NPs 52.4 ± 4.46 0.181

PLGA-PEG-Bis-Sulfone NPs 86.6 ± 10.9 0.184

NIPs 151 ± 10.4 0.124

Dynamic Light Scattering (DLS) was employed to characterize the Zeta Potential
(Z-potential) of nanoparticles both before and after functionalization. The final results
are presented in Table 2. To ensure significance, three independent measurements were
conducted for each sample. The Zeta Potential value of nanoparticles alone was determined
to be −0.7 ± 0.3 mV, whereas the Zeta Potential of NIPs was found to be −5.1 ± 1.9 mV. The
lower Z-potential of NIPs can be attributed to the introduction of negatively charged groups
from the Fab fragment causing an alteration in surface charge distribution and accessibility.

Table 2. Zeta potential values obtained through DLS analysis.

Sample Zeta Potential (mV)

PLGA-PEG-Bis-Sulfone NPs –0.7 ± 0.3 mV

NIPs –5.1 ± 1.9 mV

3.5. NIPs Ultrastructural Characterization and Localization of the Fab Ligand on NIPs

Transmission electron microscopy (TEM) was used to obtain a direct visualization of
the nanoparticles with high resolution. When TEM is applied to visualize nanoparticles,
a treatment of negative staining is necessary to describe the ultrastructure and potential
alterations. As shown in Figure 4a,b, NPs and NIPs had a spherical shape and size het-
erogeneity. No changes in nanoparticle conformation, alteration of membrane curvature,
or formation of roughening or surface ruptures were observed in NIPs compared to NPs.
Moreover, an anti-Fab antibody labelled with gold particles was used in order to recognize
the available epitopes of the anti-HSV-2 Fab, and used as a specific ligand to functionalize
the PLGA-PEG-Mono-Sulfone NPs. Figure 4c shows a magnification depicting this inter-
action. Gold particles were found on the surface of NIPs, revealing the expression of the
targeting ligand. As expected, the staining was not observed on the surface of NPs or in
negative controls (Figure 4d).
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specific antibody (dark particles); (d) NPs without staining on their surface in negative control. Bars:
(a–d) 200 nm. Magnification rate: 100 K; scale bar: 200 nm.

3.6. Validation of Specificity of NIPs

To avoid an unspecific signal, at the end of the NIPs synthesis process, the Fab not
conjugated to the NPs surface was removed from the solution using twin vertical PES
membranes with a molecular weight cut off (MWCO) of 100 kDa. The removal of the
unbound Fab was verified through a Western blot performed on the solution that flowed
through the PES membranes (FT), and on the free anti-HSV-2 Fab. The free Fab was
analyzed at the same concentration used in the binding reaction with the NPs. As shown
in Figure 5, a slight band corresponding to the Fab fragment size (~25 kDa) was visible in
the FT, much less intense than the band corresponding to the free Fab. The unbound Fab
signal was so imperceptible that it was assumed that all of the anti-HSV-2 Fab fragment
used in the reaction was bound to the NPs. For this reason, the concentration of the Fab
bound to the NPs surface of NIPs was estimated at 50 µg/mL (1 µM). The anti-HSV-2 Fab
fragment had already been characterized and it targeted the HSV-2 glycoprotein G2; once
the unbound Fab had been removed, the NIPs ability to specifically recognize and bind to
the gG2 was investigated through SPR, following the procedures described in materials
and methods. In particular, a commercial recombinant gG2 was immobilized on a CM7
sensor chip and used as a ligand in the assay, whereas the NIPs were used as an analyte.
The optimal experimental setup was settled, and the analyte was injected at five different
concentrations using a multi-kinetic mode. As shown by the scatchard plot in Figure 6a,
a major concentration of NIPs was related to an increase of the Response Unit (RU); an
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apparent KD of 1.03 ± 0.61 µM was estimated (Table 3). SPR was performed to assess the
interaction between the free anti-HSV-2 Fab and the gG2 (Figure 6b) as well. Table 3 shows
the estimated KD value obtained through a kinetic analysis. No interaction was measured
between the NPs and the gG2.
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Figure 6. SPR analysis carried out on a CM7 sensor chip. (a) Scatchard Plot of the interaction between
recombinant gG2 (ligand) and the NIPs (analyte). Data points were acquired starting from the
1:1 NIPs concentration and obtaining the others by successive 1:2 dilutions. (b) Sensogram of the
interaction between recombinant gG2 (ligand) and the anti-HSV-2 Fab (analyte); data points were
obtained at the following concentrations of the Fab: 4, 2, 1, 0.5 and 0.25 µM.

Table 3. Parameters obtained by the SPR measurements.

Ligand Analyte KD

gG2 NIPs 1.03 ± 0.61 µM

gG2 Free anti-HSV-2 Fab 19.7 ± 0.41 nM

3.7. NIPs Cytotoxicity

The NIPs cytotoxicity profile was assessed on VERO cells through the MTS assay. As
shown in Figure 7, after 24 and 48 h, no cytotoxic effect was observed in the presence of
NIPs at all of the four tested concentrations (50%, 25%, 12.5%, and 6.25% v/v). According
to ISO 10993-5, a reduction of cell viability by >30% should be considered a cytotoxic
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effect [38]: as can be seen in Figure 7, all the median viabilities were indeed above 70%. No
cytotoxic effect was observed on cells in the presence of PLGA-PEG-Bis-Sulfone NPs at a
concentration equal to 50% v/v, at 24 and 48 h.
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4. Discussion

Nanotechnology has become pivotal in various fields, particularly in overcoming
medical challenges [6–14,39]. This study addresses the urgent need for highly sensitive
diagnostic and therapeutic solutions, focusing on developing a biotechnological device
intended for early detection of specific pathogens with a great clinical impact and, eventu-
ally, for the direct in situ treatment of the infection. HSV-2, chosen as the model for this
project, is a common virus of the Herpesviridae family. Primarily known for causing genital
herpes, HSV-2 is a neurotropic virus with significant clinical impact that poses challenges
due to its ability to establish latent infections and reactivate periodically. Despite its global
prevalence and impact on quality of life, antivirals are the current standard medication to
prevent viral reactivation [40–43]. The human monoclonal anti-HSV-2 Fab, obtained from
an immunocompromised patient’s bone marrow, targets glycoprotein G2 [37]. To develop
NIPs, PLGA-PEG-Bis-Sulfone NPs needed Fabs functionalization, involving subcloning
procedures to add a four Histidine tag to the antibody. The LC gene was cloned into
the pComb3/TIG vector, and PCR amplifications added a four Histidine tag to the HC
gene using a modified constant region primer (CG1z4HIS). The CG1z4HIS primer showed
good quality amplifications and no differences compared to those with the unmodified
one (CG1z), and unlike the CG1z6HIS primer, which would have added six Histidines.
After subcloning HCHIS into the LC containing vector, the monoclonal anti-HSV-2 Fab was
expressed in E. coli XL-1 Blue cells, assembling in the periplasmic space via disulphide
bond formation. Fab extraction was achieved through mild ultrasound cell disruption,
followed by successful purification using immunoaffinity chromatography. In this study,
NIPs were created using a method outlined in Section 2. Various types of NPs with specific
features can be designed as needed. Poly Lactic-co-Glycolic Acid (PLGA) was selected for
its Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval,
tunable mechanical properties, biocompatibility, and biodegradability [44]. PLGA can be
polymerized with poly(ethylene glycol) (PEG), enhancing nano drug delivery systems
and increasing circulation half-life [45]. PLGA-PEG NPs have been employed for various
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medical applications, including cancer and Alzheimer’s disease treatment, inflammation
management, and drug delivery [46–51]. To validate NIPs synthesis, several techniques
were employed. DLS analysis indicated an expected size increase with good polydispersity
index and correlation coefficient values. Z-averages of 86.6 ± 10.9 nm with a Zeta Potential
value of –0.7 ± 0.3 mV for PLGA-PEG-Bis-Sulfone NPs and 151 ± 10.4 nm with a Zeta
Potential of −5.1 ± 1.9 mV for NIPs were obtained, corroborated by nanoparticle tracking
analysis showing a size distribution profile of 90 to 200 nm. Size is crucial for NP function,
with smaller systems (<200 nm) facilitating tissue acceptance and micro-capillary cross-
ing [19,52]. In an SPR assay, NIPs’ specificity for glycoprotein G2 was confirmed, showing
no alteration in Fab stability or unfolding upon conjugation to NPs. However, the binding
affinity of NIPs-gG2 was lower than that of the free anti-HSV-2 Fab. These results may be
due to the low number of Fab fragments that functionalized the NIPs. Furthermore, as Fabs
on NIPs are chemically bound to the NPs surface and not free in solution, their engagement
with gG2 immobilized on the CM7 sensor chip in the SPR assay was limited. In fact, the
unbound Fabs on NIPs may not contribute to increasing the binding affinity, even if they
are indeed part of those NIPs. These data suggested that the interaction between NIPs
and gG2 differs from the one evaluated for the free Fab, providing further evidence of
the successful NIPs synthesis reaction. Finally, the data obtained from the toxicity test on
VERO cells indicate that NIPs showed no cytotoxic effects at 24 and 48 h.

5. Conclusions

The in vitro experiments conducted in this study showed that Nano-Immuno-Probes
successfully recognized and bound to the specific target of the anti-HSV-2 Fab, which was
tethered to NPs surface. This suggests that NIPs could serve as effective tools for detecting
specific pathogens and early identification of the infection sites, potentially enabling direct
in situ treatment and significantly improving patients’ prognosis. NIPs can be produced
through a fast synthesis with high yield and mild reaction conditions, making them a
versatile and effective platform. However, scaling up production to industrial levels poses
challenges in maintaining consistency and quality, and high costs.

Successful development of these nanodevices could greatly expand the pharmaceu-
tical market for advanced drug delivery systems, with potential applications extending
beyond viral infections to various diseases, thus enhancing treatment efficacy and person-
alized medicine approaches. A SWOT analysis attempt has been made and added to the
Supplementary Materials (Table S4).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16091218/s1, Figure S1: Nanoparticle tracking
analysis on PLGA-PEG-Bis-Sulfone NPs.; Table S1: Primers for the heavy chain amplification reactions;
Table S2: Primers for sequencing the anti-HSV-2 light and heavy chains; Table S3: Amino acid
sequences of the Heavy and Light chains of the anti-HSV-2 Fab fragment. Table S4. SWOT analysis.
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Abbreviations
AMP Ampicillin
BSA Bovine Serum Albumin
DCC N,N′-Dicyclo-hexylcarbodiimide
DCM Dichloromethane
DLS Dynamic Light Scattering
EMA European Medicines Agency
EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
FAB Fragment Antigen Binding
FBS Fetal Bovine Serum
FDA Food and Drug Administration
FT Flowed Through
gG2 glycoprotein G2
HC Heavy Chain
HSV-2 Herpes Simplex Virus 2
IPTG isopropyl β-D1-thiogalactopyranoside
LB Luria Bertani
LC Light Chain

MTS
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium

NHS N-Hydroxysuccinimide
NIP Nano-Immuno-Probe
NP Nanoparticle
NTA Nanoparticle Tracking Analysis
PBS Phosphate buffered saline
PCR Polymerase Chain Reaction
PLGA Poly Lactic-co-Glycolic Acid
PEG Poly(ethylene glycol)
RU Response Unit
SB Super Broth
SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis
SPR Surface Plasmon Resonance
TEM Transmission Electron Microscopy
TET Tetracycline
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