Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional and psychiatric disturbances. The genetic mutation is characterized by a CAG expansion, resulting in the formation of a mutant huntingtin protein with an expanded polyglutamine repeat region. Mutated huntingtin has been shown to impair a number of physiological activities by interacting with several factors. In particular, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) are severely affected by mutant huntingtin. In this view, drugs targeted at counteracting CREB loss of function and BDNF decrease have been considered as powerful tools to treat HD. Recently, cyclic nucleotide phosphodiesterase (PDE) inhibitors have been used successfully to increase levels of CREB and BDNF in HD models. Indeed, PDE4, 5 or 10 inhibitors have been shown to afford neuroprotection and modulation of CREB and BDNF. In this review, we will summarize the data supporting the use of PDE inhibitors as the therapeutical approach to fight HD and we will discuss the possible mechanisms of action underlying these effects.

Giampa', C., Phosphodiesterases as therapeutic targets for Huntington's disease., <<CURRENT PHARMACEUTICAL DESIGN>>, 2015; 21 (3): 365-377. [doi:10.2174/1381612820666140826113957] [http://hdl.handle.net/10807/66882]

Phosphodiesterases as therapeutic targets for Huntington's disease.

Giampa', Carmela
2015

Abstract

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional and psychiatric disturbances. The genetic mutation is characterized by a CAG expansion, resulting in the formation of a mutant huntingtin protein with an expanded polyglutamine repeat region. Mutated huntingtin has been shown to impair a number of physiological activities by interacting with several factors. In particular, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) are severely affected by mutant huntingtin. In this view, drugs targeted at counteracting CREB loss of function and BDNF decrease have been considered as powerful tools to treat HD. Recently, cyclic nucleotide phosphodiesterase (PDE) inhibitors have been used successfully to increase levels of CREB and BDNF in HD models. Indeed, PDE4, 5 or 10 inhibitors have been shown to afford neuroprotection and modulation of CREB and BDNF. In this review, we will summarize the data supporting the use of PDE inhibitors as the therapeutical approach to fight HD and we will discuss the possible mechanisms of action underlying these effects.
2015
Inglese
Giampa', C., Phosphodiesterases as therapeutic targets for Huntington's disease., <<CURRENT PHARMACEUTICAL DESIGN>>, 2015; 21 (3): 365-377. [doi:10.2174/1381612820666140826113957] [http://hdl.handle.net/10807/66882]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/66882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact