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Abstract. The gravitation process of market prices towards production prices is here presented by means 
of an analytical framework where the classical capital mobility principle is coupled with a determination 
of the deviation of market from normal (natural) prices which closely follows the description provided by 
Adam Smith: each period the level of the market price of a commodity will be higher (lower) than its 
production price if the quantity brought to the market falls short (exceeds) the level of effectual demand. 
This approach also simplifies the results with respect to those obtained in cross-dual literature. At the 
same time, anchoring  market prices to effectual demands and quantities brought to the markets requires a 
careful  study of  the dynamics of the ‘dimensions’ along with that of the ‘proportions’ of the system. 
Three different versions of the model are thus proposed, to study the gravitation process: i) assuming  a 
given level of aggregate employment; ii)  assuming a sort of Say’s law; iii) and on the basis of  an explicit 
adjustment of actual outputs to effectual demands. All these cases describe  dynamics in which  market 
prices can converge asymptotically towards production prices. 
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1. Introduction 

The Classical analysis of gravitation consists of  two basic steps. The first step, as 

argued by Adam Smith, Ricardo and Marx, is that whenever the quantity brought to 

market is larger than the effectual demand for a commodity the level of  market prices 

of that commodity will fall below the normal price1. Conversely when the quantity 

brought to market is lower than effectual demand the level of market prices will be 

higher than the normal price.  

In the second step the Classics argued that the quantities brought to market 

would decrease in the sectors where profits were below average and increase in those 

sectors where profits were above average. This process would ensure the tendency of 

market prices to gravitate towards (or oscillate around) normal prices. 

The Classical process of gravitation of market prices around normal prices has 

generally been formalized during the 1980s and 1990s by models where relative prices 

interact with sectoral output proportions through a ‘cross-dual’ dynamics. In these 

models the rates of change of sectoral output proportions react to deviations between 

sectoral and average rates of profits; symmetrically, the rates of change of market prices 

react to deviations between demand and the quantity brought to the market of the 

respective commodity. Yet, a quite puzzling outcome emerged immediately in the main 

contributions: the basic dynamics arising from this interaction was intrinsically 

unstable. Convergence results were then obtained only after introducing a variety of 

suitable (even if reasonable) modifications of the basic cross-dual model. 

In the present paper, following the lead of Garegnani (1997), we propose a 

reformulation of the formal analysis of the Classical gravitation process, closer to what 

is written in Smith’s and Ricardo’s own texts, in which the levels of market (relative to 

natural) prices that react to the difference between effectual demands and quantities 

brought to the market. A convergence result is then proved, confirming thus the 

classical conjecture of gravitation of market prices towards natural prices. 

Section 2 introduces the notation adopted and outlines the system of normal 

prices. In Section  3 we will recall intrinsic limits of cross-dual models of gravitation. 

An alternative approach will be thus presented in the rest of the paper. A convergence 

result is firstly proved in Section 4 in a very simple model, where the gravitation 

process is formulated in relative terms for both prices and quantities. This structure may 
                                                 
1 Normal prices here of  course mean what Smith and Ricardo called natural price and Marx called price 
of production. And effectual demand was called “social need” by Marx.   
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be represented through one first degree difference equation. The simplicity of this 

model allows us to catch immediately the fundamental forces operating in a capitalistic 

system in engendering the convergence towards the normal position. Yet, this simplicity 

leads to an asymmetry between industries in the adjustment rule of market to normal 

price,  which is not justified from the economic point of view. We thus reformulate in 

Section 5 the entire process in terms of the absolute output levels of the two industries. 

We obtain thus a system of two first degree difference equations. Unfortunately, the 

generalization of this simple model entails another analytical problem. It displays a 

continuum of steady states. All the situations where output levels reflect the proportions 

between normal output could be  resting point for the dynamic system. In other words, 

for production prices prevail it is sufficient that relative sectoral outputs have the same 

proportion between normal outputs. Their absolute values do not matter. In this way 

production prices would prevail in situations of a general glut, as well as, in situations 

of a general shortage. As the formalization adopted to represent the principle of capital 

mobility reveals to be able to affect only the proportions of the system, we need to 

introduce a further principle capable to control the dimension of the system. This will be 

done in three alternative steps. In Section 6 we will adopt the simplest solution: that of 

keeping the dimension of the economic system measured in terms of employment fixed 

at a given level. In Section 7 we will determine the dimension of the system 

endogenously, by a sort of Say’s law, in coherence with the approach accepted by 

classical economists. In Section 8 we will determine the dimension of the system, 

through a set of relations similar to those constituting the open Leontief model. Section 

9 presents brief final remarks. 

2. Notation 

Consider an economic system with two commodities, c = 1, 2, and two industries, i = 1, 

2. The technology of this system is represented by a (2  2) socio-technical matrix,  

 A = 












22221221

21121111

2221

1211

bmbm
bmbm

aa
aa




M + bT 

where mic, is the quantity of commodity c employed to produce 1 unit of commodity i, b 

= [bc] is the real wage bundle assumed to be paid in advance,  = [c] is the vector of 

direct labour quantities, and T is the transposition symbol (vectors are thought as column 

vectors; row vectors are denoted by the transposition symbol). Methods of production 
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are represented on the rows of the matrix. Technical coefficients are supposed to be 

constant with respect to changes in output levels. The normal price equations are 

 p1 = (1 + r)(a11p1 + a21p2)  (1a) 

 p2 = (1 + r)(a21p1 + a22p2),  (1b) 

where pc is the price of commodity c and r is the uniform rate of profit. As known, 

system (1) determines a unique economically meaningful relative price and a unique 

positive rate of profit given by  

 p* = 
21

2211

*

2

1

2a

aa

p

p 









  and   r* = 

 2211

2

aa
, (2) 

where  = (a11 – a22)
2 + 4a12a21 > 0, if the dominant eigenvalue of A, denoted by *, is 

smaller than 1. The normal relative price of commodity 1 in terms of commodity 2, p*, 

and the normal rate of profit, r*, satisfy equations (1), that is,   

 p*/(1 + r*) = (a11p* + a21)  (3a) 

 1/(1 + r*)  = (a21p* + a22).  (3b) 

3. The pure cross-dual model 

 The dynamics of proportions in a pure cross dual model can be summarized as 

follows. Suppose that all  profits are saved and invested (‘accumulated’). Let qt = q1t/q2t 

the ratio between actual output levels at time t. In discrete time the competitive process 

is described by the following difference system: 

 qt+1 = qt 
)(1

)(1

2

1

ttt

ttt

rrr

rrr




  (4a) 

 pt+1 = pt 

1

2

1

1 ( 1)

t t

t

t

d q

q

d





 
  

 
 

,  (4b) 

where 

    rt(qt, pt) = 
22211211

1

apaaqpaq

pq

tttt

tt




 1,  (5a) 

 r1t(pt) = 
1211 apa

p

t

t


 1   and   r2t(pt) = 

2221

1

apa t 
  1. (5b) 
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 dct = 
t

ct

q2


= qt[1 + rt +  (r1t – rt)]a1c + [1 + rt +  (r2t – rt)]a2c,    c = 1, 2, (5c) 

r denotes the general (average) rate of profit, r1 and r2 denote the sectoral rates of profit, 

ct = q1t+1a1c + q2t+1a2c denotes the demand of commodity c in period t, dct denotes the 

ratio between the demand of commodity c and the output of commodity 2, and  and  

are two reaction parameters (for further detail see Boggio, 1992).  

The dynamic system represented by difference equations (4), with symbols 

defined in (5) admits a unique economically meaningful (steady state) equilibrium, (q*, 

p*) where 

 q* = 
12

2211

2a

aa 
 

and p* is defined in (2).2 It can be verified that the Jacobian matrix of the difference 

system evaluated at the steady state is 

 J* = 





 ZV
U



1
1 ,  (6) 

where U = (q*/p*)M > 0, V = (p*/q*)(1 – 2|A|) > 0, Z = 3M|A|,  = (1 + r*) and M = 

(a12/p*+a21p*). From (6) it is quite easy to verify that the steady state (q*, p*) is 

asymptotically unstable for any positive level of the reaction coefficients  and   (for 

details see Boggio, 1984, 1985 and 1992, or Duménil and Lévy, 1993, appendix to 

chap. 6).  

 The causes of such a negative conclusion have been explained in detail by Lippi 

(1990) and by Garegnani (1990, Section 27 and the Appendix available only in the 

revised version of the paper, that is, Garegnani, 1997); see also the discussion in  

Serrano, 2011, Section V). They can be summarized by observing that the dynamics 

                                                 
2 Observe that q* is the proportion between sectoral outputs characterizing the ‘balanced growth path’ 
obtained when all profits calculated at the rate r*  are entirely re-invested. Such a path is defined by the 
conditions 
 qct+1 = (1 + g)qct,     c = 1, 2,  (*) 
where  
 qct = q1t+1a1c + q2t+1a2c,     c = 1, 2,  (**) 
and g is the uniform growth rate. Substitute (*) into (**); we yield 
 qc = (1 + g)(q1a1c + q2a2c),      c = 1, 2,  (***) 
where the time index has been omitted because all variables are here contemporaneous. By expressing 
equations (***) in relative terms we obtain 
 q = (1 + g)(qa11 + a21) 
 1 = (1 + g)(qa12 + a22), 
whose (positive) solution is in fact q = q* and g = r*.  
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engendered by equations (4) give rise to a dynamic behaviour which is not sensible 

from the economic point of view, and do not correspond to the first step as argued by 

the classics mentioned above. Cross-dual models make the rate of change (instead of the 

level) of  market prices react to deviation between effectual demands and quantities 

brought to the market. Therefore, as long as the quantity brought to the market (output) 

happens to be lower than the level of effectual demand by a particular amount, output 

will be increasing but the market prices will also be increasing (their  rate of change will 

be positive), leading to overshooting. Then when output reaches effectual demand the 

market price will stop changing but will be at a level above the normal price and thus, in 

spite of the effectual demand being equal to the quantity brought to the market,  the rate 

of profits of the sector will be above normal and thus the quantities brought to the 

market will continue to  increase, and market prices will also start falling, leading to 

overshooting. Conversely, the same process happens symmetrically in reverse, if we 

start from a situation in which the quantity brought to market is greater than the 

effectual demand and a market price lower than normal.   

Following Lippi (1990), this argument can be represented graphically. Let us 

approximate the demand of commodity c at time t, given by ct = q1t+1a1c + q2t+1a2c, by 

ct~ = q1ta1c + q2ta2c, so that the dynamics of the relative price is given by 

 pt+1 = pt 
]1)(

~
[1

1
)(

~
1

)1(1

11

2

1

2212

2111





























t

t

t

t

t

t

qd

q

qd

aaq

q
aaq








.  (4b′) 

It is quite easy to prove that )(
~

/)(
~

21 qdqqd



if and only if q 



 q*. Hence, by (4b′), we 

can state that  

 *   as long as   
decreases

constant remains
increases

qqp tt




























.  (7) 

Suppose the system initially is in its normal position, q = q* and p = p*, represented by 

point E in Figure 1, which was originally presented by Lippi (1990, p. 63). Then a 

shock displaces q to  q0 < q*, i.e. to point R0. Then p increases so that r1 > r2 attracts 

capital from industry ‘2’ to industry ‘1’: the system moves thus from R0 to R1, to R2 etc.. 

But when q has reached q*, that is, point R′, the relative market price p, which was 
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initially equal to p*, happens to be greater than p*, so that r1 > r2 and q continues to 

increase beyond q*, i.e. system overshoots moving toward R′′.  

 
Figure 1 – Movements of q and p around q* and p* in the pure cross-dual model 

 

Relative market price overshoots because its dynamics described by equation (4b′), is 

totally unconnected with normal output q*. As recalled by Lippi, these elements explain 

the reason why the dynamics ensuing from cross dual models oscillates around the 

steady state equilibrium. An analytical study of the model verifies that these oscillations 

are divergent, that is, their amplitudes increases as time goes by, so that when the 

economy happens to be out of its long-run equilibrium it moves away from it. 

Several devices have been proposed to ‘adjust’ this destabilizing dynamics.3  

Yet, this destabilizing dynamics seems more inherent to this  type of model  rather than 

to  the classical competitive process  as described verbally by the classical economists.  

 We can move towards a more satisfactory formal representation of the basic 

Classical gravitation process if we produce a simple model that adheres to the first step 

of the Classical argument.4 As it is well known, the Classics did not conceive market 

prices theoretical magnitudes and allowed for the fact that many transactions could 

occur at different market prices for the same commodity. Even so they thought that 

                                                 

3 For example, Dumenil-Levy( 1993, chap. 6 and its appendix) proposed to consider the ‘realized’ rates of 
profit rit = (dit pit – qit a

T
i pt)/(qit a

T
i pt), instead of the ‘appropriated’ rates of profit, defined in (5): in this 

way, the calculation of revenues of industry i on the basis of the amount of output actually demanded of 
commodity i is sufficient to counter-balances the destabilizing forces contained in the pure cross-dual 
model. A similar amendment of the pure cross-dual model, still proposed by (Dumenil-Levy, 1993, chap. 
6), is obtained by introducing a sort of ‘direct adjustment of quantities’, which contrasts the destabilizing 
forces of pure cross-dual dynamics.  
4 An unpublished  pioneering example of this is the model put forward by Silveira (2002) using Lyapunov 
distance functions. 



8 

some average level of market prices for a commodity would be higher or lower relative 

to the (single) normal price when effectual demand was higher or lower than the 

quantity brought to market. Because of the variability of the causes that led to these 

deviations they did not conceive this relationship between market prices and normal 

price of a commodity as a definite formal let alone linear function; we shall do so just to 

illustrate the idea of gravitation. We shall also assume, for simplicity, that all producers 

have access only to the same single dominant technique to produce each commodity.5  

 Note that this Classical relationship between market prices and normal price 

does not involve market clearing, since it determines a particular level of (average) 

prices in the market taking it into account the reactions of both producers and user or 

consumers of the commodity.6 This relationship certainly does not represent a  “demand 

function’, even when we formally assume this relationship to be a given and linear 

function because the extent by which market prices rise above or fall below normal 

prices will reflect both by the behaviour of those demanding the commodity (other 

people that are not effectual demanders but can afford buying the commodity when 

price are sufficient below normal, for instance) and those supplying it (reservation 

prices,  firm’s decisions concerning holding inventories, etc.). 

 Moreover, it is important to point out that this relationship is not assumed to be 

known by agents in the economy since it is a description of the results of the ’haggling 

of the market’ as a whole under given circumstances and not a description of the 

behaviour of a particular agent. This was  the perspective adopted by Smith, who aimed 

to provide a description of the general outcome of the competitive process, rather than 

to give a detailed  description of the actual moves of each actor of the process by which 

market prices were determined (about which there could be no fully general theory). 

Gravitation analysis concerns only the operation of the capital mobility principle and 

the firms are only assumed to increase the quantity brought to the market if the actual 

rate of profit is higher than that of the other sector(s) and reduce it if it is lower. 

Steedman (1984) criticized the second step of the Classical gravitation analysis  

showing  that with three or more commodities a sector in which the  market price is 

higher (lower) than normal could  possibly have a rate of profit below (above) average if 

the market prices of its inputs where proportionally much higher (lower) than their 

normal price. To this Ciampalini and Vianello (2000, p.365 footnote 9) countered that 

                                                 
5 On the relationship between normal and market prices in the works of the Classics see Garegnani 
(1976), Ciccone (1999), Vianello (1989) and Aspromourgous (2009) 
6 Garegnani (1997, Appendix). 
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Smith was thinking about the price and rate of profits of the vertically integrated 

industry (or subsystem) producing a commodity. Garegnani (1990, 1997) on the other 

hand, has shown that this possibility exists for a particular sector but could only really 

endanger the gravitation process if the rates of profits of all sectors could all be above 

(or below) the normal rate at the same time, something that is logically impossible in a 

Classical framework for a given technique and level of the real wage. Therefore, the 

second step in the Classical process of gravitation is not strictly necessary to guarantee 

that market prices gravitate towards normal prices. We only need the first and the third 

steps.  In any case the Steedman critique does not affect the analysis presented in the 

following Section—as well as the main part of the cross-dual gravitation models—as 

the changes in relative outputs are presented as functions of the observed profit rate 

differentials (and not directly of the divergence between market and normal prices). 

4. A gravitation model with a Smithian behaviour of market prices: the 

simplest formulation 

  We will consider for simplicity a system with no capital accumulation, where 

all profits and wages are consumed. Moreover, normal output of the two commodities 

will be taken as given and will be denoted by *
1q  and *

2q . Let q* = *
2

*
1 / qq  be the normal 

output proportion. Actual (relative) output dynamics is described by the following 

difference equation: 

 qt+1 = qt
)(1

)(1

2

1

tt

tt

rr

rr





 ,  (8) 

where 

 r1t = 1
1211


 apa

p

t

t ,     r2t = 1
1

2221


 apa t

,    rt = 1
1

22211211





apaaqpaq

pq

tttt

tt  (9a) 

and 

 pt = p* + (q*– qt).  (9b) 

The analytical structure of this system is very simple: by (8) the future level of relative 

output, qt+1, depends on the present level, qt, and on r1t, r2t and rt, which depend on pt 

and qt. But as also pt depends on qt; then we have that qt+1 depends ultimately on qt only. 

The steady state(s) of difference equation (8) can be found by setting qt+1 = qt = q 

which, once substituted in (8) yields r1 = r2 = r. As known, there is a unique positive 

relative price ensuring a uniform rate of profit: p = p*, which guarantees r = r*, where 
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p* and r* are defined in (2). From (9b) we get qt = q*, which is the unique meaningful 

(i.e. positive) steady-state of equation (8). Thus the following Proposition holds. 

Proposition 1. Difference equation (8) with r1, r2, r and p defined by (9) admits a 

unique meaningful equilibrium, qt = q*, where r1 = r2 = r = r* and p = p*. 

 Quite simple calculations obtain (see Appendix A.1)  

 Z
q

q

t

t  1
d

d 1 ,  (10) 

where  = q*/p* and 

 M = 







 *

* 21
122 pa

p

a > 0.  (11) 

From (10) and (11) the following preposition holds. 

Proposition 2. The steady state equilibrium of difference equation (8) with r1, r2, r and 

p defined by (9) is locally asymptotically stable if the reaction coefficients are such that 

their product  is sufficiently small. 

This simple formulation has the merit to let emerge immediately the stabilizing 

force of capital mobility when it is coupled with a principle that regulates the deviation 

of market prices from their normal (natural) values similar to that described by Adam 

Smith. 

On a simple graph it is possible to represent the dynamics of this simple model. 

Differently to what happens in cross-dual models, where when one state variable moves 

towards the equilibrium level the other one move away from it (see Figure 1), the 

dynamics of the pairs (qt, pt) is bounded to take place only in the one-dimensional 

space, represented by the straight line (9b) (see Figure 2): hence, as qt moves towards q*, 

pt is forced to move towards p*. 

 
Figure 2 – Movements of q and p around q* and p* in the Smithian simple model 
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 The limit of this simple formulation is the asymmetry in the formulation of this 

principle: in fact, if we deduce from equation (9b), that is, p1/p2 = (p1/p2)
* + ( *

2
*
1 / qq  – 

q1/q2), the price of commodity 2 expressed in terms of commodity 1 we get  

 




















2

1
*
2

*
1

*

2

11

2 1

q
q

q
q

p
pp

p



. 

While a linear relation describes the formation of market price of commodity 1 in terms 

of commodity 2, a non-linear relation describes the formation of the market price of 

commodity 2 in terms of commodity 1. If, on the one hand, a linear function may be 

considered the simplest approximation of any linear continuous function, there are no 

reasons to imagine such a different behaviour of the deviation of market prices from 

production prices. In following sections the gravitation process will be re-formulated in 

order to avoid this asymmetry. 

5. Towards a more general formulation and the problem of proportions 

and scale 

One way to re-express the mechanism regulating the deviations of market prices from 

production prices in a form where each commodity is treated symmetrically is to adopt 

the following equation 

 pt =























*
2

2
2

*
1

1
1

*

11

11

q

q

q
q

p
t

t




,  (12) 

where q1t and q2t denote the actual output of each commodity and 1 and 2 are two 

reaction coefficients, which in general need not to be equal. It is straightforward to 

observe that no asymmetry between the market prices of the commodities is entailed in 

this formulation. At the same time, possible different degree of price flexibility between 

industries may find space by a suitable choice of coefficients 1 and 2 (this possibility 

was never explicitly considered in cross-dual models, even though it should not alter the 

main results). Moreover, generalizations to any number of commodities are quite 

straightforward with the formulation of the market price equation given by (12). 



12 

This reformulation of the market price equation requires that output dynamics 

originating from the capital mobility principle is expressed in terms of absolute rather 

than in relative terms. We have thus two difference equations: 

 q1t+1 = q1t [1 + (r1t – rt)]   (13a) 

 q2t+1 = q2t [1 + (r2t – rt)]   (13b) 

where 

 r1t = 1
1211


 apa

p

t

t ,   r2t = 1
1

2221


 apa t

,  (14a) 

 rt = 1
222212121111

21 



aqpaqaqpaq

qpq

tttttt

ttt   (14b) 

are the industrial and the average rates of profit (sectoral rates of profit coincide with 

those defined in equation (9a); the average rate of profit now contains absolute instead 

of relative output levels). The relative market price is determined by equation (12). 

 This formulation displays an analytical problem: the scale of activity of the 

industries is undetermined in steady state. In fact, if we impose  

 q1t+1 = q1t = q1   and   q2t+1 = q2t = q2.  

in equations (13) we obtain r1 = r2 = r. This uniformity holds if p = p*—ensuring r = 

r*, where p* and r* are defined in (2)—which entails by (12): 

 
















 *

2

2
2*

1

1
1 11

q

q

q

q  .  (15) 

In this way, any pair (q1, q2) satisfying condition (15) is a steady state of the model: we 

have a continuum of steady states. Just to understand, suppose that 1 = 2: condition 

(15) reduces q1 / q2 = 
*
1q / *

2q . Any situation where actual output levels happen to be in the 

proportion characterizing normal output levels is a steady state. In such steady states 

nothing guarantees that in steady state q1 = *
1q  and q2 = *

2q . In other words, in this 

model the normal relative price (p*) and the uniform rate of profit (r*) would be 

compatible with an imbalance of the same sign and of the same percent entity between 

actual and normal output—a general glut as well as a general shortage. A simple 

numerical simulation of this model reveals that when the reaction coefficients, 1, 2 

and  are sufficiently small, actual output levels, q1t and q2t, tend to two (finite) levels 

which depend on their initial levels—so starting from two different initial conditions, 
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( 2010 ,qq  ) and ( 2010 ,qq  ) market prices converge towards their normal level, p*, the rates 

of profit converge towards the (uniform) normal level, r*, while output levels converge 

to two different resting points, ( 2010 ,qq ) and ( 2010 ,qq ), generally different from the 

effectual demand, ( *
2

*
1 ,qq ). But the proportions between these resting output levels 

always coincide with the normal proportions, that is, 2010 / qq = 2010 / qq = *
2

*
1 / qq . This is 

quite obvious. Keep, for simplicity, the assumption that 1 = 2: once the system has 

reached one of the infinitely many steady states the same pressure is exerted on the 

market prices of each commodity so that their relative value would remain constant at 

p*: no further deviations of the relative market price from the relative normal price 

comes up to correct the general disequilibrium.7 This is clearly a misspecification or, 

better, an insufficient specification of the model. The result just emerged shows how the 

principle of capital mobility as described in (13) and the market price determination 

contained in (12) affect the proportions but not the dimension of the system. We need a 

further force to control the scale of activity of the industries. This will be done in the 

following sections in three alternative ways.  

6. A model with a given level of employment 

The simplest way to manage the problem of indeterminacy of the scale of activity 

emerged in the previous Section is to study the gravitation process in a situation where 

the scale of the economy is (artificially) kept fixed in terms of its aggregate level of 

labour employment. In principle, the level of aggregate employment is affected by a set 

of elements that are not directly connectable with the gravitation process. Hence, we can 

take these elements as given when studying the gravitation process as done by 

Garegnani (1990, 1997). To this purpose, the aggregate level of labour employment will 

be artificially forced in each period at a given level, L*, not necessarily the full 

employment level. As our reference outputs are *
1q  and *

2q , it is reasonable to consider 

 L* = 2
*
21

*
1  qq    (16) 

i.e., the amount of labour necessary to produce the normal output. We assume thus that 

in each period the actual aggregate level of labour employment is equal to L*.8 Then, re-

scale the outputs determined by equations (13) by a factor, t,  

                                                 
7 For the case 1  2 a similar situation conditions the interpretation of the steady state of the model. 
8 This assumption has been justified on the same lines by Garegnani: 
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 q1t+1 = t q1t [1 + (r1t – rt)]  (17a) 

 q2t+1 = t q2t [1 + (r2t – rt)]  (17b) 

in such a way that the labour employed in each period is L*: 

  q1t+11 +  q2t+12 = L*, t = 0, 1, 2, ...(19-t) 

that is, 

 t q1t [1 + (r1t – rt)]1 + t q2t [1 + (r2t – rt)]2 = L*,      t = 0, 1, 2, ... . 

the re-scaling factor is thus given by9 

 t = 
222111 )](1[)](1[

*

 tttttt rrqrrq

L

 
,  t = 0, 1, 2, .... (18) 

 

Moreover, assume that initial actual output levels, q10 and q20, which are not obtained by 

equations (17), satisfy 

 q101 + q202 = L*  (19-0) 

too. 

 

                                                                                                                                               

Though the subject is beyond the aim of the present chapter some observations may here be 
necessary with respect to the assumption, implied in the above postulate,  [of given 
effectual demand, e.b.] that the aggregate economic activity (on which the effectual 
demands of the individual commodities evidently depend) can be taken as given in 
analysing market prices. A first view which may be in that respect is that the deviations of 
the actual outputs from the respective effectual demands (and therefore their changes 
during the process of adjustment) will in general broadly compensate each other with 
respect to their effect on aggregate demand and its determinants. However, the classical 
postulate of given effectual demands does not appear to ultimately rest on any such 
eventual compensation of deviations. Here also what needs in effect be assumed is only the 
possibility of separating the two analysis. Thus, if we had reason to think that the effects on 
aggregate demand of the circumstances causing (or arising out of) certain kinds of deviation 
of actual from normal relative outputs were sufficiently important – then, it would seem, 
those effects could be considered in the separate analysis of the determinants of aggregate 
economic activity and hence of the individual effectual demands. In this chapter, the level 
of aggregate demand is assumed constant in terms of the level of aggregate labour 
employment (Garegnani, 1997, pp. 140–1). 

9 As, by construction, the output of each period satisfies equation (19-t), when the dynamics of one of the 
two outputs is determined (by (17a) or by (17b)), the dynamics of the other one can be determined 
residually by (19-t). In fact, thanks to (18) we can re-write (19-t) as 

 q1t+11 +  q2t+12 = t q1t [1 + (r1t – rt)]1 + t q2t [1 + (r2t – rt)]2 ;     (19-t) 

If, for example, q2t+1 is determined by (17b), then (19-t) reduces to 

 q1t+11 = t q1t [1 + (r1t – rt)]1, 

that is, to equation (17a) (in a similar way, just one initial condition can be chosen at will, the other being 
determined residually by (19-0)). We will return later on this point. 



15 

 

We now study the difference system (17), with r1t, r2t and rt defined by (14), pt defined 

by (12) and t defined by (18).  

Steady state. In steady state 

 qct+1 = qct = qc, c = 1, 2.   (20) 

Substitute (20) into (17) and obtain (after simplification) 

 1 =   [1 + (r1 – r)]  (17a) 

 1 =  [1 + (r2 – r)]  (17b) 

from which one gets r1 – r = r2 – r, i.e., r1 = r2, which entails, at the same time,  

 r1 = r2 = r = r*  (21a) 

 p = p*.  (21b) 

Substitute (21a) into (17a) (or in (17b)) and obtain 

  = 1.  (22) 

Substitute (21a) and (22) into (18) and obtains q11 + q22 = L* which, thanks to (16) 

yields 

 q11 + q22 = 2
*
21

*
1  qq  .  (23) 

Substitute (21b) into (12) and obtain  

 


















*
2

2
2*

1

1
1 11

q

q

q

q  .  (24) 

Equation (23) and (24) define two straight lines in space (q1, q2). Both equations (23) 

and (24) pass through point ),( *
2

*
1 qq . As (23) is a decreasing and (24) is increasing 

),( *
2

*
1 qq  is their unique intersection. This proves the following: 

Proposition 3. ),( *
1

*
1 qq  is the unique economically meaningful steady state of difference 

system (17) with r1t, r2t and rt defined by (14), pt defined by (12) and t defined by (18).  

Local asymptotic stability of the steady state. On the basis of the preliminary 

derivatives calculated in the Appendix (Section 2), the Jacobian matrix of the difference 

system evaluated at the steady state is: 
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 J* = 























)1()1(

)1()1(

211*
1

*
2

1

2*
2

*
1

212

MM
q

q

M
q

q
M




, 

where 

 **
111 / Lq ,     **

222 / Lq      and 1 + 2 = 1. 

and M is defined in (11). 

 M = 







 *

21*
122 pa

p

a > 0.  (25) 

It is easy to verify that the characteristic equation of J*, that is, det (J* I) = 0, is 

 {  [1  (21 + 12)M]} = 0. 

The constant terms is disappeared: therefore it has a null solution, 1 = 0, and a second 

solution given by  

 2 = 1  (21 + 12)M. 

In order to prove the asymptotic stability of the steady state it is sufficient to verify that 

|2| < 1: 

a) 2 > 1, that is, 1  (21 + 12)M >  1, which entails 

 (21 + 12) < 2/M;  (26) 

condition (26) is verified if the reaction coefficients 1, 2 and  are sufficiently 

small. 

b) 2 < 1, that is, 1  (21 + 12)M < 1, which is ever verified, as it reduces to 

(21 + 12) > 0. 

We have thus proved the following: 

Proposition 4. The steady ),( *
1

*
1 qq  of difference system (17) with r1t, r2t and rt defined 

by (14), pt defined by (12) and t defined by (18) is locally asymptotically stable if the 

reaction coefficients 1, 2 and  are sufficiently small. 

Remark. The result that one of the eigenvalues of J* is null, confirms what said in 

footnote 9 about the residual character of one output level, once determined the other 

one, in order to satisfy the constraint to keep the employment level constant in each 
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period. Eigenvalue 2 is the eigenvalue which determines the dynamics of the 

proportions; the dynamics of dimension is here completely determined by the necessity 

to keep the employment level constant. It does not add any further tendency to output 

levels. For this reason the corresponding eigenvalue is zero. 

7. A model with Say’s law 

An alternative way to control the dimension of the system is to suppose that a sort of 

Say’s law holds, according to which the value of output level determined  in each period 

equal the (normal) value of (effectual) demand: *
1pqT

t  = ** pq T , that is,  

 *
2

*
2

*
2

*
1

*
212

*
111 pqpqpqpq tt   .  (27) 

In principle, it should be better to use contemporary market prices to evaluate actual 

output of period t + 1, imposing thus 11  t
T
t pq  = ** pq T . But, at time t, when output of 

period t +1 are determined on the basis of capital mobility principle, the price vector of 

period t +1 is not determined yet. For this reason we adopt the normal price vector to 

evaluate the future output vector. Similarly to what did in Section 6 the output levels of 

each period, still determined by the capital mobility equations (17), will be rescaled by 

factor t which this time is determined in such a way to satisfy equation (27) that is 

equivalent to tq1t[1 + (r1t – rt)]p* + tq2t[1 + (r2t – rt)] = *
2

**
1 qpq  . The re-scaling 

factor is thus 

 t = 
)](1[)](1[ 2

*
11

*
2

**
1

ttttt rrprrq

qpq





.  (28) 

We now study the difference system (17), with r1t, r2t and rt defined by (14), pt defined 

by (12) and t defined by (28).  

Steady state. In steady state 

 qct+1 = qct = qc,     c = 1, 2.   (29) 

As in Section 6 we obtain equations (21),  (24) and 

  = 1.  (30) 

Substitute (21a) and (30) into (28) and obtains  

 2
*

1
*
2

**
1 qpqqpq  .   (31) 
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Equations (31) and (24) define two straight lines in space (q1, q2). As before, both 

equations (31) and (24) pass through point ),( *
2

*
1 qq . As (31) is a decreasing and (24) is 

increasing ),( *
2

*
1 qq  is their unique intersection. This proves the following: 

Proposition 5. ),( *
1

*
1 qq  is the unique economically meaningful steady state of difference 

system (17) with r1t, r2t and rt defined by (14), pt defined by (12) and t defined by (28).  

Local asymptotic stability of the steady state. On the basis of the preliminary 

derivatives calculated in the Appendix (Section 3), the Jacobian matrix of difference 

system evaluated at the steady state is: 

 J** = 


















)1()1(

)1()1(

2112
*

2*
1

12

MMp

M
p

M




, 

where M is defined in (11) and  

 1 = 
*
2

**
1

**
1

qpq

pq


   and   2 = 

*
2

**
1

*
2

qpq

q


,   where   1 + 2 = 1; 

It is easy to verify that det J** = 0; hence, the characteristic equation of J** reduces to 

 [  2(1  1M)  1(1  2M)] = 0, 

whose solutions are 1 = 0, and a 2 = 1  (21 + 12)M. From the formal point of 

view these eigenvalues coincides with those obtained in the model with a given level of 

employment. Hence the following proposition holds 

Proposition 6. The steady ),( *
1

*
1 qq  of difference system (17) with r1t, r2t and rt defined 

by (14), pt defined by (12) and t defined by (28) is locally asymptotically stable if the 

reaction coefficients 1, 2 and  are sufficiently small.  

8. Market effectual demands 

An alternative solution to the problem of determining the scale of the system can be 

solved by supposing that the output of each period is determined on the basis of the 

“market effectual demands”, that is, taking into account the endogeneity of the induced 

components of the effectual demands exerted in each period of the adjustment process.10 

We can outline the quantities relation like in an open Leontief model, by defining the 

market effectual demand of the two commodities by equations 

                                                 
10 This notion of ’market effectual demands’ is based on Ciccone(1999). 
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 d1t = q1ta11 + q2ta21 + c1,  (32a) 

 d2t = q1ta12 + q2ta22 + c2,  (32b) 

where c1 and c2 represent the final demand of commodities 1 and 2.11 The output 

dynamics is thus reformulated as follows: 

 q1t+1 = d1t [1 + (r1t – rt)]   (33a) 

 q2t+1 = d2t [1 + (r2t – rt)],  (33b) 

or, after substitution of (32) into (33), 

 q1t+1 = (q1ta11 + q2ta21 + c1) [1 + (r1t – rt)]   (33a) 

 q2t+1 = (q1ta12 + q2ta22 + c2) [1 + (r2t – rt)],  (33b) 

where r1t, r2t and rt are still defined by (14) and pt is defined by  

 pt =





















t

t

t

t

d

q

d
q

p

2

2
2

1

1
1

11

11

*




.  (34) 

Steady state of system (33). The search of the steady state of this model and, in 

particular, the prove of its uniqueness will be ascertained in two steps: i) we will prove 

the pair of output levels ( *
2

*
1 ,qq ), corresponding to the solution of the open Leontief 

system,  

 q1 = q1a11 + q2a21 + c1  (35a) 

 q2 = q1a12 + q2a22 + c2,  (35b) 

is a steady state of difference equation system (33); ii) later we will prove the (local) 

uniqueness of this solution together with its local asymptotic stability.  

Proposition 7. The pair ( *
2

*
1 ,qq ) is a steady state of difference system (33) in 

correspondence of which r1 = r2 = r = r* and p = p*. 

                                                 
11 More rigorously, the demand of each commodity c exerted in period t should be  

 dct = q1t+1a1c + q2t+1a2c + cc, c = 1, 2, (32′) 

that is, it should depend on the output levels planned for the subsequent period. But the adoption of such 
definition of demand would give rise to a loop in difference system (33): the output of period t + 1 would 
depend on the demand of period t which, on its turn, would depend on the output of period t + 1.  
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Proof. Firstly, observe that a steady state of system (33) is an output configuration such 

that qct+1 = qct = qc, c = 1, 2. In steady state difference equations (33) take thus the form 

 q1 = (q1a11 + q2ta21 + c1) [1 + (r1 – r)]   (36a) 

 q2 = (q1a12 + q2a22 + c2) [1 + (r2 – r)].  (36b) 

As by construction ( *
2

*
1 ,qq ) satisfy equations (35), equations (36) reduce to [1 + (r1 – 

r)] = 1 = [1 + (r2 – r)], that is, to r1 = r2 = r, hence r = r* and, consequently, p = p*. �  

Local uniqueness and local asymptotic stability of the steady state. The Jacobian 

matrix of difference system (33) wit, with r1t, r2t and rt defined by (14) and pt defined 

by (34) evaluated at the steady state is 

 J** = 







































νβ
μβ

T

T

21
2

21
2

2*
122

2*
122

*
2

*
1

2212

2111

0
0

)(
0

0

pp

pp

rara

r
p

a
r

p

a

q
q

aa
aa




 , 

where  

  = 








2

1




,  = 

















 

*
2

12*

2*
1

121
*
2*

q

a
p

q

caq
p

   and   = 




















2*

2

212
*
1*

*
1

21*

q

caq
p

q

a
p

. 

By observing J** we observe that, if  = 0, then J** = AT. A > O is the input-output 

matrix; Perron-Frobenius theorems hold. In particular, M(A) > 0 and | m(A) |  M(A), 

where M(A) denotes the dominant eigenvalue of A and m(A) denotes the other 

eigenvalue. As technology is viable, then M(A) < 1. Hence both eigenvalue of A are 

smaller than 1 in modulus:  

 | m(A) |  M(A) < 1.  (37) 

By (37) and by continuity arguments, if 1, 2 and  are sufficiently small then: 

1) matrix J** has no eigenvalues equal to 1; by Lemma 1 (see the Appendix) ( *
2

*
1 ,qq ) is 

a locally unique steady state of difference system (33); 

2) ( *
2

*
1 ,qq ) is a locally asymptotically stable steady state. 

The following Proposition then holds. 

Proposition 8. The steady ),( *
1

*
1 qq  of difference system (33) with dct defined by (32), r1t, 

r2t, rt defined by (14) and pt defined by (34) is: i) locally unique and ii) locally 

asymptotically stable, if the reaction coefficients 1, 2 and  are sufficiently small. 
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9. Comparison and contrast with the literature 

In this Section we shall briefly comment the few formal works on the Classical 

gravitation process in which the focus has been also posed on the level of market prices 

(instead of its rates of change) and the market price level is determined by a comparison 

between actual output and (effectual) demand. 

In Benetti (1979, 1981) the level of market prices is determined directly by the 

proportion between the ‘value of effectual demand’ (normal price times effectual 

demand) and the quantity brought to the market.12 In formulas: 

 pctqct =
**
ccqp , c = 1, 2, ..., C. (38) 

This ‘value of effectual demand’13 formulation implies that, for example,  a 10% 

short fall of the quantity brought to market relative to effectual demand (d) would entail 

a market price 10% above normal price and a 30% excess of effectual demand relative 

to quantity brought to market would lead to a market  price exactly 30% below the 

normal price.  

Moreover, this approach seems to introduce a form of market clearing in value terms in 

each market and in each period of time with respect to the normal configuration, a 

condition which restricts unsuitably the description of the Classical competitive process: 

(38) entails that market prices always will rise or fall to the extent that is necessary to 

sell to consumers (or users) the whole of the quantities brought to the market. In 

addition, Benetti’s formulations are also subject to the Steedman (1984) critique, as 

sectoral outputs are supposed to respond directly to deviations between market and 

normal prices.  

A similar approach as regards the determination of the market price level has 

been developed and extended by Kubin (1989 and 1991). She distinguishes the agents 

who exert the demand of the various commodities in two classes: consumers and 

producers. Moreover, she supposes that the demand of producers is ever satisfied in 

terms of quantities, while consumers’ demand is brought into equality with the residual 

supply of commodities by the price level. Prices, again, clear markets (there is no 

holding of inventories by firms). 

The weak point of these formulation is that the equality between the actual value 

of the quantity brought to market of each commodity and its effectual demand evaluated 

                                                 
12 See also Benetti (1981), Kubin (1989, 1991). 
13 See Kubin (1998). 
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at the normal price is a very restrictive assumption. Moreover, it is not really consistent 

with the views of the Classics, who argued that the extent by which market prices would 

fall or rise relative to normal would be quite variable and irregular and certainly not 

proportional.14 Ricardo, for instance, argued that: “the effects of plenty or scarcity, in 

the price of corn, are incalculably greater than in proportion to the increase or 

deficiency of quantity […] the exchangeable value of corn does not rise in proportion 

only to the deficiency of supply, but two, three, four, times as much, according to the 

amount of the deficiency” (apud Signorino & Salvadori, 2013 p.13 n.11)15  

Observe that the case considered in Section 7 where Say’s law is supposed to 

hold in each period has nothing to do with these approaches, because the equality 

between the value of supply and the value of (effectual) demand was there established 

in the aggregate, not at the level of each industry.  

Interpreting the principle that market prices are ‘regulated by the proportion’ 

between the effectual demand and the quantity brought to market in the sense that 

market price is directly and univocally determined exactly by the proportion ccc qqp /**  

involves interpreting ‘effectual demand’ not as a physical quantity of the commodity 

(which being homogeneous with the quantity brought to market may be directly 

compared to it)  but as a value magnitude.  

                                                 
14 Smith (1776)  in chapter 7, book I on the Wealth of Nations says “the market price will rise more or 

less above the natural price, according as either the greatness of the deficiency, or the wealth and wanton 

luxury of the competitors, happen to animate more or less the eagerness of the competition. Among 

competitors of equal wealth and luxury the same deficiency will generally occasion a more or less eager 

competition, according as the acquisition of the commodity happens to be of more or less importance to 

them. Hence the exorbitant price of the necessaries of life during the blockade of a town or in a famine.” 

and in the opposite case “The market price will sink more or less below the natural price, according as the 

greatness of the excess increases more or less the competition of the sellers, or according as it happens to 

be more or less important to them to get immediately rid of the commodity. The same excess in the 

importation of perishable, will occasion a much greater competition than in that of durable commodities; 

in the importation of oranges, for example, than in that of old iron.” These passages are clearly 

inconsistent with the ‘value of effectual demand’ formulation. 
15 Ricardo also writes that ’When the quantity of corn at market, from a succession of good crops, is 

abundant, it falls in price, not in the same proportion as the quantity exceeds the ordinary demand, but 

very considerably more […] No principle can be better established, than that a small excess of quantity 

operates very powerfully on price. This is true of all commodities; but of none can it be so certainly 

asserted as of corn, which forms the principal article of the food of the people’ apud Salvadori & 

Signorino (2013, p.13, fn 11) 
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In the Palgrave Dictionary, Boggio (1987) proposed a model that, differently 

from all his previous and subsequent contributions, contains drastic simplifications, the 

main purpose of this essay being that of sketching the essentials of the Classical 

gravitation process. However, in Boggio’s model the output dynamics of each 

commodity is regulated by the difference between actual and normal prices, and not, as 

in our case, by profit rates differentials. Although this approach follows literally Smith’s 

assertions, it makes the whole argument vulnerable to Steedman’s critique, as Boggio 

himself alerts.16  

Finally, another formal model where the level of market prices is determined on 

the basis of a comparison between actual output and effectual demand is proposed by 

Nell (1998, Ch. 8). The essential difference with respect to the models here presented is 

that Nell adopts a formulation of the principle of capital mobility where the deviations 

of industrial rates of profits are calculated with respect to the normal rate of profit, r*, 

which is a magnitude not known by capitalists when the system is out of its normal 

position. 

10. Final remarks 

The literature on formal models of the Classical gravitation process has tended to give 

the impression that the Classical principle of capital mobility in general is not able, by 

itself, to insure a tendency of market prices to converge or oscillate around normal 

prices without resorting to very specific and arbitrary assumptions about technology 

(restricting analysis to two goods and excluding self-intensive goods for instance) 

and/or the help of other  principles extraneous to the Classical process of competition 

(as consumer substitution effects). Even in Caminati (1990), Petri (2010) and 

Aspromourgous (2009) we can find here and there an echo of  this generally negative 

tone. On the contrary, the formal analysis presented in this paper confirms  Garegnani’s 

(1990, 1997) and Serrano (2011) more positive views that the Classical principle of 

competition through capital mobility is enough to ensure gravitation under quite general 

conditions concerning technology and effectual demands. Of course there  is still a lot 

of interesting things to be done regarding the analysis of stylized patterns of 

                                                 
16 The dynamic process described by Boggio is constituted by two sets of equations: 

 pit – *
ip  = gi(dit – qit), i = 1, 2, ..., n, 

 dqi/dt = si(pit – *
ip ),  i = 1, 2, ..., n, 

where gi and si are continuous sign-preserving functions. 
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disequilibrium reactions and their implications for the possible dynamics of average 

market prices (especially regarding expectations and speculation). But we are convinced 

that the simple model here presented should be considered the starting point for further 

formal studies on gravitation as, differently from other approaches, it permits to fully 

appreciate the stabilizing properties of the Classical principle of capital mobility in 

conveying the system towards its normal position.17 
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Appendix 

A.1 Difference equation (8), Section 4 

From the definition of r given in (9a) we get: 
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At the steady state defined in Proposition 1, p = p* and r = r*, where p* and r* satisfy 
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The sign of this derivative is undefined: it can be either positive or negative). Moreover, 

from the definitions of r1 and r2 given in (9a) 
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In steady state: 
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By deriving difference equation (8) one obtains 
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Evaluating at the steady state one yields: 
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and 
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a > 0;   

(observe that the terms with rp cancel out). 

A.2 Model with a given level of employment (Section 6) 

The derivatives of the sectoral rates of profit with respect to the relative price have been 

already calculated in (39). Sectoral output levels now appear in the expression of the 

average rate of profit. 
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In steady state p = p*; thus we have 
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Moreover,  
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In steady state equations (3) holds, q1 = *
1q , q2 = *

2q   and we have 
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Again, the sign of rp is undefined; but in this case too we will see that it cancels out 

from all the terms of the Jacobian matrix of the system. 

 The relative market price pt defined in (12) depends on q1t and on q2t; hence we 

can calculate  

 
)(1

1

2

*
1

1
*

1 


















q

p
q

p
,     

2
2

1*
2

2
*

2 )](1[

)](1[
1




















q

p
q

p
. 

In steady state, 1() = 2() = 0: 
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The rescaling factor (18) depends on q1t and on q2t; thus we can calculate: 
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Here the terms containing r/qc, c = 1, 2, have been omitted, as they are zero in steady 

state (see equations (40)). Moreover, in steady state, () = 0, 
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We can now calculate the Jacobian matrix of difference system (17) 
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In steady state 
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(observe that all the terms containing rp cancel out). 

A.3 Model with Say’s law (Section 7) 

The difference system presented in Section 7 differs from that of Section 6 for the 

rescaling factor only, which is now given in (28). Hence, the derivatives of the sectoral 

rates of profit with respect to the relative price coincide with those calculated in (39). 

The derivatives of the average rate of profit coincide with those calculated in (40) and 

(41). The derivatives of market price have been calculated in (42). The derivatives of 

the rescaling factor, defined in (28), are given by: 
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Again, here the terms containing r/qc, c = 1, 2, have been omitted, as they are zero in 

steady state (see equations (40)). Evaluating these derivatives in the steady state: 
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The elements of the Jacobian matrix coincide with those derived in (43). In steady state 

we have: 
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observe that, again, all the terms containing rp cancel out. 

A.4 Market prices of with market effectual demand 

Substitute (32) into (12) and obtain 
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In steady state ( *
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5. Elements of the Jacobian matrix of difference system (33). 
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In steady state 
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Lemma A1. Let x* be a steady state for the difference system 

 xt+1 = f(xt),   (44) 

and let J* be the Jacobian matrix of f evaluated at x*. If matrix J* has no eigenvalues 

equal to 1, then x* is a locally unique steady state for difference system (44). 

Proof. A steady state of system (44) is a solution of 

 f(x) = x.  (45) 

Equation (45) defines an implicit function: g(x) = f(x) – x = o. As x* is a steady state of 

(44), g(x*)  o. The Jacobian matrix of g(x) evaluated at x* is J* – I. As matrix J* has 

no eigenvalues equal to 1, matrix J* – I is non-singular. Then, by the implicit function 

theorem, x = x* is a locally unique solution of g(x)  o, that is, x* is a locally unique 

steady state of difference system (44). � 
 


