The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.

Huang, Y. -., Wu, C. -., Xie, H. -., Li, Z. -., Silini, A., Parolini, O., Wu, Y., Deng, L., Huang, Y. -., Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- And Bone Marrow-Derived MSCs in a Dose-Dependent Manner, <<STEM CELLS INTERNATIONAL>>, 2019; 2019 (4242178): N/A-N/A. [doi:10.1155/2019/4242178] [http://hdl.handle.net/10807/145467]

Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- And Bone Marrow-Derived MSCs in a Dose-Dependent Manner

Parolini, Ornella;
2019

Abstract

The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.
2019
Inglese
Huang, Y. -., Wu, C. -., Xie, H. -., Li, Z. -., Silini, A., Parolini, O., Wu, Y., Deng, L., Huang, Y. -., Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- And Bone Marrow-Derived MSCs in a Dose-Dependent Manner, <<STEM CELLS INTERNATIONAL>>, 2019; 2019 (4242178): N/A-N/A. [doi:10.1155/2019/4242178] [http://hdl.handle.net/10807/145467]
File in questo prodotto:
File Dimensione Formato  
Stem Cells Int_2019_Huang.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/145467
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact