To gain a deeper understanding of consumers' brain responses during a real-time in-store exploration could help retailers to get much closer to costumers' experience. To our knowledge, this is the first time the specific role of touch has been investigated by means of a neuroscientific approach during consumer in-store experience within the field of sensory marketing. This study explores the presence of distinct cortical brain oscillations in consumers' brain while navigating a store that provides a high level of sensory arousal and being allowed or not to touch products. A 16-channel wireless electroencephalogram (EEG) was applied to 23 healthy participants (mean age = 24.57 years, SD = 3.54), with interest in cosmetics but naive about the store explored. Subjects were assigned to two experimental conditions based on the chance of touching or not touching the products. Cortical oscillations were explored by means of power spectral analysis of the following frequency bands: delta, theta, alpha, and beta. Results highlighted the presence of delta, theta, and beta bands within the frontal brain regions during both sensory conditions. The absence of touch was experienced as a lack of perception that needs cognitive control, as reflected by Delta and Theta band left activation, whereas a right increase of Beta band for touch condition was associated with sustained awareness on the sensory experience. Overall, EEG cortical oscillations' functional meaning could help highlight the neurophysiological implicit responses to tactile conditions and the importance of touch integration in consumers' experience.

Balconi, M., Venturella, I., Sebastiani, R., Angioletti, L., Touching to feel: brain activity during in-store consumer experience, <<FRONTIERS IN PSYCHOLOGY>>, 2021; 12 (N/A): 1-7. [doi:10.3389/fpsyg.2021.653011] [http://hdl.handle.net/10807/177093]

Touching to feel: brain activity during in-store consumer experience

Balconi, Michela;Venturella, Irene;Sebastiani, Roberta;Angioletti, Laura
2021

Abstract

To gain a deeper understanding of consumers' brain responses during a real-time in-store exploration could help retailers to get much closer to costumers' experience. To our knowledge, this is the first time the specific role of touch has been investigated by means of a neuroscientific approach during consumer in-store experience within the field of sensory marketing. This study explores the presence of distinct cortical brain oscillations in consumers' brain while navigating a store that provides a high level of sensory arousal and being allowed or not to touch products. A 16-channel wireless electroencephalogram (EEG) was applied to 23 healthy participants (mean age = 24.57 years, SD = 3.54), with interest in cosmetics but naive about the store explored. Subjects were assigned to two experimental conditions based on the chance of touching or not touching the products. Cortical oscillations were explored by means of power spectral analysis of the following frequency bands: delta, theta, alpha, and beta. Results highlighted the presence of delta, theta, and beta bands within the frontal brain regions during both sensory conditions. The absence of touch was experienced as a lack of perception that needs cognitive control, as reflected by Delta and Theta band left activation, whereas a right increase of Beta band for touch condition was associated with sustained awareness on the sensory experience. Overall, EEG cortical oscillations' functional meaning could help highlight the neurophysiological implicit responses to tactile conditions and the importance of touch integration in consumers' experience.
2021
Inglese
Balconi, M., Venturella, I., Sebastiani, R., Angioletti, L., Touching to feel: brain activity during in-store consumer experience, <<FRONTIERS IN PSYCHOLOGY>>, 2021; 12 (N/A): 1-7. [doi:10.3389/fpsyg.2021.653011] [http://hdl.handle.net/10807/177093]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/177093
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact