Trimethyltin (TMT) intoxication is considered a suitable experimental model to study the molecular basis of selective hippocampal neurodegeneration as that occurring in several neurodegenerative diseases. We have previously shown that rat hippocampal neurons expressing the Ca(2+)-binding protein calretinin (CR) are spared by the neurotoxic action of TMT hypothetically owing to their ability to buffer intracellular Ca(2+) overload. The present study was aimed at determining whether intracellular Ca(2+) homeostasis dysregulation is involved in the TMT-induced neurodegeneration and if intracellular Ca(2+)-buffering mechanisms may exert a protective action in this experimental model of neurodegeneration. In cultured rat hippocampal neurons, TMT produced time- and concentration-dependent [Ca(2+)](i) increases that were primarily due to Ca(2+) release from intracellular stores although Ca(2+) entry through Ca(v)1 channels also contributed to [Ca(2+)](i) increases in the early phase of TMT action. Cell pre-treatment with the Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (2 muM) significantly reduced the TMT-induced neuronal death. Moreover, CR(+) neurons responded to TMT with smaller [Ca(2+)](i) increases. Collectively, these data suggest that the neurotoxic action of TMT is mediated by Ca(2+) homeostasis dysregulation, and the resistance of hippocampal neurons to TMT (including CR(+) neurons) is not homogeneous among different neuron populations and is related to their ability to buffer intracellular Ca(2+) overload.

Piacentini, R., Gangitano, C., Ceccariglia, S., Del Fà, A., Azzena, G. B., Michetti, F., Grassi, C., Dysregulation of intracellular Ca2+ homeostatis is responsible for neuronal death in an experimental model of selective hippocampal degeneration induced by trimethyltin, <<JOURNAL OF NEUROCHEMISTRY>>, 2008; (105): 2109-2121 [http://hdl.handle.net/10807/5794]

Dysregulation of intracellular Ca2+ homeostatis is responsible for neuronal death in an experimental model of selective hippocampal degeneration induced by trimethyltin

Piacentini, Roberto;Gangitano, Carlo;Ceccariglia, Sabrina;Azzena, Gian Battista;Michetti, Fabrizio;Grassi, Claudio
2008

Abstract

Trimethyltin (TMT) intoxication is considered a suitable experimental model to study the molecular basis of selective hippocampal neurodegeneration as that occurring in several neurodegenerative diseases. We have previously shown that rat hippocampal neurons expressing the Ca(2+)-binding protein calretinin (CR) are spared by the neurotoxic action of TMT hypothetically owing to their ability to buffer intracellular Ca(2+) overload. The present study was aimed at determining whether intracellular Ca(2+) homeostasis dysregulation is involved in the TMT-induced neurodegeneration and if intracellular Ca(2+)-buffering mechanisms may exert a protective action in this experimental model of neurodegeneration. In cultured rat hippocampal neurons, TMT produced time- and concentration-dependent [Ca(2+)](i) increases that were primarily due to Ca(2+) release from intracellular stores although Ca(2+) entry through Ca(v)1 channels also contributed to [Ca(2+)](i) increases in the early phase of TMT action. Cell pre-treatment with the Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (2 muM) significantly reduced the TMT-induced neuronal death. Moreover, CR(+) neurons responded to TMT with smaller [Ca(2+)](i) increases. Collectively, these data suggest that the neurotoxic action of TMT is mediated by Ca(2+) homeostasis dysregulation, and the resistance of hippocampal neurons to TMT (including CR(+) neurons) is not homogeneous among different neuron populations and is related to their ability to buffer intracellular Ca(2+) overload.
2008
Inglese
F.Michetti : corresponding author
Piacentini, R., Gangitano, C., Ceccariglia, S., Del Fà, A., Azzena, G. B., Michetti, F., Grassi, C., Dysregulation of intracellular Ca2+ homeostatis is responsible for neuronal death in an experimental model of selective hippocampal degeneration induced by trimethyltin, <<JOURNAL OF NEUROCHEMISTRY>>, 2008; (105): 2109-2121 [http://hdl.handle.net/10807/5794]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/5794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact