Infants begin acquiring intestinal microbiota at parturition. Initial colonization by pioneer bacteria is followed by active succession toward a dynamic ecosystem. Keystone microbes engage in reciprocal transkingdom communication with the host, which is essential for human homeostasis and health; therefore, these bacteria should be considered mutualists rather than commensals. This review discusses the maternal role in providing infants with functional and stable microbiota. The initial fecal inoculum of microbiota results from the proximity of the birth canal and anus; the biological significance of this anatomic proximity could underlie observed differences in microbiota between vaginal and cesarean birth. Secondary sources of inocula include mouths and skin of kin, animals and objects, and the human milk microbiome, but guiding microbial succession may be a primary role of human milk. The unique glycans of human milk cannot be digested by the infant, but are utilized by mutualist bacteria. These prebiotic glycans support expansion of mutualist microbiota, which manifests as differences in microbiota among breastfed and artificially fed infants. Human milk glycans vary by maternal genotype. Milks of genetically distinct mothers and variations in infant mucosal glycan expression support discrete microbiota. Early colonization may permanently influence microbiota composition and function, with ramifications for health.

Newburg, D., Morelli, L., Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota., <<PEDIATRIC RESEARCH>>, 2015; (Gennaio): 115-120. [doi:10.1038/pr.2014.178] [http://hdl.handle.net/10807/71515]

Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota.

Morelli, Lorenzo
2015

Abstract

Infants begin acquiring intestinal microbiota at parturition. Initial colonization by pioneer bacteria is followed by active succession toward a dynamic ecosystem. Keystone microbes engage in reciprocal transkingdom communication with the host, which is essential for human homeostasis and health; therefore, these bacteria should be considered mutualists rather than commensals. This review discusses the maternal role in providing infants with functional and stable microbiota. The initial fecal inoculum of microbiota results from the proximity of the birth canal and anus; the biological significance of this anatomic proximity could underlie observed differences in microbiota between vaginal and cesarean birth. Secondary sources of inocula include mouths and skin of kin, animals and objects, and the human milk microbiome, but guiding microbial succession may be a primary role of human milk. The unique glycans of human milk cannot be digested by the infant, but are utilized by mutualist bacteria. These prebiotic glycans support expansion of mutualist microbiota, which manifests as differences in microbiota among breastfed and artificially fed infants. Human milk glycans vary by maternal genotype. Milks of genetically distinct mothers and variations in infant mucosal glycan expression support discrete microbiota. Early colonization may permanently influence microbiota composition and function, with ramifications for health.
2015
Inglese
Newburg, D., Morelli, L., Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota., <<PEDIATRIC RESEARCH>>, 2015; (Gennaio): 115-120. [doi:10.1038/pr.2014.178] [http://hdl.handle.net/10807/71515]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/71515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact