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Abstract

American option pricing is an important and engaging area of financial economics, particu-

larly so in the presence of negative interest rates. Quanto options offer major international hedg-

ing/investment opportunities. We provide a comprehensive description of the optimal exercise

policies associated with American quanto options. We show that a non-standard exercise policy

characterized by a double continuation region may be optimal in the presence of non—positive

domestic interest rates. We study empirical examples of finite-maturity American quanto op-

tions for which a double continuation region surrounding a non-empty early exercise region

exists even if the infinite-maturity early exercise region is empty and the value of the infinite-

maturity option is unbounded. Under the assumptions underpinning such empirical examples,

we carefully characterize the existence, the monotonicity properties and the close-to-maturity

behavior of the upper and lower critical prices.

Keywords: Quanto Options; American Options; Valuation; Optimal Exercise; Negative

Interest Rates; FX Markets.
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Jahan-Parvar, Rosen, and Schindler (2021), Bakshi, Cao, and Zhong (2021), Barro and Liao (2021),

Battauz and Rotondi (2022), De Donno, Palmowski and Tumilewicz (2020), Figlewski (2021), Golez

and Goyenko (2021), Jeon and Kim (2021), Jing, Li, and Ma (2021), Lee, Han and Lee (2021),

Yu (2021), Wang (2021a), Wang (2021b), Wang, Wang and Shao (2022), and Wang and Zhang

(2022)). Amid the impressive growth of the FX options markets (see for example James, Fullwood,

and Billington (2015)), the appeal of quanto options comes from their ability of opening up hedg-

ing/investment opportunities in international markets as they are derivative contracts written on an

underlying foreign security. European Quanto options can be exercised at maturity only and have

been carefully studied (e.g. Ng, Li, and Chan (2013), Kim, Lee, Mittnik, and Park (2015), Li, Zhang,

and Liu (2018), and Fallahgoul, Kim, Fabozzi, and Park (2019)). American quanto options can be

exercised during their whole life and have been much less investigated.

We fill this gap by using a parsimonious diffusive model to provide an exhaustive characterization

of the optimal exercise policies of American quanto put options. We show that they depend on the

payoff structure as well as on the interplay between the domestic and the foreign riskless interest

rates. Importantly, we highlight that, in the presence of a domestic non-positive interest rate (as for

instance the Euro denominated or the Yen denominated markets in recent years) and of a foreign

positive interest rate (as for instance the US Dollar denominated market), these options can exhibit

unusual optimal exercise policies. As the sign of the domestic interest rate changes from positive

to negative, a non-standard double continuation region can appear: immediate option exercise is

optimally postponed not only if the contract is not enough in-the-money but also, unusually, if the

contract is too much in-the-money. This is because the urge to defer exercise due to the negative

domestic rate overwhelms the incentive of immediate exercise due to a drift toward the out-of-the-

money region, if the distance from the out-of-the-money region is comfortably huge.

We provide numerical examples of Euro-denominated American quanto put options on US stocks

in which a non-standard double continuation region appears in the binomial approximation. Inter-

estingly, these finite-maturity American quanto put options do exhibit a non-empty exercise region,

even if the corresponding perpetual American quanto put options have an empty exercise region and

an unbounded value.

Motivated by such numerical examples, we markedly generalize and extend the findings of Bat-

tauz, De Donno and Sbuelz (2015) by working out the existence, the monotonicity properties and

the at-maturity asymptotics of the upper and lower critical prices for American options under the

milder assumption of non-emptiness of the early exercise region at some date during the life of the

options involved.

The rest of the paper is organized as follows. Section 2 discusses different types of American

quanto options in a lognormal currency market. Section 3 analyzes the optimal exercise policies

of these options and their interplay with the sign of the riskless interest rates. Section 4 provides

numerical examples as well as market-calibrated examples of the non-standard double continuation

region. Section 5 concludes.
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2 American quanto options in a lognormal currency market

We consider a frictionless continuous-time market, modeled through a stochastic basis (Ω,F , (Ft)0≤t≤T , P )

satisfying the usual assumptions (in the sense of Definitions I.1.2 and I.1.3 in Jacod and Shiryaev

(2003)). Let Bd(t) = erdt be the domestic riskless bond price, where rd is the constant domestic

riskless interest rate. Denote with Bf (t) = erf t the foreign riskless bond price, where rf is the

constant foreign riskless interest rate and with Sf = {Sf (t)}t∈[0,T ] the foreign risky security price

described by
dSf (t)

Sf (t)
= µfdt+ σf dW

P (t)

whereW P is the <2-Brownian motion under the historical probability measure P with respect to the

filtration F and σf is the <2−vector of volatilities of the foreign security. Let Gf be the cumulative

gain process obtained by buying 1 unit of the the foreign risky security at the initial date t = 0. If

the foreign security pays a continuous dividend yield qf and the dividend qfSf (t)dt is continuously

reinvested in the security Sf , the value of the cumulative gain process at t is

Gf (t) = eqf t Sf (t)

and its differential

dGf (t) = eqf tdSf (t) + qfSf (t)dt = Gf (t)
(
(µf + qf ) dt+ σf dW

P (t)
)
. (2.1)

The two markets are connected via the foreign to domestic exchange rate X. If, for instance, we

pick the Euro market as the domestic one and the US market as the foreign one, X is the dollar to

euros exchange rate. Assume that X is lognormal1 and driven by

dX(t)

X(t)
= µXdt+ σX dW P (t)

under the historical probability measure P (σX is an <2−vector). For sake of notation we will
denote the scalar product of two vectors σ1, σ2 ∈ <2 with σ1σ2. The following proposition describes

the domestic risk neutral distribution of the assets in the market and the forward rate.

Proposition 2.1 The domestic risk neutral dynamics of the foreign risky security price is

dSf (t)

Sf (t)
= µQf dt+ σf dW

Q(t)

where WQ is a <2−Brownian motion, Q denotes the domestic risk neutral measure and

µQf = rf − qf − σfσX .
1For continuous-time models with currency returns predictability see e.g. Pavlova and Rigobon (2007), and Bakshi,

Carr, and Wu (2008). Bakshi and Panayotov (2013) investigate the payoff predictability of currency carry trades.

Karolyi and Wu (2021) study the pricing of currency risk factors across global stock returns.
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The exchange rate is
dX(t)

X(t)
= µQXdt+ σX dWQ(t)

with µQX = rd − rf . The correlation between the foreign security Sf and the exchange rate X is

ρ =
σf · σX
‖σf‖ ‖σX‖

.

The domestic-denominated foreign security price S∗f (t) = Sf (t)X(t) is driven by

dS∗f (t) = S∗f (t)
[
(rd − qf ) dt+

(
σX + σf

)
dWQ(t)

]
.

The forward exchange rate F0, i.e. the number of units of domestic currency settled at t = 0 to

receive one unit of the foreign currency at the maturity T is

F0 = EQ [X(T )] = X(0) eµ
Q
XT = X0e

(rd−rf)T .

Proof. Let B∗f (t) = Bf (t)X(t). B∗f and S
∗
f are both risky domestic securities. Then, exploiting the

integration by parts’formula and observing that the covariation between Bf and X is 0, we have

dB∗f (t) = d (Bf (t)X(t)) = X(t)dBf (t) +Bf (t)dX(t) =

= B∗f (t)
[(
rf + µQX

)
dt+ σX dWQ(t)

]
and no-arbitrage implies rf +µQX = rd, delivering µ

Q
X = rd− rf . Consider the cumulative gain process

denominated in domestic currency G∗f (t) = Gf (t)X(t). The differential of Gf in Equation (2.1) can

be rewritten with respect to the domestic risk neutral measure Q as

dGf (t) = dGf (t) = eqf tdSf (t) + qfSf (t)dt = Gf (t)
((
µQf + qf

)
dt+ σf dW

Q(t)
)
.

Ito formula implies

dG∗f (t) = d(Gf (t)X(t)) = X(t)dGf (t) +Gf (t)dX(t) + σfGf (t)σXX(t)dt =

= G∗f (t)
[(
µQf + qf + µQX + σfσX

)
dt+

(
σX + σf

)
dWQ(t)

]
.

No-arbitrage implies that G∗f discounted at the rate rd is a Q−martingale, i.e. the domestic-risk
neutral drift of G∗f equals rd. This delivers the equation µ

Q
f + qf + µQX + σfσX = rd, which implies

µQf = rf − qf − σfσX . The equation for S∗f becomes

dS∗f (t) = S∗f (t)
[(
µQf + µQX + σfσX

)
dt+

(
σX + σf

)
dWQ(t)

]
= S∗f (t)

[(
rf − qf − σfσX + rd − rf + σfσX

)
dt+

(
σX + σf

)
dWQ(t)

]
= S∗f (t)

[
(rd − qf ) dt+ (σX + σf ) dW

Q(t)
]

The forward exchange rate F0, i.e. the number of units of domestic currency settled at t = 0 to receive

one unit of the foreign currency at the maturity T, is determined by EQ
[
e−rdT (1 ·X(T )− F0)

]
= 0,
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that implies the following relation between the forward and the spot exchange rate in terms of the

domestic and foreign interest rates: F0 = EQ [X(T )] = X(0) eµ
Q
XT = X0e

(rd−rf)T . �

Quanto options are domestically negotiated derivatives written on a foreign security. The simplest

quanto options are call and put options on foreign stocks or indexes. The strike price can be expressed

either in domestic or in foreign currency. The foreign-currency denominated payoff is converted into

the domestic currency either via a fixed exchange rate (as the forward exchange rate or the spot

exchange rate at inception) or a via floating one (the spot exchange rate prevailing at the exercise

date). We focus on American quanto put options, and provide now a list of them under various

contract specifications. Via the American put-call symmetry, our results do also apply to symmetric

American quanto call options (see for instance Proposition 3.1 in Battauz, De Donno and Sbuelz

(2015)).

In Equation (2.2), the time t instantaneous payoff has a foreign-denominated strike Kf and is

converted in domestic currency at the floating exchange rate at exercise:

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) X(τ) (Kf − Sf (τ))+

∣∣Ft] (2.2)

In this case the American quanto option coincides with the foreign American option, converted in

domestic currency at the current floating exchange rate. Thus early exercise is optimal for the

American quanto put option if the foreign underlying risky security enters the optimal early exercise

region of the American put option (see Proposition 2.3).

But American quanto options are more appealing to investors, if the currency risk is reduced.

This goal is achieved by settling a domestic denominated strike priceKd as in (2.3) , where the foreign

security is converted in domestic currency at the floating exchange rate at exercise,

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) (Kd −X(τ)Sf (τ))+

∣∣Ft] (2.3)

or, as in Equation (2.4), where the strike price is denominated in domestic currency and the exchange

rate for conversion at any exercise date is fixed at its initial spot level

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) (Kd −X0Sf (τ))+

∣∣Ft] . (2.4)

A similar payoff structure in Equation (2.5) maintains the domestic-denominated strike price and

fixes the exchange rate at the initial forward level:

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) (Kd − F0Sf (τ))+

∣∣Ft] . (2.5)

In another popular version of the quanto option, the strike price is denominated in the foreign

currency and the payoff converted at the initial spot exchange rate

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) X0 · (Kf − Sf (τ))+

∣∣Ft] (2.6)
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2.1 American put options

We carefully outline the optimal exercise results for American put options that we will later employ

to construct a template for classifying and characterizing the optimal exercise policy of American

quanto put options. Let BQ be a one-dimensional Q−Brownian motion and denote with

v(t, s;µ, σ, δ,K) = sup
0≤Θ≤T−t

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]

(2.7)

the time−t value of an American put option on a lognormal security with drift µ, volatility σ, interest
rate δ, strike price K and maturity T. The drift can be expressed as drift µ = δ − q, where q is the
dividend yield. Throughout our analysis we assume σ > 0.

Denote by

v∞(s;µ, σ, δ,K) = sup
0≤Θ≤∞

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]

(2.8)

the value of the perpetual American put option. Obviously,

(K − s)+ ≤ v(t, s;µ, σ, δ,K) ≤ v∞(s;µ, σ, δ,K), for all t ∈ [0, T ] ,

no matter of the parameters’values. Hence, if there exists an optimal early exercise opportunity for

the perpetual put option, this is also the case for the finite-maturity one.

In Theorem 2.2 we provide a comprehensive description of the optimal early exercise region

for American put options on a lognormal underlying asset in case of positive, zero, and negative

interest rates. The resulting asymptotic behavior of the critical price at maturity depends also on

the interplay with the underlying risk neutral drift (for an economic discussion on the critical price

near maturity see Battauz at al. (2022)).

In particular, Theorem 2.2, Point 1, focuses on the standard case of a positive interest rate δ.

When δ > 0, it is well known that there exists a constant critical price that triggers optimal early

exercise for the perpetual option and the American put option value is finite (see also Broadie and

Detemple (1996) and (2004), Detemple (2012), and Chan (2020)). On the contrary, when the interest

rate δ is negative, the perpetual American put option may have an infinite value. Assumption (2.13)

in Theorem 2.2, Point 4, ensures that the perpetual put option has a finite value and displays optimal

early exercise opportunities above (resp. below) an upper (resp. lower) constant critical price (see also

Proposition 2.2 in Battauz, De Donno and Sbuelz (2015)). As a consequence, the finite maturity put

option does also have optimal early exercise opportunities above (resp. below) an upper (resp. lower)

critical price. However, Assumption (2.13) is not satisfied in many practical examples, that display
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optimal early exercise opportunities in the finite-maturity case only (see Section 4). Therefore, in

Theorem 2.2 Point 5, we extend the results of Theorems 2.3 and Theorem 2.4 in Battauz, De Donno

and Sbuelz (2015) to describe the monotonicity properties and the asymptotics of the upper and

lower critical prices at maturity under the milder condition of the existence of some optimal early

exercise opportunity during the option life.

Theorem 2.2 1. If δ > 0, early exercise is optimal for the perpetual American put option when

the underlying price S(t) ≤ Sc∞, where S
c
∞ is the (constant) critical price of the perpetual

American put option,

Sc∞ = − α

1− αK < K, A =
(Sc∞)1−α

−α > 0, (2.9)

and

α =
−
(
µ− σ2

2

)
−
√(

µ− σ2

2

)2
+ 2δσ2

σ2
< 0. (2.10)

The perpetual put value is

v∞(s;µ, σ, δ,K) =


Asα for s > Sc∞

K − s for s ≤ Sc∞.

(2.11)

Moreover, if 0 ≤ µ = δ − q ≤ δ the finite-maturity critical price is monotonically increasing

and such that

lim
t→T

Sc(t) = K

with

lim
t→T

K − Sc(t)
σK
√

(T − t) ln γ
(T−t)

= 1 if µ > 0,

where γ = σ2

8πµ2
, and

lim
t→T

K − Sc(t)
σK
√

(T − t) ln 1
(T−t)

=
√

2 if µ = 0.

If µ = δ− q < 0 < δ the finite-maturity critical price is monotonically increasing and such that

Sc(T−) = lim
t→T

Sc(t) =
δ

q
K < K

with

lim
t→T

Sc(T−)− Sc(t)
Sc(T−)σ

√
(T − t)

= −y∗,

where y∗ ≈ −0.638 is the number such that the function

φ (y) = sup
0≤Θ≤1

E

 Θ∫
0

(y +B (s)) ds

 = 0 (2.12)
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for all y ≤ y∗ and φ (y) > 0 for all y > y∗. The function2 φ defined in Equation (2.12) is a

supremum over all stopping times Θ with values in [0, 1] .

2. If δ ≤ 0, and µ ≤ 0 i.e. q ≥ 0, then early exercise is never optimal, and the value of the

American put option coincides with the European one.

3. If δ = 0, and µ − σ2

2
> 0, then α in Equation (2.10) becomes α =

−2
(
µ−σ

2

2

)
σ2

< 0. There exists

a unique critical price Sc(t) ≤ Sc∞, with S
c
∞ defined in Equation (2.9) , Sc(t) is monotonically

increasing and

Sc(t)−K ∼ −Kσ

√
(T − t) ln

σ2

8π (T − t)µ2
as t→ T

4. If δ < 0,

µ− σ2

2
> 0, and

(
µ− σ2

2

)2

+ 2δσ2 > 0, (2.13)

then the perpetual American put option value v∞ is

v∞(x) =


Al · xξl for x ∈ (0; l∞)

K − x for x ∈ [l∞;u∞]

Au · xξu for x ∈ (u∞; +∞)

(2.14)

where ξu < ξl are the negative solutions of the equation

1

2
σ2ξ2 +

(
µ− σ2

2

)
ξ − δ = 0, (2.15)

The critical prices are

l∞, u∞ = K
ξi

ξi − 1
for i = l, u (2.16)

and the constant Al and Au are given by

Al = −(l∞)1−ξl

ξl
and Au = −(u∞)1−ξu

ξu
. (2.17)

There exist a lower critical price l(t) and an upper critical price u(t) such that

δK

δ − µ ≤ l(t) < u(t) ≤ K (2.18)

such that the finite-maturity American put option is optimally exercised at t if S (t) ∈ [l(t), u(t)]

and optimally continued if S (t) < l (t) or S (t) > u (t) . Moreover, u(t) is monotonically in-

creasing and

u(t)−K ∼ −Kσ

√
(T − t) ln

σ2

8π (T − t)µ2
for t→ T (2.19)

2For more details on y∗ and the function φ see Section 2.1 in Lamberton, D., & Villeneuve, S. (2003).

8



The lower free boundary is monotonically decreasing and satisfies

l(t)− δK

δ − µ ∼
δK

δ − µ

(
−y∗σ

√
(T − t)

)
for t→ T (2.20)

where y∗ ≈ −0.638 is the number defined in Equation (2.12) .

5. If δ < 0, and there exists x > 0 such that the finite-maturity American put option is optimally

exercised at t ∈ (0, T ) if S
(
t
)

= x, then the segment with extremes

l(t) = inf
{
s ≥ 0 : v(t, s;µ, σ, δ,K) = (K − s)+} (2.21)

u(t) = sup
{
s ≥ 0 : v(t, s;µ, σ, δ,K) = (K − s)+} ∧K (2.22)

is non-empty for any t ∈
[
t, T
]
. The option is optimally exercised at any t ≥ t whenever

S (t) ∈ [l (t) , u (t)] . The lower (resp. the upper) free boundary is monotonically decreasing

(resp. increasing) for any t ≥ t. The lower and the upper free boundaries satisfy the inequality

(2.18) for any t ≥ t as well as the asymptotics (2.20) and (2.19).

Proof. For the perpetual put option results see Battauz, De Donno, and Sbuelz (2012) and (2015).
Consider the finite-maturity case. When δ > 0 and 0 < µ = δ − q < δ or µ < 0 < δ, the

asymptotics of the critical price Sc(t) as t→ T are determined by Evans, Kuske, and Keller (2002),

and further improved by De Marco, and Henry-Labordère (2017). For the case δ > 0 and 0 = µ the

asymptotics are provided in Theorem 3 in Lamberton and Villeneuve (2003). Hence Point 1 and 3

are proved.

If δ ≤ 0, and q = δ − µ ≥ 0, then Jensen inequality implies that for any 0 < Θ ≤ T − t

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]

≥ e−δΘ
(
K − s · eµΘ

)+

=
(
Ke−δΘ − s · e−qΘ

)+

≥
(
K − s · e−qΘ

)+
since e−δΘ ≥ 1

≥ (K − s)+ since e−qΘ ≤ 1.

The inequality in the fourth line is strict if δ < 0, and in this case

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]
> (K − s)+ .

If δ = 0, for any constant Θ the European put pricing function

ve (s) = EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]

= Ke−δΘN (−d2)− se−qΘN (−d1)
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with d1,2 = 1
σ
√

Θ

(
ln
( s
K

)
+

(
δ − q ± 1

2
σ2

)
Θ

)
is convex with respect to s and hence it is always

above its tangent line computed at s→ 0+. Since the slope of the tangent line computed at s→ 0+

is −e−qΘN (−d1) → −e−qΘ ≥ −1 for q ≥ 0, this implies that ve (s) > (K − s)+ for all s > 0 when

δ = 0. Thus, when δ ≤ 0 and q = δ − µ ≥ 0, the immediate put payoff at t is strictly dominated by

the continuation value at any future 0 < Θ ≤ T − t, and exercise is optimal at T only.
In the limiting case δ = 0, if µ ≤ 0 i.e. q ≥ 0, then early exercise is never optimal, and the value

of the American put option coincides with the European one. Indeed, if δ = 0 and µ ≤ 0 Equation

(2.15) does not admit any negative solution. Hence Point 2 follows.

If δ < 0, and q = δ − µ < 0, then early exercise may be optimal even in the perpetual case.

The proof follows by Proposition 2.2, and the geometry and the asymptotics for the finite-maturity

critical prices can be retrieved by Theorems 2.3 and 2.4 in Battauz, De Donno and Sbuelz (2015).

Point 4 follows.

Consider now Point 5. If there exists x > 0 such that the finite-maturity American put option is

optimally exercised at t ∈ (0, T ) if S
(
t
)

= x, then early exercise is optimal for all t ≥ t and S (t) = x

since

(K − x)+ ≤ v(t, x;µ, σ, δ,K) ≤ v(t, x;µ, σ, δ,K) = (K − x)+ ,

where the first inequality follows by the payoff value dominance of the American option, and

the second inequality as the American option value is decreasing with respect to time t. Since

v(t, 0;µ, σ, δ,K) = Ke−δ(T−t) > K = (K − 0)+ , as δ < 0, it follows that l (t) > 0 for all t ∈
(
t, T
)
.

The monotonicity of l(t) and u(t) for t ≥ t follows by the fact that the American option value is

decreasing with respect to time t (see also Battauz, De Donno and Sbuelz (2015)). The remaining

part of Point 5 follows by the proof of Theorems 2.3 and 2.4 in Battauz, De Donno and Sbuelz (2015)

restricted to t ∈
[
t, T
]
. �

Remark 2.1 We comment here Assumption (2.13) . Intuitively, a suffi cient condition for the exis-

tence of optimal early exercise of the perpetual put with value v∞ is(
µ− σ2

2

)2

+ 2δσ2 > 0. (2.23)

Condition (2.23) ensures that the function v∞(x) = Asα has at least one tangency point with the

immediate put payoff in the extreme(s) of the early exercise region. This condition is always satisfied

when δ ≥ 0, no matter of the sign of µ. Therefore the perpetual American put option admits the

representation of Equation (2.11) , and it is optimally exercised when the underlying is below the

unique critical price Sc∞. If δ < 0, Condition (2.23) is not always true. Battauz, De Donno and

Sbuelz (2015) show in Proposition 2.2 (see also Battauz, De Donno, and Sbuelz (2012)) that a

suffi cient condition for the existence of optimal early exercise of the perpetual put v∞ is (2.13) . This

conditions ensures the existence of the two real negative roots of the tangency equation (2.15) .
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The suffi cient condition (2.13) may not be true, even if binomial approximations show that

the finite-maturity American put option displays optimal early exercise opportunities. These cases

satisfy a necessary condition for early exercise established in Proposition 2.5 in Battauz, De Donno

and Sbuelz (2015). For the ease of the reader, we state the necessary condition (2.24) here below.

Condition 2.1 (necessary condition for early exercise, negative interest rate). If δ < 0 and

µ > 0 a necessary condition for the optimal exercise of the finite-maturity American put option at

t ∈ [0;T ) is

N−1
(
eδ(T−t)

)
−N−1

(
e(δ−µ)(T−t)) ≥ σ

√
T − t, (2.24)

where N−1 (·) denotes the inverse of the standard normal cumulative distribution function.

2.2 From American put to American quanto put options

We introduce now a template to classify and characterize the optimal exercise policy of American

quanto put options in terms of American put options for various combination in the level, sign and

hierarchy of the key parameters rd, rf and the volatility vectors σf and σX . In the next propositions

we rewrite the American quanto put options in terms of American put options on a lognormal

(onedimensional) security. We start from the option defined in Equation (2.2) , whose behavior is

unaffected by rd.

Proposition 2.3 Consider the American quanto put option defined in Equation (2.2) . Then

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) X(τ) (Kf − Sf (τ))+

∣∣Ft] =

= X(t) · v(t, Sf (t); rf − qf , ‖σf‖ , rf , Kf ),

i.e. the American quanto put option price coincides with the foreign American put option price

converted at the current spot exchange rate. Therefore, early exercise is optimal at t if Sf (t) is in the

early exercise region of the foreign American put option v(t, Sf (t); rf − qf , ‖σf‖ , rf , Kf ) as described

in Theorem 2.2 with δ = rf , µ = rf − qf , σ = ‖σf‖ , and K = Kf .

Proof. Let Ñ (t) = X(t)e(rf−rd)t the numeraire (see Battauz (2002)) associated to the equivalent

probability measure QN , whose density is

dQN

dQ
=
Ñ (T )

Ñ (0)
.
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Bayes’theorem implies that

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) X(τ) (Kf − Sf (τ))+

∣∣Ft]
= sup

t≤τ≤T

EQ
N
[
dQ
dQN

e−rd(τ−t) X(τ) (Kf − Sf (τ))+
∣∣Ft]

EQN
[

dQ
dQN

∣∣∣Ft]

= sup
t≤τ≤T

EQ
N

[
X(0)

X(τ)e(rf−rd)τ
e−rd(τ−t) X(τ) (Kf − Sf (τ))+

∣∣Ft]
X(0)

X(t)e(rf−rd)t

= X(t) sup
t≤τ≤T

EQ
N [
e−rf (τ−t) (Kf − Sf (τ))+

∣∣Ft] .
The factor

sup
t≤τ≤T

EQ
N [
e−rf (τ−t) (Kf − Sf (τ))+

∣∣Ft]
is the foreign price of the American put option on Sf if the QN−drift of Sf coincides with the foreign
riskless interest rate rf . Indeed, Girsanov theorem implies that the process

dWN (t) = −σX dt + dWQ (t)

is a 2−dimensional QN Brownian motion. Therefore

dSf (t)

Sf (t)
= µQf dt+ σf dW

Q(t)

=
(
rf − qf − σfσX

)
dt+ σf

(
dWN (t) + σX dt

)
= (rf − qf ) dt+ σf dW

N (t) ,

and thus theQN−distribution of Sf coincides with its foreign risk-neutral distribution. The American
quanto option coincides with

V (t) = X(t) · v(t, Sf (t); rf − qf , ‖σf‖ , rf , Kf ),

and the rest of the proposition follows by applying Theorem 2.2 with δ = rf , µ = rf − qf , σ =

‖σf‖ , and K = Kf . �
In the previous proposition we have shown that the price of the American quanto put option

in Equation (2.2) coincides with the foreign American put option price converted at the current

spot exchange rate. The result has also an intuitive financial justification. In fact, if the domestic

investor buys the option (2.2) , she has the right to get the foreign-denominated payoff (Kf − Sf (τ))+

whenever exercised at τ with t ≤ τ ≤ T. The domestic denominated value of the payoff (Kf − Sf (τ))+

exercised at τ is X(τ) (Kf − Sf (τ))+ . The same right is obtained by entering a long position on the

foreign put with (Kf − Sf (τ))+ at exercise date τ, whose price at time t in domestic currency units

is X(t) · v(t, Sf (t); rf , ‖σf‖ , rf , Kf ).
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In Proposition 2.3 we have characterized the optimal exercise policies for the American quanto

option defined in Equation (2.2) , whose behavior depends only on the foreign riskless rate rf .

In the what follows we focus on American quanto put options defined in Equations (2.3) , (2.4) ,

(2.5) , (2.6), whose behavior depends on both the domestic rate rd and the foreign rate rf .

Our first step consists in reducing American quanto put options (2.3) , (2.4) , (2.5) and (2.6) to

American put options. This characterization, which is done in the following lemma, will allow us to

work out the optimal exercise policies for American quanto options in Propositions 3.1 and 3.2.

Lemma 2.1 The no-arbitrage price of the option (2.3) can be computed as

V (t) = v(t,X(t)Sf (t); rd − qf , ‖σX + σf‖ , rd, Kd)

The option in (2.4) can be computed as

V (t) = v(t,X0 · Sf (t);µQf , ‖σf‖ , rd, Kd)

and the option (2.5) as

V (t) = v(t, F0 · Sf (t);µQf , ‖σf‖ , rd, Kd),

and (2.6) as

V (t) = v(t,X0 · Sf (t);µQf , ‖σf‖ , rd, X0 ·Kf )

= X0v(t, Sf (t);µ
Q
f , ‖σf‖ , rd, Kf ).

Proof. The underlying of the option in Equation (2.3) is the lognormal S∗f (t) = X(t)Sf (t), whose

domestic risk neutral drift is rd and whose volatility vector is σX + σf as from Equation (2.1) . This

yields the formula for (2.3) . In the remaining options (2.4) and (2.5) the underlying Sf is denominated

in the domestic currency by using the constant initial spot exchange rate X0 in option (2.4) , and the

constant initial forward exchange rate F0 in option (2.5) . Thus the domestic risk neutral underlying

drift is µQf , its volatility is σf and its initial level is multiplied by the constant X0 in option (2.4) ,

and the constant initial forward exchange rate F0 in option (2.5) . In the last option (2.6) , both

the strike price and the foreign security are denominated in the domestic currency by using the

constant initial spot exchange rate. Therefore, the domestic risk neutral underlying Sf drift is µ
Q
f ,

its volatility is σf , and both the initial underlying value and the strike price are then multiplied by

X0. Because of the put payoffhomogeneity, we then obtain V (t) = v(t,X0·Sf (t);µQf , ‖σf‖ , rd, X0·Kf )

= X0v(t, Sf (t);µ
Q
f , ‖σf‖ , rd, Kf ). �

3 American quanto options and the interplay with the sign

of the riskless rates

In order to describe in detail the optimal exercise policies for options (2.3), that is with domestic

strike price and floating exchange rate, options (2.4), that is with domestic strike price and fixed
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exchange rate, options (2.5), that is with domestic strike price and forward exchange rate, and options

(2.6), that is with foreign strike price and fixed exchange rate. We distinguish two main cases.

• Case 1: rd ≥ 0.

Case 1 is the traditional assumption on non-negative domestic interest rate. We solve the problem

in Proposition 3.1.

• Case 2: rd < 0.

The case of a negative domestic interest rate is definitely interesting due to the persistence of

negative interest rates in recent years in the European and in the Japanese markets. We address

Case 2 in Proposition 3.2.

We start with the analysis of the optimal exercise policy under Case 1.

Proposition 3.1 Suppose rd ≥ 0. Then

1. For the option (2.3) there exists a critical price at t, Sc(t) such that early exercise is optimal

at t if

X(t)Sf (t) ≤ Sc(t).

If rd > qf then

lim
t→T

Sc(t) = Kd

and

lim
t→T

Kd − Sc(t)
‖σf + σX‖Kd

√
(T − t) ln γ

(T−t)

= 1 where γ =
‖σf + σX‖2

8π (rd − qf )2 .

If qf = rd

lim
t→T

Kd − Sc(t)
‖σf + σX‖Kd

√
(T − t) ln 1

(T−t)

=
√

2.

If qf > rd > 0 we have that

Sc(T−) = lim
t→T

Sc(t) =
rd
qf
Kd < Kd

with

lim
t→T

Sc(T−)− Sc(t)
Sc(T−) ‖σf + σX‖

√
(T − t)

= y∗,

where y∗ ≈ −0.638 is defined in (2.12) .
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2. For the option (2.4) there exists a critical price at t, Sc(t), such that early exercise is optimal

at t if

X0Sf (t) ≤ Sc(t).

Set q∗ = qf + rd − rf + σfσX . If rd > q∗ i.e. qf − rf + σfσX < 0 then

lim
t→T

Sc(t) = Kd

with

lim
t→T

Kd − Sc(t)
‖σf‖Kd

√
(T − t) ln γ

(T−t)

= 1 where γ =
‖σf‖2

8π (rf − qf − σXσf )2 .

If q∗ = rd,

lim
t→T

Kd − Sc(t)
‖σf‖Kd

√
(T − t) ln 1

(T−t)

=
√

2

If q∗ > rd > 0, i.e. qf − rf + σfσX > 0, we have that

Sc(T−) = lim
t→T

Sc(t) =
rd
q∗
Kd < Kd

with

lim
t→T

Sc(T−)− Sc(t)
Sc(T−) ‖σf‖

√
(T − t)

= y∗,

where y∗ ≈ −0.638 is defined in (2.12) .

3. For the option (2.5) there exists a critical price at t, Sc(t), such that early exercise is optimal

at t if

F0Sf (t) ≤ Sc(t).

The limits and the asymptotics for Sc(t) at maturity coincide with the ones described for the

option (2.4) in Point 2.

4. For the option (2.6) there exists a critical price at t, Sc(t), such that early exercise is optimal

at t if

Sf (t) ≤ Sc(t).

The limits and the asymptotics for Sc(t) at maturity coincide with the ones described for the

option (2.4) in Point 2.

Proof. The proof follows by applying Theorem 2.2 and Lemma 2.1. In particular Point 1 follows

with

δ = rd, µ = rd − qf , σ = ‖σf + σX‖ , K = Kf .

Points 2, 3 and 4 follow with

δ = rd, µ = rf − qf − σXσf , σ = ‖σf‖ , K = Kf . �
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We now focus on Case 2. Importantly, as the sign of the domestic interest rate becomes negative,

a non-standard double continuation region can appear: immediate option exercise is optimally post-

poned not only if the contract is not enough in-the-money but also, unconventionally, if the contract

is too much in-the-money. If the option is excessively in-the-money, immediate exercise is optimally

delayed because the incentive to postpone the option exercise due to the negative domestic rate

prevails over the incentive to exercise immediately created by a positive underlying risk-neutral drift

µQf . Such a drift toward the out-of-the-money region becomes relatively negligible if the distance

from the out-of-the-money region is vast.

Proposition 3.2 Suppose rd < 0.

1. Consider the option (2.3) . Its underlying drift is rd − qf < 0 and the American quanto option

is optimally exercised at maturity only.

2. Consider the option (2.4) . If µQf = rf − qf − σfσX < 0, then the American quanto option is

optimally exercised at maturity only.

If µQf −
‖σf‖2

2
= rf − qf − σfσX −

‖σf‖2
2

> 0 and(
rf − qf − σfσX −

‖σf‖2

2

)2

+ 2rd ‖σf‖
2 > 0 (3.1)

holds (or, resp., if there exists x > 0 such that the finite-maturity American quanto put option

(2.4) is optimally exercised at t ∈ (0, T ) when X0Sf (t) = x), then there exist two critical prices

at t, l(t) < u(t), such that early exercise is optimal at t if

l(t) ≤ X0Sf (t) ≤ u(t),

and continuation is optimal at t if

X0Sf (t) < l(t) or X0Sf (t) > u(t),

for all t ∈ [0, T ] (resp. for all t ∈
[
t, T
]
). Moreover

u(t)−Kd ∼ −Kd ‖σf‖

√√√√(T − t) ln
‖σf‖2

8π (T − t)
(
rf − qf − σfσX

)2 .

For t→ T , the lower free boundary satisfies

l(t)− rdKd

rd −
(
rf − qf − σfσX

) ∼ rdKd

rd −
(
rf − qf − σfσX

) (−y∗ ‖σf‖√(T − t)
)
,

where y∗ ≈ −0.638 is defined in (2.12) .
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3. Consider the option (2.5) . If µQf = rf − qf − σfσX < 0, then the American quanto option is

optimally exercised at maturity only.

If µQf = rf − qf − σfσX > 0 and (3.1) holds (or, resp., if there exists x > 0 such that the

finite-maturity American quanto put option (2.5) is optimally exercised at t ∈ (0, T ) when

F0Sf (t) = x), then there exist two critical prices at t, l(t) < u(t), such that early exercise is

optimal at t if

l(t) ≤ F0Sf (t) ≤ u(t),

and continuation is optimal at t if

F0Sf (t) < l(t) or F0Sf (t) > u(t),

for all t ∈ [0, T ] (resp. for all t ∈
[
t, T
]
).The limits and the asymptotics of the critical prices

at maturity coincide with the ones computed for the option (2.4).

4. Consider the option (2.6) . If µQf = rf − qf − σfσX < 0, then the American quanto option is

optimally exercised at maturity only.

If µQf = rf − qf − σfσX > 0 and (3.1) holds (or, resp., if there exists x > 0 such that the finite-

maturity American quanto put option (2.6) is optimally exercised at t ∈ (0, T ) when Sf (t) = x),

then there exist two critical prices at t, l(t) < u(t), such that early exercise is optimal at t if

l(t) ≤ Sf (t) ≤ u(t),

and continuation is optimal at t if

Sf (t) < l(t) or Sf (t) > u(t),

for all t ∈ [0, T ] (resp. for all t ∈
[
t, T
]
). The limits and the asymptotics of the critical prices

at maturity coincide with the previous ones computed for the options (2.4) and (2.5) .

Proof. The proof follows by applying Theorem 2.2 and Lemma 2.1, as explained in the proof of

Proposition 3.1. �

We observe that the critical prices described in Propositions 3.1 and 3.2 for the American quanto

options of Equations (2.3) , (2.4) and (2.5) are all expressed in domestic currency. Early exercise

occurs at t if Sf (t), converted in the domestic currency according to the payoff definition, enters the

early exercise region determined by the (domestic) critical price. On the contrary, for the American

quanto option of Equation (2.6) the critical price is expressed in foreign currency units.

Finite maturity American quanto options may display optimal early exercise opportunities, even if

the corresponding perpetual American quanto options do not admit finite perpetual free boundaries.

This happens when assumption (3.1) is not verified, but the necessary condition translating condition

(2.24) for the different payoff’s specifications holds true. In the next proposition we state the condition

for the quanto options.
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Proposition 3.3 (Necessary condition for early exercise of American quanto options

when rd < 0 and µQf = rf − qf − σfσX > 0) A necessary condition for the optimal exercise of the

finite-maturity American quanto put option (2.4), (2.5) and (2.6) is

N−1
(
erdT

)
−N−1

(
e(rd−µ

Q
f )T
)
≥ ‖σf‖

√
T . (3.2)

where σf = ‖σf‖.

Proof. The necessary condition (2.24) found in Proposition 2.5 in Battauz, De Donno and Sbuelz

(2015) requires the European put option

ve(t, x;µ, σ, δ,K) = Ke−δ(T−t)N (z)− xe(µ−δ)(T−t)N
(
z − σ

√
(T − t)

)
, (3.3)

with N (y) denoting the distribution function of a standard normal random variable, and z =(
ln K

x
−
(
µ− σ2

2

)
(T − t)

)
1

σ
√
T−t , to fall below the immediate payoff at t for some values of the

underlying. For the quanto options this corresponds to the existence of xm such that

ve(t, xm;µQf , ‖σf‖ , rd, K) = (K − xm)+

whereK = Kd and xm = X0 ·Sf (t) for the American quanto option (2.4) , K = Kd and xm = F0 ·Sf (t)
for the American quanto option (2.5) , and K = Kf and xm = Sf (t) for the American quanto option

(2.6) . Then the remaining part of the proof of Proposition 2.5 in Battauz, De Donno and Sbuelz

(2015) follows. Assumption (3.2) is necessary for the existence of optimal exercise opportunities at

date t = 0. If early exercise is optimal at any date t ∈ [0, T ] for some xm, it is also optimal for all

future dates for the same xm, as the American quanto options (2.4) , (2.5) , and (2.6) are decreasing

with respect to t. �

4 Numerical Examples

In this section we provide examples of American quanto options to show how the domestic interest

rate contributes in shaping their free boundaries. To streamline our analysis we focus on the American

quanto option with payoff (2.6), that can be reduced to the American put option

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) X0 · (Kf − Sf (τ))+

∣∣Ft]
= X0v(t, Sf (t);µ

Q
f , ‖σf‖ , rd, Kf ),

following Lemma 2.1. We first introduce an example with a positive interest rate, and then move to

the case of a domestic negative interest rate. Option prices are computed via binomial approximation

(see Hull, 2018), setting the upwards and downwards coeffi cients

u = e‖σf‖
√

∆t, d = e−‖σf‖
√

∆t
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and the risk-neutral probability of an upward movement

q =
eµ

Q
f ∆t − d
u− d

We fix

rd = +0.90%, rf = 2%, X (0) = 0.94, ‖σX‖ = 7.8%

‖σf‖ = 10%, ρ = −1%, and qf = 0,

that deliver

µQf = rf − qf − ρ ‖σf‖ ‖σX‖ = 2.008%

For an American quanto put option (2.6) deeply in-the-money at inception with Sf (0) = 0.5 and

Kf = 1, maturity T = 6 months and N = 125 time steps we obtain

∆t = 0.004, u = 1.006, d = 0, 994, and q = 50.47%.

We take an initial in-the-money underlying value because we want to investigate what happens within

our binomial model in the deeply in-the-money region during the option life. In Figure 1 the binomial

tree Sf is delimited by the grey diamonds. The horizontal axis represents calendar time in year units,

whereas the vertical axis represents the underlying asset value. We compute the upper (and unique)

free boundary by taking at any t the maximum underlying value within the early exercise region at

t, namely

u (t) = max
(
Sf (t) : X0 (Kf − Sf (t))+ = V (t)

)
,

among the binomial realizations of Sf (t) at t. The upper free boundary is plotted in Figure 1 with

the blue dots, starting after 103 consequent upwards movements, where the continuation region

begins. The asymptotic approximation for the free boundary at maturity obtained in Proposition 3.1

is plotted with blue stars and is very closed to the binomial upper free boundary. The flat perpetual

boundary,valued 0.78, is dotted with blue circles in Figure 1. As the initial underlying value Sf (0)

is below both the perpetual and the finite maturity free boundary, the initial value of both the

perpetual and the finite maturity binomial option is X0 · (Kf − Sf (0))+ = 0.94 · 0.5 = 0.47.
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Figure 1. The free boundary when rd is positive. The grey diamonds
delimit the stock binomial tree. Blue dots denote the binomial free

boundary, and blue stars its asymptotic approximation. Blue circles

denote the perpetual boundary.

We then assign to the domestic riskless interest rate a opposite negative value, rd = −0.90%,

keeping all the other parameters unchanged.

In this case, conditions (3.1) and (3.2) are met. A double continuation region appears. Its

existence is remarkable, because it violates the usual property of down-connectedness of the exercise

region of put options, that has been established in quite general settings (see Detemple and Tian

(2002)). The perpetual lower and upper free boundaries are, resp., 0.45 and 0.68. Again, the price

of the perpetual option coincides with its immediate payoff 0.47. The underlying binomial tree is

unchanged, as the domestic riskless interest rate rd = −0.90% does not enter the domestic risk-

neutral dynamics of the foreign risky security. The binomial upper (resp. lower) free boundary is

computed by taking at any t the maximum (resp. the minimum) underlying value within the early

exercise region at t, namely

u (t) = max
(
Sf (t) : X0 (Kf − Sf (t))+ = V (t)

)
l (t) = min

(
Sf (t) : X0 (Kf − Sf (t))+ = V (t)

)
among the binomial realizations of Sf (t) at t. In Figure 2 the binomial tree is delimited by grey

diamonds. The standard part of the continuation region appears in the upper region of the tree after

103 upwards movements, that push the American Quanto put option towards the out-of-the-money

region. The non-standard part of the continuation region appears in the very deeply in-the-money

region, below the perpetual lower free boundary, after 73 downwards movements. In Figure 2 we

plot with blue (resp. red) dots the upper (resp. lower) binomial free boundary. The asymptotic
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approximation for the upper (resp. lower) free boundary obtained in Proposition 3.2 are plotted

with blue (resp. red) stars. The flat perpetual upper (resp. lower) boundary is plotted with blue

(resp. red) circles. As the initial value Sf (0) is within the early exercise region, the initial price of

the finite-maturity option coincides with its immediate payoff 0.47.

Figure 2. The double free boundaries when rd is negative. Grey
diamonds delimit the stock binomial tree. Blue (resp.red) dots denote the

binomial upper (lower) free boundary, and blue (red) stars the asymptotic

approximations. Blue (red) circles denote the perpetual upper (lower)

boundary.

Finally, we focus on US underlying assets, calibrating our parameters over the period December,

15th, 2015 to December, 15th, 2016, and evaluating Quanto options on December 14th 2016 (data

source: Bloomberg). The euro yield curve is negative and the US yield curve is positive, thus fitting

into assumptions of 3.2. In particular, on December 14th 2016, the euro and the US yield curves are
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reported in Table 1.

Table 1: The EU and US Yield Curves, December 14th 2016
Maturity EU Bund Percent. Yield US Percent. Yield

30d −0.97% 0.64%

90d −0.91% 0.54%

180d −0.80% 0.69%

270d −0.80% 0.78%

360d −0.80% 0.89%

(Source: Bloomberg)

Since our model allows us only constant interest rates, we fix the rates at the intermediate level

rd = −0.80% for the euro, and rf = 0.69% for the USD. On the same date, the exchange spot rate

X (0) = 0.94 (the inverse eurodollar is 1/0.94 = 1. 06). The volatility of the exchange rate X is

‖σX‖ = 7.8%, evaluated as the annualized standard deviation of the one-year time series of daily

log-returns of the exchange rate
{
ln
(
X(t+∆t)
X(t)

)}
ending up on December 14th 2016.

We select US stocks from different sectors, Johnson and Johnson’s (JNJ), Microsoft (MSFT),

Amazon (AMZN), and Apple (AAPL.0). The stocks display different levels of volatility and correla-

tion with the exchange rate X over the period under investigation; they are reported in the first two

rows of Table 2. The third row displays the stock’s risk neutral drift µQf = rf − qf − ρ ‖σf‖ ‖σX‖ ,
under the assumption qf = 0. The correlation has been estimated from the historical covariance

between the one-year time series of daily log-returns of the exchange rate
{
ln
(
X(t+∆t)
X(t)

)}
and the

one-year time series of daily log-returns of the US stock price
{
ln
(
Sf (t+∆t)

Sf (t)

)}
ending up on December

14th 2016.

Table 2: Stock parameters values
JNJ MSFT AMZN AAPL.0

‖σf‖ 14% 23% 30% 13.70%

ρ −0.5% 6% −1, 7% −0.09%

µQf 0.7% 0.6% 0.7% 0.7%

The correlation is slightly negative, but in the Microsoft case, where is positive. Interestingly,

Assumption (3.1) that ensures the boundedness of the perpetual American quanto option is never

true. On the contrary, the necessary finite- maturity condition (3.2) is satisfied over the 6 months
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option maturity. Interestingly, all American quanto put options (2.6) with 6months maturity on these

stocks display a non-standard deeply in the money continuation region in the binomial approximation.

For all the examples of Table 2 we fix the maturity date T = 0.5 (in years) and we apply a moneyness

normalization by setting the in-the-money initial values Sf (0) = 1 and Kf = 1.15, to be able to reach

the deeply in the money continuation region within our binomial approximation. With N = 125 time

steps we obtain for the JNJ stock

∆t = 0.004, u = 1.009, d = 0, 992, and q = 49.94%.

In Figure 3 the binomial tree for the JNJ stock is delimited by the grey diamonds. The blue (resp.

red) dots denote the upper (resp. the lower) binomial free boundary. As from Proposition 3.2, the

upper free boundary converges at maturity to the strike price Kf = 1.15. The left-limit of the lower

free boundary at T is 0.6. The asymptotic approximation for the upper (resp. lower) free boundary

obtained in Proposition 3.2 are plotted with blue (resp. red) stars. The asymptotic approximations

for both the upper and lower free boundary are very closed to the binomial boundaries over the entire

option life. There exist no perpetual constant barriers in this case, as Assumption (3.1) is violated

and the perpetual option is unbounded.

Figure 3. Quanto put option on JNJ stock. Grey diamonds delimit the
stock binomial tree. The early exercise region is delimited between the

dotted blue and red lines (the blue and red stars denote the asymptotic

approximations provided in Proposition 3.2).

For the MSFT stock we obtain very similar results, plotted in Figure 4 with the same legend. In

this case we obtain

∆t = 0.004, u = 1, 015, d = 0, 985, and q = 49, 70%.
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Figure 4. Quanto put option on MSFT stock. Grey diamonds delimit the
stock binomial tree. The early exercise region is delimited between the

dotted blue and red lines (the blue and red stars denote the asymptotic

approximations provided in Proposition 3.2).

In Figure 5 we plot the Quanto put option on the AMZN stock. In this case we have

∆t = 0.004, u = 1.019, d = 0, 981, and q = 49.60%.

Because the stock has a higher volatility compared to the previous cases (around 30%), the binomial

approximation quickly grows out of the plot area. Nevertheless, the asymptotic approximations for

both the upper and lower free boundary are very closed to the binomial boundaries over the entire

option life.
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Figure 5. Quanto put option on AMZN stock. Grey diamonds delimit the
stock binomial tree. The early exercise region is delimited between the

dotted blue and red lines (the blue and red stars denote the asymptotic

approximations provided in Proposition 3.2).

In figure 6 we plot our results for the AAPL stock. In this case

∆t = 0.004, u = 1.009, d = 0.991, and q = 49.94%.

Figure 6. Quanto put option on AAPL stock. Grey diamonds delimit the
stock binomial tree. The early exercise region is delimited between the

dotted blue and red lines (the blue and red stars denote the asymptotic

approximations provided in Proposition 3.2).
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The empirical examples depicted in Figures 3-6 show that the asymptotic approximation for both

the upper and the lower critical price work well over the option’s entire life. The JNJ case (Figure

3) and the AAPL case (Figure 6) are characterized by low levels of the volatility ‖σf‖, which result
in rather wide early exercise regions. By contrast, the MSFT case (Figure 4) and the AMZN case

(Figure 5) are associated with high levels of the volatility ‖σf‖, which imply less conspicuous early
exercise region. The biggest effect of the increased volatility is on the upper free boundary, which

decreases and becomes more concave around maturity. The lower free boundary is relatively more

stable and flat.

These examples show how a non-standard double continuation region appears for finite maturity

American quanto put options under actual market circumstances. Interestingly, when the maturity

of these options tends to infinite, the value of the perpetual American quanto put options becomes

unbounded, as the incentive to infinite postponement caused by negative domestic interest rates

prevails. Hence, in the perpetual case, early exercise is never optimal, the early exercise region is

empty, and there is no free boundary.

5 Conclusion

American option pricing is a dynamic research domain of financial economics. Quanto options offer

important financial services as they disclose international hedging/investment opportunities. In a

continuous-time, diffusive currency market model we study the interplay of the signs of the domestic

and the foreign riskfree rates with the optimal exercise policies for American quanto options. In

particular, we show that a negative domestic riskless rate (as in the European and the Japanese

markets over recent years) can lead to the existence of a non-standard double continuation region

for American quanto options written on a foreign risky security in a positive foreign interest rate

environment.

We provide market-based examples of finite-maturity American quanto put options that exhibit

a double continuation region surrounding a non-empty early exercise region even if the perpetual

early exercise region is empty and the value of the corresponding perpetual option is unbounded. In

such empirical examples, we compute accurate asymptotic approximations for the free boundaries at

maturity.

We significantly generalize and extend the results of Battauz, De Donno and Sbuelz (2015) by

determining the existence, the monotonicity properties and the close-to-maturity behavior of the

upper and lower critical prices for American options under the softer assumption of non-emptiness

of the early exercise region at some date during the option contract life.

Our current results open interesting avenues for future research, like the introduction of additional

sources of risk (e.g. Bakshi, Cao, and Chen (1997), and Cao, Bakshi, and Chen (2015)). Exploring

the impact on the optimal exercise policy of American quanto options of systematic jump risk is
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particularly interesting as, among other things, it can imply a richer parametric structure for the

risk-adjusted drift of the underlying foreign security price for the domestic investor. We leave these

issues open for future investigation.
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