The clinical feasibility of oxygen-enhanced magnetic resonance imaging (MRI) of the lung may benefit from the use of a simple gas delivery method. In this study, the oxygen-induced T1 change of the lung obtained using a closed O(2) delivery system was compared with that obtained by a conventional nontight face mask. MATERIAL AND METHODS: Twenty-three healthy subjects (15 men, 8 women, mean age = 25 years, age range = 20-35 years) underwent oxygen-enhanced MRI of the lung using a closed O(2) delivery system composed by a tightly fitting face mask and a 60-L reservoir bag (equipment type A: n = 13, 9 men, 4 women, mean age = 24.4 years, age range = 20-32 years), or a clinically available nontight face mask (equipment type B: n = 10; 6 men, 4 women, mean age = 25.8 years, age range = 20-35 years). The effect of 100%-oxygen inhalation was assessed using a Snapshot FLASH T1-mapping technique (repetition time/echo time = 1.5-1.6/0.56 milliseconds; matrix = 128 x 90; acquisition time = 3.3-3.7 seconds; slice thickness = 15-20 mm; number of images = 40). By nonlinear curve fitting, the mean T1 values of the left and right lung at room air and 100%-oxygen ventilation were calculated (T1(room air, right); T1(oxygen, right); T1(room air, left); T1(oxygen, left)). The average T1 differences (DeltaT1 = T1(room air) - T1(oxygen)) of the 2 volunteer groups were compared (Wilcoxon signed rank test, Mann-Whitney U test). RESULTS: The mean T1 values obtained using the 2 respiratory equipments at room air or oxygen ventilation were not significantly different (A vs. B at room air ventilation: P = 0.85 for the right lung, P = 0.27 for the left lung; A vs. B at oxygen ventilation: P = 0.55 for the left lung, P = 0.29 for the right lung). With both systems, the mean T1 values decreased significantly after oxygen inhalation (P = 0.03-0.0002). For both lungs, the DeltaT1 obtained using the equipment type A was statistically equivalent to that obtained using the equipment type B: DeltaT1A, right = 96 +/- 19 milliseconds versus DeltaT1B, right = 97 +/- 34 milliseconds (P = 0.82); DeltaT1A, left = 74 +/- 47 milliseconds versus DeltaT1B, left = 68 +/- 63 milliseconds (P = 0.85). CONCLUSION: Gas delivery in oxygen-enhanced MRI of the lung can be performed with a clinically available standard face mask, without the need for closed sophisticated equipments.

Molinari, F., Puderbach, M., Eichinger, M., Ley, S., Fink, C., Bonomo, L., Kauczor, H., Bock, M., Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the t1-changes of the lungs, <<INVESTIGATIVE RADIOLOGY>>, 2008; (Giugno): 427-432 [http://hdl.handle.net/10807/25501]

Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the t1-changes of the lungs

Molinari, Francesco;Bonomo, Lorenzo;
2008

Abstract

The clinical feasibility of oxygen-enhanced magnetic resonance imaging (MRI) of the lung may benefit from the use of a simple gas delivery method. In this study, the oxygen-induced T1 change of the lung obtained using a closed O(2) delivery system was compared with that obtained by a conventional nontight face mask. MATERIAL AND METHODS: Twenty-three healthy subjects (15 men, 8 women, mean age = 25 years, age range = 20-35 years) underwent oxygen-enhanced MRI of the lung using a closed O(2) delivery system composed by a tightly fitting face mask and a 60-L reservoir bag (equipment type A: n = 13, 9 men, 4 women, mean age = 24.4 years, age range = 20-32 years), or a clinically available nontight face mask (equipment type B: n = 10; 6 men, 4 women, mean age = 25.8 years, age range = 20-35 years). The effect of 100%-oxygen inhalation was assessed using a Snapshot FLASH T1-mapping technique (repetition time/echo time = 1.5-1.6/0.56 milliseconds; matrix = 128 x 90; acquisition time = 3.3-3.7 seconds; slice thickness = 15-20 mm; number of images = 40). By nonlinear curve fitting, the mean T1 values of the left and right lung at room air and 100%-oxygen ventilation were calculated (T1(room air, right); T1(oxygen, right); T1(room air, left); T1(oxygen, left)). The average T1 differences (DeltaT1 = T1(room air) - T1(oxygen)) of the 2 volunteer groups were compared (Wilcoxon signed rank test, Mann-Whitney U test). RESULTS: The mean T1 values obtained using the 2 respiratory equipments at room air or oxygen ventilation were not significantly different (A vs. B at room air ventilation: P = 0.85 for the right lung, P = 0.27 for the left lung; A vs. B at oxygen ventilation: P = 0.55 for the left lung, P = 0.29 for the right lung). With both systems, the mean T1 values decreased significantly after oxygen inhalation (P = 0.03-0.0002). For both lungs, the DeltaT1 obtained using the equipment type A was statistically equivalent to that obtained using the equipment type B: DeltaT1A, right = 96 +/- 19 milliseconds versus DeltaT1B, right = 97 +/- 34 milliseconds (P = 0.82); DeltaT1A, left = 74 +/- 47 milliseconds versus DeltaT1B, left = 68 +/- 63 milliseconds (P = 0.85). CONCLUSION: Gas delivery in oxygen-enhanced MRI of the lung can be performed with a clinically available standard face mask, without the need for closed sophisticated equipments.
2008
Inglese
Molinari, F., Puderbach, M., Eichinger, M., Ley, S., Fink, C., Bonomo, L., Kauczor, H., Bock, M., Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the t1-changes of the lungs, <<INVESTIGATIVE RADIOLOGY>>, 2008; (Giugno): 427-432 [http://hdl.handle.net/10807/25501]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/25501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact